
Conservative Offline Policy Adaptation in Multi-Agent
Games

Chengjie Wu1, Pingzhong Tang12, Jun Yang3, Yujing Hu4,
Tangjie Lv4, Changjie Fan4, Chongjie Zhang5

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2Turingsense

3Department of Automation, Tsinghua University
4Fuxi AI Lab, NetEase

5Department of Computer Science & Engineering, Washington University in St. Louis
wucj19@mails.tsinghua.edu.cn

{kenshin,yangjun603}@tsinghua.edu.cn
{huyujing,hzlvtangjie,fanchangjie}@corp.netease.com

chongjie@wustl.edu

Abstract

Prior research on policy adaptation in multi-agent games has often relied on online
interaction with the target agent in training, which can be expensive and impractical
in real-world scenarios. Inspired by recent progress in offline reinforcement learn-
ing, this paper studies offline policy adaptation, which aims to utilize the target
agent’s behavior data to exploit its weakness or enable effective cooperation. We
investigate its distinct challenges of distributional shift and risk-free deviation, and
propose a novel learning objective, conservative offline adaptation, that optimizes
the worst-case performance against any dataset consistent proxy models. We pro-
pose an efficient algorithm called Constrained Self-Play (CSP) that incorporates
dataset information into regularized policy learning. We prove that CSP learns
a near-optimal risk-free offline adaptation policy upon convergence. Empirical
results demonstrate that CSP outperforms non-conservative baselines in various
environments, including Maze, predator-prey, MuJoCo, and Google Football.

1 Introduction

Reinforcement learning (RL) has shown promise in learning collaborative or adversarial policies in
multi-agent games, including cooperative multi-agent reinforcement learning [49, 6, 34, 5, 14, 40],
and learning in adversarial environments such as Texas hold’em and MOBA games [3, 45, 46, 50].
Research also recognizes the importance of adapting policy to different players in multi-agent games
[10, 26, 51]. For instance, in zero-sum games, although an approximate Nash equilibrium strategy
optimizes worst-case performance, it can be overly conservative when competing with opponents of
limited rationality and loses opportunities to exploit [27, 17, 24]. This problem is known as opponent
exploitation [17, 23, 41, 1, 28]. In cooperative games, the agent may be required to cooperate with
other competent players that have diverse behaviors [15, 11], instead of just a specific group of
teammates. The problem is investigated in recent literature such as ad-hoc cooperation [11] and
zero-shot coordination [15, 26, 51, 47]. In this paper, policy adaptation refers to the general ability
to learn to collaborate with or exploit other participants (called target agents) in multi-agent games.

This paper focuses on a specific problem of offline policy adaptation. In this setting, interaction with
the target agent is not available in training. Instead, we leverage the target agent’s behavior dataset
and maintain access to the game environment during training. The problem definition is illustrated

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

dataset

adaptation policy environment

adaptation policy environmenttarget policy

train

test

0.0 0.5 1.0 1.5 2.0 2.5
steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

 w
in

ni
ng

 ra
te

alg
BC first
CSP (Ours)

0.0 0.5 1.0 1.5 2.0 2.5
steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

 w
in

ni
ng

 ra
te

alg
BC first
CSP (Ours)

Figure 1: Left. Problem illustration. Mid and right. Winning rates in Google Football 3vs1
(attacker). The x-axis is the training steps. We run evaluations against (mid) proxy model in training
and (right) real target agent. Shaded areas represent standard error. The non-conservative method
quickly overfits the proxy model. Our method CSP outperforms baseline in testing. Please refer to
Appendix G.7 for more explanations.

in Figure 1 (left). This setting is suitable for many practical scenarios where offline information
about the target agent is provided. It lies between the fully transparent case, where the target agent’s
policy is available, and the fully invisible zero-shot adaptation case. For instance, in competitions
such as Go, soccer, and MOBA games, playing with the target opponent is not an option until the
actual game commences. However, professional human players have the intelligence to analyze their
opponents’ and teammates’ strategic characteristics by studying past records, enhance their skills,
and make adaptations accordingly before the competition. Moreover, training AIs with humans in
applications that involve human-AI interaction is exorbitant. Additionally, it can be unsafe and poses
ethical risks when humans interact with an inadequately trained AI in certain circumstances.

Although offline policy adaptation models a wide range of applications, it has not been adequately
investigated both theoretically and empirically in previous literature. For instance, some opponent
exploitation research assumes direct interaction in training for explicit opponent model estimation
[17, 24] or policy gradient calculation [2, 10, 12]. However, this assumption is strong because it
allows queries of the target agent’s policy for any input. Other works study exploiting totally unknown
opponents [7] or collaborating with completely unseen teammates [26, 51, 47] in a zero-shot manner.
These methods do not take advantage of possible prior information about the target agent, and their
performances heavily depend on the construction of a diverse and representative policy population
constructed for training, which itself is a challenging problem [31, 25].

In this paper, we identify and formalize the distinct challenges in offline policy adaptation, and
show that previous opponent exploitation methods, which disregard these challenges, are inadequate
for effectively addressing the problem. Firstly, offline policy adaptation inherits the distributional
shift [22] challenge from traditional offline RL. A straightforward approach to address offline policy
adaptation is by initially creating an estimation of the target agent (e.g., utilizing behavior cloning)
from data and subsequently learning an adaptation policy based on the proxy model. We name this
method BC-First. However, since the dataset usually will not expose all aspects of the real policy
of the target agent due to limited dataset size, the proxy model can differ arbitrarily from the real
target on out-of-distribution (OOD) states. The discrepancy between the proxy in training and the
real target in testing causes the distributional shift problem for the adaptation policy. As shown in
Figure 1, BC-First overfits the dataset, which leads to erroneous generalization on OOD states and
results in significant performance degradation in evaluation. Our algorithm outperforms the baseline
and improves in both training and testing as the number of training step increases. Secondly, since
the adaptation policy has access to the environment in training, unlike standard offline RL, we show
that “conservatism” [8, 20, 19] for addressing distributional shift may not be sufficient in this setting.
It is possible to benefit from deviation in multi-agent games if the worst-case rewards obtainable
outside the dataset exceed those inside the dataset. We coin this challenge as risk-free deviation.

To address these challenges, we propose a novel learning objective, conservative offline adaptation,
which optimizes the worst-case performance when maintaining a conservative stance towards the
target agent on the policy level. This objective provides a unified approach to addressing the challenges
of distributional shift and risk-free deviation. To optimize this objective, we introduce a simple yet
efficient algorithm, Constrained Self-Play (CSP), which simultaneously trains an adaptation policy
and a proxy model subject to regularizations. We prove that CSP produces a near-optimal risk-free
adaptation policy upon convergence, given that the target agent’s policy within the support of the
dataset can be well approximated. Empirically, we evaluate the effectiveness of our algorithm in four
environments: a didactic maze environment, predator-prey in MPE [39], a competitive two-agent

2

MuJoCo environment [2, 10] requiring continuous control, and Google Football [21]. Our results
show that non-conservative methods confront difficulties regarding offline policy adaptation. The
experiment results demonstrate that our algorithm significantly outperforms baselines.

2 Related Work

RL in multi-agent games. Multi-agent reinforcement learning (MARL) under the centralized
training decentralized execution (CTDE) paradigm have shown promising performances in learning
coordination behavior for cooperative multi-agent tasks such as SMAC [35] and Google Football
[21]. Representative works consist of policy gradient algorithms [6, 48], and value decomposition
methods [34, 40]. There also have been extensive research in competitive environments such as Texas
hold’em and MOBA games. Some works design theoretically sounded RL algorithms which are
guaranteed to converge to approximate NE [3]. Some works propose RL methods based on self-play
[45, 46, 50] to train max-min policies which show strong empirical performances.

Offline RL. Offline reinforcement learning [22] learns purely from batched data. Representative
works take a conservative view of out-of-distribution state-action pairs to mitigate the distributional
shift problem. BCQ [8] uses VAE to propose candidate actions that are within the support of the
dataset. IQL [19] uses expectile regression to learn Q function to avoid querying out-of-distribution
actions. CQL [20] puts regularization on the learning of Q function to penalize out-of-distribution
actions.

Opponent modeling. Opponent modeling, sometimes also called opponent exploitation, is a broad
and extensively studied area [1, 28]. The offline adaptation problem studied in this paper is a
largely unstudied yet significant and challenging problem within the broader scope of opponent
modeling. Some previous works assume access to the target agent’s policy in training, and employ
deep reinforcement learning to exploit the opponent in continuous control tasks using policy gradients
estimated from direct interaction [2, 10, 12]. Some works, including RNR [17] and SES [24] study
safe exploitation given an estimated opponent model. They keep the exploitation policy close to NE in
order to minimize its own exploitability. Some papers, like GSCU [7], study zero-shot generalization
ability to exploit totally unknown opponents. Additionally, this paper is orthogonal to some other
opponent modeling subareas, including designing efficient models for predicting opponent behavior
[13, 33], and addressing non-stationary opponents [7]. To our best knowledge, there lacks a thorough
investigation into the offline adaptation problem.

Please refer to Appendix B for more discussion.

3 Preliminary

For simplicity, we consider a two-player fully observable game G = (N,S,A, PM , r, p0, γ) [37, 38],
where N is a set of two players, S is a set of states, p0 is initial state distribution, and γ is the discount
factor. We use Ai to denote the available actions for player i, and A = (A1, A2). The transition
probability is denoted by PM : S × A × S → R. We use ri : S × A → R to denote the reward
function for player i, and r = (r1, r2). In fully cooperative scenarios, r1(s,a) = r2(s,a) = r(s,a),
which is termed multi-agent MDP (MMDP) [43]. In zero-sum games, r1(s,a) + r2(s,a) = 0.
Player i’s policy πi(s, ·) is a distribution over action space Ai conditioned on state s ∈ S. The value
function V

(π1,π2)
i (s) is the expected discounted accumulated reward that player i will achieve under

joint policy profile (π1, π2) at state s. Similarly, the action value function Q
(π1,π2)
i (s,a) calculates

the expected return when players play the joint action a = (a1, a2). Let dπ1,π2(s) be the discounted
visitation frequency of state s under policy profile (π1, π2): dπ1,π2

(s) =
∑∞

t=0 γ
tP (st = s). We use

J
(π1,π2)
i to denote the return for player i under policy profile (π1, π2).

Without loss of generality, assume that we are aimed at learning an adaptation policy for player
1 (P1), while player 2 (P2), called the target agent, is playing a unknown fixed strategy πB . In
offline policy adaptation, we do not have access to πB . Instead, a dataset D of πB’s behavior data is
given. Formally, D = Fp({Ti}), where Fp denotes extra data processing1, and Ti = {s0, a0, s1, . . .}
records states and corresponding actions of an episode collected by πB playing with rollout policies in

1We use Fp to represent possible information loss in data collection, e.g., truncating and randomly masking.

3

Πc. We do not make assumptions on the data collecting process, therefore, Πc can contain any polices
ranging from a weak random policy to a strong NE policy. Analogous to offline RL and robust RL,
the dataset quality varies given different rollout policies, dataset sizes, and processing methods, which
results in different problem difficulties. For instance, if the dataset reveals adequate information about
the target’s behavior under diverse situations, BC-First can be enough. The challenges of offline
policy adaptation becomes prominent if the dataset only contains limited knowledge of πB .

The purpose of offline adaptation is to learn to adapt to unknown πB given a fixed batch of data D.
Notably, different from offline RL, the access to the environment itself is still granted in training.
If not, such setting can be reduced to standard imitation learning or offline reinforcement learning
[44, 29], because the target’s behavior can be absorbed into environment dynamics. With the
advantage of having access to the environment, this setting encourages conservative exploitation
whenever risk-free deviation is possible.

4 Conservative Offline Adaptation

To address the problem of offline adaptation, we first examine the extrapolation error in policy
evaluation between joint policies (π, πB) and (π, µ) in section 4.1. Here, π denotes the learning
policy, πB represents the true target policy, and µ denotes any proxy model that estimates πB . This
extrapolation error poses a risk to non-conservative policy adaptation algorithms, rendering them
unsafe. However, traditional offline RL methods that aim to minimize the impact of extrapolation
error tend to be excessively conservative, which is suboptimal in this context. To allow for beneficial
deviations from the dataset, we introduce a novel objective of conservative offline adaptation in
section 4.2. This approach maximizes the worst-case performance against any dataset-consistent
proxy (defined below). Finally, we propose a practical Constrained Self-Play (CSP) algorithm in
section 4.3 and formally prove that it achieves near-optimal conservative offline adaptation. Please
note that all proofs pertaining to this section can be found in Appendix A.

4.1 Extrapolation Error in Offline Adaptation

We first analyze the extrapolation error in policy evaluation between the joint policies (π, πB) and
(π, µ), which results in the overfitting problem shown in Figure 1. For theoretical analysis, we first
introduce the dataset consistent policy in Definition 4.1. We will show that this assumption can be
relaxed in algorithm design in a later section. Inspired by offline RL, in Proposition 4.2, we find
that the extrapolation error in offline policy adaptation can also be decomposed in a Bellman-like
recursion [8, 44]. We focus solely on the value function of our learning agent (Player 1), and omit the
subscript in the rewards and value functions for simplicity.
Definition 4.1. Dataset consistent policy. A policy µ is said to be consistent with πB on dataset D
iff. µ(s, a) = πB(s, a), ∀(s, a) ∈ D. We denote the set of all dataset consistent policies as CD.
Proposition 4.2. The performance gap of evaluating policy profile (π, µ) and (π, πB) at state s is
ε(s) = V π,πB (s)− V π,µ(s), which can be decomposed in a Bellman-like recursion:

ε(s) =
∑

a1,a2,s′

π(a1|s)PM (s′|s,a) (πB(a2|s)− µ(a2|s)) (r(s,a, s′) + γV π,µ(s′))

+
∑

a1,a2,s′

π(a1|s)πB(a2|s)PM (s′|s,a)γε(s′)
(1)

Theorem 4.3. We use ε =
∑

s0
p0(s0)ε(s0) to denote the overall performance gap between policy

profile (π, µ) and (π, πB). In any 2-player fully observable game, for all reward functions, ε = 0 if
and only if πB(a|s) = µ(a|s),∀s, s.t. dπ,πB

(s) > 0.

Theorem 4.3 proves that the extrapolation error vanishes if and only if the estimation µ perfectly
matches πB on any state which can be visited by (π, πB). If extrapolation error exists, improvement
of π against proxy µ in training will not guarantee monotonic improvement in testing when π is
evaluated with πB (as shown in Figure 1). Because we make no assumptions on πB outside D, we
cannot bound ∥µ(a|s)− πB(a|s)∥ for s /∈ D. Therefore, it requires that dπ,πB

(s) = 0,∀s /∈ D.
Corollary 4.4. Given a dataset consistent policy µ ∈ CD, which is consistent with πB on dataset D,
the extrapolation error vanishes if ∀s /∈ D, dπ,πB

(s) = 0.

4

Corollary 4.4 advocates excessive conservatism, similar to standard offline RL, to exclude any state-
action pairs outside the dataset. It requires to constrain both π and µ such that the trajectories of
(π, µ) stay within D. However, this approach comes at the cost of relinquishing opportunities to
exploit environmental access and explore the potential benefit of risk-free deviation from the dataset.

4.2 Conservative Offline Adaptation

In order to avoid being overly conservative and allow beneficial deviation from the dataset, we
propose a novel learning objective called conservative offline adaptation in Definition 4.5.
Definition 4.5. Conservative offline adaptation (COA). Given an unknown policy πB , and a dataset
D of its behavior data, conservative offline adaptation optimizes the worst-case performance against
any possible dataset-consistent policy:

max
π

min
µ

J(π, µ), s.t. µ ∈ CD. (2)

The adaptation policy π∗ is an optimal risk-free adaptation policy if it is a solution to Objective (2).

To show that COA enables risk-free deviation, we decompose the return into two parts in Definition
4.6: (1) the return that is solely realized within the dataset, and (2) the return that arises from deviation.
Definition 4.6. Within-dataset return & off-dataset return. The expected return of a joint policy
profile (π1, π2) can be decomposed into the sum of within-dataset return JD(π1, π2) and off-dataset
return JF (π1, π2):

J(π1, π2) = Eτ∼(π1,π2)

∑
t

γtr(st,at, st+1)

= Eτ∼(π1,π2)

∑
t≤tτD

γtr(st,at, st+1) + Eτ∼(π1,π2)

∑
t>tτD

γtr(st,at, st+1)

= JD(π1, π2) + JF (π1, π2),

(3)

where tτD = argmaxt′{∀t ≤ t′, st ∈ D} is a random variable indicates the last time step in a
trajectory τ such that the state is still contained in dataset D.

For any policy π, and any dataset consistent policy µ ∈ CD, JD(π, µ) = JD(π, πB) because
µ and πB behave exactly the same until the first time an OOD state is reached according to the
definition. Thus, the objective 2 is equivalent to maxπ JD(π, πB) + minµ JF (π, µ), s.t. µ ∈ CD.
The adaptation policy π learns to exploit or cooperate with the target agent’s policy exposed by
dataset D. Meanwhile, the max-min optimization of maxπ minµ JF (π, µ) encourages π to explore
opportunities outside the dataset while maintaining a conservative stance towards the target agent at
the policy level. It provides a unified approach to automatically decide whether to deviate depending
on the magnitude of within-dataset return and worst-case off-dataset return. In the extreme case, if
minµ JF (π, µ) is much larger than JD(π, πB), π can ignore the dataset completely and try to obtain
rewards outside the dataset. Additionally, suppose that (π∗, µ∗) is the solution to COA, then the
extrapolation error ε = J(π∗, πB)− J(π∗, µ∗) = JF (π

∗, πB)− JF (π
∗, µ∗) ≥ 0, which suggests

that the testing performance will not be worse than training performance.

4.3 Constrained Self-Play

Directly optimizing the objective of COA is hard because in deep reinforcement learning, satisfying
the dataset consistency assumption regarding the proxy model µ can be difficult, particularly for
stochastic policies with limited data. We relax this assumption and propose a simple yet efficient
algorithm, Constrained Self-Play (CSP). We prove that CSP can achieve near-optimal risk-free
policy adaptation. We start by showing in Theorem 4.7 that the gap in return is bounded by the KL
divergence of two policies of the target agent.
Theorem 4.7. In a two-player game, suppose that π is player 1’s policy, α and µ are player 2’s
policies. Assume that maxs DKL (α(·|s)∥µ(·|s)) ≤ δ. Let RM be the maximum magnitude of return
obtainable for player 1 in this game, and let γ be the discount factor. We use J(π, µ) and J(π, α) to
denote the return for player 1 when playing policy profiles (π, µ) and (π, µ) respectively. Then,

J(π, µ)− J(π, α) ≥ −RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (4)

5

With this result, we propose to optimize objective 5, which substitutes the hard dataset consistent
constraint in objective 2 with KL-divergence.

max
π

min
µ

J(π, µ) s.t. max
s∈D

DKL(πB(·|s)∥µ(·|s)) ≤ δ (5)

We propose the Constrained Self-Play (CSP) algorithm, which optimizes objective 5 through
learning both an adaptation policy and a proxy model with self-play and meanwhile minimiz-
ing the KL divergence between µ and πB on the dataset with regularization. The algorithm is
shown in Algorithm 1 in Appendix C. CSP utilizes soft BC regularization to minimize the KL-
divergence: maxπ minµ

{
J(π, µ) + CBC · E(s,a)∼D[− logµ(a|s)]

}
. It is because BC is equivalent

to KL-divergence minimization [18, 9]. By increasing the coefficient CBC, CSP prioritizes KL-
divergence minimization. In the max-min optimization, the proxy model is trained adversarially
against our adaptation policy by setting the proxy’s reward function to be the negative of our agent’s
reward. We use MAPPO [48] as the basic learning algorithm for players on both sides.

We prove in Theorem 4.8 that CSP approximates the optimal risk-free offline adaptation policy by
some constant upon convergence. The gap depends on the maximum KL-divergence between the
learned proxy µ and the target πB on s ∈ D. The gap decreases as µ becomes a more precise
estimation of πB within D. As a sanity check, the gap vanishes when µ perfectly matches πB in D.

Theorem 4.8. Let π∗ be the optimal risk-free offline adaptation policy at the convergence of the
optimization of objective 2, and let π̃ be the policy at the convergence of objective 5. Then the
worst-case adaptation performance of π̃ is near-optimal:

min
µ∈CD

J(π∗, µ) ≥ min
µ∈CD

J(π̃, µ) ≥ min
µ∈CD

J(π∗, µ)−RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (6)

5 Didactic Maze Example

In this section, we use an adversarial grid-world maze game to demonstrate the challenges posed by
offline policy adaptation and explain the superiority of our algorithm. Figure 2 displays the maze
environment, where Player 1 (P1) and Player 2 (P2) start from the labeled positions and can move in
four directions within the maze. The grids marked with numbers are terminal states with indicated
rewards. There are five corridors (2 for P1 and 3 for P2), each with different lengths and exponential
final rewards2. For simplicity, we use the notation P2 → 16 to denote P2’s policy which going
downwards to the state with terminal reward 16. The first agent reaching any terminal state wins
the reward, and the opponent receives the negative reward as a penalty. The game ends immediately.
We assume that P1 wins if P1 and P2 arrive at terminal states simultaneously. If no one reaches a
terminals in 10 steps, they both get a penalty of -500. Both agents have full observation of the game
states. Assume that P1 is the opponent, and we want to find exploiting policies for P2.

We consider four baselines: (1) BC-First as explained in section 1; (2) Self-Play (max-min):
approximating the pure max-min policy of P2 using self-play, which does not exploit; (3) Dataset-
Only: completely following the dataset; and (4) Oracle: training an exploitation policy directly
against the real target πB . Please refer to Appendix D for detailed learning curves in this environment.

4 1 P2

16

256P1

64

4 P1

64

1 P2

16

256

CSP adaptation
suboptimal adaptation

Figure 2: The didactic maze example. The solid line indicates the testing trajectory of adaptation
policy produced by CSP, while the dashed line indicates sub-optimal adaptation trajectories: (left)
BC-First in maze case 1 and (right) Self-Play in maze case 2.

Case 1: Inadequacy of Non-Conservative Methods We show in this case that non-conservative
algorithms easily overfit to an erroneous proxy model, lured to exploit “fake weaknesses” of the

2Rewards are set exponentially for efficient exploration of practical deep reinforcement learning algorithms.

6

Table 1: The training and test performances in maze environment (left) case 1 and (right) case 2.

CASE 1 Train Test (against πB) CASE 2 Train Test (against πB)

BC-First 16 -4 BC-First 16 16
Self-Play 1 1 Self-Play 1 1
Dataset-Only -64 -64 Dataset-Only 16 16
CSP (Ours) 1 1 CSP (Ours) 16 16

Oracle 1 1 Oracle 16 16

opponent. Suppose that P1’s real policy πB is as follows: (1) if P1 observes P2→ 16, P1→ 4; (2) if
P1 observes P2→ 256, P1→ 64; (3) otherwise P1 does not move. This is a reasonably strong policy
for P1 which tries to exploit P2. Suppose the dataset is collected with πB and P2’s rollout policy
is P2→ 256. Therefore, in the dataset, P1 is only observed going downwards. The proxy model
trained by BC thus erroneously assumes that P1→ 64 under any conditions. The results are shown
on the left side of Table 1. The BC-First method makes a disastrous generalization and responds
with a P2→ 16 policy. Trying to exploit the “fake weaknesses” of the opponent results in failure in
testing against the real opponent. However, CSP discovers that P2→ 16 is unsafe and learns to safely
win the game by playing P2→ 1. Both CSP and max-min policy achieve the optimal solution. The
Dataset-Only method is overly conservative and only gets -64. The trajectories of CSP and BC-First
when exploiting the real target are shown on the left side of figure 2.

Case 2: Performing Risk-Free Adaptation In this case, we show that CSP outperforms pure
Self-Play (which does not exploit the opponent) by discovering risk-free exploitation opportunities.
Suppose that P1 always plays an aggressive policy πB : P1→ 64. The dataset D is collected by πB

with P2 playing P2→ 16 and P2→ 256 randomly. The results are shown on the right side of Table
1, and the trajectories of CSP and Self-Play are shown on the right side of Figure 2. The max-min
policy produced by Self-Play cannot exploit P1’s reckless policy. The generalization of the BC model
is indeed correct in this specific situation, so BC-First is also optimal. Our algorithm recognizes that
P2→ 16 is a risk-free exploitation because the dataset has witnessed that P1 still plays P1→ 64 even
if P2→ 16 and successfully exploits the opponent.

It is noteworthy that we use the same hyperparameters for CSP in both cases and our algorithm learns
different adaptation policies based solely on the different datasets used. It further validates that our
algorithm is able to extract useful information from the dataset, and to perform risk-free adaptations.

6 Experiment

We conduct extensive experiments on the predator-prey in MPE [39], a competitive two-player
MuJoCo environment [2, 10] that requires continuous control, and Google Football [21]. In all
experiments, we compare CSP with (1) BC-First, and (2) Self-Play, which produces an approximate
max-min conservative policy of the game. Self-Play can also be viewed as an ablation of CSP which
does not utilize an offline dataset to adapt to targets. We also compare with multi-agent imitation
learning (MAIL), and previous opponent exploitation method RNR [17], which does not perform
conservative offline exploitation. More experiment details are available in Appendix G. We focus on
performing opponent exploitation in competitive games. However, we also discuss the use of CSP for
cooperative tasks in Appendix E.

6.1 Experiments in Predator-Prey and MuJoCo

In the predator-prey environment, there are three adversarial agents, one good agent, and two
obstacles. The good agent is penalized for being hit by adversaries, whereas the adversaries are
rewarded. In experiments presented in Table 2, our agent controls either the good agent or the
adversaries, respectively. We use a pre-trained model as target πB . We report the episode rewards
in evaluation with πB . We use three types of datasets (10R, 100R, 100S) to demonstrate the impact
of dataset quality in offline adaptation. The prefix number indicates the number of trajectories in
the dataset. Letter “R” indicates that the dataset is collected by πB playing with a random policy,
while “S” indicates that the dataset is collected by πB playing with another well-trained opponent.

7

Table 2: Testing episode rewards of adaptation policy in predator-prey of MPE.

Controls Good Agent Controls Adversaries

Dataset 10R 100R 100S 10R 100R 100S

CSP(Ours) -16.7±0.4 -17.5±0.4 -17.1±0.1 34.6±1.6 33.6±3.2 34.7±4.1
BC-First -29.8±4.0 -21.8±1.6 -18.5±0.4 21.3±0.8 25.2±0.9 27.8±1.9
Self-Play -17.6±1.5 -17.6±1.5 -17.6±1.5 29.7±2.8 29.7±2.8 29.7±2.8
MAIL -59.0±0.6 -54.2±1.0 -37.9±1.4 4.3±0.3 4.1±0.2 25.8±0.7

Oracle -16.0±0.3 -16.0±0.3 -16.0±0.3 34.3±6.2 34.3±6.2 34.3±6.2

Table 3: Experiments in MuJoCo YouShallNotPassHumans environment. We show the winning rates
and episode rewards against 4 independent target opponents..

Method 1 2 3 4

Winning Rate
CSP(Ours) 0.72 ± 0.06 0.65 ± 0.04 0.85 ± 0.08 0.88 ± 0.02
BC-First 0.65 ± 0.13 0.46 ± 0.14 0.71 ± 0.17 0.72 ± 0.07
Self-Play 0.54 ± 0.20 0.59 ± 0.14 0.52 ± 0.02 0.60 ± 0.19

Episode Reward
CSP(Ours) 878 ± 166 676 ± 100 1203 ± 209 1274 ± 73
BC-First 693 ± 347 179 ± 456 848 ± 373 858 ± 185
Self-Play 419 ± 527 500 ± 395 318 ± 106 601 ± 514

Intuitively, 10R has the lowest dataset quality, while 100S has the highest. We train the Oracle directly
against πB as an upper bound. Self-Play and Oracle do not use datasets. MAIL imitates the dataset
collection policy. It fails to learn meaningful behavior on datasets 10R and 100R where the dataset
collection policy is a random policy. Table 2 shows that CSP outperforms baselines and achieves
comparable performances with Oracle, regardless of the dataset quality. CSP effectively learns to
exploit the opponent safely, while the non-conservative method BC-First fails to do so. Moreover,
BC-First is significantly more sensitive to dataset quality. In the controlling adversaries scenario,
even with the 100S dataset, BC-First still performs worse than Self-Play, which does not exploit at
all. It shows that the non-conservative method overfits the proxy model severely.

The YouShallNotPassHumanoids environment [2, 10] is a MuJoCo-based two-player competitive
game where the runner’s objective is to pass the blocker and reach the red line on the opposite
side. In our experiments, our agent acts as the runner, and the blocker is the target opponent for
exploitation. In Table 3, we use four independently pre-trained blocker models as opponent targets.
Since the exploitability of different opponent models can vary significantly, results against different
opponents are not directly comparable. So we report results for all targets. CSP successfully exploits
the opponent, and significantly outperforms the baselines for all targets. Additionally, we include a
visualization of CSP’s learned behavior in Appendix G.

6.2 Experiments in Google Football

3vs1 (defender) 3vs1 (attacker) RPS (defender) CA (defender)
scenario

0.8

0.6

0.4

0.2

0.0

0.2

0.4

ga
p

method
CSP(Ours)
BC-First

Figure 3: The average test-train perfor-
mance gap in four scenarios of Google Foot-
ball. A negative gap indicates the occur-
rence of unsafe exploitation.

Google Football [21] is a popular and challeng-
ing benchmark for MARL. In our experiments,
the adaptation policy controls all players in one
team, while the opponent target policy controls the
other team. We conduct experiments in 4 scenar-
ios: academy_3_vs_1_with_keeper (3vs1, where our
agent acts as either the defender or the attacker),
academy_run_pass_and_shoot_with_keeper (RPS, de-
fender), and academy_counterattack_easy (defender).
We report the winning rates of adaptation policies for
five independently pre-trained opponent targets.

The experiment results in Table 4 show that our algo-
rithm CSP outperforms baselines for almost all targets
in all scenarios. Notably, the BC-First algorithm even

8

Table 4: Winning rates of offline adaptation policy in 4 scenarios of Google Football: 3vs1 (defender),
3vs1 (attacker), RPS (defender), and Counterattack Easy (defender). For each scenario, we experiment
with 5 independent target opponents.

Scenario Method 1 2 3 4 5

3vs1
defender

CSP(Ours) 0.9 ± 0.06 0.6 ± 0.12 0.45 ± 0.04 0.32 ± 0.11 0.76 ± 0.16
BC-First 0.64 ± 0.04 0.46 ± 0.09 0.2 ± 0.01 0.16 ± 0.04 0.56 ± 0.09
Self-Play 0.29 ± 0.09 0.34 ± 0.1 0.26 ± 0.16 0.29 ± 0.18 0.3 ± 0.13

3vs1
attacker

CSP(Ours) 0.81 ± 0.14 0.88 ± 0.02 0.83 ± 0.07 0.84 ± 0.05 0.78 ± 0.08
BC-First 0.83 ± 0.03 0.74 ± 0.21 0.68 ± 0.07 0.79 ± 0.11 0.71 ± 0.15
Self-Play 0.75 ± 0.15 0.76 ± 0.08 0.73 ± 0.13 0.7 ± 0.21 0.74 ± 0.08

RPS
defender

CSP(Ours) 0.51 ± 0.33 0.71 ± 0.07 0.56 ± 0.13 0.38 ± 0.07 0.79 ± 0.09
BC-First 0.51 ± 0.24 0.41 ± 0.07 0.34 ± 0.18 0.38 ± 0.04 0.71 ± 0.02
Self-Play 0.57 ± 0.14 0.36 ± 0.04 0.25 ± 0.04 0.37 ± 0.1 0.76 ± 0.03

Counter-
attack
defender

CSP(Ours) 0.93 ± 0.02 0.88 ± 0.04 0.81 ± 0.25 0.81 ± 0.02 0.75 ± 0.06
BC-First 0.7 ± 0.17 0.52 ± 0.07 0.53 ± 0.09 0.69 ± 0.14 0.5 ± 0.09
Self-Play 0.55 ± 0.13 0.41 ± 0.1 0.46 ± 0.09 0.36 ± 0.08 0.36 ± 0.07

performs worse than Self-Play, which does not utilize the opponent’s information to exploit. It indi-
cates that previous non-conservative algorithms are not guaranteed to use the opponent’s information
safely in offline adaptation.

In Figure 3, we show the gap of performances between testing and training: J(π, πB)− J(π, µ). A
negative gap indicates that although π learns to exploit µ during training, such exploitation is risky
and can not be guaranteed in testing. The results demonstrate the significant challenges that offline
policy adaptation poses for baseline exploitation algorithms. BC-First overfits the proxy model in
training and experiences a severe performance drop in testing. Conversely, CSP has a positive gap on
average, indicating its ability to find conservative exploitation opportunities. Because CSP optimizes
for the worst-case performance, it tends to produce a proxy model that is possibly stronger than the
real target. Thus, its evaluation performances are even higher than those in training.

6.3 Comparison with Non-Conservative Opponent Exploitation

We compare CSP with the previous safe exploitation method RNR [17], which minimizes the distance
to NE when exploiting. RNR assumes that the opponent plays an NE policy with probability 1− p
and follows an estimated opponent model with p. It then learns an exploitation policy. However,
RNR does not optimize the conservative offline adaptation objective, and it still fails to handle offline
policy adaptation due to the neglect of possible errors in the estimated opponent model. In Figure
4, the results show that CSP outperforms RNR for every dataset and every value of p. RNR(0) is
equivalent to Self-Play, and RNR(1) is equivalent to BC-First. Results for these two have already
been reported in Table 2. The results further support our claim that previous methods struggle with
offline policy adaptation and highlight the efficiency and significance of our algorithm.

10R 100R 100S
dataset

40

20

0

20

40

ep
is

od
e

re
w

ar
d

scenario = Adversary

10R 100R 100S
dataset

scenario = Good Agent

method
RNR(0.2)
RNR(0.4)
RNR(0.6)
RNR(0.8)
BC-First
CSP (Ours)

Figure 4: Comparison with RNR [17] in predator-prey, where our agent controls (left) adversaries
and (right) good agent respectively. The y-axis represents the episode reward in testing.

9

7 Conclusion

We provide a thorough analysis of the unique challenges in offline policy adaptation, which are
often neglected by previous literature. We propose the novel learning objective of conservative
offline adaptation that optimizes the worst-case performance against any dataset-consistent opponent
proxy. We propose an efficient algorithm that learns near-optimal conservative adaptation policies.
Extensive empirical results in Maze, predator-prey, MuJoCo, and Google Football demonstrate that
our algorithm significantly outperforms baselines.

One limitation of our work is that optimizing worst-case performance in real-world applications may
not always be necessary since participants are not fully rational in practice. One future direction to
settle this problem is to extend offline adaptation to non-stationary opponents, which is orthogonal to
our current study. Those methods typically focus on adapting policy according to inferred opponent
information in evaluation, while our algorithm prevents performance degradation in testing against a
consistent opponent. One way is to use our algorithm to train a population of risk-free exploitation
policies against opponents of different types and adapt exploitation policy in testing according to the
opponent’s posterior distribution. We discuss potential negative social impacts in Appendix F.

Acknowledgements and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their insightful discussions and helpful
suggestions. This work is supported in part by Science and Technology Innovation 2030 – “New
Generation Artificial Intelligence” Major Project (No. 2018AAA0100904) and National Natural
Science Foundation of China (62176135).

References
[1] Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive survey

and open problems. Artificial Intelligence, 258:66–95, 2018.

[2] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent Complexity
via Multi-Agent Competition. In International Conference on Learning Representations, 2018.

[3] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining Deep Reinforcement Learning
and Search for Imperfect-Information Games. In Advances in Neural Information Processing Systems,
volume 33, pages 17057–17069. Curran Associates, Inc., 2020.

[4] Imre Csiszár and János Körner. Information Theory - Coding Theorems for Discrete Memoryless Systems,
Second Edition. Cambridge University Press, 2011.

[5] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
Botvinick, and Michael Bowling. Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 1942–1951. PMLR, June 2019.

[6] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[7] Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li, Junliang
Xing, Qiang Fu, and Wei Yang. Greedy when Sure and Conservative when Uncertain about the Opponents.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 6829–6848. PMLR, July 2022.

[8] Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learning without
Exploration. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2052–2062. PMLR, June 2019.

[9] Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A Divergence Minimization
Perspective on Imitation Learning Methods. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura,
editors, Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pages 1259–1277. PMLR, November 2020.

10

[10] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adversarial Poli-
cies: Attacking Deep Reinforcement Learning. In International Conference on Learning Representations,
2020.

[11] Pengjie Gu, Mengchen Zhao, Jianye Hao, and Bo An. Online Ad Hoc Teamwork under Partial Observability.
In International Conference on Learning Representations, 2022.

[12] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adversarial Policy Learning in Two-player Competitive
Games. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 3910–3919. PMLR, July 2021.

[13] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé, III. Opponent modeling in deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1804–1813, New York, New York, USA, 20–22 Jun 2016. PMLR.

[14] Hengyuan Hu and Jakob N. Foerster. Simplified Action Decoder for Deep Multi-Agent Reinforcement
Learning. In International Conference on Learning Representations, 2020.

[15] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-Play” for Zero-Shot Co-
ordination. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 4399–4410. PMLR, July 2020.

[16] Peide Huang, Mengdi Xu, Fei Fang, and Ding Zhao. Robust Reinforcement Learning as a Stackelberg
Game via Adaptively-Regularized Adversarial Training. In Lud De Raedt, editor, Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 3099–3106. International
Joint Conferences on Artificial Intelligence Organization, July 2022.

[17] Michael Johanson, Michael Bowling, and Martin Zinkevich. Computing robust counter-strategies. 2007.

[18] Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha S. Srinivasa.
Imitation Learning as f-Divergence Minimization. CoRR, abs/1905.12888, 2019. arXiv: 1905.12888.

[19] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit Q-Learning.
In International Conference on Learning Representations, 2022.

[20] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning for Offline
Reinforcement Learning. In Advances in Neural Information Processing Systems, volume 33, pages
1179–1191. Curran Associates, Inc., 2020.

[21] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel
reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 4501–4510, 2020.

[22] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning: Tutorial,
Review, and Perspectives on Open Problems. CoRR, abs/2005.01643, 2020. arXiv: 2005.01643.

[23] Xun Li and Risto Miikkulainen. Dynamic adaptation and opponent exploitation in computer poker. In
Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[24] Mingyang Liu, Chengjie Wu, Qihan Liu, Yansen Jing, Jun Yang, Pingzhong Tang, and Chongjie Zhang.
Safe Opponent-Exploitation Subgame Refinement. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[25] Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, ZHIPENG HU, and
Yaodong Yang. Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-
sum Games. In Advances in Neural Information Processing Systems, volume 34, pages 941–952. Curran
Associates, Inc., 2021.

[26] Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory Diversity for Zero-Shot
Coordination. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 7204–7213. PMLR, July 2021.

[27] Peter McCracken and Michael Bowling. Safe strategies for agent modelling in games. In Artificial
Multiagent Learning, Papers from the 2004 AAAI Fall Symposium. Arlington, VA, USA, October 22-24,
2004, volume FS-04-02, pages 103–110. AAAI Press, 2004.

11

[28] Samer Nashed and Shlomo Zilberstein. A Survey of Opponent Modeling in Adversarial Domains. J. Artif.
Int. Res., 73, May 2022. Place: El Segundo, CA, USA Publisher: AI Access Foundation.

[29] Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan Better Amid Conservatism: Offline Multi-
Agent Reinforcement Learning with Actor Rectification. In Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 17221–17237.
PMLR, July 2022.

[30] Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust Reinforcement
Learning using Offline Data. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

[31] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective Diversity
in Population Based Reinforcement Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 18050–18062.
Curran Associates, Inc., 2020.

[32] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust Adversarial Reinforcement
Learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2817–2826. PMLR,
August 2017.

[33] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, S. M. Ali Eslami, and Matthew Botvinick.
Machine theory of mind. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
4218–4227. PMLR, 10–15 Jul 2018.

[34] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning.
In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4295–4304. PMLR, July 2018.

[35] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim
G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft
Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

[36] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1889–1897, Lille,
France, 07–09 Jul 2015. PMLR.

[37] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2008.

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[39] J. K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sulivan, Luis
Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl, Niall L Williams, Yashas Lokesh, Ryan
Sullivan, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning. arXiv preprint
arXiv:2009.14471, 2020.

[40] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. {QPLEX}: Duplex Dueling
Multi-Agent Q-Learning. In International Conference on Learning Representations, 2021.

[41] Zhe Wu, Kai Li, Hang Xu, Meng Zhang, Haobo Fu, Bo An, and Junliang Xing. L2E: Learning to Exploit
Your Opponent, 2021.

[42] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL: Robust
Offline Reinforcement Learning via Conservative Smoothing. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[43] Yaodong Yang and Jun Wang. An Overview of Multi-Agent Reinforcement Learning from Game Theoreti-
cal Perspective. CoRR, abs/2011.00583, 2020. arXiv: 2011.00583.

[44] Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforce-
ment Learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 10299–10312. Curran Associates,
Inc., 2021.

12

[45] Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao Qiu,
Hongsheng Yu, Yinyuting Yin, Bei Shi, Liang Wang, Tengfei Shi, Qiang Fu, Wei Yang, Lanxiao Huang,
and Wei Liu. Towards Playing Full MOBA Games with Deep Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, pages 621–632. Curran Associates, Inc., 2020.

[46] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang, Xipeng
Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang Wang, Qiang Fu, Wei
Yang, and Lanxiao Huang. Mastering Complex Control in MOBA Games with Deep Reinforcement
Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):6672–6679, April 2020.
Section: AAAI Technical Track: Machine Learning.

[47] Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu. Learning
Zero-Shot Cooperation with Humans, Assuming Humans Are Biased. In The Eleventh International
Conference on Learning Representations, 2023.

[48] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The Surprising
Effectiveness of MAPPO in Cooperative, Multi-Agent Games. CoRR, abs/2103.01955, 2021. arXiv:
2103.01955.

[49] Chongjie Zhang and Victor R. Lesser. Multi-Agent Learning with Policy Prediction. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010. AAAI Press, 2010.

[50] Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. AlphaHoldem: High-Performance Artificial
Intelligence for Heads-Up No-Limit Poker via End-to-End Reinforcement Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(4):4689–4697, June 2022. Section: AAAI Technical Track
on Domain(s) Of Application.

[51] Rui Zhao, Jinming Song, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Yang Wei. Maximum
Entropy Population Based Training for Zero-Shot Human-AI Coordination. CoRR, abs/2112.11701, 2021.
arXiv: 2112.11701.

13

A Proof

Proof of Proposition 4.2

Proposition 4.2 The performance gap of evaluating policy profile (π, µ) and (π, πB) at state s is
ε(s) = V π,πB (s)− V π,µ(s), which can be decomposed in a Bellman-like recursion:

ε(s) = V π,πB (s)− V π,µ(s)

=
∑

a1,a2,s′

π(a1|s)PM (s′|s,a) (πB(a2|s)− µ(a2|s)) (r(s,a, s′) + γV π,µ(s′))

+
∑

a1,a2,s′

π(a1|s)πB(a2|s)PM (s′|s,a)γε(s′)

(7)

Proof.

ε(s) = V π,πB (s)− V π,µ(s)

=
∑
a1

π(a1|s)
∑
a2

πB(a2|s)
∑
s′

PM (s′|s,a) [r(s,a, s′) + γV π,µ(s′) + γε(s′)]

−
∑
a1

π(a1|s)
∑
a2

µ(a2|s)
∑
s′

PM (s′|s,a) [r(s,a, s′) + γV π,µ(s′)]

=
∑
a1

π(a1|s)
∑
a2

[(πB(a2|s)− µ(a2|s))A+B] ,

(8)

where
A =

∑
s′

PM (s′|s,a)r(s,a, s′), (9)

and

B = πB(a2|s)
∑
s′

PM (s′|s,a)γ (V π,µ(s′) + ε(s′))− µ(a2|s)
∑
s′

PM (s′|s,a)γV π,µ(s′)

=
∑
s′

PM (s′|s,a) [πB(a2|s)γ (V π,µ(s′) + ε(s′))− µ(a2|s)γV π,µ(s′)]

=
∑
s′

PM (s′|s,a) [γV π,µ(s′)(πB(a2|s)− µ(a2|s)) + γπB(a2|s)ε(s′)] .

(10)

Putting equation 9 and 10 back, we have

ε(s) = V π,πB (s)− V π,µ(s)

=
∑
a1

π(a1|s)
∑
a2

[
(πB(a2|s)− µ(a2|s))

∑
s′

PM (s′|s,a)r(s,a, s′)+

∑
s′

PM (s′|s,a) [γV π,µ(s′)(πB(a2|s)− µ(a2|s)) + γπB(a2|s)ε(s′)]

]
=

∑
a1,a2,s′

π(a1|s)PM (s′|s,a) (πB(a2|s)− µ(a2|s)) (r(s,a, s′) + γV π,µ(s′))

+
∑

a1,a2,s′

π(a1|s)πB(a2|s)PM (s′|s,a)γε(s′).

(11)

Proof of Theorem 4.3

Theorem 4.3 We use ε =
∑

s0
p0(s0)ε(s0) to denote the overall performance gap between policy

profile (π, µ) and (π, πB). In any 2-player fully observable game, for all reward functions, ε = 0 if
and only if πB(a|s) = µ(a|s),∀s, s.t. dπ,πB

(s) > 0.

14

Proof. Sufficiency. Whenever πB(a|s) = µ(a|s) holds, the first term in equation 1 is 0. If
∀s s.t. dπ,πB

(s) > 0, πB(a|s) = µ(a|s), according to Proposition 4.2, by expanding the expression
for ε(s) recursively, we have for ∀s s.t. dπ,πB

(s) > 0, ε(s) = 0. Therefore, ε =
∑

s0
p(s0)|ε(s0)| =

0.

Necessity. We first show by contradiction that ε =
∑

s0
p(s0)ε(s0) requires ∀s s.t. p0(s) > 0,

πB(a|s) = µ(a|s). If πB(a|s) ̸= µ(a|s), according to Proposition 4.2, we can change the
reward function r(s,a, s′) to change the value of ε(s), because the reward function is arbi-
trary. So ε =

∑
s0
p(s0)ε(s0) does not hold anymore, and this is a contradiction. Therefore,

ε(s) =
∑

s0,s1
p(s0)π(a1|s0)πB(a2|s0)PM (s1|s,a)ε(s1) = Es1∼(π,πB)[ε(s1)]. Using the same ar-

guments, it can be shown that ∀s, s.t. Pr(s1 = s) > 0, πB(a|s) = µ(a|s). By expanding recursively,
the statement is proved.

Proof of Theorem 4.7

We first prove a Lemma.

Lemma A.1. In a two-player game, suppose that π is player 1’s policy, α and µ are player 2’s
policies. We use πjoint

(π,α) and πjoint
(π,µ) to denote the joint policy profiles (π, α) and (π, µ). Then we have

DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
= DKL (α(·|s)∥µ(·|s)), where DKL denotes KL divergence.

Proof. According to definition,

DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
=

∑
a1,a2

π(a1|s)α(a2|s) log
π(a1|s)α(a2|s)
π(a1|s)µ(a2|s)

=
∑
a1

π(a1|s)
∑
a2

α(a2|s) log
α(a2|s)
µ(a2|s)

=
∑
a1

π(a1|s)DKL (α(·|s)∥µ(·|s))

= DKL (α(·|s)∥µ(·|s)) .

(12)

Additionally, we use the Theorem 1 in [36] and we provide a restatement. The original paper [36]
minimizes accumulated discounted cost. In contrast, an agent maximizes its return in our paper.

Theorem A.2. (Theorem 1 in [36]) Let ϵ = maxs |Ea∼π2(a|s)[A
π1(s, a)]|, then

J(π2)− J(π1) ≥ Es∼dπ1
(s) Ea∼π2(a|s) [A

π1(s, a)]− 2ϵγ

(1− γ)2
max

s
DKL (π1(·|s)∥π2(·|s)) . (13)

Finally, we prove Theorem 4.7.

Theorem 4.7 In a two-player game, suppose that π is player 1’s policy, α and µ are player 2’s
policies. Assume that maxs DKL (α(·|s)∥µ(·|s)) ≤ δ. Let RM be the maximum magnitude of return
obtainable for player 1 in this game, and let γ be the discount factor. We use J(π, µ) and J(π, α) to
denote the return for player 1 when playing policy profiles (π, µ) and (π, µ) respectively. Then,

J(π, µ)− J(π, α) ≥ −RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (14)

Proof. According to Theorem A.2, we have

J(π, µ)− J(π, α) ≥ Es∼d(π,α)
Ea1∼π,a2∼µ[A

(π,α)(s,a)]

− 2ϵγ

(1− γ)2
max

s
DKL

(
πjoint
(π,α)(·|s)∥π

joint
(π,µ)(·|s)

)
,

(15)

15

where ϵ = maxs |Ea1∼π,a2∼µ[A
(π,α)(s,a)]| ≥ 0. Use Lemma A.1, we have

J(π, µ)− J(π, α) ≥ Es∼d(π,α)
Ea1∼π,a2∼µ[A

(π,α)(s,a)]− 2ϵγ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

≥ −ϵ− 2ϵγ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

= −ϵ
(
1 +

2γ

(1− γ)2
max

s
DKL (α(·|s)∥µ(·|s))

)
≥ −ϵ

(
1 +

2γδ

(1− γ)2

)
.

(16)
Next, we use KL divergence to bound ϵ. According to definition,

∣∣Q(π,α)(s,a)
∣∣ ≤ RM . So we have,

ϵ = max
s
|Ea1∼π,a2∼µ[A

(π,α)(s,a)]|

= max
s

∣∣∣∑
a1

π(a1|s)
∑
a2

µ(a2|s)
(
Q(π,α)(s,a)− V (π,α)(s)

) ∣∣∣
= max

s

∣∣∣∑
a1

π(a1|s)
∑
a2

(µ(a2|s)− α(a2|s))Q(π,α)(s,a)
∣∣∣

≤ max
s

∑
a1

π(a1|s)
∑
a2

∣∣µ(a2|s)− α(a2|s)
∣∣∣∣Q(π,α)(s,a)

∣∣
≤ max

s

∑
a1

π(a1|s)
∑
a2

∣∣µ(a2|s)− α(a2|s)
∣∣RM

(17)

With Pinsker’s inequality [4], the total variation distance is bounded by KL divergence:

δ(α(·|s), µ(·|s)) = 1

2
∥α(·|s)− µ(·|s)∥1 ≤

√
1

2
DKL (α(·|s)∥µ(·|s)). (18)

Therefore,
ϵ ≤ max

s

∑
a1

π(a1|s) · 2RMδ(α(·|s), µ(·|s))

≤
√
2RM ·max

s

√
DKL (α(·|s)∥µ(·|s))

≤ RM

√
2δ.

(19)

Put inequality 19 back into 16, and we get

J(π, µ)− J(π, α) ≥ −RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (20)

Proof of Theorem 4.8

Theorem 4.8 Let π∗ be the optimal risk-free offline adaptation policy at the convergence of the
optimization of objective 2, and let π̃ be the policy at the convergence of objective 5. Then the
worst-case adaptation performance of π̃ is near-optimal:

min
µ∈CD

J(π∗, µ) ≥ min
µ∈CD

J(π̃, µ) ≥ min
µ∈CD

J(π∗, µ)−RM

√
2δ

(
1 +

2γδ

(1− γ)2

)
. (21)

Proof. According to definition, π∗ is the solution to the optimization objective 2, so
minµ∈CD

J(π∗, µ) ≥ minµ∈CD
J(π̃, µ).

Suppose that (π∗, µ∗) and (π̃, α̃) are the solutions to objectives 2 and 5 respectively. For
∀µ ∈ CD, let F(µ) = {α|∀s /∈ D,α(·|s) = µ(·|s);maxs∈D DKL(πB(·|s)∥α(·|s)) ≤ δ}
be the set of corresponding α policies which are identical to µ on OOD states. Observe that
maxs DKL(πB(·|s)∥α(·|s)) ≤ δ also holds. Therefore, according to Theorem 4.7, ∀π,∀µ ∈

16

CD,∀α ∈ F(µ), J(π, α) ≥ J(π, µ) − RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
. Taking the minimization over µ

and α, we get ∀π,minµ minα∈F(µ) J(π, α) ≥ minµ J(π, µ) − RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
. Observe

that the left part is equivalent to minα:maxs∈D DKL(α(·|s)∥πB(·|s))≤δ J(π, α). Taking the maximization

over π for both sides, we get J(π̃, α̃) ≥ J(π∗, µ∗)−RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
.

Let J(π̃, µ′) = minµ∈CD
J(π̃, µ). Observe that µ′ also satisfies the KL divergence constraint:

maxs∈D DKL(πB(·|s)∥µ′(·|s)) ≤ δ, and (π̃, α̃) is the optimal solution to objective 5, so J(π̃, µ′) ≥
J(π̃, α̃). So we get minµ∈CD

J(π̃, µ) ≥ J(π̃, α̃) ≥ J(π∗, µ∗)−RM

√
2δ

(
1 + 2γδ

(1−γ)2

)
.

B Related Work

RL in multi-agent games. Multi-agent reinforcement learning (MARL) under the centralized
training decentralized execution (CTDE) paradigm have shown promising performances in learning
coordination behavior for cooperative multi-agent tasks such as SMAC [35] and Google Football
[21]. Representative works consist of policy gradient algorithms [6, 48], and value decomposition
methods [34, 40]. There also have been extensive research in competitive environments such as Texas
hold’em and MOBA games. Some works design theoretically sounded RL algorithms which are
guaranteed to converge to approximate NE [3]. Some works propose RL methods based on self-play
[45, 46, 50] to train max-min policies which show strong empirical performances.

Offline RL. Offline reinforcement learning [22] learns purely from batched data. Representative
works take a conservative view of out-of-distribution state-action pairs to mitigate the distributional
shift problem. BCQ [8] uses VAE to propose candidate actions that are within the support of dataset.
IQL [19] uses expectile regression to learn Q function to avoid querying out-of-distribution actions.
CQL [20] puts regularization on the learning of Q function to penalize out-of-distribution actions.

Opponent exploitation. There have been extensive study on various aspects of opponent exploitation
[1, 28]. Some employ deep reinforcement learning to exploit the opponent in continuous control
tasks using policy gradients estimated from direct interaction [2, 10, 12]. Some works, including
RNR [17] and SES [24] study safe exploitation given an estimated opponent model. They keep
the exploitation policy close to NE in order to minimize the loss if the opponent changes its policy
adversarially. Some work, for example, GSCU [7], studies zero-shot generalization ability to exploit
totally unknown opponents. To our best knowledge, there lacks a thorough investigation into the
offline adaptation problem.

Robust RL. Formulated as robust-MDP (RMDP), robust RL [32, 30] is dedicated to learn a robust
policy against perturbation in environment dynamics, e.g., observation noise, action delay. Formally,
the unknown transition model in testing environment lies in an uncertainty set P which contains all
models within a certain distance from the training model. Robust RL solves a max-min problem, op-
timizing the worst-case performance against any transition model in P . Some works uses adversarial
training [32, 16]. RORL [42] uses smoothing on the Q function to learn robust policy. The similarity
to our work is that, our offline adaptation problem also optimizes the worst-case performance against
the target’s behavior on out-of-distribution states. However, we do not have any distance constraints
on the target’s policy on out-of-distribution states. To our best knowledge, our paper is the first to
investigate into the offline adaptation problem.

C Algorigthm

The CSP algorithm is illustrated in Algorithm 1. The proxy model is trained adversarially against
our agent, therefore, we set the proxy’s reward function to be the negative of our agent’s reward.
In our experiments on an n-player environment, we assume that we control n1 players, while the
target controls n2 players, and n1 + n2 = n. Therefore, we use MAPPO [48] as the basic learning
algorithm for players of both sides, since players from the same side are fully cooperative. MAPPO
deals with the cooperative multi-agent reinforcement learning problem through learning a centralized
value function conditioned on global state, and a decentralized control policy conditioned on local
observations. We use self-play with alternative update to learn both adaptation policy π, and target’s

17

proxy model µ simultaneously. We use a soft behavior cloning regularization term to minimize the
KL-divergence between proxy model µ and target policy πB .

Algorithm 1 Constrained Self-Play (CSP)

Input: dataset D, environment env, learning rate α, regularization coefficient CBC
Output: adaptation policy π, target’s policy proxy µ

1: Initialize adaptation policy π, critic vπ; and target’s policy proxy µ, critic vµ

2: while not converged do
3: Collect trajectories {Ti} ← rollout(π, µ; env)
4: if our turn then
5: For each trajectory Ti, calculate return target Rγ

t and advantage Ât of our side using
GAE with value function vπ for each step t

6: vπ ← vπ − α∇vπ
1

|∪Ti|
∑

(st,R
γ
t)∼∪Ti

(Rγ
t − vπ(st))

7: π ← π + α∇π
1

|∪Ti|
∑

(ot,at,πold,Ât)∼∪Ti
min

(
π(at|ot)

πold(at|ot) Ât,

8: clip
(

π(at|ot)
πold(at|ot) , 1− ϵ, 1 + ϵ

)
Ât

)
9: else

10: For each trajectory Ti, calculate return target Rγ
t and advantage Ât of target agent side

using GAE with value function vµ for each step t
11: B ← sample a random batch from D
12: vµ ← vµ − α∇vµ

1
|∪Ti|

∑
(st,R

γ
t)∼∪Ti

(Rγ
t − vµ(st))

13: µ← µ+ α∇µ

{
1

|∪Ti|
∑

(ot,at,πold,Ât)∼∪Ti
min

(
µ(at|ot)

µold(at|ot) Ât,

14: clip
(

µ(at|ot)
µold(at|ot) , 1− ϵ, 1 + ϵ

)
Ât

)
− CBC · 1

|B|
∑

(o,a)∈B − logµ(a|o)
}

15: end if
16: end while

D Experiment on Didactic Maze

We show experiment details of the Maze example in this section. The learning curve in case 1 is
shown in Figure 5. In the BC-First algorithm, since the dataset only contains trajectories that P1→
64, the BC model makes a wrong and risky generalization that assumes P1 always goes downwards
to 64 no matter how P2 acts. Therefore, the P2 policy learns to exploit this “weakness” by playing
P2→ 16, and achieves 16 in training phase. However, during testing, P2 obtains -4 reward through
trying to exploit an nonexistent weakness of P1.

Our algorithm avoids the trap of imaginary weakness, and learns to safely win the game, while the
BC-First method makes risky exploitations which will not work in evaluation finally. Our algorithm
keeps conservative for states outside dataset, and admits the possibility that P1 could go leftwards to
win the game if P2 does not plays P2→ 1.

0 50000 100000 150000
step

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

0 50000 100000 150000
step

10.0

7.5

5.0

2.5

0.0

2.5

5.0

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

Figure 5: The training curve of amortized average per step reward in maze game case 1 in training
(against the proxy). The x-axis represents training steps. Left. Average per step reward for P1. Right.
Average per step reward for P2.

18

The learning curve in case 2 is shown in Figure 6. As can be seen in Figure 6, our algorithm quickly
learns to exploit while the max-min strategy produced by Self-Play fails to.

0 50000 100000 150000
step

10

5

0

5

10

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

0 50000 100000 150000
step

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

av
g

st
ep

 re
w

ar
d

algorithm
selfplay
BC first
csp

Figure 6: The training curve of amortized average per step reward in maze game case 2 in training
(against the proxy). The x-axis represents training steps. Left. Average per step reward for P1. Right.
Average per step reward for P2.

We use the same set of hyper-parameters (including the same coefficient CBC for the BC regular-
ization term) for these two cases. The hyper-parameters are shown in Table 5. The dataset D1 =
{trajectories(P1 → 64, P2 → 256)} in case 1, and our algorithm learns to play P2→ 1; while in
case 2, given dataset D2 = {trajectories(P1→ 64, P2→ 256), trajectories(P1→ 64, P2→ 16)},
our algorithm learns to play P2 → 16. We use the same set of hyper-parameters for both cases.
Therefore, our algorithm produces different policies simply because of different datasets given. It
further validates that our algorithm is able to extract useful information from dataset, and only
perform risk-free adaptations.

Table 5: Hyper-parameters for maze.

ppo_epoch 1 num_mini_batch 1 entropy_coef 0.3
use_gae True gamma 0.99999 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 20 ppo_episode_length 12
data_chunk_length 12 steps 1.8K max_grad_norm 0.5
bc_regularization_coef 10 bc_batch_size 8 network MLP

E Conservative Offline Adaptation for Cooperative Tasks

We evaluate our method in competitive games to perform opponent exploitation. Nevertheless, our
method is also applicable to cooperative environments. The objective of CSP in cooperative games
maintains the same min-max structure because it promotes adherence to the policy exposed by dataset
for states within the dataset, while aiming to optimize for worst-case performance for states not in the
dataset. Therefore, in cooperative games, the policy regularization term incentivizes the adaptation
agent to collaborate with the target agent on states within the dataset, and the minimization over
opponent proxy µ encourages the adaptation agent to be conservative and not to rely on the target
agent’s OOD policy. Note that in objective 5 and Algorithm 1, no matter whether the game is
competitive or cooperative, the minimization over µ in training can be achieved by setting the target
agent’s reward function to be the negative of our adaptation agent’s reward function. We then train µ
to maximize this reward with policy regularization in self-play.

Although our method is applicable to cooperative environments as well, the challenges caused by
offline policy adaptation are more significant in competitive games. Recall that conservative offline
adaptation optimizes

max
π

min
µ

J(π, µ), s.t. µ ∈ CD. (22)

For cooperative tasks, it requires that the teammate µ will not cooperate on states outside dataset in
cooperative games. Therefore, for the adaptation policy, staying within dataset could be a trivial and

19

near-optimal solution for most cooperative problems if we would like to maximize the worst-case
performance against any dataset-consistent teammate.

F Potential Negative Social Impacts

Inappropriate use of exploitation algorithms may result in negative social impacts. An example
of its negative impact is the exacerbation of inequality in society. Companies who have access
to large amounts of data can utilize their customers more effectively. However, our algorithm is
general-purpose and depends on pre-collected data. We advocate for strict laws and regulations
that protect user privacy data to avoid negative impacts. It is recommended that products utilizing
exploitation algorithms are made public and supervised.

G Experiment Details

G.1 Environments

The experiment environments are illustrated in figure 7.

Figure 7: Illustration of experiment environments used in this paper. From left to right: (1) predator
prey in MPE, (2) YouShallNotPassHumans in MuJoCo, (3) Google Football.

Predator-Prey There are one good agent, three adversarial agents and two obstacles in the predator-
prey environment. The good agent is faster and receive a negative reward for being hit by adversaries
while adversaries are slower and are rewarded for hitting the good agent. All agents are initialized
randomly in the environment.

YouShallNotPassHumans The YouShallNotPassHumanoids environment [2, 10] creates a two-
player competitive game based on MuJoCo, where one humanoid (the runner) is aimed at passing the
other humanoid (the blocker) to reach the red line on the opposite side. The environment itself is
challenging because it has high dimensional observation space and requires continuous control. In our
experiments, we assume that our agent acts as the runner, while the blocker is the target opponent to
exploit. We use four independently pre-trained blocker models as opponent targets. For fairness, we
generate these targets with exactly four random seeds without any selection. Since the exploitability
of different opponent models can vary significantly, results with respect to different opponents are
not directly comparable. So we report results with respect to all targets.

Google Football Google Football [21] is a popular and challenging benchmark for MARL.
In our experiments, our adaptation policy controls all players in one team, while the opponent
target policy controls the other team. Since all players in the same team are fully coopera-
tive, we use MAPPO [48] to learn decentralized policy. We conduct experiments in 4 scenar-
ios: academy_3_vs_1_with_keeper (3vs1, where our agent acts as either defender or attacker),
academy_run_pass_and_shoot_with_keeper (RPS, defender), and academy_counterattack_easy (de-
fender). We report the winning rates of adaptation policies for 5 independently pre-trained opponent
targets. For attacker, winning rate refers to the percentage of episodes that the attacker scores, while
for defender, it refers to the percentage of episodes that the defender prevents the attacker from
scoring.

G.2 Hyper-parameters

In our experiments, we use MAPPO [48] as the base RL algorithm to learn policies on both sides (ours
and the target’s). MAPPO is an extension of single agent PPO to multi-agent reinforcement learning

20

within the centralized training decentralized evaluation (CTDE) paradigm. It learns a centralized
value function conditioning on global state to promote coordination among the agents. We selected
MAPPO as the base learning algorithm due to its simplicity and empirical strong performance.

For the BC-First method, we use exactly the same MAPPO (with the same set of hyper-parameters
and the same number of training samples) as CSP to train our adaptation policy, while keeping
the target’s proxy fixed. In order to ensure that the the performances of BC-First method are not
encumbered by an under-trained proxy model, we use the same network structure for the proxy model
as the real target model, and train enough steps to make sure that behavior cloning has converged.
For the Google Football environment, we use the same hyper-parameters as reported in the MAPPO
paper [48] for all scenarios. The hyper-parameters are listed in Table 6, 7, and 8.

Table 6: Hyper-parameters for predator-prey in MPE.

ppo_epoch 10 num_mini_batch 1 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 128 ppo_episode_length 50
data_chunk_length 10 steps 5M max_grad_norm 0.5
bc_regularization_coef 0.003 bc_batch_size 8 network RNN

Table 7: Hyper-parameters for MuJoCo.

ppo_epoch 4 num_mini_batch 1 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 100 ppo_episode_length 200
data_chunk_length 10 steps 40M max_grad_norm 0.5
bc_regularization_coef 0.1 bc_batch_size 256 network MLP

Table 8: Hyper-parameters for Google Football.

ppo_epoch 15 num_mini_batch 2 entropy_coef 0.01
use_gae True gamma 0.99 gae_lambda 0.95
critic_lr 7e-4 lr 7e-4 weight_decay 0
adam_eps 1e-5 n_rollout_threads 50 ppo_episode_length 200
data_chunk_length 10 steps 25M max_grad_norm 0.5
bc_regularization_coef 5.0 bc_batch_size 256 network RNN

G.3 Computing Resources

Each seed is run on a GPU server with one NVIDIA P100 GPU, and Intel(R) Xeon(R) Gold 6145
CPU @ 2.00GHz CPU. Each run can finish within 24 hours.

G.4 Target Models & Dataset Collection

For all the environments, we user different runs of self-play to get the group of targets. In order to
ensure a fair comparison, we use the exactly the same number of random seeds to generate these
targets, without any selection. In our experiments, we observe that different runs with different seeds
can produce diverse targets. For instance, in Google Football, different targets may have different
tendencies to pick which side to start a attack (left or right). Moreover, as can be seen from Table 4,
the difficulties to exploit these targets are diverse. For MuJoCo and Google Football, we use dataset
consisting of 5 trajectories. We collect these trajectories using the target model together with a rollout
policy. We observe that the 3 kinds of rollout policies: (1) random policy, (2) environment’s bot, (3)
target itself, do not have significant impacts on the experiment results in the MuJoCo and Google
Football environments.

21

G.5 Visualization

Runner (blue) in dataset makes a detour through the upper path

Runner (blue) learned in CSP prefers to pick the lower path

Blocker (red) learned in CSP learns to block the upper path,
and also tries to block the runner in the lower path

Runner (blue) learned in CSP picks the lower path and
steadily wins in evaluation

Blocker (red) in dataset tries to block the upper path

Blocker (red) in dataset tries to block the upper path

T

A

B

C

Figure 8: The visualization of policy behavior in MuJoCo. Top. The trajectory in dataset, where the
blocker is the real opponent policy πB and the runner is the policy which collects the dataset. Middle.
The trajectory during the training of CSP. Both agents are controlled by CSP. Bottom. The evaluation
of CSP’s runner with the real opponent blocker.

In Figure 8, we further consolidate our claim by visualizing the policy behavior in MuJoCo. As can
be seen in this example, in a trajectory contained in dataset, the runner (blue agent) typically makes a
detour through the upper path to avoid being pushed down by the blocker (red agent). The opponent
blocker also has the tendency to walk upwards to stop the runner. The runner trained by CSP learns
to exploit the policy represented by the dataset, and prefers making a detour through the lower path,
as can be seen from the middle and bottom lines of replays. Although the behavior of runner going
downwards is not contained in the dataset, the blocker trained by CSP can still learns to stop such
runner, which makes the runner even more robust and stronger than the real target model. Therefore,
when confronted with the real opponent blocker, who only knows how to defend the upper path, the
runner trained by CSP steadily wins the game.

G.6 Reward.

For predator-prey, we use the environment’s original reward. For MuJoCo, we use dense rewards
for locomotion learning as in previous works [2, 10]. In Google Football, we use both the sparse
scoring reward as well as the dense checkpoint reward which awards the attacker according to the ball
handler’s distance to the goal. Although the rewards for the attacker are provided by the environment,
Google Football does not provide rewards for the defender team in academy scenarios. In our
experiments, we just use the negative of the attacker’s reward to train defender’s policy to make the
game zero-sum.

G.7 Explanation of Training & Testing Performances

The observed lower training performance of CSP than the baseline, as shown in Figure 1, is expected
behavior since the opponent model used by CSP during training differs from that of BC-First. In BC-
First, the opponent model is solely pre-trained on a dataset and remains fixed, leading to significant
vulnerabilities in out-of-distribution states which can be easily exploited. Conversely, in CSP, the
opponent model is trained in an adversarial manner simultaneously with the exploitation policy. Due
to its evolutionary nature, it can compensate for its vulnerabilities and becomes significantly more

22

challenging to exploit. Consequently, the training performance of BC-First is higher. During testing,
both exploitation policies undergo evaluation using the same real target model.

23

	Introduction
	Related Work
	Preliminary
	Conservative Offline Adaptation
	Extrapolation Error in Offline Adaptation
	Conservative Offline Adaptation
	Constrained Self-Play

	Didactic Maze Example
	Experiment
	Experiments in Predator-Prey and MuJoCo
	Experiments in Google Football
	Comparison with Non-Conservative Opponent Exploitation

	Conclusion
	Proof
	Related Work
	Algorigthm
	Experiment on Didactic Maze
	Conservative Offline Adaptation for Cooperative Tasks
	Potential Negative Social Impacts
	Experiment Details
	Environments
	Hyper-parameters
	Computing Resources
	Target Models & Dataset Collection
	Visualization
	Reward.
	Explanation of Training & Testing Performances

