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Abstract

Optimizing static risk-averse objectives in Markov decision processes is difficult1

because they do not admit standard dynamic programming equations common in2

Reinforcement Learning (RL) algorithms. Dynamic programming decompositions3

that augment the state space with discrete risk levels have recently gained pop-4

ularity in the RL community. Prior work has shown that these decompositions5

are optimal when the risk level is discretized sufficiently. However, we show that6

these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-7

Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization8

level. In particular, we show that a saddle point property assumed to hold in prior9

literature may be violated. However, a decomposition does hold for Value-at-Risk10

and our proof demonstrates how this risk measure differs from CVaR and EVaR.11

Our findings are significant because risk-averse algorithms are used in high-stake12

environments, making their correctness much more critical.13

1 Introduction14

Risk-averse reinforcement learning (RL) seeks to provide a risk-averse policy for high stake real-15

world decision problems. These high-stake domains include autonomous driving (Jin et al., 2019;16

Sharma et al., 2020), robot collision avoidance (Ahmadi et al., 2021; Hakobyan and Yang, 2021),17

liver transplant timing (Köse, 2016), HIV treatment (Keramati et al., 2020; Zhong, 2020), unmanned18

aerial vehicle (UAV) (Choudhry et al., 2021), and investment liquidation (Min et al., 2022), to name a19

few. Because these domains call for reliable solutions, risk-averse algorithms must be based on solid20

theoretical foundations. This is one reason why monetary risk measures, such as Value-at-Risk (VaR)21

and Conditional Value-at-Risk (CVaR), have become pervasive in risk-averse RL (Prashanth and22

Fu, 2022). Indeed, risk measures such as CVaR are known to be coherent (Artzner et al., 1999)23

with respect to a set of fundamental axioms that define how risk should be quantified and have been24

adopted as gold standards in banking regulations (Basel Committee on Banking Supervision, 2019).25

Introducing risk-averse objectives in Markov decision processes (MDPs), the primary model used26

in RL, is challenging. Dynamic programming, the linchpin of most RL algorithms, cannot be used27

directly to optimize a risk measure like VaR or CVaR in MDPs. One line of work tackles this28

challenge by exploiting the primal representation of risk measures and augmenting the state space29

of their dynamic programs (DPs) with an additional parameter that typically represents the total30

cumulative reward up to the current point (Bäuerle and Ott, 2011; Boda et al., 2004; Chow and31

Ghavamzadeh, 2014; Filar et al., 1995; Hau et al., 2023; Lin et al., 2003; Wu and Lin, 1999; Xu and32

Mannor, 2011). Even when the original MDP is finite, this DP requires computing the value function33

for a continuous state space, and thus, has been considered inefficient in practice (Chapman et al.,34

2022; Chow et al., 2015; Li et al., 2022).35

Another line of recent work leverages the dual representation to produce a risk-level decomposition36

of risk measures (Pflug and Pichler, 2016). Using this decomposition, numerous authors have derived37
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DPs for common risk measures and integrated them within various RL algorithms (Chapman et al.,38

2019, 2022; Chow et al., 2015; Ding and Feinberg, 2022; Ni and Lai, 2022; Rigter et al., 2021; Stanko39

and Macek, 2019). Although this risk-level decomposition requires augmenting the state space with a40

continuous parameter, this parameter is naturally bounded between 0 and 1. It has been generally41

accepted, with several tentative proofs supporting this claim (Chow et al., 2015; Li et al., 2022),42

that these DPs recover the optimal policy if we can discretize the augmented state space sufficiently43

finely. Moreover, it is believed that one can use the optimal value function from this DP to recover44

the policies that are optimal for the full range of risk levels.45

In this paper, we make a surprising discovery that numerous claims of optimality of risk-level46

decompositions published in the past several years are incorrect. Even when one discretizes the47

augmented state space arbitrarily finely, most risk-level DPs are not guaranteed to recover the optimal48

value function and policy. There are several reasons why existing arguments fail. As the most common49

reason, several papers assume that a certain saddle point property holds, either explicitly (Chow50

et al., 2015) or implicitly (Ding and Feinberg, 2022; Li et al., 2022). We show that this property does51

not generally hold, invalidating the optimality of DPs, as hinted at in Chapman et al. (2019, 2022).52

This finding directly refutes the claimed or hypothesized optimality of algorithms proposed in many53

recent research papers and pre-prints, such as Chapman et al. (2019); Chow et al. (2015); Ding and54

Feinberg (2022); Li et al. (2022); Rigter et al. (2021); Stanko and Macek (2019). Our results also55

affect applications of these algorithms, such as automated vehicle motion planning (Jin et al., 2019).56

We also identify gaps in related decompositions (Li et al., 2022; Ni and Lai, 2022) and propose how57

to fix them.58

We make the following contributions in this paper. First, we show in Section 3 that the popular DP59

for optimizing CVaR in MDPs may not recover the optimal value function and policy regardless of60

how finely one discretizes the risk level in the augmented states. This method was first proposed61

in Chow et al. (2015) but adopted widely afterwards (Chapman et al., 2019; Ding and Feinberg,62

2022; Li et al., 2022; Rigter et al., 2021; Stanko and Macek, 2019). The simple counterexample in63

this section contradicts the optimality claims in Chow et al. (2015); Ding and Feinberg (2022); Li64

et al. (2022). We hypothesize that prior work missed this issue, because the CVaR DP works for65

policy evaluation and only fails when one uses it to optimize policies based on the “risk-to-go value66

function”. Therefore, our results do not contradict the original decomposition in Pflug and Pichler67

(2016) that only applies to policy evaluation. We give a new independent and simple proof that the68

CVaR decomposition indeed works when evaluating a fixed policy.69

Second, we show in Section 4 that the DP for optimizing the Entropic-Value-at-Risk in MDPs,70

proposed by Ni and Lai (2022), does not compute the correct value function even when the policy71

is fixed. Although EVaR has not been as popular as CVaR, it has been gaining attention in recent72

years (Hau et al., 2023). We give an example that contradicts the correctness claims of the risk-level73

decomposition for EVaR in Ni and Lai (2022). The gap that we identify with this objective applies74

to both policy evaluation and policy optimization. Furthermore, we prove a new, correct EVaR75

decomposition for policy evaluation. Unfortunately, the EVaR decomposition fails and is sub-optimal76

when is applied to policy optimization, similar to CVaR.77

Third, we propose an optimal dynamic program for policy optimization of VaR in Section 5. Our DP is78

based on a risk-level decomposition that closely resembles the quantile MDP decomposition in Li et al.79

(2022) but corrects for several technical inaccuracies. The derivation shows why VaR stands apart80

from coherent risk measures like CVaR and EVaR. VaR is unique in that the decomposition can be81

constructed directly from the primal formulation of the risk measure, which avoids the complications82

that arise in the robust formulations used in CVaR and EVaR decompositions.83

It is important to note that the correctness of DPs that augment the state space with the accumulated84

rewards is unaffected by our results (Bäuerle and Ott, 2011; Chow and Ghavamzadeh, 2014; Chow85

et al., 2018; Hau et al., 2023). These DPs use the primal risk measure representation and do not suffer86

from the same saddle point issue as the augmentation methods that use the dual representation of the87

risk measures, such as the one in Chow et al. (2015).88

2 Preliminaries89

This section summarizes relevant properties of monetary risk measures and outlines how they are90

typically used in the context of solving MDPs.91
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Monetary Risk Measures We restrict our attention to probability spaces with a finite outcome92

space Ω such that |Ω| = m for some m ∈ N. We use X = Rm to denote the space of real-valued93

random variables. To improve the clarity of probabilistic claims, we always adorn random variables94

with a tilde, such as x̃ ∈ X. In finite spaces, we can represent any random variable x̃ ∈ X as a vector95

x ∈ Rm. We also use q ∈ ∆m to represent a probability distribution over Ω where ∆m represents96

the m-dimensional probability simplex. Using this notation, we can write that E[x̃] = q⊤x.97

A monetary risk measure ψ : X → R assigns a real value to each real-valued random variable in a98

way that it is monotone and cash-invariant (Follmer and Schied, 2016; Shapiro et al., 2014). A risk99

measure can be seen as a generalization of the expectation operator E[·] that also takes into account100

the uncertainty in the random variable. In this work, we define all risk measures for random variables101

x̃ that represent rewards. Thus, the risk-averse decision-maker aims to choose actions that maximize102

the value of the risk measure, i.e., a higher value of risk measure represents a lower exposure to risk.103

We consider three monetary risk measures common in RL. Perhaps the most well-known measure104

is Value-at-Risk (VaR), which is defined for a risk-level α ∈ [0, 1] and a random variable x̃ ∈ X in105

modern literature as (e.g., Follmer and Schied 2016; Shapiro et al. 2014)106

VaRα [x̃] = sup {z ∈ R | P [x̃ < z] ≤ α} = inf {z ∈ R | P [x̃ ≤ z] > α} . (1)

Note that VaR1 [x̃] = ∞. The equality between the two definition holds, for example, by Follmer and107

Schied (2016, remark A.20). Another popular risk measure is the Conditional-value-at-Risk (CVaR),108

which is defined for a risk level α ∈ [0, 1] and a random variable x̃ ∈ X distributed as x̃ ∼ q109

as (e.g., Follmer and Schied 2016, definition 11.8 and Shapiro et al. 2014, eq. 6.23)110

CVaRα [x̃] = sup
z∈R

(
z − α−1E [z − x̃]+

)
= inf

ξ∈∆m

{
ξ⊤x | α · ξ ≤ q

}
, (2)

with CVaR0 [x̃] = ess inf[x̃] and CVaR1 [x̃] = E[x̃]. Finally, the entropic value at risk (EVaR), with111

EVaR0 [x̃] = ess inf[x̃] and EVaR1 [x̃] = E[x̃], is defined for α ∈ (0, 1] as (Ahmadi-Javid, 2012)112

EVaRα [x̃] = sup
β>0

1

β

(
− logα−1E

[
exp (−βx̃)

])
= inf

ξ∈∆m:ξ≪q

{
ξTx | KL(ξ∥q) ≤ − logα

}
, (3)

where KL is the standard KL-divergence defined for each x,y ∈ ∆m as KL(x∥y) =113 ∑
ω∈Ω xω log (xω/yω). This definition is valid only when x is absolutely continuous with respect to114

y, which is denoted as x ≪ y and corresponds to yω = 0 ⇒ xω = 0 for each ω ∈ Ω.115

Risk Averse MDPs A Markov decision process (MDP) is a sequential decision model that underlies116

most of RL (Puterman, 2005). We consider finite MDPs with states S = {s1, . . . , sS} and actions117

A = {a1, . . . , aA}. After taking an action in a state, the agent transitions to a next state according118

to a transition probability function p : S × A → ∆S such that p(s, a, s′) represents the transition119

probability from s ∈ S to s′ ∈ S after taking a ∈ A. We use ps,a = p(s, a, ·) ∈ ∆S to denote the120

vector of transition probabilities. The initial state s̃0 is distributed according to p̂ ∈ ∆S . To avoid121

divisions by 0 that are not central to our claims, we assume that p̂s > 0 for each s ∈ S. Finally,122

the reward function is r : S × A × S → R, where r(s, a, s′) represents the deterministic reward123

associated with the transition to s′ from s after taking an action a.124

The most-general solution to an MDP is a history-dependent randomized policy π which maps a125

sequence of observed states and actions s0, a0, s1, a1, . . . , st to a distribution over the next action at.126

It is well-known that with risk-neutral objectives, there always exists an optimal stationary (depends127

only on the last state) deterministic policy (Puterman, 2005). When the objective is risk-averse, like128

VaR, or CVaR, there may not exist an optimal stationary or deterministic policy. Hence, we use the129

symbol Π to denote the set of history-dependent randomized policies in the remainder of the paper.130

This paper focuses on the finite-horizon objective in which the agent aims to compute policies131

that optimize the sum of rewards over a known horizon T . We further restrict our attention to the132

objective with horizon T = 1. It turns out that having a single time-step is sufficient to derive our133

counterexamples to existing dynamic programs. Moreover, deriving the decompositions with T = 1134

makes it possible to avoid technicalities caused by history-dependent policies, which could distract135

us from the main ideas presented in this work. Our results an be extended to general horizons T > 1136

and the discounted infinite-horizon objectives using standard techniques (Chow et al., 2015).137

With horizon T = 1, the set of randomized history-dependent policies is Π = {π : S → ∆A}. The138

symbol π(s, a) denotes the probability of an action a in a state s, and π(s) = π(s, ·) ∈ ∆A denotes139
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the A-dimensional vector of action probabilities in a state s. Given a risk measure ψ with a risk level140

α ∈ [0, 1], the finite-horizon risk-averse value of a policy π ∈ Π is computed as141

vπ0 (α) := ψã∼π(s̃)
α [r(s̃, ã, s̃′)] , (4)

where the superscript in ψã∼π(s̃)
α specifies the distribution of the random action. Throughout the142

paper, we generally use s̃ to denote the random state at time t = 0 and s̃′ to denote the random state at143

time t = 1. In risk-neutral objectives, when ψ = E, one can use the tower property of the expectation144

operator and define a value function vt for each time step t (Puterman, 2005), but this property does145

not hold in most static risk measures (Hau et al., 2023). The term policy evaluation in the remainder146

of the paper refers to computing the value in (4).147

The goal in an MDP is to compute an optimal value function and a policy that attains it. In risk-averse148

MDPs, this goal is formalized as the following risk-averse optimization149

v⋆0(α) := max
π∈Π

vπ0 (α) = max
π∈Π

ψã∼π(s̃)
α [r(s̃, ã, s̃′)] , (5)

with the optimal policy π⋆ being any policy that attains the maximum in (5). As with policy evaluation,150

when ψ = E, the optimal value function v⋆t can be defined for each time-step t (Puterman, 2005),151

but this is impossible in general for common risk measures, like VaR and CVaR. The term policy152

optimization in the remainder of the paper refers to computing the value and the maximizer in (5).153

In the remainder of the paper, we study dynamic programming algorithms proposed to solve the154

policy evaluation problem in (4) and policy optimization problem in (5). In general, these algorithms155

build on risk-level decomposition (Pflug and Pichler, 2016) of risk measures to define a value function156

vπt (s, α) for each time step t ∈ [T ], state s ∈ S, and risk-level α ∈ [0, 1] (Chow et al., 2015). The157

value function represents the risk-adjusted sum of rewards that can be obtained if starting in a state158

s ∈ S at time t and a risk level α. For example, one would define the value function as vπ1 (s, α) :=159

ψ
ã∼π(s)
α [r(s, ã, s̃′)] and compute vπ0 using a Bellman operator Tπ

α as vπ0 (α) = (Tπvπ1 )(α). In risk-160

neutral objectives, the Bellman operator is defined as (Tπ(vπ1 ))(α) = E[vπ1 (s̃, α)], with α ∈ {1},161

but in risk-averse formulations the operator definition is more complex. The remainder of the paper162

discusses the decompositions and the operator for CVaR, EVaR, and VaR risk measures respectively.163

3 CVaR: Decomposition Fails in Policy Optimization164

In this section, we show that a common CVaR decomposition proposed in Chow et al. (2015) and used165

to optimize risk-averse policies is inherently sub-optimal regardless of how closely one discretizes166

the state space. The following proposition represents one of the key results used to decompose the167

risk measure in multi-stage decision-making.168

Proposition 3.1 (lemma 22 in Pflug and Pichler 2016). Suppose that π ∈ Π and s̃ ∼ p̂, ã ∼ π(s̃),169

s̃′ ∼ ps,a. Then,170

CVaRα [r(s̃, ã, s̃′)] = min
ζ∈ZC

∑
s∈S

ζs CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] , (6)

where the state s on the right-hand side is not random and171

ZC = {ζ ∈ ∆S | α · ζ ≤ p̂} . (7)

The notation in Proposition 3.1 differs superficially from lemma 22 in Pflug and Pichler (2016).172

Specifically, our CVaR is defined for rewards rather than costs, the meaning of our α corresponds to173

1− α in Pflug and Pichler (2016), and we use ξs = zsp̂s as the optimization variable. We include a174

simple proof of Proposition 3.1 for completeness in Appendix A.1.175

The decomposition in Proposition 3.1 is important because it shows that the CVaR evaluation can be176

formulated as a dynamic program. The theorem shows that CVaR at time t = 0 decomposes into177

a convex combination of CVaR values at time t = 1. Recursively repeating this process, one can178

formulate a dynamic program for any finite time horizon T . Because the risk-level at time t = 1179

differs from the level at t = 0 and depends on the optimal ζ, one must compute CVaR values for180

all (or many) risk-levels α ∈ [0, 1] at time t = 1. As a result, the dynamic program includes an181

additional state variable that represents the current risk level.182
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s1

s1, a1
r(s1, a1, s1) = −50

r(s1, a1, s2) = 100

s1, a2 r(s1, a2, ·) = 0

s2 s2, a1 r(s2, a1, ·) = 10

Figure 1: Rewards of MDP MC used in the proof of Theorem 3.2. The dot indicates that the rewards
are independent of the next state.

Chow et al. (2015) proposed to adapt the decomposition in Proposition 3.1 to policy optimization as183

max
π∈Π

CVaRã∼π(s̃)
α [r(s̃, ã, s̃′)] = max

π∈Π
min
ζ∈ZC

∑
s∈S

ζs

(
CVaR

ã∼π(s)

αξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]
)

??
= min

ζ∈ZC

∑
s∈S

ζs

(
max
d∈∆A

CVaRã∼d
αξsp̂

−1
s
[r(s, ã, s̃′) | s̃ = s]

)
.

(8)

They used the decomposition in (8) to formulate a dynamic program with the current risk-level as an184

additional state variable. We prove in the following theorem that the second equality in (8) marked185

with question marks is false in general.186

Theorem 3.2. There exists an MDP and a risk level α ∈ [0, 1] such that187

max
π∈Π

CVaRã∼π(s̃)
α [r(s̃, ã, s̃′)] < min

ζ∈ZC

∑
s∈S

ζs

(
max
d∈∆A

CVaRã∼d
αζsp̂

−1
s
[r(s, ã, s̃′) | s̃ = s]

)
. (9)

Before proving Theorem 3.2, we discuss its implications. First, Theorem 3.2 contradicts theorems 5188

and 7 in Chow et al. (2015) and shows that their algorithm is inherently sub-optimal regardless of189

the resolution of the discretization. Theorem 3.2 also contradicts the optimality of the accelerated190

dynamic program proposed in Stanko and Macek (2019). The result of (Chow et al., 2015) was191

exploited as is in Chapman et al. (2019), Ding and Feinberg (2022), and Jin et al. (2019) to propose192

DP reductions, and extended, without proof, in (Rigter et al., 2021) to the context of a Bayesian MDP.193

Finally, it is important to emphasize that Theorem 3.2 only applies to the policy optimization setting194

and does not contradict Proposition 3.1, which holds for the evaluation of policies that assign the195

same action distribution to each history of states and actions (i.e., policies that are independent of the196

hypothesized values of ζ).197

Proof. Let α = 0.5 and consider the MDP MC in Figure 1. In state s1, both actions a1 and a2 are198

available, and in state s2, only action a1 is available. The MDP’s rewards are199

r(s1, a1, s1) = −50, r(s1, a1, s2) = 100,

r(s1, a2, s1) = r(s1, a2, s2) = 0, r(s2, a1, s1) = r(s2, a1, s2) = 10 .

The transition probabilities in MC are200

p(s1, a1, s1) = 0.4, p(s1, a1, s2) = 0.6 ,

and the initial distribution is uniform: p̂s1 = p̂s2 = 0.5.201

To simplify the notation, we define θπ : ZC → R for each π ∈ Π and ζ ∈ ZC as202

θπ(ζ) =
∑
s∈S

ζs CVaR
ã∼π(s)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] .

Because CVaR is convex in the distribution (Delage et al., 2019) and any distribution for r(s̃, ã, s̃′)203

obtained from a policy π ∈ Π is a mixture of the distributions of r(s̃, a1, s̃′) and r(s̃, a2, s̃′), it is204

sufficient to consider only deterministic policies (there exists an optimal deterministic policy). Thus,205
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Figure 2: The functions θπ1
(·) and θπ2

(·) used in the CVaR counterexample in the proof of Theo-
rem 3.2. The dashed line shows the function ζs1 7→ maxπ∈{π1,π2} θπ([ζs1 , 1− ζs1 ]).

we can reformulate the left-hand side of (9) in terms of θπ(ζ) as206

max
π∈Π

CVaRã∼π(s̃)
α [r(s̃, ã, s̃′)] = max

π∈{π1,π2}
CVaRã∼π(s̃)

α [r(s̃, ã, s̃′)]

= max
π∈{π1,π2}

min
ζ∈ZC

∑
s∈S

ζs · CVaRã∼π(s)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]

= max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) ,

with π1(s, a1) = 1− π1(s, a2) = 1 and π2(s, a2) = 1− π2(s, a1) = 1, for all s ∈ S . The functions207

θπ1(·) and θπ2(·) are depicted in Figure 2. Similarly, the right-hand side of (9) can be expressed208

using the convexity of CVaR in the distribution by algebraic manipulation as209

min
ζ∈ZC

∑
s∈S

ζs max
d∈∆A

CVaRã∼d
αζsp̂

−1
s
[r(s, ã, s̃′) | s̃ = s] = min

ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) .

Using the notation introduced above and the sufficiency of optimizing over deterministic policies210

only, the inequality in (9) becomes211

max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) < min
ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) . (10)

Figure 2 demonstrates the inequality in (10) numerically, with the rectangle representing the left-212

hand side maximum and the pentagon representing the right-hand side minimum. The dashed line213

represents the function ζ 7→ maxπ∈{π1,π2} θπ(ζ).214

To show the strict inequality in (10) formally, we evaluate the functions θπ1
(·) and θπ2

(·) for MDP215

MC. The function θπ2
(·) is linear because the CVaR applies to a constant, and CVaR is translation216

invariant. The function θπ1(·) is piecewise-linear and convex, and its slope can be computed using217

the subgradient that for each s ∈ S and ζ̂ ∈ ZC satisfies (Chow et al., 2015)218

∂ζs ζ̂s CVaRαp̂−1
s ζ̂s

[r(s, ã, s̃′) | s̃ = s] ∋ VaRαp̂−1
s ζ̂s

[r(s, ã, s̃′) | s̃ = s] .

Simple algebraic manipulation then shows that219

θπ1(ζ) = max {10− 60 ζs1 , 90 ζs1 − 50} , θπ2(ζ) = 10− 10 ζs1 ,

and ZC = ∆S , which implies that ζs1 ∈ (0, 1). Therefore, by algebraic manipulation, we get the220

desired strict inequality221

0 = max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) < min
ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) = 4 ,

where 0 and 4 are represented by the pentagon and rectangle in Figure 2, respectively.222
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In summary, the decomposition in Proposition 3.1 cannot be exploited in policy optimization because223

the inequality in the derivation above may not be tight:224

max
π∈Π

CVaRã∼π(s̃)
α [r(s̃, ã, s̃′) | s̃ = s] = max

π∈Π
min
ζ∈ZC

∑
s∈S

ζs CVaR
ã∼π(s̃)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]

≤ min
ζ∈ZC

max
π∈Π

∑
s∈S

ζs CVaR
ã∼π(s̃)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]

= min
ζ∈ZC

∑
s∈S

ζs max
d∈∆A

CVaRã∼d
αζsp̂

−1
s
[r(s, ã, s̃′) | s̃ = s] ,

where the last equality follows from the interchangeability property of optimization and expected225

value (Shapiro et al., 2014, Theorem 7.92).226

It is finally worth noting that we omit to comment on the validity of the CVaR decomposition in Li et al.227

(2022) given that it considers a different measure than the CVaR defined in Equation (1). Namely their228

measure takes the form: C̃VaRα[x̃] := infz∈R
(
z + (1− α)−1E [x̃− z]+

)
= −CVaR1−α [−x̃],229

which is not a coherent risk measure.230

4 EVaR: Decomposition Fails for Policy Evaluation231

In this section. we show that a decomposition for EVaR proposed in Ni and Lai (2022) is inexact even232

when considering the policy evaluation setting. Ni and Lai (2022) recently proposed a decomposition233

of EVaR for a fixed π ∈ Π with ã ∼ π(s̃) and a risk level α ∈ (0, 1] as234

EVaRα [r(s̃, ã, s̃′)]
??
= min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] , (11)

where s̃ ∼ p̂, s̃′ ∼ p(s̃, ã, ·), and235

ZE =
{
ξ ∈ ∆S |

∑
s∈S

ξs log(ξs/p̂s) ≤ − logα ,

implicit in Ni and Lai (2022)︷ ︸︸ ︷
α · ξ ≤ p̂

}
. (12)

Note that we use variables ξs = zsp̂s in comparison with zs in Ni and Lai (2022).236

The constraint α · ξ ≤ p̂ in (12) was not stated explicitly in Ni and Lai (2022) but is necessary237

because EVaRα′ [·] is defined only for α′ ∈ [0, 1]. When α′ = αξsp̂
−1
s in (11) it must also satisfy238

for each s ∈ S that239

α′ ≤ 1 ⇔ αξsp̂
−1
s ≤ 1 ⇔ α · ξs ≤ p̂s .

This additional constraint on ξ implies that ZE ⊆ ZC, for the ZC defined in (7).240

We claim in the following theorem (see Appendix A.2 for a proof) that the equality in (11) does not241

hold even in the policy evaluation setting.242

Theorem 4.1. There exists an MDP with a single action and α ∈ (0, 1] such that243

EVaRα [r(s̃, a1, s̃
′)] < min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′) | s̃ = s] , (13)

the set ZE defined by (12).244

Theorem 4.1 demonstrates a stronger failure mode than the one in Theorem 3.2 (for CVaR policy245

optimization), since it applies to both policy evaluation and policy optimization settings.246

We propose a correct decomposition of EVaR in the following theorem and employ it to establish that247

the decomposition in (11) overestimates the actual value of EVaR (see Appendix A.3 for a proof).248

Theorem 4.2. Given any finite MDP with horizon T = 1 and α ∈ (0, 1], we have that249

EVaRα [r(s̃, ã, s̃′)] = inf
ζ∈(0, 1]S , ξ∈Z′

E(ζ)

∑
s∈S

ξs EVaRζs [r(s, ã, s̃
′) | s̃ = s] ,

where250

Z ′
E(ζ) =

{
ξ ∈ ∆S | ξ ≪ p̂,

∑
s∈S

ξs
(
log(ξs/p̂s)− log(ζs)

)
≤ − logα

}
.

Moreover, EVaR can be upper-bounded as251

EVaRα [r(s̃, ã, s̃′)] ≤ min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] . (14)
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5 VaR: Decomposition Holds for Policy Evaluation and Optimization252

In this section, we discuss a dynamic program decomposition for VaR whose decomposition resembles253

those for CVaR and EVaR described in Sections 3 and 4. We provide a new proof of the VaR254

decomposition to elucidate the differences that make it optimal in contrast to CVaR and EVaR255

decompositions. Our VaR decomposition closely resembles the quantile MDP approach in Li et al.256

(2022) with a few technical modifications that can significantly impact the computed value.257

To contrast the typical definition of VaR with the quantile definition in Li et al. (2022), it is helpful258

to summarize how VaR is related to the quantile of a random variable. Let q ∈ R define as the259

α-quantile of x̃ ∈ X when260

P [x̃ ≤ q] ≥ α and P [x̃ < q] ≤ α . (15)

In general, the set of quantiles is an interval [q−x̃ (α), q
+
x̃ (α)] with the bounds computed as (Follmer261

and Schied, 2016, appendix A.3)262

q−x̃ (α) = sup {z | P [x̃ < z] < α} = inf {z | P [x̃ ≤ z] ≥ α}
q+x̃ (α) = inf {z | P [x̃ ≤ z] > α} = sup {z | P [x̃ < z] ≤ α} .

Note that when the distribution of x̃ is absolutely continuous (atomless), then q+x̃ (α) = q−x̃ (α) and263

the quantile is unique. The following example illustrates a simple setting in which the quantile is not264

unique.265

Example 1 (Bernoulli random variable). Consider a Bernoulli random variable ẽ such that ẽ = 1 and266

ẽ = 0 with equal (50%) probabilities. Then, any value q ∈ [0, 1] is a valid 0.5-quantile because267

q−ẽ (0.5) = inf
z∈R

{z | P [ẽ ≤ z] ≥ 0.5} = inf
z∈R

{z | z ≥ 0} = 0

q+ẽ (0.5) = sup
z∈R

{z | P [ẽ ≥ z] ≥ 0.5} = sup
z∈R

{z | z ≤ 1} = 1.

The objective in Li et al. (2022) is to maximize the quantile operator Qα : X → R defined for a268

reward random variable x̃ ∈ X and a risk level α ∈ [0, 1] as269

Qα(x̃) = inf
z∈R

{z | P [x̃ ≤ z] ≥ α} . (16)

The quantile operator Qα and VaR differ in which quantile of the random variable they consider:270

Qα(x̃) = q−x̃ (α), but VaRα [x̃] = q+x̃ (α) . (17)
As a result, the quantile MDP objective in (16) coincides with the VaR value only when the quantile271

is unique, which is not always the case, as shown in Example 1.272

Theorem 5.1. Let ỹ : Ω → [N ] be a random variable distributed as p̂ = (p̂i)
N
i=1 with p̂i > 0. Then273

for any random variable x̃ ∈ X, we have274

VaRα [x̃] = sup
ζ∈∆N

{
min
i

VaRαζip̂
−1
i

[x̃ | ỹ = i] | α · ζ ≤ p̂
}
, (18)

where we interpret the minimum to evaluate to ∞ if all terms are infinite, which only occurs if α = 1.275

Proof. We first decompose VaR using the definition in (1) as276

VaRα [x̃] = sup
z∈R

{
z | P [x̃ < z] ≤ α

} (a)
= sup

z∈R

{
z |

N∑
i=1

P [x̃ < z | ỹ = i] p̂i ≤ α
}

(b)
= sup

z∈R, ζ∈[0,1]N

{
z |

N∑
i=1

ζip̂i ≤ α, P [x̃ < z | ỹ = i] ≤ ζi, ∀i ∈ [N ]
}

(c)
= sup

z∈R, ζ∈[0,1]N

{
z | z ≤ VaRζi [x̃ | ỹ = i] , ∀i ∈ [N ],

N∑
i=1

ζip̂i ≤ α
}

(d)
= sup

ζ∈[0,1]N

{
sup
z∈R

{z | z ≤ VaRζi [x̃ | ỹ = i] ,∀i ∈ [N ]} |
N∑
i=1

ζip̂i ≤ α
}

(e)
= sup

ζ∈[0,1]N

{
min
i∈[N ]

VaRζi [x̃ | ỹ = i] |
N∑
i=1

ζip̂i ≤ α
}
.
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We decompose the probability P [x̃ < z] in terms of the conditional probabilities P [x̃ < z | ỹ = i] in277

step (a) and then lower-bound them by an auxiliary variable ζi in step (b). In step (c), we exploit the278

following equivalence:279

P [x̃ < z | ỹ = i] ≤ ζi ⇔ z ≤ VaRζi [x̃ | ỹ = i]

The direction ⇐ in the above equivalence follows immediately from the fact that VaRζi [x̃ | ỹ = i] is280

a ζi-quantile and satisfies (15), i.e.,281

z ≤ VaRζi [x̃ | ỹ = i] = q+x̃ (ζi | ỹ = i) ⇒ P [x̃ < z | ỹ = i] ≤ P
[
x̃ < q+x̃ (ζi | ỹ = i) | ỹ = i

]
≤ ζi.

The direction ⇒ follows from the definition of VaR (see Eq. 1), which implies that VaR upper-bounds282

any z that satisfies the left-hand condition:283

P [x̃ < z | ỹ = i] ≤ ζi ⇒ VaRζi [x̃ | ỹ = i] = sup {z ∈ R | P [x̃ < z | ỹ = i] ≤ ζi} ≥ z.

In step (e), we solve for z. Finally, the form in (18) follows by replacing each ζi by αζip̂−1
i .284

Focusing on the finite MDP with horizon T = 1, we can show that the decomposition proposed in285

Theorem 5.1 is amenable to policy optimization. The main difference between the VaR decomposition286

and CVaR is that the former VaR was expressed as a supremum instead of an infimum over quantile287

levels ζ. For VaR, changing the order of maximum (π) and supremum (ζ) does not suffer from a288

potential gap, but changing the order of maximum (π) and infimum/minimum (ζ) in CVaR does289

suffer from such a gap as shown in Theorem 3.2.290

The following theorem (proved in Appendix A.4) summarizes the decomposition for VaR.291

Theorem 5.2. Given any finite MDP with horizon T = 1 and α ∈ [0, 1], we have292

max
π∈Π

VaRã∼π(s̃)
α [r(s̃, ã, s̃′)] = sup

ζ∈∆S

{
min
s∈S

max
d∈∆A

VaRã∼d
αζsp̂

−1
s

[
r(s, ã, s̃′) | s̃ = s

]
| α · ζ ≤ p̂

}
.

For completeness, we also present the valid decomposition for the lower quantile MDP (see Appendix293

A.5 for a proof).294

Proposition 5.3. Given any finite MDP with horizon T = 1 and some α ∈ [0, 1], we have that:295

max
π∈Π

Qã∼π(s̃)
α (r(s̃, ã, s̃′)) = sup

ζ∈[0,1]S

{
min

s∈S:ζs<1
max
d∈∆A

Qã∼d
ζs (r(s, ã, s̃′) | s̃ = s) |

S∑
s=1

ζsp̂s < α

}
.

We note that the difference with the result presented in (Li et al., 2022) resides in the constraint296

imposed on ζ that replaces the weak inequality with a strict one. In fact, this strict versus weak297

inequality is the main distinguishing factor between the decompositions for the lower and upper298

quantile.299

6 Conclusion300

This paper shows that a popular decomposition approach to solving MDPs with CVaR and EVaR301

objectives is suboptimal despite the claims to the contrary. This suboptimality arises from a saddle-302

point gap when optimizing policy. We also prove that a similar decomposition approach is optimal for303

policy optimization and evaluation when solving MDPs with the VaR objective. The decomposition304

is optimal because VaR does not involve the same saddle point problem as CVaR and EVaR.305

Our findings are significant because practitioners who make risk-averse decisions in high-stakes306

scenarios need to have confidence in the correctness of the algorithms they use. Our work raises307

awareness that popular static CVaR and EVaR MDP algorithms are suboptimal, and their analyses308

are inaccurate. We hope the results we present in our paper will increase the scrutiny of dynamic309

programming methods for risk-averse MDPs and motivate research into alternative approaches, such310

as the parametric dynamic programs.311
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s1 s1, a1 r(s1, a1, ·)

s2 s2, a1 r(s2, a1, ·)

Figure 3: Rewards of the MDP ME used in the proof of Theorem 4.1. The dot indicates that the
rewards are independent of the next state.

A Proofs401

A.1 Proof of Proposition 3.1402

Suppose that α > 0; the decomposition for α = 0 holds readily because CVaR0 [x̃] = ess inf[x̃].403

To streamline the notation, Define a random variable x̃ = r(s̃, ã, s̃′) over a random space Ω =404

S ×A× S with a probability distribution q ∈ ∆m such that qs,a,s′ = p̂s · π(s, a) · p(s, a, s′). The405

value x is the vector representation of the random variable x̃ and ξs = ξs,·,· ∈ RS·A for ξ ∈ Rm is a406

vector that corresponds to the subset of the elements of Ω in which the first element is some s ∈ S.407

The vectors xs = xs,·,· ∈ RS·A and qs = qs,·,· ∈ RS·A are defined analogously to ξs.408

Starting with the CVaR definition in (2) and introducing an auxiliary variable ζ we get that409

CVaRα [x̃] = min
ξ∈∆m

{
x⊤ξ | αξ ≤ q

}
= min

ξ∈∆m,ζ∈RS

{
x⊤ξ | αξ ≤ q, ζs = 1⊤ξs,∀s ∈ S

}
= min

ξ∈∆m,ζ∈∆S

{
x⊤ξ | αξ ≤ q, ζs = 1⊤ξs, αζs ≤ p̂s, ∀s ∈ S

}
= min

ξ∈RΩ
+,ζ∈ZC

{
x⊤ξ | αξ ≤ q, ζs = 1⊤ξs, ∀s ∈ S

}
.

In the derivation above, we replaced the infimum by a minimum because Ω is finite, introduced a410

new variable ζ, derived implied constraints on ζ, and then dropped superfluous constraints on ξ.411

Continuing with the derivation above and noticing that the constraints on each ξs are independent412

given ζ, we get that413

CVaRα [x̃] = min
ξ∈RΩ

+,ζ∈ZC

{∑
s∈S

x⊤
s ξs | αξ ≤ q, ζs = 1⊤ξs, ∀s ∈ S

}
(a)
= min

ζ∈ZC

∑
s∈S

inf
ξs∈RΩs

+

{
x⊤
s ξs | αξs ≤ qs, ζs = 1⊤ξs

}
(b)
= min

ζ∈ZC

∑
s∈S

ζs · min
χ∈∆S·A

{
x⊤
s χ | αp̂−1

s ζsχa,s′ ≤ p̂−1
s qs,a,s′ ,∀a ∈ A, s′ ∈ S

}
(c)
= min

ζ∈ZC

∑
s∈S

ζs · CVaRαζsp̂
−1
s

[x̃ | s̃ = s] .

The step (a) follows from the interchangeability principle (Shapiro et al., 2014, theorem 7.92), and the414

step (b) follows by substituting ξs,a,s′ = ζsχa,s′ taking care when ζs = 0 and multiplying both sides415

of the inequality by p̂−1
s > 0. Finally, in step (c), the random variable x̃ = r(s̃, ã, s̃′) conditional416

on s̃ = s is distributed according to qs,a,s′ p̂−1
s and the equality follows from the definition of CVaR417

in (2).418

A.2 Proof of Theorem 4.1419

Consider an MDP ME depicted in Figure 3 with S = {s1, s2} and A = {a1} and a reward function420

r(s1, a1, ·) = 1 and r(s2, a1, ·) = 0. We abbreviate the rewards to r(s1) and r(s2) because they only421

depend on the originating state. The initial distribution is p̂s1 = p̂s2 = 0.5. We finally let α = 0.75.422

Because ZE ⊆ ZC, the right-hand side of (13) can be lower-bounded by CVaR as423

min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] = min

ξ∈ZE

∑
s∈S

ξsr(s)

≥ min
ξ∈ZC

∑
s∈S

ξsr(s) = CVaRα [r(s̃, a1, s̃
′)] .

(19)
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The first equality holds from the positive homogeneity and cash invariance properties of EVaR, and424

the last equality follows from the dual representation of CVaR (Follmer and Schied, 2016).425

Because EVaRα [x̃] ≤ CVaRα [x̃] for each α ∈ [0, 1] and x̃ ∈ X (see (Ahmadi-Javid, 2012,426

Proposition 3.2)), we can further lower-bound (19) as427

EVaRα [r(s̃, a1, s̃
′)] ≤ CVaRα [r(s̃, a1, s̃

′)] ≤ min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] . (20)

Therefore, (13) holds with an inequality.428

To prove by contradiction that the inequality in (13) is strict, suppose that429

EVaRα [r(s̃, a1, s̃
′)] = min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] . (21)

Equalities (21) and (20) imply that EVaRα [r(s̃, a1, s̃
′)] = CVaRα [r(s̃, a1, s̃

′)] which is false in430

general (Ahmadi-Javid, 2012).431

We now show that EVaR does not equal CVaR even for the categorical distribution of s̃. The CVaR of432

the return in ME reduces from (2) to433

CVaRα [r(s̃, a1, s̃
′)] = min

ξ∈ZC

∑
s∈S

ξsr(s) = max

{
0,
p̂s1 + α− 1

α

}
. (22)

Since 1− α = 0.25 < 0.5 = p̂s1 , then the optimal ξ⋆ in (22) is434

ξ⋆ =

(
p̂s1

+α−1

α
1−p̂s1

α

)
.

Since KL(ξ⋆∥p̂) < − logα . we have that ξ⋆ is in the relative interior of the EVaR feasible region435

in (3), and, therefore, there exists an ϵ > 0 such that436

EVaRα [r(s̃, a1, s̃
′)] = CVaRα [r(s̃, a1, s̃

′)]− ϵ < CVaRα [r(s̃, a1, s̃
′)] ,

which proves the desired inequality.437

A.3 Proof of Theorem 4.2438

We start by proposing a new decomposition for EVaR.439

Proposition A.1. Given a random variable x̃ ∈ X and a discrete variable ỹ : Ω → N = {1, . . . , N},440

with probabilities denoted as {p̂i}Ni=1, for any α ∈ (0, 1] we have that441

EVaRα [x̃] = inf
ζ∈(0,1]N

min
ξ∈Z′

E(ζ)

∑
i

ξi EVaRζi [x̃ | ỹ = i] ,

where442

Z ′
E(ζ) =

{
ξ ∈ ∆N | ξ ≪ p̂,

N∑
i=1

ξi(log(ξi/p̂i)− log(ζi)) ≤ − logα

}
.

Proof. Let q denote the joint probability distribution of x̃ and ỹ. The proof exploits the chain rule of443

relative entropy (e.g., Cover and Thomas (2006, theorem 2.5.3)), which states that for any probability444

distributions η, q ∈ ∆Ω with η ≪ q445

KL(η∥q) = KL(η(ỹ)∥q(ỹ)) + KL(η(x̃|ỹ)∥q(x̃|ỹ)), (23)

where the conditional relative entropy is defined as446

KL(η(x̃|ỹ)∥q(x̃|ỹ)) = Eη

[
log

η(x̃|ỹ)
q(x̃|ỹ)

]
.
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with Eη[f(x̃, ỹ)] as a shorthand notation to indicate that (x̃, ỹ) ∼ η.We can now decompose EVaR447

from its definition in (3) as448

EVaRα [x̃] = inf
η∈∆m·N :η≪q

{
Eη[x̃] | KL(η | q) ≤ − logα

}
(a)
= inf

η∈∆m·N :η≪q

{
Eη[x̃] | KL(η(ỹ)∥q(ỹ)) + KL(η(x̃|ỹ)∥q(x̃|ỹ)) ≤ − logα

}
= inf

η∈∆m·N :η≪q

{
Eη[x̃] | KL(η(ỹ)∥q(ỹ)) + Eη

[
Eη

[
log

η(x̃|ỹ)
q(x̃|ỹ)

]
| ỹ
]
≤ − logα

}
(b)
= inf

η∈∆m·N ,ζ∈(0,1]N :η≪q

{
Eη[Eη[x̃ | ỹ]] | KL(η(ỹ)∥q(ỹ)) + Eη[− log(ζỹ)] ≤ − logα

Pη [Eη [log(η(x̃|ỹ)/q(x̃|ỹ)) | ỹ] ≤ − log(ζỹ)] = 1

}
(c)
= inf

ξ∈∆N ,ζ∈(0,1]N :ξ≪p̂

{
Eξ[EVaRζỹ [x̃|ỹ]] | KL(ξ∥p̂) + Eξ[− log(ζỹ)] ≤ − logα

}
= inf

ξ∈∆N ,ζ∈(0,1]N :ξ≪p̂

{∑
i

ξi EVaRζi [x̃ | ỹ = i] |
N∑
i=1

ξi log(ξi/p̂i)−
N∑
i=1

ξi log(ζi) ≤ − logα

}
.

Here, we decompose the relative entropy of η and q using (23) in step (a) and then use the tower449

property of the expectation operator in the next step. In step (b), we introduce a variable ζi for each450

realization of ỹ = i with i ∈ N to decouple the influence of η(x̃|ỹ), under each ỹ, in the inequality451

constraint. Finally, we replace the conditional EVaR definition by solving for η(x̃|ỹ) for a given ζ452

in step (c), and representing η(ỹ) using ξ.453

The first part of our theorem follows directly from Proposition A.1. Suppose that α > 0; the result454

follows for α = 0 because EVaR0 [·] reduces to ess inf . Then, the second part of the corollary holds455

as456

EVaRα [r(s̃, ã, s̃′)] = inf
ζ∈(0,1]N , ξ∈∆N

{∑
s∈S

ξs EVaRζs [r(s, ã, s̃
′) | s̃ = s] |

∑
s∈S

ξs log
ξs
ζsp̂s

≤ − logα

}

≤ inf
ζ∈(0,1]N , ξ∈∆N

{∑
s∈S

ξs EVaRζs [r(s, ã, s̃
′) | s̃ = s] |

∑
s∈S

ξs log
ξs
ζsp̂s

≤ − logα, ξ ≤ α−1p̂

}

≤ inf
ξ∈∆N

{∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] | ξ ≤ α−1p̂

}
.

The first inequality follows from adding a constraint on the pairs on the ξ considered by the infimum.457

The second inequality follows by fixing ζs = ζ̂s with ζ̂s = αξsp̂
−1
s for each s ∈ S. This is an upper458

bound because ζ̂s is feasible in the infimum:459 ∑
s∈S

ξs log
ξs

ζ̂sp̂s
= − logα ≤ − logα .

The value ζ̂s is well-defined since p̂s > 0 and the constraint ξ ≤ α−1p̂ ensures that ζ̂s ≤ 1. Also, we460

can relax the constraint ζs > 0 ⇒ ξs > 0 to ξs ≥ 0 because EVaR0 [x̃] = limα→0 EVaRα [x̃], and,461

therefore, the infimum is not affected. Finally, the inequality in the corollary follows immediately by462

further upper bounding the decomposition above by adding a constraint.463

A.4 Proof of Theorem 5.2464

The equality develops from Theorem 5.1 as465

max
π∈Π

VaRã∼π(s̃)
α [r(s̃, ã, s̃′)] = max

π∈Π
sup

ζ∈∆S :α·ζ≤p̂
min
s∈S

(
VaR

ã∼π(s)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]
)

= sup
ζ∈∆S :α·ζ≤p̂

max
π∈Π

min
s∈S

(
VaR

ã∼π(s)

αζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s]
)

= sup
ζ∈∆S :α·ζ≤p̂

min
s∈S

(
max
d∈∆A

VaRã∼d
αζsp̂

−1
s
[r(s, ã, s̃′) | s̃ = s]

)
,
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where we first change the order of maximum and supremum, followed by changing the order of466

maxπ mins with mins maxπ . The latter is a direct consequence of the interchangeability property of467

the maximum operation (Shapiro, 2017, Proposition 2.2).468

A.5 Proof of Proposition 5.3469

The proof mainly relies on correcting the decomposition of lower quantile proposed in (Li et al.,470

2022).471

Proposition A.2. Given an x̃ ∈ X, suppose that a random variable ỹ : Ω → N = {1, . . . , N} is472

distributed as p̂ = (p̂i)
N
i=1 with p̂i > 0. Then:473

Qα(x̃) = sup
ζ∈[0,1]N

{
min

i∈N :ζi<1
Qζi(x̃ | ỹ = i) |

N∑
i=1

ζip̂i < α

}
, (24)

where we interpret the supremum to be minus infinity if its feasible set is empty, which only occurs if474

α = 0.475

Proof. First, we decompose lower quantile using its definition as476

Qα(x̃) = sup {z | P [x̃ < z] < α} (a)
= sup

z∈R

{
z |

N∑
i=1

P [x̃ < z | ỹ = i] p̂i < α

}
(b)
= sup

z∈R,ζ∈[0,1]N

{
z |

N∑
i=1

ζip̂i < α, P [x̃ < z | ỹ = i] < ζi,∀i ∈ N : ζi < 1

}
(c)
= sup

z∈R,ζ∈[0,1]N

{
z | z < Qζi(x̃ | ỹ = i),∀i ∈ N : ζi < 1,

N∑
i=1

ζip̂i < α

}
(d)
= sup

ζ∈[0,1]N

{
sup
z∈R

{z | z < Qζi(x̃ | ỹ = i),∀i ∈ N : ζi < 1} |
N∑
i=1

ζip̂i < α

}
(e)
= sup

ζ∈[0,1]N

{
min

i∈N :ζi<1
Qζi(x̃ | ỹ = i) |

N∑
i=1

ζip̂i < α

}
.

We decompose the probability P [x̃ < z] in terms of the conditional probabilities P [x̃ < z | ỹ = i] in477

step (a) and then lower-bound them by an auxiliary variable ζi in step (b). In step (c), we exploits the478

following equivalence:479

P [x̃ < z | ỹ = i] < ζi ⇔ z < Qζi(x̃ | ỹ = i)

The direction ⇐ in the equivalence follows from the definition of Qζi(x̃ | ỹ = i):480

z < Qζi(x̃ | ỹ = i) = inf {z | P [x̃ ≤ z | ỹ = i] ≥ ζi} ⇒ P [x̃ < z | ỹ = i] < ζi.

The direction ⇒ follows from the definition of VaR (see equation (1)), which implies that VaR481

upper-bounds any z that satisfies the left-hand condition:482

P [x̃ < z | ỹ = i] < ζi ⇒ Qζi(x̃ | ỹ = i) = sup {z ∈ R | P [x̃ < z | ỹ = i] < ζi} ≥ z,

yet Qζi(x̃ | ỹ = i) ̸= z otherwise since P [x̃ < z | ỹ = i] is right continuous, there must exist some483

ϵ > 0 for which P [x̃ < z + ϵ | ỹ = i] < ζi hence:484

z = sup {z ∈ R | P [x̃ < z | ỹ = i] < ζi} ≥ z + ϵ > z,

which leads to a contradiction. In step (e), we solve for z. Finally, we obtain the form in (24).485
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The decomposition proposed in Proposition A.2 can now be used, exactly as was done for the case of486

VaR, to obtain a decomposition for the risk averse MDP:487

max
π∈Π

Qã∼π(s̃)
α [r(s̃, ã, s̃′)] = max

π∈Π
sup

ζ∈[0,1]S

{
min

s∈S:ζs<1
Q

ã∼π(s)
ζs

(r(s, ã, s̃′) | s̃ = s) |
S∑

s=1

ζsp̂s < α

}

= sup
ζ∈[0,1]S

max
π∈Π

{
min

s∈S:ζs<1
Q

ã∼π(s)
ζs

(r(s, ã, s̃′) | s̃ = s) |
S∑

s=1

ζsp̂s < α

}

= sup
ζ∈[0,1]S

{
min

s∈S:ζs<1

(
max
d∈∆A

Qã∼d
ζs (r(s, ã, s̃′) | s̃ = s) |

S∑
s=1

ζsp̂s < α

)}
.
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