
7 Appendix580

7.1 Score matching details581

We found that using score matching [32] does not work reliably when the data’s structure lies on a582

low-dimensional manifold (e.g., natural images). We found that applying randomized smoothing [56],583

which adds Gaussian noise to the image for robust training, helps stabilize score matching as it584

smoothens the density function. Randomized smoothing also makes the bound tighter. We observed585

that adding a reasonable amount of noise (e.g., standard deviation of 0.25, which was originally used586

by Cohen et al. [56]) works well in general, but adding only small noise (standard deviation of 0.01)587

does not. We show both results in Section 3.3.1.588

7.2 Hyperparameters589

Attacks For attacks in Section 3.3.1, 3.3.2, and 4.2, we used the following hyperparameters. For590

the optimizer-based attack for Gaussian synthetic input, we used Adam with lr=10�3, and �=0.1–100591

for the regularizer. For the optimizer-based attack for NCF-MLP and DistilBert, we used Adam with592

lr=0.1. For the DNN-based attack for MNIST and CIFAR-10 (Figure 2, 3, 5), we used a modified593

DNN from Li et al. [20], which uses a series of convolution (Conv) and convolution transpose (ConvT)594

layers interspersed with leaky ReLU of slope 0.2. All the models were trained for 100 epochs using595

Adam with lr=10�3. Below summarizes the architecture parameters. For DNN-based attacks in596

Section 3.3.2, we put a sigmoid at the end. For the attack in Section 4.2, we do not.597

Table 3: DNN attacker architectures used in the paper. Output channel dimension (cout), kernel size
(k), stride (s), and output padding (op) are specified. Input padding was 1 for all layers.

Dataset + encoder Architecture

MNIST + Conv 3⇥Conv(cout=16, k=3, s=1) + ConvT(cout=32, k=3, s=1, op=0)
+ ConvT(cout=1, k=3, s=1, op=0)

CIFAR-10 + split-early 3⇥Conv(cout=64, k=3, s=1) + ConvT(cout=128, k=3, s=1, op=0)
+ ConvT(cout=3, k=3, s=1, op=0)

CIFAR-10 + split-middle 3⇥Conv(cout=128, k=3, s=1) + ConvT(cout=128, k=3, s=2, op=1)
+ ConvT(cout=3, k=3, s=2, op=1)

CIFAR-10 + split-late 3⇥Conv(cout=256, k=3, s=1) + 2⇥ConvT(cout=256, k=3, s=2, op=1)
+ ConvT(cout=3, k=3, s=2, op=1)

Split inference Below are the hyperparameters for the models used in Section 4.2. For ResNet-18,598

we used an implementation tuned for CIFAR-10 dataset from [70], with ReLU replaced with GELU599

and max pooling replaced with average pooling. We used the default hyperparameters from the600

repository except for the following: bs=128, lr=0.1, and weight_decay=5⇥ 10�4. For NCF-MLP,601

we used an embedding dimension of 32 and MLP layers of output size [64, 32, 16, 1]. We trained602

NCF-MLP with Nesterov SGD with momentum=0.9, lr=0.1, and batch size of 128 for a single epoch.603

We assumed 5-star ratings as click and others as non-click. For DistilBert, we used Adam optimizer604

with a batch size of 16, lr=2⇥ 10�5, �1=0.9, �2=0.999, and ✏ = 10�8. We swept the compression605

layer channel dimension among 2, 4, 8, 16, and the SNR regularizer � between 10�3 and 100.606

Training Below are the hyperparameters for the models evaluated in Section 5.2. We used the607

same model and hyperparameters with split inference for training the encoder with the pretraining608

dataset. Then, we freeze the layers up to block 4 and trained the rest for 10 epochs with CIFAR-10,609

with lr=10�3 and keeping other hyperparameters the same.610

Execution Environment All the evaluation was done on a single A100 GPU. The training and611

evaluation of each model ranged roughly from less than an hour (ResNet-18 with split-early, NCF-612

MLP) to 3–7 hours (ResNet-18 with split-late, DistilBert).613

7.3 van Trees inequality614

Below, we restate the van Trees Inequality [67], which we use to prove Theorem 5.615
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Theorem 2 (Multivariate van Trees inequality). Let (X ,F , P✓ : ✓ 2 ⇥) be a family of distributions616

on a sample space X dominated by µ. Let p(x|✓) denote the density of X ⇠ P✓ and Ix(✓) denotes617

its FIM. Let ✓ 2 ⇥ follows a probability distribution ⇡ with a density �⇡(✓) with respect to Lebesgue618

measure. Suppose that �⇡ and p(x|✓) are absolutely µ-almost surely continuous and �⇡ converges619

to 0 and the endpoints of ⇥. Let  be an absolutely continuous function of ✓, and  n an arbitrary620

estimator of  (✓). Assume regularity conditions from Section 2.2 is met. If we make n observations621

{x1,x2, ...,xn}, then:622

Z

⇥
E✓[|| n �  (✓)||22]�⇡(✓)d✓ �

(
R
div (✓)�⇡(✓)d✓)2

n
R
Tr(Ix(✓))�⇡(✓)d✓ +Tr(J (�⇡))

,

where div is the divergence operator.623

7.4 Proof of Corollary 1624

Proof. Let  be an identity transformation  (✓) = ✓. For the setup in Corollary 1, n = 1 and625

div(x) = d, so the multivariate van Trees inequality from Theorem 2 reduces to:626

E⇡E✓[||x̂� x||22/d] �
d

E⇡[Tr(Ie(x))] + Tr(J (f⇡))
=

1

E⇡[dFIL(x)] + Tr(J (f⇡))/d

627

7.5 Comparison with differential privacy628

Differential privacy [42] is not well-suited for instance encoding, as we discuss in Section 2.1. We629

formulate and compare a DP-based instance encoding and compare it with our dFIL-based instance630

encoding in a split inference setup (Section 4) to show that DP-based instance encoding indeed does631

not work well.632

To formulate DP for instance encoding, we define an adjacent set D and D0 as two differing inputs.633

A randomized method A is (↵, ✏)-Rényi differentially private (RDP) if D↵(A(D)||A(D0))  ✏ for634

D↵(P ||Q) = 1
↵�1 logEx⇠Q[(

P (x)
Q(x) )

↵]. As DP provides a different privacy guarantee with dFIL, we635

use the theorem from Guo et al. [28] to derive an MSE lower bound using DP’s privacy metric for636

an unbiased attacker. Assuming a reconstruction attack x̂ = Att(e) that reconstructs x from the637

encoding e = Enc(x), repurposing the theorem Guo et al. [28] gives:638

E[||x̂� x||22/d] �
⌃d

i=1 diami(X )2/4d

e✏ � 1
(6)

for a (2, ✏)-RDP Enc, where X is the input data space. We can construct a (2, ✏)-RDP encoder639

EncRDP from a deterministic encoder EncD by scaling and clipping the encoding adding Gaussian640

noise, or EncRDP = EncD(x)/max(1, ||EncD(x)||2
C ) +N (0,�2), similarly to [42]. The noise to be641

added is � = (2C)2

✏ [71]. Equation 6 for DP is comparable to Equation 2 for dFIL, and we use the642

two equations to compare DP and dFIL parameters. We use Equation 2 because [28] does not discuss643

the bound against biased attackers.644

We evaluate both encoders for split inference using CIFAR-10 dataset and ResNet-18. We split the645

model after block 4 (split-middle from Section 4.2.1) and did not add any optimizations discussed646

in Section 4 for simplicity. For the DP-based encoder, we retrain the encoder with scaling and647

clipping so that the baseline accuracy without noise does not degrade. We ran both models without648

standardizing the input, which makes diami(X ) = 1 for all i.649

Table 4 compares the test accuracy achieved when targeting the same MSE bound for an unbiased650

attacker using dFIL and DP, respectively. The result clearly shows that DP degrades the accuracy651

much more for similar privacy levels (same unbiased MSE bound), becoming impractical very652

quickly. DP suffers from low utility because DP is agnostic with the input and the model, assuming a653

worst-case input and model weights. Our dFIL-based bound uses the information of the input and654

model weights in its calculation of the bound and can get a tighter bound.655
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Table 4: Test accuracy when targeting the same MSE bound.
Unbiased MSE bound 1e-5 1e-4 1e-3 1e-2

dFIL-based 93.09% 93.11% 92.52% 87.52%
DP-based 64.64% 56.68% 46.46% 33%

7.6 Attack based on a diffusion model656

We additionally designed a powerful, diffusion model-based reconstruction attacker to study the657

privacy of dFIL against the best-effort attacker, motivated from the fact that recently developed658

diffusion models [72] are excellent denoisers. During training of a diffusion model, (1) a particularly-659

designed noise is added to an image, and (2) a DNN is trained to predict and remove the noise [72].660

The first part can be thought of as an instance encoder (that is purposely made easy to invert), and661

we can calculate its dFIL. The second part can be thought of as a reconstruction attacker. As the662

noising and denoising are specifically designed for the denoising to work well, we expect a mature,663

pretrained diffusion model to give a very good attack quality. We used DDPM [72] pretrained with664

CIFAR-10 from Google [73].665

Figure 7 shows the result. The first column of each row shows the original image, and other columns666

show the reconstruction of our DDPM-based attacker with different dFIL. We scale and show dFIL667

with the same scale as Figure 5, as DDPM works with a different normalized image that produces dFIL668

at a different scale. Our new attack provided an interesting result: the attack was able to reconstruct669

conceptually similar images with the original image even when pixel-by-pixel reconstruction was670

prohibited by high 1/ dFIL. For example, 7th row at 1/ dFIL = 49.5 (6th column) successfully671

reconstructed a white car with a red background, although the reconstruction MSE was high and the672

design of the reconstructed car was nothing like the original image. The result shows that high-level673

information of the image (e.g., the color of the car/background, the orientation of the car, etc.) can674

still be preserved after encoding with a relatively high 1/ dFIL, which is why it is possible to perform675

downstream training/inference with a privately-encoded data without revealing the original data.676

7.7 Additional figures and tables677

Table 5: The reconstruction quality of an input is highly correlated with dFIL. Correct parts in bold.
1/dFIL Reconstructed text (from split-early)

10�5 it’s a charming and often affecting journey.

1
it’s cones charmingound

often affecting journey closure

10
grounds yuki cum sign

recklessound fanuche pm stunt
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Figure 7: Results from DDPM [72]-based reconstruction attack. High 1/ dFIL prevents exact pixel-
to-pixel reconstruction, but images that share some high-level features with the original image can be
generated unless 1/ dFIL is not too high.

(a) 1/dFIL vs. SSIM (b) 1/dFIL vs. reconstructed image quality

Figure 8: Optimizer-based attack with total variation (TV) prior [34] against our split inference
system in Section 4. The trend is very similar to Figure 5.
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Figure 9: More reconstruction result of Figure 2.

Figure 10: More reconstruction result of Figure 3.
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Figure 11: More reconstruction result of Figure 4.
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(a) Reconstructions with the worst SSIM values. (b) Reconstructions with the best SSIM values.

Figure 12: Ten reconstructions with the best and worst SSIM values for various setups. The result is
an extension of Figure 5. Images with a simple shape and high color contrast tend to be reconstructed
more easily, which matches our intuition. Omitting results from 1/ dFIL = 100, as no meaningful
reconstruction was possible.

Figure 13: Ten images with the lowest and highest dFIL values, for split-middle setup in Figure 5.
Images with high dFIL tend to have a simpler shape and a high color contrast, potentially being easier
to reconstruct. Individual dFIL value of each samples can potentially be used to detect data that are
more leaky.
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