
Appendix of A Robust Exact Algorithm for the
Euclidean Bipartite Matching Problem

Akshaykumar G. Gattani1, Sharath Raghvendra1, and Pouyan Shirzadian1

1Department of Computer Science, Virginia Tech

A Missing Proofs and Details

In this section, we present the missing proofs and details of the claims made in Sections 2 and 3.

A.1 Properties of a Randomly Shifted Quadtree

Recall that for any square □ of the randomly shifted quadtree Q and any parameter δ ∈ (0, 1/2), n□

denotes the number of points of A ∪ B that lie inside □, among which nδ
□ denotes the number of

points that are δ-close to □, i.e., the number of points u ∈ A□ ∪B□ inside □ with d(□, u) ≤ δℓ□.
Define Sδ

□ to be the locus of points that are δ-close to □. In Figure 1, for instance, Sδ
□ is shown as

the green region and all 5 points inside that region are δ-close to □. For any geometrical shape S, let
A(S) denote the area of S. In this section, we show that due to the random shift of the quadtree, the
expected number of points that are δ-close to □ is at most O(δE [n□]), leading to Lemma 2.1.

For any point u ∈ A ∪ B, let Xu be an indicator random variable indicating whether u lies inside
□ or not. More precisely, Xu = 1 if u ∈ A□ ∪B□ and Xu = 0 otherwise. Similarly, let Yu be an
indicator random variable such that Yu = 1 if u is δ-close to □ and Yu = 0 otherwise. By definition,

Pr [Yu = 1] = Pr [Yu = 1, Xu = 1] = Pr [Yu = 1 | Xu = 1]Pr [Xu = 1] . (1)

Due to the random shift of Q, for any point u ∈ A ∪ B, if u lies inside □ (i.e., Xu = 1), then the
probability that u is δ-close to □ (i.e., Yu = 1) would be the ratio of the area of Sδ

□ to the area of □.
More precisely,

Pr [Yu = 1 | Xu = 1] =
A(Sδ

□)

A(□)
≤

4δℓ2□
ℓ2□

= 4δ. (2)

Combining Equations (1) and (2),

Pr [Yu = 1] = Pr [Yu = 1 | Xu = 1]Pr [Xu = 1] ≤ 4δPr [Xu = 1] .

Therefore,

E
[
nδ
□

]
=

∑
u∈A∪B

E [Yu] =
∑

u∈A∪B

Pr [Yu = 1] ≤ 4δ
∑

u∈A∪B

Pr [Xu = 1] = 4δE [n□] .

Lemma 2.1. For any square □ of a randomly shifted quadtree and any δ ∈ (0, 1/2), E
[
nδ
□

]
=

O(δE [n□]).

Note that when the point sets A ∪B are inside the unit d-dimensional hypercube for any d ≥ 2, then
one can show that Pr [Yu = 1 | Xu = 1] ≤ 2dδ, leading to the following lemma.

Lemma A.1. For any d-dimensional hypercube □ of a randomly shifted quadtree and any δ ∈
(0, 1/2), E

[
nδ
□

]
= O(dδE [n□]).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

A.2 Properties of Constrained Matchings

In this section, we first show that for the root square □∗ of Q, any □∗-MCM on A∪B is a minimum-
cost perfect matching on A ∪B. Following that, given any square □ of Q and any □-MCM M□, we
show that the expected □-constrained cost of M□ is O(ℓ□

√
n log n). Using this bound, we then give

an upperbound on the expected number of free points with respect to M□ and conclude Lemma 2.2.
In each part, we also extend our bounds to any dimension d ≥ 3.

Minimum-Cost Constrained Matching for the Root of Quadtree. For the root square □∗ of
Q, suppose M□∗ denotes any □∗-MCM on A ∪ B and let M∗ denote any minimum-cost perfect
matching on A ∪ B. In this part, we first show that M□∗ is a perfect matching. We then conclude
that M□∗ is a minimum-cost perfect matching by showing that w(M□∗) ≤ w(M∗).

Intuitively, our construction guarantees that for any point b ∈ B, the distance of b to the boundaries
of □∗ is more than the distance of b to any point a ∈ A. In this case, any free point b ∈ BF will
contribute a high cost of d(b,□∗) to w□∗(M□∗) and therefore, matching b to any free point of A will
reduce the □∗-constrained cost of M□∗ , which is a contradiction to the assumption that M□∗ is a
□∗-MCM; hence, any □∗-MCM is a perfect matching on A ∪B. We give the details below.

Figure 1: (left) Shows a quadtree Q and square □ of the quadtree (shaded square), (right) shows the
points of B (blue disks), points of A (red squares), the placement of □ after randomly shifting the
quadtree, and the points that are δ-close to □ (the points inside the green region).

For contradiction, suppose M□∗ is not a perfect matching and the set of free points BF is not empty.
By construction, for any free point b ∈ BF , the distance of b to the boundary of □∗ is at least 3, i.e.,
d(b,□∗) ≥ 3. Therefore, the contribution of b to w□∗(M□∗) is d(b,□∗) ≥ 3. Since |A| = |B|, A
and B have the same number of free points with respect to M□∗ , i.e.,

∣∣AF
∣∣ = ∣∣BF

∣∣ > 0. For any free
point a ∈ AF , since both a and b are inside the unit square, ∥a− b∥ ≤

√
2; therefore, by adding the

edge (a, b) to M□∗ , the change in the □∗-constrained cost of M□∗ would be ∥a− b∥−d(b,□∗) < 0,
i.e., adding (a, b) to M□∗ results in a matching with a lower □∗-constrained cost, which is a
contradiction. Therefore, the matching M□∗ cannot have any free points and it is a perfect matching.

Next, we show that the cost of M□∗ is no more than the cost of M∗. By definition of the □∗-
constrained cost, since M□∗ is a perfect matching (and the set of free points of B with respect to M□∗

is empty), w(M□∗) = w□∗(M□∗); similarly, since M∗ is a perfect matching, w□∗(M∗) = w(M∗).
Finally, since M□∗ is a □∗-MCM, w□∗(M□∗) ≤ w□∗(M∗). Combining all three bounds,

w(M□∗) = w□∗(M□∗) ≤ w□∗(M∗) = w(M∗). (3)

Therefore, since M□∗ is a perfect matching whose cost is no more than the cost of any minimum-cost
perfect matching, we conclude that M□∗ is also a minimum-cost perfect matching.
Lemma A.2. For the root square □∗ of the quadtree and any minimum-cost □∗-constrained matching
M□∗ on A ∪B, M□∗ is a minimum-cost perfect matching on A ∪B.

Expected Cost of the Constrained Matchings. Given any square □ of Q, let M∗
□ denote any

□-MCM. In this part, we show that the expected □-constrained cost of M∗
□ is O(ℓ□

√
n log n). Define

2

(a) (b) (c)

Figure 2: (a) A square □ with 7 points of A□ (red squares) and 10 points of B□ (blue disks), (b) we
remove exc(□) = 3 points selected uniformly at random from B□ (the points highlighted by purple
circles) and compute the minimum-cost matching M on the remaining points (solid line segments),
(c) the □-constrained cost of M is computed as the total cost of the matching M and the distance of
the removed exc(□) points to the boundary of □ (dashed line segments).

na = |A□| and nb = |B□|. Let m = min{na, nb} and let the excess of □, denoted by exc(□), be
the difference in the number of points of B□ and A□, i.e., exc(□) = |na − nb|. Figure 2(a) for
instance shows an example of a square □ with na = 7, nb = 10,m = 7, and exc(□) = 3.

We prove the claimed upperbound on the expected □-constrained cost of M∗
□ by computing a

matching M whose expected □-constrained cost is O(ℓ□
√
n log n) as follows. We first remove

exc(□) points selected uniformly at random from A□ (resp. B□) given na ≥ nb (resp. na < nb)
and obtain two point sets A′ and B′, both of size m. Let M be a perfect matching from B′ to A′.
In the example of Figure 2(b), three points are selected uniformly at random from B□ (the points
highlighted by the purple circles) and a minimum-cost matching is computed on the remaining points.
Note that the □-constrained cost of M is an upperbound on the □-constrained cost of M∗

□. Since
each removed point has a distance of at most ℓ□

2 to the boundary of □,

w□(M
∗
□) ≤ w□(M) ≤ w(M) +

ℓ□
2
exc(□). (4)

Figure 2(c) shows the □-constrained cost of the matching M . To bound the expected □-constrained
cost of M , first in Lemma A.3 below, we show that E [exc(□)] = O(

√
n log n). We then show

that E [w(M)] = O(ℓ□
√
n log n). By plugging these bounds to the RHS of Equation (4), we then

conclude that E
[
w□(M

∗
□)

]
= O(ℓ□

√
n log n), as desired.

Lemma A.3. For any square □ of Q, E [exc(□)] = O(
√
n log n).

Proof. Let p□ denote the probability that a point drawn from µ lies inside □. Using the Chernoff’s
bound,

Pr
[
|B□| ≥ np□ + c

√
np□ log n

]
≤ 1

2n2
,

for some constant c ≤ 3. Similarly,

Pr
[
|A□| ≤ np□ − c

√
np□ log n

]
≤ 1

2n2
.

Therefore, with probability at least 1− 1
n2 ,

|B□| − |A□| ≤ 2c
√

np□ log n = O(
√
n log n).

Similarly, we can show that with probability at least 1 − 1
n2 , |A□| − |B□| = O(

√
n log n). Since

exc(□) is at most n, we conclude that E [exc(□)] = O(
√
n log n).

Next, we bound w(M). Since the removed points are selected uniformly at random, the two point sets
A′ and B′ are two sets of m i.i.d samples from the same distribution inside □; in this case, the expected

3

(a) (b)

Figure 3: (a) The free points of B□ that lie inside the gray area are categorized as close, and (b) the
free points of B□ (blue X marks) that lie inside the gray area are categorized as far. Each free point
in this category contributes a cost of at least n−1/4ℓ□ to the □-constrained cost of M∗

□ (shown by
dashed lines).

cost of the Euclidean bipartite matching (with p = 1) between A′ and B′ is O(ℓ□
√
m logm) [1, 2].

Therefore,
E [w(M)] = O(ℓ□

√
m logm) = O(ℓ□

√
n log n). (5)

By invoking Lemma A.3 and plugging Equation (5) into Equation (4),

E [w□(M
∗
□)] ≤ E [w(M)] +

ℓ□
2
E [exc(□)] = O(ℓ□

√
n log n).

For any dimension d ≥ 3, E [w(M)] = Õ(ℓ□m
1− 1

d) = Õ(ℓ□n
1− 1

d) [1, 2]. Plugging into Equa-
tion (4), we have E

[
w□(M

∗
□)

]
= Õ(ℓ□n

1− 1
d), leading to the following lemma.

Lemma A.4. For any square □ of Q, let M∗
□ denote a □-MCM on A□ ∪ B□ and let ℓ□ denote

the side-length of □. Then, E
[
w□(M

∗
□)

]
= O(ℓ□

√
n log n) for 2 dimensions and E

[
w□(M

∗
□)

]
=

Õ(ℓ□n
1− 1

d) for d dimensions, where d ≥ 3.

Expected Number of Free Points. Given any square □ of Q, using Lemma A.4, in this part we
show that the expected number of free points of B□ with respect to any □-MCM M∗

□ is Õ(n3/4).

We categorize any free point of B□ with respect to M∗
□ as a close (resp. far) point if its distance to

□ is at most (resp. at least) n−1/4ℓ□. Let X (resp. Y) be the set of free points of B□ that are close
(resp. far). To prove Lemma 2.2, we bound the number of points in X and Y separately.

Recall that nδ
□ denotes the number of points that are δ-close to □. Since each point in X is

(n−1/4)-close to □, |X| ≤ nδ
□ for δ = n−1/4 (see Figure 3(a)). Therefore, by Lemma 2.1,

E [|X|] ≤ E
[
nδ
□

]
= O(n−1/4E [n□]) = O(n3/4).

Furthermore, for any free point b ∈ Y , by definition, d(b,□) > n−1/4ℓ□. Since b is a free point with
respect to M∗

□, it contributes a cost of at least n−1/4ℓ□ to w□(M
∗
□) (see Figure 3(b)). Therefore,

|Y | ≤
w□(M

∗
□)

n−1/4ℓ□
.

By invoking Lemma A.4 on □,

E [|Y |] ≤
E
[
w□(M

∗
□)

]
n−1/4ℓ□

= O(n3/4 log n).

4

Combining the two bounds,

E
[∣∣BF

□

∣∣] = E [|X|] + E [|Y |] = O(n3/4 log n).

For any dimension d ≥ 3, one can categorize any free points in BF
□ as close (resp. far) if its distance

from □ is at most (resp. at least) n−1/2dℓ□ and easily confirm that

E
[∣∣BF

□

∣∣] = E [|X|] + E [|Y |] = Õ(n1− 1
2d).

See Section B for a detailed discussion on analyzing the expected number of free points with respect
to any □-MCM for any p ∈ [1,∞) and d ≥ 2.
Lemma A.5. For any square □ of the quadtree, any minimum-cost □-constrained matching M∗

□,
and any δ ∈ (0, 1/2), the expected number of free points of B□ with respect to M∗

□ is Õ
(
n3/4

)
in

2-dimensions (and Õ(n1− 1
2d) in d dimensions).

Finally, combining Lemmas A.2 and A.5 gives us the following lemma.
Lemma 2.2. For any square □ of a randomly shifted quadtree and any minimum-cost □-constrained
matching M∗

□, (i) the expected number of free points of B□ with respect to M∗
□ is Õ

(
n3/4

)
in

2-dimensions (and Õ(n1− 1
2d) in d dimensions), and (ii) if □ is the root square, then M∗

□ is a
minimum-cost perfect matching on A ∪B.

A.3 Properties of the Constrained Feasibility

In this section, we first show that for any square □ of Q, any □-optimal matching is a □-MCM, hence
proving Lemma 2.3. We then show that the combination of □′-optimal matching for all children □′

of □ results in a □-feasible matching, leading to Lemma 2.4.

For a square □ of Q, let M,y(·) be any □-optimal matching and M∗
□ be any □-MCM on A□ ∪B□.

By □-feasibility conditions and since M is a □-optimal matching,

w□(M) =
∑

(a,b)∈M

∥a− b∥+
∑

b∈BF
M

d(b,□) =
∑

(a,b)∈M

(y(b)− y(a)) +
∑

b∈BF
M

y(b)

=
∑
b∈B□

y(b)−
∑

a∈A□

y(a),

where the second equality comes from feasibility conditions (5) and (6), and the last equality holds
due to feasibility condition (7). Similarly,

w□(M
∗
□) =

∑
(a,b)∈M∗

□

∥a− b∥+
∑

b∈BF
M∗

□

d(b,□) ≥
∑

(a,b)∈M∗
□

(y(b)− y(a)) +
∑

b∈BF
M∗

□

y(b)

≥
∑
b∈B□

y(b)−
∑

a∈A□

y(a).

Combining the two bounds, w□(M
∗
□) ≥

∑
b∈B□

y(b) −
∑

a∈A□
y(a) = w□(M). However, note

that M∗
□ is a □-MCM; hence, we have w□(M

∗
□) = w□(M) and M is also a □-MCM, leading to the

following lemma.
Lemma 2.3. Let M□, y(·) be a □-optimal matching on A□ ∪ B□. Then, M□ is a minimum-cost
□-constrained matching.

Next, suppose □i, i ∈ [1, 4] is the set of all children of □ and let Mi, y(·) denote a □i-optimal
matching for any i ∈ [1, 4]. Define M =

⋃4
i=1 Mi to be the union of the four matchings computed at

the children of □. In this part, we show that M is a □-feasible matching. To do so, we show that the
matching M along with the dual weights y(·) satisfy the constrained feasibility conditions (4) –(7).

For any pair of points (a, b) ∈ A×B,

• if a and b lie inside the same child □′ of □, by □′-feasibility conditions, conditions (4)
and (5) are satisfied;

5

• otherwise, a and b lie inside different children □a and □b of □. In this case, by construction,
(a, b) is a non-matching edge. By definition, y(a) ≥ 0. Furthermore, by □b-feasibility
condition (6), y(b) ≤ d(b,□b). Since a /∈ □b, ∥a− b∥ ≥ d(b,□b) and as a result,

y(b)− y(a) ≤ y(b) ≤ d(b,□b) ≤ ∥a− b∥.
Therefore, conditions (4) and (5) are satisfied in this case as well.

For any point b ∈ B, let □i be the child of □ containing b. By □i-feasibility conditions,
y(b) ≤ d(b,□i) ≤ d(b,□).

Furthermore, for any free point a ∈ AF , suppose a lies inside a child □i of □. Since a is also a free
point in Mi, by the □i-feasibility conditions, y(a) = 0; thus, feasibility conditions (6) and (7) hold
as well and M,y(·) is a □-feasible matching.
Lemma 2.4. For any square □, let □i, i ∈ [1, 4] be the set of all children of □ and let Mi, y(·)
denote a □i-optimal matching. Then, the matching

⋃4
i=1 Mi, y(·) is a □-feasible matching.

Note that the discussion above is not dependent on the dimension and is also applicable to the
d-dimensional space for any d ≥ 2.
Corollary A.6. For any d-dimensional hypercube □, let C[□] be the set of all children of □
and let M□′ , y(·) denote a □′-optimal matching for any child □′ ∈ C[□]. Then, the matching⋃

□′∈C[□] M□′ , y(·) is a □-feasible matching.

A.4 Properties of the AUGMENT procedure

Given a square □ of Q, a □-feasible matching M□, y(·), and an admissible path P , in this section we
show that augmenting M□ along P does not violate the feasibility conditions (4)–(7). Furthermore,
the augmentation reduces the number of □-free points in BF

□ by one. The combination of these
properties proves Lemma 2.5.

Note that any free point b ∈ B (resp. a ∈ A) after augmentation was also a free point prior to
augmentation. Therefore, the feasibility condition (6) (resp. (7)) holds for b (resp. a) since the
augmentation does not change the dual weights and the same condition holds prior to augmentation.
In other words, all dual weights will remain satisfying the feasibility conditions (6) and (7) after
augmentation. For all edges (a, b) ∈ A × B such that (a, b) /∈ P , if (a, b) is a matching (resp.
non-matching) edge prior to augmentation, it remains a matching (resp. non-matching) edge after
augmentation and the condition (5) (resp. (4)) for (a, b) remains satisfied. For any edge (a, b) in
the admissible path P , due to the admissibility of the edge, y(b)− y(a) = ∥a− b∥. Two cases can
happen.

• If (a, b) /∈ M□ prior to augmentation, it will be a matching edge after the augmentation and
condition (5) holds for (a, b).

• If (a, b) ∈ M□ prior to augmentation, it will be a non-matching edge after the augmentation
and condition (4) holds for (a, b).

Hence, the matching M□, y(·) remain □-feasible after augmentation. Next, we show that the number
of □-free points of B□ reduces by one after augmenting M□ along P . Recall that the admissible path
P is a path from a □-free point b ∈ BF

□ to either a free point a ∈ AF
□ or a zero-slack point b′ ∈ B□.

In both cases, the point b becomes a matched point after the augmentation and will be removed from
the set of □-free points BF

□. In the second case, although after the augmentation the point b′ becomes
an unmatched point, since it has a zero slack, b′ will not be a □-free point. Finally, other than the
two endpoints of P , all other points of P are matched points both before and after the augmentation.
Thus, the size of BF

□ reduces by one.
Lemma 2.5. Suppose M□, y(·) is a □-feasible matching and P is an admissible path. After
augmenting M□ along P , the matching M□, y(·) remains □-feasible. Furthermore, the augmentation
reduces the number of □-free points of B□ with respect to M□ by one.

A.5 Properties of the CONSTRAINEDHUNGARIANSEARCH procedure

Given a square □ of the quadtree and a □-feasible matching M□, y(·), in this section we show that
after executing the CONSTRAINEDHUNGARIANSEARCH procedure for □, the updated dual weights
will be □-feasible and the returned path P will be an admissible path, resulting in Lemma 3.1.

6

Let y(·) (resp. y′(·)) denote the dual weights of the points before (resp. after) the execution of
the CONSTRAINEDHUNGARIANSEARCH procedure. For any free point a ∈ AF

□, by the definition,
κa ≥ κv. Therefore, the CONSTRAINEDHUNGARIANSEARCH procedure does not update the dual
weight of a and y′(a) = y(a), which by □-feasibility conditions on M□, y(·) is zero; thus, the
updated dual weights on free point in AF

□ meet condition (7).

For any point b ∈ B□, if κb ≥ κ, then the procedure will not update the dual weight of b and
condition (6) remains satisfied for b. Otherwise, κb < κ. By the definition, κ ≤ κb + s□(b), where
s□(b) denotes the slack of b prior to dual updates. Therefore,

y′(b) = y(b)− κb + κ ≤ y(b) + s□(b) = d(□, b).

As a result, the dual updates do not violate the feasibility condition (6). Furthermore, if κ =
κb + s□(b), then y′(b) = d(b,□) and b will be a zero-slack point.

For any edge (u, v), let s(u, v) denote the slack of (u, v) before the dual updates. For any matching
edge (a, b), since the only incoming edge to b in the residual network is the zero-weight edge (a, b),
κb = κa. Thus,

y′(b)− y′(a) = (y(b)− κb + κ)− (y(a)− κa + κ) = y(b)− y(a) = ∥a− b∥.
Similarly, for any non-matching edge (b, a), κa ≤ κb + s(b, a), since there is a direct edge from b to
a in the residual network with a weight s(b, a). Hence,

y′(b)− y′(a) = (y(b)− κb + κ)− (y(a)− κa + κ) ≤ (y(b)− y(a)) + s(b, a) = ∥a− b∥.
Therefore, the updated dual weights will remain □-feasible. Finally, if (b, a) is an edge on the
shortest path tree constructed by the Dijkstra’s algorithm, then κa = κb + s(b, a) and therefore,
y′(b) − y′(a) = ∥a − b∥, i.e., (b, a) is an admissible edge after the dual updates. Since all edges
of P are the edges of the shortest path tree, all such edges are admissible after the dual updates.
Furthermore, if P ends at a vertex u ∈ B□, then by the discussion above, u will be a zero-slack point.
Therefore, P is an admissible path.
Lemma 3.1. Given any square □ of Q and any □-feasible matching M□, y(·), after executing the
CONSTRAINEDHUNGARIANSEARCH procedure on □, the updated dual weights remain □-feasible.
Furthermore, the returned path P is an admissible path.

B Our Results in General Settings

Given two sets of n i.i.d samples A and B from a distribution µ inside the unit d-dimensional
hypercube and any integer p ∈ [1,∞), in this section, we analyze the execution time of our algorithm
for computing the pth power Euclidean bipartite matching from B to A.

Recall that C[□] denotes the set of non-empty children of □. In the conquer step of our algorithm
on □, our algorithm constructs a matching M□ as M□ =

⋃
□′∈C[□] M□′ . To analyze the running

time, similar to Section 3.2, we bound the number of iterations by the number of free points with
respect to M□. Similar to Section A.2, for any child □′ ∈ C[□], we categorize any free points in BF

□′

with respect to M□′ as close (resp. far) if its distance to the boundary of □′ is at most (resp. at least)
n−αℓ□, where

α =

{
p

(p+1)d , p < d
2 ,

1
2(p+1) , p ≥ d

2 ,

and define the set X□′ (resp Y□′) as the subset of free points of BF
□′ that are close (resp. far). In this

way, we can express the number of free points of BF
□ as∣∣BF

□

∣∣ = ∑
□′∈C[□]

∣∣BF
□′

∣∣ = ∑
□′∈C[□]

|X□′ |+
∑

□′∈C[□]

|Y□′ | . (6)

From Lemma A.1, for any child □′ ∈ C[□] and any δ ∈ (0, 1/2), E
[
nδ
□′

]
= O(dδE [n□′]). By

setting δ = n−α and using
∑

□′∈C[□] n□′ ≤ n,

∑
□′∈C[□]

E [|X□′ |] =

O
(
dn− p

(p+1)dE
[∑

□′∈C[□] n□′

])
, p < d

2 ,

O
(
dn− 1

2(p+1)E
[∑

□′∈C[□] n□′

])
, p ≥ d

2 ,
=

O
(
dn1− p

(p+1)d

)
, p < d

2 ,

O
(
dn1− 1

2(p+1)

)
, p ≥ d

2 .

7

Next, we bound the second term in the RHS of Equation (6). By Corollary A.6, the matching M□
is a □-feasible matching. Let M∗

□ be any □-MCM. In the following lemma, we show that the
total constrained costs of the matchings computed at the children of □ is upper-bounded by the
□-constrained cost of M∗

□.
Lemma B.1. Given any square □ of the quadtree, let M∗

□ be any □-MCM and for any child
□′ ∈ C[□], let M□′ , y(·) be a □′-optimal matching for □′. Then,

∑
□′∈C[□] w□′(M□′) ≤ w□(M

∗
□).

Proof. By □-feasibility conditions,

w□(M
∗
□) =

∑
(a,b)∈M∗

□

∥a− b∥p +
∑

b∈BF
M∗

□

d(b,□)p ≥
∑

(a,b)∈M∗
□

(y(b)− y(a)) +
∑

b∈BF
M∗

□

y(b)

≥
∑
b∈B□

y(b)−
∑

a∈A□

y(a).

Furthermore, for any child □′ of □,

w□′(M□′) =
∑

(a,b)∈M□′

∥a− b∥p +
∑

b∈BF
M□′

d(b,□′)p =
∑

(a,b)∈M□′

(y(b)− y(a)) +
∑

b∈BF
M□′

y(b)

=
∑

b∈B□′

y(b)−
∑

a∈A□′

y(a).

Summing over all children of □,∑
□′∈C[□]

w□′(M□′) =
∑

□′∈C[□]

 ∑
b∈B□′

y(b)−
∑

a∈A□′

y(a)

 =
∑
b∈B□

y(b)−
∑

a∈A□

y(a) ≤ w□(M
∗
□).

From Lemma B.1 and since the contribution of each free point in Y is at least (ℓ□n−α)
p,∑

□′∈C[□]

E [|Y□′ |] ≤
∑

□′∈C[□]

E
[
w□′(M∗

□′)
]

(n−αℓ□)
p ≤

E
[
w□(M

∗
□)

]
(n−αℓ□)

p . (7)

Combining the results in [1, 2] and Lemma A.3,

E [w□(M
∗
□)] =

{
Õ(ℓp□n

1− p
d), p < d

2 ,

Õ(ℓp□n
1
2), p ≥ d

2 ,

Plugging in Equation (7),

E [|Y |] =
∑

□′∈C[□]

E [|Y□′ |] =

E[w(M∗

□)](
ℓ□n

− p
(p+1)d

)p = Õ(n1− p
d+

p2

(p+1)d) = Õ(n1− p
(p+1)d), p < d

2 ,

E[w(M∗
□)](

ℓ□n
− 1

2(p+1)

)p = Õ(n
1
2+

p
2(p+1)) = Õ(n1− 1

2(p+1)), p ≥ d
2 .

Therefore, the total number of iterations of the conquer step of our algorithm on any hypercube □ is,
in expectation, bounded by

E
[∣∣BF

□

∣∣] = ∑
□′∈C[□]

E [|X□′ |] +
∑

□′∈C[□]

E [|Y□′ |] =

{
Õ(n1− p

(p+1)d), p < d
2 ,

Õ(n1− 1
2(p+1)), p ≥ d

2 .

Each iteration takes Õ(n□Φ(n□)) time. Recall that Ti denotes the total total execution time of the
conquer step of our algorithm across all hypercubes of any level i of the quadtree and L(i) denotes
the set of all hypercubes of the quadtree at level i.

E [Ti] =

{∑
□∈L(i) Õ(n1− p

(p+1)dn□Φ(n□)), p < d
2 ,∑

□∈L(i) Õ(n1− 1
2(p+1)n□Φ(n□)), p ≥ d

2 ,
=

{
Õ(n2− p

(p+1)dΦ(n)), p < d
2 ,

Õ(n2− 1
2(p+1)Φ(n)), p ≥ d

2 .

Summing over all O(log∆) levels of the quadtree, we conclude the following theorem.

8

Theorem B.2. There exists a randomized algorithm that, given any two point sets A and B sampled
independently and identically from a distribution µ inside the unit d-dimensional hypercube, where
|A| = |B| = n and µ is not known to the algorithm, and a parameter p ∈ [1,∞), computes an exact
pth power Euclidean bipartite matching between A and B and has an expected running time of{

Õ(n2− p
(p+1)dΦ(n) log∆), p < d

2 ,

Õ(n2− 1
2(p+1)Φ(n) log∆), p ≥ d

2 .

Here, ∆ is the spread of the points in A ∪B.

Suppose the distribution µ inside the unit d-dimensional hypercube satisfies the following property.

(P) There exists a constant τ ≥ 1 such that for any d-dimensional ball B of radius n−τ ,∫
R

µ(x)dx ≤ 1

2n3
.

Let A and B be two sets of n i.i.d samples from the distribution µ. For any point u ∈ A ∪ B, let
B(u, r) denote a ball of radius r centered at the point u. From property (P),

Pr
[∣∣(A ∪B) ∩ B(u, n−τ)

∣∣ > 1
]
≤

∑
v∈(A∪B)\{u}

Pr
[
v ∈ B(u, n−τ)

]
≤ 1

2n2
.

Let Cmin (resp. Cmax) denote the minimum (resp. maximum) pairwise Euclidean distance of the
points in A ∪ B, i.e., Cmin := minu,v∈A∪B,u̸=v ∥u − v∥ and Cmax := maxu,v∈A∪B,u̸=v ∥u − v∥.
Then,

Pr
[
Cmin ≤ n−τ

]
≤

∑
u∈(A∪B)

Pr
[∣∣(A ∪B) ∩ B(u, n−τ)

∣∣ > 1
]
≤ 1

n
.

Therefore, Pr [Cmin > n−τ] = 1− Pr [Cmin ≤ n−τ] ≥ 1− 1
n . Note that one can always shift and

scale up the coordinates of the points inside the unit hypercube so that Cmax ≥ 1. Shifting and
scaling the coordinates does not change the final matching. Also, since all points are inside the unit
hypercube, Cmax ≤

√
d. Therefore, with high probability, the spread ∆ of the points in A ∪ B is

bounded by

∆ =
Cmax

Cmin
≤

√
dnτ ,

and as a result, the height of the quadtree, with a high probability, would be O(log∆) = O(τ log nd),
resulting in the following corollary.
Corollary B.3. There exists a randomized algorithm that, given any two point sets A and B sampled
independently and identically from a distribution µ inside the unit d-dimensional hypercube, where
|A| = |B| = n, µ is not known to the algorithm and satisfies the condition of property (P), and a
parameter p ∈ [1,∞), computes an exact pth power Euclidean bipartite matching between A and B
and has an expected running time of{

Õ(n2− p
(p+1)dΦ(n)), p < d

2 ,

Õ(n2− 1
2(p+1)Φ(n)), p ≥ d

2 .

C Additional Experiments

In this section, we present the results of our additional experiments. In these experiments, we use
two additional datasets: (1) Exponential distribution in the plane (Exponential), and (2) a Gaussian
mixture model consisting of 10 clusters in the 2-dimensional space (Clustered), where the centers of
the clusters are chosen uniformly at random. Since these distributions are not bounded to the unit
square, after drawing samples from each one, we normalize the coordinates of the points to lie inside
the unit square.

Figure 4 shows the results of our experiments comparing the running time of our algorithm with the
Hungarian algorithm for computing the Euclidean bipartite matching (p = 1) as well as 2nd power
Euclidean bipartite matching (p = 2, also known as the Root Mean Squared (RMS) matching). We

9

(a) Gaussian vs. Gaussian (b) Exponential vs. Exponential (c) Clustered vs. Clustered

(d) Gaussian vs. Gaussian (e) Exponential vs. Exponential (f) Clustered vs. Clustered

Figure 4: Running times of our divide-and-conquer algorithm and the Hungarian algorithm for
computing the (a)–(c) Euclidean bipartite matching (p = 1) and (d)–(f) squared Euclidean bipartite
matching (p = 2) between samples drawn from the same synthetic datasets.

(a) Exponential vs. Exponential (b) Clustered vs. Clustered

Figure 5: The number of iterations of the conquer step for a square with n points for samples from
(a) Exponential vs. Exponential, and (b) Clustered vs. Clustered distributions.

observe that in all cases, our divide-and-conquer algorithm outperforms the Hungarian algorithm and
computes the exact matching significantly faster.

In Figure 5, we show the number of iterations of our algorithm on a square with n points inside the
square. We observe that for all datasets, the number of iterations is much lower than the upper-bound
of Õ(n3/4) we showed in our analysis.

References
[1] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the

empirical measure. Probability theory and related fields, 162(3-4):707–738, 2015.

[2] Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review
of statistics and its application, 6:405–431, 2019.

10

	Missing Proofs and Details
	Properties of a Randomly Shifted Quadtree
	Properties of Constrained Matchings
	Properties of the Constrained Feasibility
	Properties of the Augment procedure
	Properties of the ConstrainedHungarianSearch procedure

	Our Results in General Settings
	Additional Experiments

