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Abstract

Adversarial attacks have the potential to mislead deep neural network classifiers
by introducing slight perturbations. Developing algorithms that can mitigate the
effects of these attacks is crucial for ensuring the safe use of artificial intelligence.
Recent studies have suggested that score-based diffusion models are effective
in adversarial defenses. However, existing diffusion-based defenses rely on the
sequential simulation of the reversed stochastic differential equations of diffusion
models, which are computationally inefficient and yield suboptimal results. In
this paper, we introduce a novel adversarial defense scheme named ScoreOpt,
which optimizes adversarial samples at test-time, towards original clean data in the
direction guided by score-based priors. We conduct comprehensive experiments on
multiple datasets, including CIFAR10, CIFAR100 and ImageNet. Our experimental
results demonstrate that our approach outperforms existing adversarial defenses in
terms of both robustness performance and inference speed.

1 Introduction

In recent years, there have been breakthrough performance improvements with deep neural net-
works (DNNs), particularly in the realms of image classification, object detection, and semantic
segmentation, as evidenced by the works of [31, 59, 53, 19, 13, 51]. However, DNNs have been
shown to be easily deceived to produce incorrect predictions by simply adding human-imperceptible
perturbations to inputs. These perturbations are called adversarial attacks [14, 36, 38, 7], resulting in
safety concerns. Therefore, studies of mitigating the impact of adversarial attacks on DNNs, which is
referred to as adversarial defenses, are significant for AI safety.

Various strategies have been proposed in order to enhance the robustness of DNN classifiers against
adversarial attacks. One of the most effective forms of adversarial defense is adversarial training [36,
71, 16, 32, 71, 44], which involves training a classifier with both clean data and adversarial samples.
However, adversarial training has its limitations as it necessitates prior knowledge of the specific
attack method employed to generate adversarial examples, thus rendering it inadequate in handling
previously unseen types of adversarial attacks or corruptions.

On the contrary, adversarial purification [48, 68, 52, 28, 69, 40, 21] is another form of promising
defense that leverages a standalone purification model to eliminate adversarial signals before conduct-
ing downstream classification tasks. The primary benefit of adversarial purification is that it obviates
the need to retrain the classifier, enabling adaptive defense against adversarial attacks at test time.
Additionally, it showcases significant generalization ability in purifying a wide range of adversarial
attacks, without affecting pre-existing natural classifiers. The integration of adversarial purification
models into AI systems necessitates minor adjustments, making it a viable approach to enhancing the
robustness of DNN-based classifiers.
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Figure 1: Illustration of our proposed adversarial defense framework.

Diffusion models [22, 54, 58], also known as score-based generative models, have demonstrated
state-of-the-art performance in various applications, including image and audio generation [9, 30],
molecule design [23], and text-to-image generation [39]. Apart from their impressive generation
ability, diffusion models have also exhibited the potential to improve the robustness of neural
networks against adversarial attacks. Specifically, they can function as adaptive test-time purification
models [40, 16, 4, 63, 66].

Diffusion-based purification methods have shown great success in improving adversarial robustness,
but still have their own limitations. For instance, they require careful selection of the appropriate
hyper-parameters such as forward diffusion timestep [40] and guidance scale [63], which can be
challenging to tune in practice. In addition, diffusion-based purification relies on the simulation of
the underlying stochastic differential equation (SDE) solver. The reverse purification process requires
iteratively denoising samples step by step, leading to heavy computational costs [40, 63].

In the hope of circumventing the aforementioned issues, we introduce a novel adversarial defense
scheme that we call ScoreOpt. Our key intuition is to derive the posterior distribution of clean
samples given a specific adversarial example. Then adversarial samples can be optimized towards the
points that maximize the posterior distribution with gradient-based algorithms at test time. The prior
knowledge is provided by pre-trained diffusion models. Our defense is independent of base classifiers
and applicable across different types of adversarial attacks, making it flexible enough across various
domains of applications. The illustration of our method is presented in Figure 1.

Our main contributions can be summarized in three aspects as follows:

• We propose a novel adversarial defense scheme that optimizes adversarial samples to reach the
points with the local maximum likelihood of the posterior distribution that is defined by pre-trained
score-based priors.

• We explore effective loss functions for the optimization process, introduce a novel score regularizer
and propose corresponding practical algorithms.

• We conduct extensive experiments to demonstrate that our method not only achieves start-of-the-art
performance on various benchmarks but also improves the inference speed.

2 Preliminary

2.1 Score-based Diffusion Models

Score-based diffusion models [22, 58] learn how to transform complex data distributions to relatively
simple ones such as the Gaussian distribution, and vice versa. Diffusion models consist of two
processes, a forward process that adds Gaussian noise to input x from x0 to xT , and a reverse
generative process that gradually removes random noise from a sample until it is fully denoised. For
the continuous-time diffusion models (see Song et al. [58] for more details and further discussions),
we can use two SDEs to describe the above data-transformation processes, respectively. The forward-
time SDE is given by:

dxt = f(xt, t)dt+ g(t)dwt, t ∈ [0, T ];

where f : RD → RD and g : R→ R are drift and diffusion coefficients respectively, w denotes the
standard Wiener process. While new samples are generated by solving the reverse-time SDE:

dxt = [f(xt, t)− g2(t)∇xt
log pt (xt)]dt+ g(t)dw̄t, t ∈ [T, 0];
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where w̄ defines the reverse-time Wiener process. The score function term ∇xt log pt (xt) is usually
parameterized by a time-dependent neural network sθ(xt; t) and trained by score-matching related
techniques [25, 58, 61, 56, 41].

Diffusion Models as Prior Recent studies have investigated the incorporation of an additional
constraint to condition diffusion models for high-dimensional data sampling. DDPM-PnP [17] pro-
posed transforming diffusion models into plug-and-play priors, allowing for parameterized samples,
and utilizing diffusion models as critics to optimize over image space. Building on the formulation
in Graikos et al. [17], DreamFusion [43] further introduced a more stable training process. The main
idea is to leverage a pre-trained 2D image diffusion model as a prior for optimizing a parameterized
3D representation model. The resulting approach is called score distillation sampling (SDS), which
bypasses the computationally expensive backpropagation through the diffusion model itself by simply
excluding the score-network Jacobian term from the diffusion model training loss. SDS uses the
approximate gradient to train a parametric NeRF generator efficiently. Other works [35, 37, 62]
followed similar approaches to extend SDS to the latent space of latent diffusion models [46].

2.2 Diffusion-based Adversarial Purification

Diffusion models have also gained significant attention in the field of adversarial purification recently.
They have been employed not only for empirical defenses against adversarial attacks [69, 40, 63, 66],
but also for enhancing certified robustness [5, 67]. The unified procedure for applying diffusion
models in adversarial purification involves two processes. The forward process adds random Gaussian
noise to the adversarial example within a small diffusion timestep t∗, while the reverse process recov-
ers clean images from the diffused samples by solving the reverse-time stochastic differential equation.
Implementing the aforementioned forward-and-denoise procedure, imperceptible adversarial signals
can be effectively eliminated. Under certain conditions, the purified sample restores the original clean
sample with a high probability in theory [40, 67].

However, diffusion-based purification methods suffer from two main drawbacks. Firstly, their
robustness performance heavily relies on the choice of the forward diffusion timestep, denoted as t∗.
Selecting an appropriate t∗ is crucial because excessive noise can lead to the removal of semantic
information from the original example, while insufficient noise may fail to eliminate the adversarial
perturbation effectively. Secondly, the reverse process of these methods involves sequentially applying
the denoising operation from timestep t to the previous timestep t− 1, which requires multiple deep
network evaluations. In contrast to previous diffusion-based purification methods, our optimization
framework departs from the sequential step-by-step denoising procedure.

3 Methodology

In this section, we present our proposed adversarial defense scheme in detail. Our method is motivated
by solving an optimization problem of adversarial samples to remove the applied attacks. Therefore,
we start by formally formulating the optimization objective, followed by exploring effective loss
functions and introducing two practical algorithms.

3.1 Problem Formulation

Our main idea is to formulate the adversarial defense as an optimization problem given the perturbed
sample and the pre-trained prior, in which the solution to the optimization problem is the recovered
original sample that we want. We regard the adversarial example xa as a disturbed measurement
of the original clean example x, and we assume that the clean example is generated by a prior
probability distribution x ∼ p(x). The posterior distribution of the original sample given the
adversarial example is p(x|xa) ∝ p(x) p(xa|x). The maximum a posteriori estimator that maximizes
the above conditional distribution is given by:

x̂∗ = argmin
x

− log p(x | xa). (1)

In this work, we use the data distribution under pretrained diffusion models as the prior pθ(x).
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3.2 Loss Functions for Optimization Process

Following Graikos et al. [17], we introduce a variational posterior q(x) to approximate the true
posterior distribution p(x|xa) in the original optimization objective. The variational upper bound on
the negative log-likelihood − log p(xa) is:

− log p(xa) ≤ Eq(x) [− log p (xa|x)] + KL (q(x)∥pθ (x)) . (2)

As shown in Song et al. [57] and Vahdat et al. [60], we can further obtain an upper bound on the
second Kullback-Leibler (KL) divergence term between the target variational posterior distribution
q(x) and the prior distribution defined by the pre-trained diffusion models pθ(x):

KL (q(x)∥pθ (x)) ≤ Eq(x)Et∼U(0,1),ϵ∼N (0,I)

[
w(t) ∥sθ (xt; t)−∇xt log q(xt|x)∥22

]
, (3)

where w(t) = g(t)2/2 is a time-dependent weighting coefficient, xt = x+ σtϵ denotes the forward
diffusion process, σt is the pre-designed noise schedule, and sθ represents the pre-trained diffusion
models.

The simplest approximation to the posterior is using a point estimate, i.e., the introduced variational
posterior q(x) satisfies the Dirac delta distribution q(x) = δ(x− xµ). Thus, the above upper bound
can be rewritten as:

Et∼U(0,1),ϵ∼N (0,I)

[
w(t) ∥sθ (xt; t)−∇xt

log q(xt|xµ)∥22
]
, (4)

We simply use notation x instead of xµ throughout for convenience. The weighted denoising score
matching objective in (4) is also equivalent to the diffusion model training loss [43].

According to Tweedie’s formula: µz = z +Σz∇z log p(z), where Σ denotes covariance matrix, we
can obtain x = xt + σ2

t∇xt
log q(xt). Defining Dθ (xt; t) := xt + σ2

t sθ (xt; t), the KL term of our
opimization objective converts to:

Et∼U(0,1),ϵ∼N (0,I)

[
w̃(t) ∥Dθ (x+ σtϵ; t)− x∥22

]
, (5)

where w̃(t) = w(t)/σ2
t . Note that Dθ can be used to estimate the denoised image directly, which is

called one-shot denoiser [33, 5].

In our work, we adopt the approach of setting w̃(t) = 1 for convenience and performance as in
previous studies [22, 17]. Since we have no information about the conditional distribution p(xa|x),
we need a heuristic formulation for the first reconstruction term in (2). The simplest method is to
initialize x by the adversarial sample xa and use the loss in (5) to optimize over x directly, eliminating
the constraint term. The rationale behind this simplification is that leading xa towards the mode of
the pθ(x) with the same ground-truth class label makes it easier for the natural classifier to produce a
correct prediction. In this way, the loss function of our optimization process reduces to:

LDiff(x,θ) = Et∼U(0,1),ϵ∼N (0,I)

[
∥Dθ (x+ σtϵ; t)− x∥22

]
. (6)

Randomized smoothing techniques typically assume that the adversarial perturbation follows a
Gaussian distribution. Suppose the Gaussian assumption holds, we can instantiate the reconstruction
term with the mean squared error (MSE) between x and xa. The optimization objective converts to
the following MSE loss:

LMSE(x,xa,θ) = Et∼U(0,1),ϵ∼N (0,I)

[
∥Dθ (x+ σtϵ; t)− x∥22 + λ ∥x− xa∥22

]
, (7)

where λ is a weighting hyper-parameter to balance the two loss terms.

3.2.1 Score Regularization Loss

However, both Diff and MSE optimizations have their own drawbacks. Regarding the Diff loss, the
optimization process solely focuses on the score prior pθ, and the update direction guided by the
pre-trained diffusion models leads the samples towards the modes of the prior, gradually losing the
semantic information of the original samples. As illustrated in Figure 2a, with a sufficient number
of optimization steps, both standard and robust accuracies decline significantly. On the other hand,
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(a) Robustness performance via Diff
optimization using different number
of optimization steps.

(b) Comparison between MSE and
SR with different optimization itera-
tions.

(c) Comparison between MSE and
SR with different regularizer hyper-
parameters.

Figure 2: Robustness performance comparison for Diff, MSE, and SR optimizations.

the MSE loss maintains a high standard accuracy at the cost of a large drop in robust accuracy, as
depicted in Figure 2b. Furthermore, Figure 2c demonstrates that the performance of MSE is highly
dependent on the weighting hyper-parameter, which controls the intensity of the constraint term.

To address the above-mentioned issues, we propose to introduce a hyperparameter-free score regular-
ization (SR) loss:
LSR(x,xa,θ) =Et∼U(0,1),ϵ1,ϵ2∼N (0,I)[

∥Dθ (x+ σtϵ1; t)− x∥22 + ∥Dθ (x+ σtϵ1; t)−Dθ (xa + σtϵ2; t)∥22
]
.

(8)

We use the introduced constraint to minimize the pixel-level distance between the denoised versions
of the current sample x and initial adversarial sample xa. The additional regularization term can be
expanded as:

∥Dθ (x+ σtϵ1; t)−Dθ (xa + σtϵ2; t)∥22 ≈
∥∥x− xa + σ2

t (sθ (xt; t)− sθ (xa,t; t))
∥∥2
2
. (9)

The SR loss encourages consistency with the original sample in terms of not only the pixel values
but also the score function estimations at the given noise level σt. Since the two parts of SR loss
correspond to the same noise magnitude t of score networks, there is no need to introduce an
additional hyperparameter λ as in (7).

Figure 2b and 2c demonstrate the effectiveness of the SR loss. As the number of optimization steps
increases, both the standard and robust accuracy converge to stable values, with the latter remaining
close to the optimal. In contrast to the MSE loss, the SR loss shows insensitivity to the weighting
hyperparameter and significantly outperforms MSE, particularly for larger values of λ.

3.3 Practical Algorithms

Algorithm 1: (ScoreOpt-O) Optimizing adversarial sample towards robustness with score-based
prior.
Input: Adversarial image xa, pre-trained score-based diffusion model sθ, noise level range

[tmin, tmax], optimization iteration steps M, learning rate η.
x0 = xa;
for i ∈ 0, ...,M − 1 do

Sample t ∼ U(tmin, tmax), ϵ1, ϵ2 ∼ N (0; I);
xi,t = xi + σtϵ1;
xa,t = xa + σtϵ2;
Calculate the gradient grad of Diff loss (6) or SR loss (8) with respect to xi;

grad = ∇xi

[
∥Dθ (xi,t; t)− xi∥22 + ∥Dθ (xi,t; t)−Dθ (xa,t; t)∥22

]
;

xi+1 = xi − η · grad;
end
return Purified image xM .

Noise Schedule The perturbation introduced by adversarial attacks is often subtle and challenging for
human perception. As a result, our optimization loop does not necessarily incorporate the complete
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noise levels employed by the original diffusion models, which generate images from pure random
noise. In fact, high noise levels will disrupt local structures and remove semantic information from
the input image, leading to a decrease in accuracy. Many previous studies have focused on lower
noise levels to conduct image editing tasks. Therefore, we center our pre-designed noise schedule σt

around lower noise levels to preserve the details of the original image as much as possible. Previous
diffusion-based purification methods iteratively denoise the noisy image step by step (from xt to
xt−1), following a predetermined noise schedule. In contrast, our optimization process does not rely
on a sequential denoising schedule. Instead, at each iteration, we have the flexibility to randomly
select a noise level. This approach allows us to concurrently explore different noise levels during the
optimization process.

Update Rule Given a noise level σt, we can utilize the aforementioned loss functions to compute
the update direction of x. Noting that the objectives correspond to one single random chosen noise
magnitude, we propose an alternative update rule to further improve inference speed and robustness
performance. We can use the loss gradient to optimize over xt directly and then obtain the denoised
image x using one-shot denoising. The loss gradients with respect to x and xt are equivalent in our
forward process formulation. Experiments in Section 4 demonstrate that our approach significantly
improves one-shot denoising with only a few optimization iterations. These two distinct update
rules correspond to Algorithm 1 and Algorithm 2, respectively. Both algorithms are straightforward,
effective, and easy to implement.

Algorithm 2: (ScoreOpt-N) Optimizing noisy adversarial samples and one-shot denoising.
Input: Adversarial image xa, pre-trained score-based diffusion model sθ, noise level range

[tmin, tmax], optimization iteration steps M and N, learning rate η.
x0 = xa;
for i ∈ 0, ...,M − 1 do

// i denotes the i-th iteration of the outer loop.
Sample t ∼ U(tmin, tmax), ϵ1 ∼ N (0; I);
x0,t = xi + σtϵ1;
for j ∈ 0, ..., N − 1 do

// j denotes the j-th iteration of the inner loop.
Sample ϵ2 ∼ N (0; I);
xa,t = xa + σtϵ2;
Calculate the gradient grad of Diff loss (6) or SR loss (8) with respect to xj,t;

grad = ∇xj,t

[
∥Dθ (xj,t; t)− xi∥22 + ∥Dθ (xj,t; t)−Dθ (xa,t; t)∥22

]
;

xj+1,t = xj,t − η · grad;
end
// One-shot denoising.
xi+1 = xN,t + σ2

t sθ(xN,t; t);
end
return Purified image xM .

4 Experiments

This section presents the experimental evaluations conducted to assess the robustness of our proposed
methodology against different adversarial attacks, across a range of datasets. Due to space constraints,
we defer comprehensive details of the experimental settings, quantitative analysis, and additional
results to the Appendix. For all experiments, we report the average results (and corresponding
standard deviations) over 5 trials.

4.1 Experimental Settings

Attacks In this work, we evaluate the robustness performance of adversarial defenses mainly on ℓp-
norm bounded threat models. ϵp denotes the perturbation budget under the ℓp-norm. All of the attacks
are based on Projected Gradient Descent (PGD) attack [36], a commonly used gradient-based white-
box attack, which iteratively perturbs input images along the direction of the gradient of the classifier
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Table 1: Standard and robust accuracy against BPDA+EOT attack under ℓ∞(ϵ = 8/255) threat model
on CIFAR10, compared with other preprocessor-based adversarial defenses and adversarial training
methods against white-box attacks.

Type Architecture Method Standard (%) Robust (%) Avg. (%)

Base Classifier WRN-28-10 - 95.32 0.0 -

Adversarial Training
ResNet18 Madry et al. [36] 87.30 45.80 66.55

Zhang et al. [71] 84.90 45.80 65.35

WRN-28-10 Carmon et al. [6] 89.67 63.10 76.39
Gowal et al. [15] 89.48 64.08 77.28

Adversarial Purification

ResNet18 Yang et al. [68] 94.80 40.80 67.80
ResNet62 Song et al. [55] 95.00 9.00 52.00

WRN-28-10

Hill et al. [20] 84.12 54.90 69.51
Yoon et al. [69] 86.14 70.01 78.08
Wang et al. [63] 93.50 79.83 86.67
Nie et al. [40] 89.02 81.40 85.21

Ours(o) 90.78±0.40 82.85±0.26 86.82
Ours(n) 93.44±0.40 90.59±0.08 92.02

loss function and projects into some lpϵ-ball: δ ← Πϵ (δ + α · sign (∇x Loss(f(x+ δ), y))), where
f represents a classifier.

Datasets and Baselines Three datasets are considered in our experiments: CIFAR10, CIFAR100, and
ImageNet. Following previous works, the evaluation is conducted on the test set of each dataset. We
adopt two kinds of adversarial defenses for comparison: adversarial training methods and adversarial
purification methods, especially those also based on diffusion models [69, 40, 63]. In accordance
with the settings in Nie et al. [40], we conduct evaluations against strong adaptive attacks using a
fixed subset of 512 randomly sampled images.

Evaluation Metrics We leverage two evaluation metrics to assess the performance of our proposed
defense method: standard accuracy and robust accuracy. Standard accuracy measures the performance
of adversarial defenses on clean data, while robust accuracy measures the classification performance
on adversarial examples generated by various attacks.

Models We consider different architectures for a fair comparison with previous works. We utilize
the ResNet [19] and WideResNet (WRN) [70] backbones as our base classifiers. For CIFAR10 and
CIFAR100 datasets, we employ WRN-28-10 and WRN-70-16, the two most common architectures
on adversarial benchmarks. For the ImageNet dataset, we select WRN-50-2, ResNet-50, and ResNet-
152, which are extensively used in adversarial defenses. As for the pre-trained diffusion models, we
incorporate two popular architectures, the elucidating diffusion model (EDM) [29] and the guided
diffusion model [9]. The diffusion models and classifiers are trained independently on the same
training dataset as in prior studies.

4.2 Main Results

In this section, we validate our defense method against two strong adaptive attacks: BPDA+EOT
and adaptive white-box attack, i.e., PGD+EOT. The evaluation results of transfer-based attacks are
deferred to Appendix B.

4.2.1 BPDA+EOT Attack

The combination of Backward Pass Differentiable Approximation (BPDA) [1] with Expectation
over Transformation (EOT) [2] is commonly used for evaluating randomized adversarial purification
methods. In order to compare with other test-time purification models, we follow the same settings
in Hill et al. [20] with default hyperparameters for evaluation against BPDA+EOT attack. We conduct
experiments under ℓ∞(ϵ = 8/255) threat model on CIFAR10 and CIFAR100 datasets. Our method
achieves high robust accuracies, outperforming existing diffusion-based purification methods by a
significant margin, while maintaining high standard accuracies.

CIFAR10 Table 1 shows the robustness performance against BPDA+EOT attack under the
ℓ∞ (ϵ = 8/255) threat models on CIFAR10 dataset. Mark o in parentheses denotes the practi-
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Table 2: Standard accuracy and robust accuracy (%) against BPDA+EOT attack under ℓ∞(ϵ = 8/255)
threat model on the CIFAR100 dataset.

Accuracy Hill et al. [20] Yoon et al. [69] Diffusion-based Purification (step) Ours
1 10 20 40 80 (o) (n)

Standard 51.66 60.66 61.52 67.77 69.92 67.58 66.99 69.92 75.98
Robust 26.10 39.72 40.03 47.66 48.83 48.05 47.85 66.99 65.43

Table 3: Standard and robust accuracy against PGD+EOT on CIFAR-10. Left: ℓ∞(ϵ = 8/255);
Right: ℓ2(ϵ = 0.5). Compared with adversarial training (AT) and purification (AP) methods.

Type Method Standard Robust

WideResNet-28-10

AT
Pang et al. [42] 88.62 64.95
Gowal et al. [15] 88.54 65.10
Gowal et al. [16] 87.51 66.01

AP
Yoon et al. [69] 85.66 37.27
Nie et al. [40] 90.07 51.25
Ours 95.02±0.30 67.68±0.29

WideResNet-70-16

AT
Gowal et al. [16] 88.75 69.03
Wang et al. [64] 92.97 72.46

AP
Yoon et al. [69] 86.76 41.02
Nie et al. [40] 90.43 57.03
Ours 95.18±0.09 71.48±0.20

Type Method Standard Robust

WideResNet-28-10

AT
Sehwag et al. [50] 90.93 83.75
Rebuffi et al. [44] 91.79 85.05
Augustin et al. [3] 93.96 86.14

AP
Yoon et al. [69] 85.66 74.26
Nie et al. [40] 91.41 82.11
Ours 94.99±0.09 86.78±0.33

WideResNet-70-16

AT
Rebuffi et al. [44] 92.41 86.24
Wang et al. [64] 96.09 86.72

AP
Yoon et al. [69] 86.76 75.90
Nie et al. [40] 92.15 84.80
Ours 95.18±0.18 87.11±0.01

cal method ScoreOpt-O in Algorithm 1, and mark n denotes the method ScoreOpt-N in Algorithm 2.
Our methods achieve surprisingly good results. Specifically, we obtain 90.59% robust accuracy, with
absolute improvements of 9.19% over previous SOTA adversarial purification methods. Our method
is the first adaptive test-time defense to achieve robust accuracy over 90% against the BPDA+EOT
attack. Meanwhile, the standard accuracy result is on par with the best-performing method.

CIFAR100 We also conduct robustness evaluations against strong adaptive attacks under the
ℓ∞ (ϵ = 8/255) threat model on the CIFAR100 dataset. The results of ScoreOpt and other adap-
tive purification methods are presented in Table 2. To showcase the superiority of our method
over previous diffusion-based purification algorithms, we perform experiments using the approach
proposed in Nie et al. [40] with varying reverse denoising steps. The optimal hyperparameter t∗,
representing the forward timestep, is carefully tuned based on experimental results. As indicated in
Table 2, increasing the reverse denoising steps only leads to marginal improvements over the one-shot
denoising method. Even when the number of denoising steps is increased to 80, which will incur a
large computational cost, no further improvement in robust accuracy is observed. In contrast, our
ScoreOpt method achieves a notable improvement of 18.16% in robust accuracy.

4.2.2 Adaptive White-box Attack

In order to evaluate our method against white-box attacks, it is necessary to compute the exact gradient
of the entire defense framework. However, our optimization process involves backpropagation through
the U-net architecture of diffusion models, making it challenging to directly apply PGD attack. Taking
inspiration from Lee and Kim [34], we approximate the full gradient using the one-shot denoising
process in our experiments. The performance against PGD+EOT is shown in Table 3. Most results
for baselines are taken from Lee and Kim [34]. Notably, our method significantly outperforms other
diffusion-based purification methods. Specifically, compared to Nie et al. [40], our method improves
robust accuracy by 16.43% under ℓ∞ and by 4.67% under ℓ2 on WideResNet-28-10, and by 14.45%
under ℓ∞ and by 2.31% under ℓ2 on WideResNet-70-16, respectively. Compared with previous SOTA
adversarial training methods, ScoreOpt achieves better robust accuracies on both WideResNet-28-10
and WideResNet-70-16 under ℓ2. Furthermore, under ℓ∞ threat model, ScoreOpt outperforms AT
baselines on WideResNet-28-10 and achieves comparable robust accuracy on WideResNet-70-16
with the top-rank model.
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Table 4: Standard and robust accuracy against unseen threat models with WRN-70-16 on CIFAR10.
Threat that AT is trained with is marked with an underline, and others are considered unseen.

Defense Standard (%) Robust (%)
ℓ∞ ℓ2 StAdv

Base WRN-70-16 95.31 - - -

Wang et al. [64] (Trained with ℓ∞) 92.97 72.46 71.68 3.13
Wang et al. [64] (Trained with ℓ2) 96.09 56.64 86.72 5.27

Ours 95.18 71.48 87.11 93.36

Table 5: Robustness against common corruptions on CIFAR10-C.

Defense gaussian shot impulse elastic pixelate jpeg snow frost fog brightnesstransform compression

Base WRN-70-16 25.71 32.19 27.89 73.17 44.93 67.32 77.82 66.49 71.37 91.33

Wang et al. [64] (ℓ∞) 79.85 81.22 62.02 86.14 88.89 89.93 84.75 83.94 37.87 88.04
Wang et al. [64] (ℓ2) 81.91 83.17 63.74 89.96 92.0 93.61 89.26 88.17 48.55 92.88

Ours 89.94 87.96 82.68 83.64 86.36 89.26 83.5 85.73 80.2 91.21

Approximate Gradient. To show the effectiveness of our approximate gradients for sufficient ro-
bustness evaluation, we evaluate ScoreOpt (with only one single optimization step) on a fixed 512
CIFAR-10 subset. We use exact gradients and approximate gradients obtained by backpropagating
through the one-shot denoising surrogate process, respectively. The attack success rates of PGD+EOT
are 33.99% (w/ exact gradients) vs 34.11% (w/ approximate gradients) under ℓ2, and 50.976563% vs
50.976562% under ℓ∞. Therefore, this kind of approximate gradients obtained by the one-shot de-
noising surrogate process can be considered as effective as computing the exact gradient to sufficiently
evaluate the robustness of ScoreOpt.

4.3 Generalization to Different Types of Attacks

Defense against Unseen Threats A significant advantage of adversarial purification is that it can
defend against unseen threats in a plug-and-play fashion, while most adversarial training methods
exhibit robustness only against the specific threat trained with. Following Nie et al. [40], we conduct
evaluations with three threat models: ℓ∞, ℓ2, and the spatially transformed adversarial examples
(StAdv). Table 4 illustrates the poor generalization of AT methods to unseen attacks and the significant
generalization ability of our proposed method. The performance of AT baselines drops significantly
when confronted with unseen attacks while ScoreOpt demonstrates robustness across all three threat
models.

Score-based Black-box Attack We further assess the effectiveness of our method against the
score-based black-box attack, SPSA. This evaluation is conducted on CIFAR10 with the WRN-28-10
classifier, adopting the same experimental setup as described in Yoon et al. [69], using 1,280 queries.
Notably, our ScoreOpt method achieves a robust accuracy of 91.797%, in contrast to the reported
80.8% robust accuracy in Yoon et al. [69]. This demonstrates a significant performance improvement
of 10% over the previous method.

Common Corruption To further highlight the generalization ability of ScoreOpt against various
types of perturbations, we test the robustness of ScoreOpt and AT baselines on CIFAR10-C, a dataset
comprising 75 frequently encountered visual distortions. The evaluation results are summarized in
Table 5. where ScoreOpt consistently outperforms the AT baselines across most corruptions.

4.4 Further Analysis

4.4.1 Combining with adversarial training methods

ScoreOpt can also be seamlessly combined with existing stronger classifiers in a plug-and-play
manner to further improve robustness performance. To see this, we conduct an additional experiment
by combining ScoreOpt with adversarially trained classifiers [64]. We evaluate against the PGD+EOT
attack and observe improvements under both l∞ (from 71.48% to 72.57%) and l2 (from 87.11% to
89.06%), respectively.
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Figure 3: Accuracy with respect to
optimization steps.

Table 6: The inference time cost of ScoreOpt with different
optimization steps, compared with previous diffusion-based
purification methods with different denoising steps.

Denoising Steps 1 5 10 20 50 100

Time Cost (s) 0.0524 0.1930 0.3271 0.6298 1.7125 3.3351

Optimization Steps 1 5 10 20 50 100

Time Cost (s) 0.1172 0.3632 0.6271 1.1747 3.2978 5.8181

4.4.2 Optimization Steps

Since our defense is an iterative optimization process, we conduct ablation experiments on our
ScoreOpt algorithm with different optimization steps under ℓ∞ (ϵ = 8/255) threat model against
BPDA+EOT on CIFAR10. Figure 3 shows that the standard accuracy and robust accuracy con-
tinuously increase as the number of optimization steps increases. As the number of iterations
increases further, the accuracies gradually stabilize. This phenomenon shows the effectiveness of our
optimization process.

4.4.3 Inference Speed

We compare the inference speed of ScoreOpt with diffusion purification methods that use a sequential
multiple-step denoising process. We compute the inference time cost per image. As shown in Table 6,
our time cost is about twice under the same steps. However, ScoreOpt needs only a few steps (about 5)
to obtain significantly better results than the multi-step denoising method, which requires nearly 100
denoising steps. Therefore, compared to diffusion-based AP baselines, our method further improves
the inference speed substantially in practice.

5 Concluding Remarks

In this work, we have proposed a novel adversarial defense framework ScoreOpt, which optimizes
over the input image space to recover original images. We have introduced three optimization
objectives using pre-trained score-based priors, followed by practical algorithms. We have shown
that ScoreOpt can quickly purify attacked images within a few optimization steps. Experimentally,
we have shown that our approach yields significant improvements over prior works in terms of both
robustness performance and inference speed. We would believe our work further demonstrates the
powerful capabilities of pre-trained generative models for downstream tasks.
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A Related Work

A.1 Adversarial attack

Adversarial attacks are aimed at manipulating or deceiving machine learning models by introducing
imperceptible perturbations to input data, which can lead to misclassification. These attacks can be
categorized into three types: black-box, gray-box, and white-box attacks, with increasing intensity.

In a black-box attack setting, the attacker has no knowledge of the internal structure of both the
defender and the classifier. Conversely, white-box attacks have full access to all information about the
pre-processor and the target classifier. Defending against white-box attacks is the most difficult task.

And gray-box attacks have partial information about the whole target model. Attackers usually have
full access to the classifier but lack knowledge about the pre-processor. Adversarial examples are
generated exclusively based on the classifier and evaluated using the entire model. This type of
malicious perturbation is inherently limited in its effectiveness compared to white-box attacks. It is
important to note that gray-box attacks can be seen as transfer-based black-box attacks, where the raw
classifier serves as the source model, and the entire model (including the pre-processor) represents
the target model.

A.2 Adversarial defense

To enhance the resistance of classifiers against adversarial attacks, two primary approaches have been
employed. The first approach is adversarial training (AT), which has proven to be highly effective in
defending against such attacks [36, 32, 71, 44]. AT involves training classifiers using both clean data
with ground-truth labels and adversarially perturbed samples. However, a notable limitation of AT is
that it can only defend against attacks that the model has been specifically trained on, necessitating
retraining the classifier when confronted with new attack types.

Purification, which involves applying a pre-processing procedure to input data before it is fed into
classifiers, is another approach for enhancing adversarial robustness. Several existing studies have
explored the effectiveness of different purification models, such as denoising auto-encoders [24, 27],
sets of image filters [8], and compression-and-recovery models [26], among others. Among these
purification methods, generative models [55, 12, 49] have demonstrated significant effectiveness in
transforming adversarial data into clean data. The underlying idea of this technique is to learn the
underlying distribution of clean data and use it to transform adversarial examples.

B Attack Transferred from Base Classifier

We evaluate our defense against adversarial images generated from the PGD attack only on the base
classifier. The attack process does not incorporate the pre-processing model. We conduct experiments
against Transfer-PGD attacks for both CIFAR10 and ImageNet datasets. The experimental settings
adhere to previous purification methods. In summary, our proposed method exhibits substantial
improvements in both standard and robust accuracy measures.

CIFAR10 Table 7 and 8 show the robustness results against Transfer-PGD attack under the
ℓ∞ (ϵ = 8/255) and ℓ2 (ϵ = 0.5) threat models on CIFAR10 dataset, respectively. We compare
our method with two kinds of defenses: adversarial training and adversarial purification methods.
The results demonstrate that the robust accuracies of our two methods achieve state-of-the-art per-
formance, with comparable standard accuracies. Specifically, our method outperforms existing
adversarial purification methods, including diffusion-based multi-step denoising models. Under the
ℓ∞ (ϵ = 8/255) threat models, our proposed method improves robust accuracy by 2.2%. As for the
ℓ2 (ϵ = 0.5) threats, our algorithms still achieve a substantial improvement over existing methods in
terms of both standard accuracy 93.1% and robust accuracy 92.52%.

IMAGENET Table 9 presents the robustness performance of our method on the Imagenet dataset.
We evaluate our method under ℓ∞(ϵ = 4/255) threat model with different perturbation budgets
on three different backbones with different natural classification accuracies. Results show that the
effectiveness of our method is not affected by the underlying classifier architecture. Even under larger
attack budgets, we find that our method still keeps the ability to purify adversarial perturbations and
generally achieves over 60% robust accuracy.
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Table 7: Standard and robust accuracy against Transfer-PGD attack under ℓ∞(ϵ = 8/255) threat
model on CIFAR10, compared with other preprocessor-based adversarial defenses and adversarial
training methods against transfer-based attacks.

Type Architecture Method Standard (%) Robust (%) Avg. (%)

Base Classifier WRN-28-10 - 95.19 0.00 -

Adversarial Training ResNet56 Madry et al. [36] 87.30 70.20 78.75
Zhang et al. [71] 84.90 72.20 78.55

Adversarial Purification

ResNet18 Yang et al. [68] 94.90 82.50 88.70
ResNet62 Song et al. [55] 90.00 70.00 80.00

WRN-28-10

Du and Mordatch [11] 48.70 37.50 43.10
Grathwohl et al. [18] 75.50 23.80 49.65

Hill et al. [20] 84.12 78.91 81.52
Ho and Vasconcelos [21] 89.26 80.80 85.03

Yoon et al. [69] 93.09 85.45 89.27
Wang et al. [63] 93.50 90.10 91.80

Ours(o) 91.88±0.05 90.11±0.05 91.00
Ours(n) 93.11±0.18 92.30±0.15 92.71

Table 8: Standard and robust accu-
racy against Transfer-PGD attack under
ℓ2(ϵ = 0.5) threat model on CIFAR10.

Models Accuracy (%)
Standard Robust

Base Classifier 95.19 0.30

Rony et al. [47] 89.05 67.60
Ding et al. [10] 88.02 66.18
Rice et al. [45] 88.67 71.60
Wu et al. [65] 88.51 73.66

Gowal et al. [15] 90.90 74.50

Ours(o) 91.85±0.02 90.55±0.08
Ours(n) 93.10±0.20 92.52±0.14

Table 9: Standard and robust accuracy against Transfer-
PGD ℓ∞ threat model on ImageNet, under different
classifier architectures and attack budgets.

Architecture Natural Acc Attack Budget Accuracy (%)
Standard Robust

ResNet-50 78.52 ϵ = 4/255 72.85 70.51
ϵ = 16/255 69.34 62.70

ResNet-152 80.66 ϵ = 4/255 73.83 71.29
ϵ = 16/255 72.85 66.60

WRN-50-2 80.47 ϵ = 4/255 74.61 70.51
ϵ = 16/255 71.68 62.10

Based on the results from Table 7 to 9, we can summarize that ScoreOpt achieves better perfor-
mance than previous defenses consistently and purify adversarial examples on transfer-based attacks
successfully, across various datasets.

C Experimental Details

Code is available at https://github.com/zzzhangboya/ScoreOpt.git.

C.1 Computing resources

All of our experiments are conducted using GPUs. Specifically, the diffusion models and base
classifiers are trained in parallel on eight GPUs. Each test-time robustness evaluation is performed on
a single GPU. The GPUs used in our experiments are NVIDIA TITAN RTX with 24GB of memory.

C.2 Dataset descriptions

We utilize three datasets in our experiments: CIFAR-10, CIFAR-100, and ImageNet. CIFAR-10
and CIFAR-100 datasets contain 50,000 training images and 10,000 test images, with 10 and 100
classes respectively. All CIFAR images have a resolution of 32x32 pixels and three color channels
(RGB). On the other hand, ImageNet consists of a validation set with 50,000 examples, featuring
1,000 classes and images with a resolution of 256x256 pixels and three color channels.

C.3 Attack details

We conduct evaluations against the BPDA+EOT attack using 50 BPDA iteration steps and 15 EOT
attack samples. Regarding the white-box PGD+EOT attack discussed in Section 4.2.2, we employ 20
PGD steps and 20 replicates for EOT attacks, consistent with the setup used in Lee and Kim [34].
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For the Transfer-PGD attack, we adopt 40 PGD update iterations to generate adversarial examples,
following previous studies [69, 63]. The step size α is set to ϵ/4.

C.4 Training details

Diffusion models We utilize pre-trained class-unconditional diffusion models obtained from Karras
et al. [29] for CIFAR-10 and from Dhariwal and Nichol [9] for ImageNet. For the CIFAR-100 dataset,
we train our own class-unconditional EDM using the ddpm++ model architecture. The training
configuration and network architecture for CIFAR-100 align with the settings used in Karras et al.
[29] for CIFAR-10.

Classifiers Our classifiers are trained alone on the training set of each dataset. For CIFAR-10,
WRN-28-10 and WRN-70-16 classifiers both achieve 95.19% natural accuracy on the whole test set.
For CIFAR-100, the WRN-28-10 model achieves 81.45% natural accuracy and WRN-70-16 achieves
81.28% natural accuracy.

C.5 Implementation details of our methods

We evaluate our ScoreOpt method using the Adam optimizer in all experiments. During our experi-
ments, we observed that both the Diff loss and the SR loss can yield satisfactory results when the
number of optimization steps is relatively small. However, in comparison to SR optimization, Diff
optimization offers faster inference speed and requires less memory. Unless otherwise stated, all
experiments in the main text are conducted using the WRN-28-10 classifier architecture. Please refer
to Table 10 for the optimization hyper-parameters we used to obtain the final evaluation results in
Section 4 and Appendix B.

Table 10: Hyper-parameters choices of our optimization process for experimental results in the main
text and appendix.

Attack Type Perturbation Budget Method LR Step Noise Level

Dataset: CIFAR10

BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-O 0.1 5 [0.40,0.60]
BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-N 0.1 5 [0.50,0.50]
PGD+EOT ℓ∞(ϵ = 8/255) ScoreOpt-N 0.1 20 [0.25,0.25]
PGD+EOT ℓ2(ϵ = 0.5) ScoreOpt-N 0.1 20 [0.25,0.25]

Transfer-PGD ℓ∞(ϵ = 8/255) ScoreOpt-O 0.01 20 [0.15,0.35]
Transfer-PGD ℓ∞(ϵ = 8/255) ScoreOpt-N 0.1 5 [0.25,0.25]
Transfer-PGD ℓ2(ϵ = 0.5) ScoreOpt-O 0.01 20 [0.15,0.35]
Transfer-PGD ℓ2(ϵ = 0.5) ScoreOpt-N 0.1 5 [0.25,0.25]

Dataset: CIFAR100

BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-O 0.1 3 [0.15,0.35]
BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-N 0.1 3 [0.25,0.25]

D Ablation Studies and Additional Results

D.1 Different classifier architectures

To showcase the effectiveness and reliability of incorporating our method into any off-the-shelf
classifiers, we conduct additional evaluations using the WideResNet-70-16 classifier architecture.
All of these experiments are conducted using the same optimization hyper-parameters as those
employed for the WRN-28-10 architecture. Table 11 demonstrates that our method with WRN-70-
16 consistently achieves high robust accuracy against various attacks on both the CIFAR-10 and
CIFAR-100 datasets.
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Table 11: Evaluation results obtained by WRN-70-16 classifier architecture.

Attack Type Perturbation Budget Method Acc (%)
Standard Robust

Dataset: CIFAR10

BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-N 93.75 91.60
Transfer-PGD ℓ∞(ϵ = 8/255) ScoreOpt-N 92.47 92.32
Transfer-PGD ℓ2(ϵ = 0.5) ScoreOpt-N 92.47 92.29

Dataset: CIFAR100

BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-O 76.56 65.82
BPDA+EOT ℓ∞(ϵ = 8/255) ScoreOpt-N 69.53 66.99

D.2 Number of EOT attack replicates

We present additional results for our ScoreOpt defense by varying the number of EOT attack replicates.
All experiments are conducted using the same settings as described in Section 4, except the EOT
number. Figure 4 illustrates the robustness performance against PGD+EOT attacks with different
numbers of EOT replicates, while Figure 5 showcases the results against BPDA+EOT attacks. The
evaluations are performed using the WRN-28-10 architecture on the CIFAR-10 dataset. Interestingly,
our findings indicate that the number of EOT replicates does not significantly impact the standard
and robust accuracy of our method.

(a) ℓ∞(ϵ = 8/255) (b) ℓ2(ϵ = 0.5)

Figure 4: Robustness performance against PGD+EOT attack under the ℓ∞(ϵ = 8/255) and ℓ2(ϵ =
0.5) threat models, respectively. We evaluate our methods with WRN-28-10 on CIFAR-10.

Figure 5: Robustness performance against BPDA+EOT attack under the ℓ∞(ϵ = 8/255) threat model.
We evaluate our methods with WRN-28-10 on CIFAR-10.
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D.3 Hyper-parameter choices of the optimization process

To further assess the effectiveness of our methods, we conduct additional experiments presented in
Table 12. In these experiments, we use different optimization hyper-parameters compared to the
ones used in Table 10. It is worth noting that varying the optimization hyper-parameters typically
does not have a significant impact on the final robustness results. This observation suggests that
our defense mechanism remains effective and consistent across different choices of optimization
hyper-parameters, further reinforcing its reliability.

Table 12: Evaluation results with different hyper-parameters. The * symbol indicates that the
hyperparameter is identical to the corresponding experiment in the main text.

Perturbation Budget Method Hyper-parameter Acc (%)
LR Step Noise Level Standard Robust

Attack: BPDA+EOT

ℓ∞(ϵ = 8/255) ScoreOpt-O * * [0.30,0.50] 93.16 79.30
ℓ∞(ϵ = 8/255) ScoreOpt-O * * [0.30,0.60] 92.38 81.05
ℓ∞(ϵ = 8/255) ScoreOpt-N * * [0.40,0.40] 94.53 92.19
ℓ∞(ϵ = 8/255) ScoreOpt-N * * [0.60,0.60] 91.60 89.26

Attack: Transfer-PGD

ℓ∞(ϵ = 8/255) ScoreOpt-O 0.1 10 * 91.42 88.56
ℓ2(ϵ = 0.5) ScoreOpt-O * * [0.20,0.40] 91.55 90.21
ℓ2(ϵ = 0.5) ScoreOpt-N * 10 * 91.64 91.17
ℓ2(ϵ = 0.5) ScoreOpt-N * 10 [0.30,0.30] 91.24 90.94

D.4 More results on the whole ImageNet test set

The experimental results presented in Table 9 are evaluated on a fixed subset of 512 randomly sampled
images. To provide a more comprehensive assessment, we include additional results on the complete
50,000 test set of ImageNet in Table 13.

Table 13: Standard and robust accuracy against Transfer-PGD ℓ∞ threat model on Imagenet, under
different classifier architectures and attack budgets.

Architecture Natural Accuracy Attack Budget Accuracy (%)
Standard Robust

ResNet-50 76.15 ϵ = 4/255 70.07 66.02
ϵ = 16/255 66.93 60.45

WRN-50-2 78.48 ϵ = 4/255 72.38 68.22
ϵ = 16/255 69.27 61.73

E Discussions and Limitations

The experiments conducted demonstrate the significant improvements achieved by our method in
terms of both robustness performance and inference speed compared to previous methods. Our
approach can be seamlessly integrated into various off-the-shelf classifiers. However, it is important
to acknowledge a few potential drawbacks of our method.

Firstly, the computational memory cost remains a challenge that needs to be addressed. Although our
method requires only a small number of optimization steps, the inclusion of the U-Net Jacobian term
in the loss function introduces additional computational overhead. This memory constraint limits the
evaluation of our method on stronger adversarial benchmarks like RobustBench.
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Secondly, while we have experimentally demonstrated that our test-time optimization process con-
verges to a certain local optimum within a small number of steps, we have not provided a theoretical
convergence analysis.

Our future work will focus on addressing these limitations and further exploring the theoretical
aspects of our method. By addressing these issues, we can enhance the practicality and theoretical
understanding of our approach, paving the way for more robust and efficient adversarial defense
mechanisms.

20


	Introduction
	Preliminary
	Score-based Diffusion Models
	Diffusion-based Adversarial Purification

	Methodology
	Problem Formulation
	Loss Functions for Optimization Process
	Score Regularization Loss

	Practical Algorithms

	Experiments
	Experimental Settings
	Main Results
	BPDA+EOT Attack
	Adaptive White-box Attack

	Generalization to Different Types of Attacks
	Further Analysis
	Combining with adversarial training methods
	Optimization Steps
	Inference Speed


	Concluding Remarks
	Related Work
	Adversarial attack
	Adversarial defense

	Attack Transferred from Base Classifier
	Experimental Details
	Computing resources
	Dataset descriptions
	Attack details
	Training details
	Implementation details of our methods

	Ablation Studies and Additional Results
	Different classifier architectures
	Number of EOT attack replicates
	Hyper-parameter choices of the optimization process
	More results on the whole ImageNet test set

	Discussions and Limitations

