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Abstract

We systematically analyze optimization dynamics in deep neural networks (DNNs)
trained with stochastic gradient descent (SGD) and study the effect of learning
rate η, depth d, and width w of the neural network. By analyzing the maximum
eigenvalue λH

t of the Hessian of the loss, which is a measure of sharpness of
the loss landscape, we find that the dynamics can show four distinct regimes:
(i) an early time transient regime, (ii) an intermediate saturation regime, (iii) a
progressive sharpening regime, and (iv) a late time “edge of stability" regime. The
early and intermediate regimes (i) and (ii) exhibit a rich phase diagram depending
on η ≡ c/λH

0 , d, and w. We identify several critical values of c, which separate
qualitatively distinct phenomena in the early time dynamics of training loss and
sharpness. Notably, we discover the opening up of a “sharpness reduction" phase,
where sharpness decreases at early times, as d and 1/w are increased.

1 Introduction

The optimization dynamics of deep neural networks (DNNs) is a rich problem that is of great interest.
Basic questions about how to choose learning rates and their effect on generalization error and training
speed remain intensely studied research problems. Classical intuition from convex optimization has
lead to the often made suggestion that in stochastic gradient descent (SGD), the learning rate η should
satisfy η < 2/λH , where λH is the maximum eigenvalue of the Hessian H of the loss, in order to
ensure that the network reaches a minimum. However several recent studies have suggested that it is
both possible and potentially preferable to have the learning rate early in training reach η > 2/λH

[66, 49, 72]. The idea is that such a choice will induce a temporary training instability, causing the
network to ‘catapult’ out of a local basin into a flatter one with lower λH where training stabilizes.
Indeed, during the early training phase, the local curvature of the loss landscape changes rapidly
[42, 1, 37, 16], and the learning rate plays a crucial role in determining the convergence basin [37].
Flatter basins are believed to be preferable because they potentially lead to lower generalization error
[31, 32, 42, 12, 39, 14] and allow larger learning rates leading to potentially faster training.

From a different perspective, the major theme of deep learning is that it is beneficial to increase the
model size as much as possible. This has come into sharp focus with the discovery of scaling laws that
show power law improvement in generalization error with model and dataset size [40]. This raises
the fundamental question of how one can scale DNNs to arbitrarily large sizes while maintaining the
ability to learn; in particular, how should initialization and optimization hyperparameters be chosen
to maintain a similar quality of learning as the model size is taken to infinity [34, 47, 48, 11, 69, 58,
70, 68]?
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Figure 1: Training trajectories of the (a) training loss, (b) sharpness, and (c) training accuracy of
CNNs (d = 5 and w = 512) trained on CIFAR-10 with MSE loss using vanilla SGD with learning
rates η = c/λH

0 and batch size B = 512. Vertical dashed lines approximately separate the different
training regimes. Horizontal dashed lines in (b) denote the 2/η threshold for each learning rate.

Motivated by these ideas, we perform a systematic analysis of the training dynamics of SGD for
DNNs as learning rate, depth, and width are tuned, across a variety of architectures and datasets. We
monitor both the loss and sharpness (λH ) trajectories during early training, observing a number of
qualitatively distinct phenomena summarized below.

1.1 Our contributions

We study SGD on fully connected networks (FCNs) with the same number of hidden units (width)
in each layer, convolutional neural networks (CNNs), and ResNet architectures of varying width w
and depth d with ReLU activation. For CNNs, the width corresponds to the number of channels.
We focus on networks parameterized in Neural Tangent Parameterization (NTP) [34], and Standard
Parameterization (SP) [62] initialized at criticality [55, 58], while other parameterizations and
initializations may show different behavior. Further experimental details are provided in Appendix A.
We study both mean-squared error (MSE) and cross-entropy loss functions and the datasets CIFAR-
10, MNIST, Fashion-MNIST. Our findings apply to networks with d/w ≲ C, where C depends on
architecture class (e.g. for FCNs, C ≈ 1/16) and loss function, but is independent of d, w, and η.
Above this ratio, the dynamics becomes noise-dominated, and separating the underlying deterministic
dynamics from random fluctuations becomes challenging, as shown in Appendix E. We use sharpness
to refer to λH

t , the maximum eigenvalue of H at time-step t, and flatness refers to 1/λH
t .

By monitoring the sharpness, we find four clearly separated, qualitatively distinct regimes throughout
the training trajectory. Fig. 1 shows an example from a CNN architecture. The four observed regimes
are: (i) an early time transient regime where loss and sharpness may drastically change and eventually
settle down, (ii) an intermediate saturation regime where the sharpness has lowered and remains
relatively constant, (iii) a progressive sharpening regime where sharpness steadily rises, and finally,
(iv) a late time regime where the sharpness saturates around 2/η for MSE loss; whereas for cross-
entropy loss, sharpness drops after reaching this maximum value while remaining less than 2/η [8].
Note the log scale in Figure 1 highlights the early regimes (i) and (ii); in absolute terms these are
much shorter in time than regimes (iii) and (iv).

In this work, we focus on the early transient and intermediate saturation regimes. As learning rate,
d and w are tuned, a clear picture emerges, leading to a rich phase diagram, as demonstrated in
Section 2. Given the learning rate scaled as η = c/λH

0 , we characterize four distinct behaviors in the
training dynamics in the early transient regime (i):

Sharpness reduction phase (c < closs) : Both the loss and the sharpness monotonically decrease
during early training. There is a particularly significant drop in sharpness in the regime ccrit < c <
closs, which motivates us to refer to learning rates lower than ccrit as sub-critical and larger than
ccrit as super-critical. We discuss ccrit in detail below. The regime ccrit < c < closs opens up
significantly with increasing d and 1/w, which is a new result of this work.

Loss catapult phase (closs < c < csharp) : The first few gradient steps take training to a flatter region
but with a higher loss. Training eventually settles down in the flatter region as the loss starts to decrease
again. The sharpness monotonically decreases from initialization in this early time transient regime.
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Loss and sharpness catapult phase (csharp < c < cmax): In this regime both the loss and sharpness
initially start to increase, effectively catapulting to a different point where loss and sharpness can
start to decrease again. Training eventually exhibits a significant reduction in sharpness by the end of
the early training. The report of a loss and sharpness catapult is also new to this work.

Divergent phase (c > cmax): The learning rate is too large for training and the loss diverges.

The critical values closs, csharp, cmax are random variables that depend on random initialization,
SGD batch selection, and architecture. The averages of closs, csharp, cmax shown in the phase
diagrams show strong systematic dependence on depth and width. In order to better understand
the cause of the sharpness reduction during early training we study the effect of network output at
initialization by (1) centering the network, (2) setting last layer weights to zero, or (3) tuning the
overall scale of the output layer. We also analyze the linear connectivity of the loss landscape in the
early transient regime and show that for a range of learning rates closs < c < cbarrier, no barriers
exist from the initial state to the final point of the initial transient phase, even though training passes
through regions with higher loss than initialization.

Next, we provide a quantitative analysis of the intermediate saturation regime. We find that sharpness
during this time typically displays 3 distinct regimes as the learning rate is tuned, depicted in Fig. 5.
By identifying an appropriate order parameter, we can extract a sharp peak corresponding to ccrit.
For MSE loss ccrit ≈ 2, whereas for crossentropy loss, 4 ≳ ccrit ≳ 2. For c ≪ ccrit, the network is
effectively in a lazy training regime, with increasing fluctuations as d and/or 1/w are increased.

Finally, we show that a single hidden layer linear network – the uv model – displays the same
phenomena discussed above and we analyze the phase diagram in this minimal model.

1.2 Related works

A significant amount of research has identified various training regimes using diverse criteria, e.g.,
[13, 1, 15, 37, 17, 45, 35, 8, 33]. Here we focus on studies that characterize training regimes with
sharpness and learning rates. Several studies have analyzed sharpness at different training times
[37, 16, 35, 8, 33]. Ref. [8] studied sharpness at late training times and showed how large-batch
gradient descent shows progressive sharpening followed by the edge of stability, which has motivated
various theoretical studies [9, 2, 3]. Ref. [37] studied the entire training trajectory of sharpness in
models trained with SGD and cross-entropy loss and found that sharpness increases during the early
stages of training, reaches a peak, and then decreases. In contrast, we find a sharpness-reduction
phase, c < closs which becomes more prominent with increasing d and 1/w, where sharpness only
decreases during early training; this also occurs in the catapult phase closs < c < csharp, during
which the loss initially increases before decreasing. This discrepancy is likely due to different
initialization and learning rate scaling in their work [33].

Ref. [35] examined the effect of hyperparameters on sharpness at late training times. Ref. [20]
studied the optimization dynamics of SGD with momentum using sharpness. Ref. [45] classify
training into 2 different regimes using training loss, providing a significantly coarser description of
training dynamics than provided here. Ref. [33] studied the scaling of the maximum learning rate
with d and w during early training in FCNs and its relationship with sharpness at initialization.

Refs. [52, 71] present phase diagrams of shallow ReLU networks at infinite width under gradient flow.
Previous studies such as [41, 69] show that 2/λNTK

0 is the maximum learning rate for convergence
as w → ∞. This limit results in the kernel regime as training time is restricted to O(1) in the
limit of infinite width, resulting in a lazy training regime for learning rates less than 2/λNTK

0 and
divergent training for larger learning rates. In contrast, we analyze optimization dynamics at training
timescales t⋆ that grow with width w. Specifically, the end of the early time transient period occurs
at t⋆ ∼ log(w).

Ref. [49] analyzed the training dynamics at large widths and training times, using the top eigenvalue
of the neural tangent kernel (NTK) as a proxy for sharpness. They demonstrated the existence of
a new early training phase, which they dubbed the “catapult" phase, 2/λNTK

0 < η < ηmax, in wide
networks trained with MSE loss using SGD, in which training converges after an initial increase in
training loss. The existence of this new training regime was further extended to quadratic models
with large widths by [72, 53]. Our work extends the above analysis by studying the combined effect
of learning rate, depth, and width for both MSE and cross-entropy loss, demonstrating the opening

3



0 2 4 6 8 10
t (step)

0.0

0.5

1.0

1.5

2.0

T
ra

in
in

g
lo

ss

(a)

0 2 4 6 8 10
t (step)

0.2

0.4

0.6

0.8

1.0

1.2

λ
H t
/λ

H 0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
s

0.05

0.10

0.15

0.20

0.25

0.30

L i
n
t(
s,
c)

(c)

c
2.0

3.0

4.0

5.7

8.0

0 2 4 6 8 10
t (step)

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
lo

ss

(d)

0 2 4 6 8 10
t (step)

0.0

0.5

1.0

1.5

2.0

λ
H t
/λ

H 0

(e)

0.0 0.2 0.4 0.6 0.8 1.0
s

0.1

0.2

0.3

L i
n
t(
s,
c)

(f)

c
2.0

5.7

11.3

22.6

45.3

Figure 2: Early training dynamics of (a, b, c) a shallow (d = 5, w = 512) and (d, e, f) a deep
CNN (d = 10, w = 128) trained on CIFAR-10 with MSE loss for t = 10 steps using SGD for
various learning rates η = c/λH

0 and batch size B = 512. (a, d) training loss, (b, e) sharpness,
and (c, f) interpolated loss between the initial and final parameters after 10 steps for the respective
models. For the shallow CNN, closs = 2.82, csharp = 5.65, cmax = 17.14 and for the deep CNN,
closs = 36.75, csharp = 39.39, cmax = 48.50.

of a sharpness-reduction phase, the refinement of the catapult phase into two phases depending
on whether the sharpness also catapults, analyzing the phase boundaries as d and 1/w is increased,
analyzing linear mode connectivity in the catapult phase, examining different qualitative behaviors in
the intermediate saturation regime (ii) mentioned above.

2 Phase diagram of early transient regime

For wide enough networks trained with MSE loss using SGD, training converges into a flatter region
after an initial increase in the training loss for learning rates c > 2 [49]. Fig. 2(a, b) shows the first
10 steps of the loss and sharpness trajectories of a shallow (d = 5 and w = 512) CNN trained on
the CIFAR-10 dataset with MSE loss using SGD. For learning rates, c ≥ 2.82, the loss catapults
and training eventually converges into a flatter region, as measured by sharpness. Additionally, we
observe that sharpness may also spike initially, similar to the training loss (see Fig. 2 (b)). However,
this initial spike in sharpness occurs at relatively higher learning rates (c ≥ 5.65), which we will
examine along with the loss catapult. We refer to this spike in sharpness as ‘sharpness catapult.’

An important consideration is the degree to which this phenomenon changes with network depth and
width. Interestingly, we found that the training loss in deep networks on average catapults at much
larger learning rates than c = 2. Fig. 2(d, e) shows that for a deep (d = 10, w = 128) CNN, the
loss and sharpness may catapult only near the maximum trainable learning rate. In this section, we
characterize the properties of the early training dynamics of models with MSE loss. In Appendix F,
we show that a similar picture emerges for cross-entropy loss, despite the dynamics being noisier.

2.1 Loss and sharpness catapult during early training

In this subsection, we characterize the effect of finite depth and width on the onset of the loss and
sharpness catapult and training divergence. We begin by defining critical constants that correspond to
the above phenomena.

Definition 1. (closs, csharp, cmax) For learning rate η = c/λH
0 , let the training loss and sharpness at

step t be denoted by Lt(c) and λH
t (c). We define closs(csharp) as minimum learning rates constants

4
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Figure 3: Phase diagrams of early training of neural networks trained with MSE loss using SGD.
Panels (a-c) show phase diagrams with width: (a) FCNs (d = 8) trained on the MNIST dataset, (b)
CNNs (d = 7) trained on the Fashion-MNIST dataset, (c) ResNet (d = 18) trained on the CIFAR-10
(without batch normalization). Panels (d-f) show phase diagrams with depth: FCNs trained on the
Fashion-MNIST dataset for different widths. Each data point in the figure represents an average of ten
distinct initializations, and the solid lines represent a smooth curve fitted to the raw data points. The
vertical dotted line shows c = 2 for comparison, and various colors are filled in between the various
curves for better visualization. For experimental details and additional results, see Appendices A and
C, respectively. The phase diagram of early training of FCNs with depth for three different widths
trained on Fashion-MNIST with MSE loss using SGD.

such that the loss (sharpness) increases during the initial transient period:

closs = min
c

{c | max
t∈[1,T1]

Lt(c) > L0(c)}, csharp = min
c

{c | max
t∈[1,T1]

λH
t (c) > λH

0 (c)},

and cmax as the maximum learning rate constant such that the loss does not diverge during the initial
transient period: cmax = maxc{c | Lt(c) < K,∀t ∈ [1, T1]}, where K is a fixed large constant.5.

Note that the definition of cmax allows for more flexibility than previous studies [33] in order to
investigate a wider range of phenomena occurring near the maximum learning rate. Here, closs,
csharp, and cmax are random variables that depend on the random initialization and the SGD batch
sequence, and we denote the average over this randomness using ⟨·⟩.
Fig. 3(a-c) illustrates the phase diagram of early training for three different architectures trained on
various datasets with MSE loss using SGD. These phase diagrams show how the averaged values
⟨closs⟩, ⟨csharp⟩, and ⟨cmax⟩ are affected by width. The results show that the averaged values of all
the critical constants increase significantly with 1/w (note the log scale). At large widths, the loss
starts to catapult at c ≈ 2. As 1/w increases, ⟨closs⟩ increases and eventually converges to ⟨cmax⟩ at
large 1/w. By comparison, sharpness starts to catapult at relatively large learning rates at small 1/w,
with ⟨csharp⟩ continuing to increase with 1/w while remaining between ⟨closs⟩ and ⟨cmax⟩. Similar
results are observed for different depths as demonstrated in Appendix C. Phase diagrams obtained
by varying d are qualitatively similar to those obtained by varying 1/w, as shown in Figure 3(d-f).
Comparatively, we observe that ⟨cmax⟩ may increase or decrease with 1/w in different settings while
consistently increasing with d, as shown in Appendices F and H.

5We use K = 105 to estimate cmax In all our experiments, L0 = O(1) (see Appendix A), which justifies
the use of a fixed value.
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Figure 4: The relationship between critical constants for (a) FCNs, (b) CNNs, and (c) ResNets.
Each data point corresponds to a run with varying depth, width, and initialization. The dashed line
represents the y = x line.

While we plotted the averaged quantities ⟨closs⟩, ⟨csharp⟩, ⟨cmax⟩, we have observed that their
variance also increases significantly with d and 1/w; in Appendix C we show standard deviations
about the averages for different random initializations. Nevertheless, we have found that the inequality
closs ≤ csharp ≤ cmax typically holds, for any given initialization and batch sequences, except for
some outliers due to high fluctuations when the averaged critical curves start merging at large d and
1/w. Fig. 4 shows evidence of this claim. The setup is the same as in Fig. 3. Appendix D presents
extensive additional results across various architectures and datasets.

In Appendix F, we show that cross-entropy loss shows similar results with some notable differences.
The loss catapults at a relatively higher value ⟨closs⟩ ≳ 4 and ⟨cmax⟩ consistently decreases with 1/w,
while still satisfying closs ≤ csharp ≤ cmax.

2.2 Loss connectivity in the early transient period

In the previous subsection, we observed that training loss and sharpness might quickly increase
before decreasing (“catapult") during early training for a range of depths and widths. A logical next
step is to analyze the region in the loss landscape that the training reaches after the catapult. Several
works have analyzed loss connectivity along the training trajectory [21, 51, 64]. Ref. [51] report
that training traverses a barrier at large learning rates, aligning with the naive intuition of a barrier
between the initial and final points of the loss catapult, as the loss increases during early training. In
this section, we will test the credibility of this intuition in real-world models. Specifically, we linearly
interpolate the loss between the initial and final point after the catapult and examine the effect of the
learning rate, depth, and width. The linearly interpolated loss and barrier are defined as follows.
Definition 2. (Lint(s, c), U(c)) Let θ0 represent the initial set of parameters, and let θT1 represent
the set of parameters at the end of the initial transient period, trained using a learning rate constant c.
Then, we define the linearly interpolated loss as Lint(s, c) = L[(1− s) θ0 + s θT1

], where s ∈ [0, 1]
is the interpolation parameter. The interpolated loss barrier is defined as the maximum value of the
interpolated loss over the range of s: U(c) = maxs∈[0,1] Lint(s)− L(θ0).

Here we subtracted the loss’s initial value such that a positive value indicates a barrier to the final
point from initialization. Using the interpolated loss barrier, we define cbarrier as follows.
Definition 3. (cbarrier) Given the initial (θ0) and final parameters (θT1), we define cbarrier as
the minimum learning rate constant such that there exists a barrier from θ0 to θT1: cbarrier =
minc{c | U(c) > 0}.

Here, cbarrier is also a random variable that depends on the initialization and SGD batch sequence.
We denote the average over this randomness using ⟨.⟩ as before. Fig. 2(c, f) shows the interpolated
loss of CNNs trained on the CIFAR-10 dataset for t = 10 steps. The experimental setup is the same
as in Section 2. For the network with larger width, we observe a barrier emerging at cbarrier = 5.65,
while the loss starts to catapult at closs = 2.83. In comparison, we do not observe any barrier from
initialization to the final point at large d and 1/w. Fig. 3 shows the relationship between ⟨cbarrier⟩ and
1/w for various models and datasets. We consistently observe that csharp ≤ cbarrier, suggesting that
training traverses a barrier only when sharpness starts to catapult during early training. Similar results
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Figure 5: (a) Normalized sharpness measured at cτ = 200 against the learning rate constant for 7-
layer CNNs trained on the CIFAR-10 dataset, with varying widths. Each data point is an average over
5 initializations, where the shaded region depicts the standard deviation around the mean trend. (b, c)
Smooth estimations of the first two derivatives, χτ and χ′

τ , of the averaged normalized sharpness wrt
the learning rate constant. The vertical lines denote ccrit estimated using the maximum of χ′

τ . For
smoothening details, see Appendix I.2.

were observed on increasing d instead of 1/w as shown in Appendix C. We chose not to characterize the
phase diagram of early training using cbarrier as we did for other critical c’s, as it is somewhat different
in character than the other critical constants, which depend only on the sharpness and loss trajectories.

These observations call into question the intuition of catapulting out of a basin for a range of learning
rates in between closs < c < cbarrier. These results show that for these learning rates, the final point
after the catapult already lies in the same basin as initialization, and even connected through a linear
path, revealing an inductive bias of the training process towards regions of higher loss during the
early time transient regime.

3 Intermediate saturation regime

In the intermediate saturation regime, sharpness does not change appreciably and reflects the cumula-
tive change that occurred during the initial transient period. This section analyzes sharpness in the in-
termediate saturation regime by studying how it changes with the learning rate, depth, and width of the
model. Here, we show results for MSE loss, whereas cross-entropy results are shown in Appendix F.

We measure the sharpness λH
τ at a time τ in the middle of the intermediate saturation regime. We

choose τ so that cτ ≈ 200.6 For further details on sharpness measurement, see Appendix I.1. Fig.
5(a) illustrates the relationship between λH

τ and the learning rate for 7-layer deep CNNs trained
on the CIFAR-10 dataset with varying widths. The results indicate that the dependence of λH

τ on
learning rate can be grouped into three distinct stages. (1) At small learning rates, λH

τ remains
relatively constant, with fluctuations increasing as d and 1/w increase (c < 2 in Fig. 5(a)). (2) A
crossover regime where λH

τ is dropping significantly (2 < c < 23 in Fig. 5(a)). (3) A saturation
stage where λH

τ stays small and constant with learning rate (c > 23) in Fig. 5(a)). In Appendix I, we
show that these results are consistent across architectures and datasets for varying values of d and
w. Additionally, the results reveal that in stage (1), where c < 2 is sub-critical, λH

τ decreases with
increasing d and 1/w. In other words, for small c and in the intermediate saturation regime, the loss is
locally flatter as d and 1/w increase.

We can precisely extract a critical value of c that separates stages (1) and (2), which corresponds to
the onset of an abrupt reduction of sharpness λH

τ . To do this, we consider the averaged normalized
sharpness over initializations and denote it by ⟨λH

τ /λH
0 ⟩. The first two derivatives of the averaged

normalized sharpness, χτ = − ∂
∂c ⟨λ

H
τ /λH

0 ⟩ and χ′
τ = − ∂2

∂c2 ⟨λ
H
τ /λH

0 ⟩, characterize the change in
sharpness with learning rate. The extrema of χ′

τ quantitatively define the boundaries between the
three stages described above. In particular, using the maximum of χ′

τ , we define ⟨ccrit⟩, which marks
the beginning of the sharp decrease in λH

τ with the learning rate.

6time-step τ = 200/c is in the middle of regime (ii) for the models studied. Normalizing by c allows proper
comparison for different learning rates.
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Figure 6: Phase diagrams of d = 8 layer FCNs trained on the CIFAR-10 dataset using MSE,
demonstrating the effect of output scale at initialization: (a) vanilla network, (b) centered network,
and (c) network initialized with the last layer set to zero.

Definition 4. (⟨ccrit⟩) Given the averaged normalized sharpness ⟨λH
τ /λH

0 ⟩ measured at τ , we define
ccrit to be the learning rate constant that minimizes its second derivative: ⟨ccrit⟩ = argmaxc χ

′
τ .

Here, we use ⟨.⟩ to denote that the critical constant is obtained from the averaged normalized
sharpness. Fig. 5(b, c) show χτ and χ′

τ obtained from the results in Fig. 5(a). We observe similar
results across various architectures and datasets, as shown in Appendix I. Our results show that
⟨ccrit⟩ has slight fluctuations as d and 1/w are changed but generally stay in the vicinity of c = 2.
The peak in χ′

τ becomes wider as d and 1/w increase, indicating that the transition between stages (1)
and (2) becomes smoother, presumably due to larger fluctuations in the properties of the Hessian H
at initialization. In contrast to ⟨ccrit⟩, ⟨closs⟩ increase with d and 1/w, implying the opening of the
sharpness reduction phase ⟨ccrit⟩ < c < ⟨closs⟩ as d and 1/w increase. In Appendix F, we show that
cross-entropy loss shows qualitatively similar results, but with 2 ≲ ⟨ccrit⟩ ≲ 4.

4 Effect of network output at initialization on early training

Here we discuss the effect of network output f(x; θt) at initialization on the early training dynamics.
x is the input and θt denotes the set of parameters at time t. We consider setting the network
output to zero at initialization, f(x; θ0) = 0, by either (1) considering the “centered" network:
fc(x; θ) = f(x; θ)− f(x; θ0), or (2) setting the last layer weights to zero at initialization (for details,
see Appendix G). Remarkably, both (1) and (2) remove the opening up of the sharpness reduction
phase with 1/w as shown in Figure 6. The average onset of the loss catapult, diagnosed by ⟨closs⟩,
becomes independent of 1/w and d.

We also empirically study the impact of the output scale [19, 5, 4] on early training dynamics. Given
a network function f(x; θ), we define the scaled network as fs(x; θ) = αf(x; θ), where α is a scalar,
fixed throughout training. In Appendix H, we show that a large (resp. small) value of ∥f(x; θ0)∥
relative to the one-hot encodings of the labels causes the sharpness to decrease (resp. increase) during
early training. Interestingly, we still observe an increase in ⟨closs⟩ with d and 1/w, unlike the case of
initializing network output to zero, highlighting the unique impact of output scale on the dynamics.

5 Insights from a simple model

Here we analyze a two-layer linear network [56, 60, 49], the uv model, which shows much of the
phenomena presented above. Define f(x) = 1√

w
vTux, with x, f(x) ∈ R. Here, u, v ∈ Rw are the

trainable parameters, initialized using the normal distribution, ui, vi ∼ N (0, 1) for i ∈ {1, . . . , w}.
The model is trained with MSE loss on a single training example (x, y) = (1, 0), which simplifies
the loss to L(u, v) = f2/2, and which was also considered in Ref. [49]. Our choice of y = 0 is
motivated by the results of Sec. 4, which suggest that the empirical results of Sec. 2 are intimately
related to the model having a large initial output scale ∥f(x; θ0)∥ relative to the output labels. We
minimize the loss using gradient descent (GD) with learning rate η. The early time phase diagram
also shows similar features to those described in preceding sections (compare Fig. 7(a) and Fig. 3).
Below we develop an understanding of this early time phase diagram in the uv model.
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Figure 7: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)
the top eigenvalue of Hessian λH

t , (b) the trace of Hessian tr(Ht) and (c) the square of the Frobenius
norm tr(HT

t Ht) used as a measure of sharpness. In (a), the learning rate is scaled as η = c/λH
0 ,

while in (b) and (c), the learning rate is scaled as η = k/tr(H0). The vertical dashed line shows c = 2
(k = 2) for reference. Each data point is an average over 500 random initializations.

The update equations of the uv model in function space can be written in terms of the trace of the
Hessian tr(H)

ft+1 = ft

(
1− η tr(Ht) +

η2f2
t

w

)
, tr(Ht+1) = tr(Ht) +

ηf2
t

w
(η tr(Ht)− 4) . (1)

From the above equations, it is natural to scale the learning rate as η = k/tr(H0). Note that c =
ηλH

0 = kλH
0 /tr(H0). Also, we denote the critical constants in this scaling as kloss, ktrace, kmax

and kcrit, where the definitions follow from Definitions 1 and 4 on replacing sharpness with trace
and use ⟨.⟩ to denote an average over initialization. Figure 7(b) shows the phase diagram of early
training, with tr(Ht) replaced with λH

t as the measure of sharpness and with the learning rate scaled
as η = k/tr(H0). Similar to Figure 7(a), we observe a new phase ⟨kcrit⟩ < k < ⟨kloss⟩ opening up
at small width. However, we do not observe the loss-sharpness catapult phase as tr(H) does not
increase during training (see Equation 1). We also observe ⟨kmax⟩ = 4, independent of width.

In Appendix B.3, we show that the critical value of k for which ⟨L1/L0⟩ > 1 increases with 1/w,
which explains why ⟨kloss⟩ increases with 1/w. Combined with ⟨kcrit⟩ ≈ 2, this implies the opening
up of the sharpness reduction phase as w is decreased.

To understand the loss-sharpness catapult phase, we require some other measure as tr(H) does not
increase for 0 < k < 4. As λH

t is difficult to analyze, we consider the Frobenius norm ∥H∥F =√
tr(HTH) as a proxy for sharpness. We define kfrob as the minimum learning rate such that

||Ht||2F increases during early training. Figure 7(c) shows the phase diagram of the uv model, with
||Ht||2F as the measure of sharpness, while the learning rate is scaled as η = k/tr(H0). We observe
the loss-sharpness catapult phase at small widths. In Appendix B.4, we show that the critical value
of k for which

〈
||H1||2F − ||H0||2F

〉
> 0 increases from ⟨kloss⟩ as 1/w increases. This explains the

opening up of the loss catapult phase at small w in Fig. 7 (c).

Fig. 8 shows the training trajectories of the uv model with large (w = 512) and small (w = 2) widths
in a two-dimensional slice of parameters defined by tr(H) and weight correlation ⟨v,u⟩/||u||||v||. The
above figure reveals that the first few training steps of the small-width network take the system in
a flatter direction (as measured by tr(H)) as compared to the wider network. This means that the
small-width network needs a relatively larger learning rate to get to a point of increased loss (loss
catapult). We thus have the opening up of a new regime ⟨kcrit⟩ < k < ⟨kloss⟩, in which the loss and
sharpness monotonically decrease during early training.

The loss landscape of the uv model shown in Fig. 8 reveals interesting insights into the loss landscape
connectivity results in Section 2.2 and the presence of cbarrier. Fig. 8 shows how even when there is a
loss catapult, as long as the learning rate is not too large, the final point after the catapult can be reached
from initialization by a linear path without increasing the loss and passing through a barrier. However
if the learning rate becomes large enough, then the final point after the catapult may correspond to a
region of large weight correlation, and there will be a barrier in the loss upon linear interpolation.

The uv model trained on an example (x, y) with y ̸= 0 provides insights into the effect of network
output at initialization observed in Section 4. In Appendix G, we show that setting f0 = 0 and
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Figure 8: Training trajectories of the uv model trained on (x, y) = (1, 0), with (a, b) large and (c, d)
small width, in a two-dimensional slice of the parameters defined by the trace of Hessian tr(H) and
weight correlation, trained with (a, c) small (c = 0.5) and (b, d) large (c = 2.5) learning rates. The
colors correspond to the training loss L, with darker colors representing a smaller loss.

y ̸= 0 in the dynamical equations results in loss catapult at k = 2, implying ⟨kloss⟩ ≈ ⟨kcrit⟩ ≈ 2,
irrespective of w.

6 Discussion

We have studied the effect of learning rate, depth, and width on the early training dynamics in DNNs
trained using SGD with learning rate scaled as η = c/λH

0 . We analyzed the early transient and
intermediate saturation regimes and presented a rich phase diagram of early training with learning
rate, depth, and width. We report two new phases, sharpness reduction and loss-sharpness catapult,
which have not been reported previously. Furthermore, we empirically investigated the underlying
cause of sharpness reduction during early training. Our findings show that setting the network output
to zero at initialization effectively leads to the vanishing of sharpness reduction phase at supercritical
learning rates. We further studied loss connectivity in the early transient regime and demonstrated the
existence of a regime ⟨closs⟩ < c < ⟨cbarrier⟩, in which the final point after the catapult lies in the
same basin as initialization, connected through a linear path. Finally, we study these phenomena in a
2-layer linear network (uv model), gaining insights into the opening of the sharpness reduction phase.

We performed a preliminary analysis on the effect of batch size on the presented results in Appendix J.
The sharpness trajectories of models trained with a smaller batch size (B = 32 vs. B = 512) show
similar early training dynamics. In the early transient regime, we observe a qualitatively similar phase
diagram. In the intermediate saturation regime, the effect of reducing the batch size is to broaden the
transition around ccrit.

In Section 2, we noted that for cross-entropy loss, the loss starts to catapult around c ≈ 4 at large
widths, as compared to closs = 2 for MSE loss. Previous work, such as [50], analyzed the catapult
dynamics for the uv model with logistic loss and demonstrated that the loss catapult occurs above
ηloss = 4/λNTK

0 . We summarize the main intuition about their analysis in Appendix B.9. However,
a complete understanding of the catapult phenomenon in the context of cross-entropy loss requires a
more detailed examination.

The early training dynamics is sensitive to the initialization scheme and optimization algorithm used,
and we leave it to future work to explore this dependence and its implications. In this work, we focused
on models initialized at criticality [55] as it allows for proper gradient flow through ReLU networks
at initialization [23, 58], and studied vanilla SGD for simplicity. However, other initializations
[46], parameterizations [69, 70], and optimization procedures [22] may show dissimilarities with the
reported phase diagram of early training.
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A Experimental details

Datasets: We considered the MNIST [10], Fashion-MNIST [67], and CIFAR-10 [44] datasets. We
standardized the images and used one-hot encoding for the labels.

Models: We considered fully connected networks (FCNs), Myrtle family CNNs [61] and ResNets
(version 1) [29] trained using the JAX [7], and Flax libraries [30]. We use d and w to denote the
depth and width of the network. Below, we provide additional details of the models and clarify what
width corresponds to for CNNs and ResNets.

1. FCNs: We considered ReLU FCNs with constant width w in Neural Tangent Parameteriza-
tion (NTP) / Standard Parameterization (SP), initialized at criticality [55]. The models do
not include bias or normalization. The forward pass of the pre-activations from layer l to
l + 1 is given by

hl+1
i = γl

w∑

j

W l
ijϕ(h

l
j), (2)

where ϕ(.) is the ReLU activation and γl is a constant. For NTP, γl = 2/
√
w and the weights

W l are initialized using normal distribution, i.e., W l
ij ∼ N (0, 1). For SP, γl = 1 and the

weights W l are initialized as W l
ij ∼ N (0, 2/w). For the last layer, we have γL = 1/

√
w for

NTP and WL
ij ∼ N (0, 1/w) for SP.

For d/w ≳ 1/16, the dynamics is noisier, and it becomes challenging to separate the underly-
ing deterministic dynamics from random fluctuations (see Appendix E).

2. CNNs: We considered Myrtle family ReLU CNNs [61] without any bias or normalization
in Standard Parameterization (SP), initialized using He initialization [29]. The above model
uses a fixed number of channels in each layer, which we refer to as the width of the network.
In this case, the forward pass equations for the pre-activations from layer l to layer l + 1 are
given by

hl+1
i (α) =

w∑

j

∑

β∈ker

W l+1
ij (β)ϕ(hl

i(α+ β)), (3)

where α, β label the spacial location. The weights are initialized as W l
ij(β) ∼ N (0, 2/k2w),

where k is the filter size.
3. ResNets: We considered version 1 ResNet [29] implementations from Flax examples

without Batch Norm or regularization. For ResNets, width corresponds to the number of
channels in the first block. For example, the standard ResNet-18 has four blocks with widths
[w, 2w, 4w, 8w], with w = 64. We refer to w as the width or the widening factor. We
considered ResNet-18 and ResNet-34.

All the models are trained with the average loss over the batch DB = {(xµ, yµ)}Bµ=1, i.e.,
L(x, yDB

) = 1/B
∑B

µ=1 ℓ(xµ, yµ), where ℓ(.) is the loss function. This normalization, along with
initialization, ensures that the loss is O(1) at initialization.

Bias: Throughout this work, we have primarily focused on models without any bias for simplicity. In
Appendix K, we demonstrate that bias does not have an appreciable impact on the results.

Batch size: We use a batch size of 512 and scale the learning rate as η = c/λH
0 in all our experiments,

unless specified. Appendix J shows results for a smaller batch size B = 32.

Learning rate: We scale the learning rate constant as c = 2x, with x ∈ {−1.0, . . . xmax} in steps of
0.1. Here, xmax is related to the maximum learning rate constant as cmax = 2xmax .

Sharpness measurement: We measure sharpness using the power iteration method with 20 iterations.
We found that 20 iterations suffice both for MSE and cross-entropy loss. For MSE loss, we use m =
2048 randomly selected training examples for evaluating sharpness at each step. In comparison, we
found that cross-entropy requires a large number of training examples to obtain a good approximation

16

https://github.com/google/flax/blob/main/examples/imagenet/models.py


of sharpness. Given the computational constraints, we use 4096 training examples to approximate
sharpness for cross-entropy loss.

Averages over initialization and SGD runs: All the critical constants depend on both the random
initializations and the SGD runs. In our experiments, we found that the fluctuations from initial-
ization at large d/w outweigh the randomness coming from different SGD runs. Thus, we focus on
initialization averages in all our experiments.

A.1 Compute usage

We utilized different computational resources depending on the task complexity. For less demanding
tasks, we performed computation for a total of 2800 hours, utilizing a seventh of an NVIDIA A100
GPU. For more computationally intensive tasks, we utilized a full NVIDIA A100 GPU for a total
300 hours.

A.2 Reproducibility

The main results of this paper can be reproduced using the associated GitHub reposi-
tory:https://github.com/dayal-kalra/early-training.

A.3 Details of Figures in the main text:

Figure 1: A shallow CNN (d = 5, w = 128) in SP trained on the CIFAR-10 dataset with MSE
loss for 1000 epochs using SGD with learning rates η = c/λH

0 and batch size B = 512. We measure
sharpness at every step for the first epoch, every epoch between 10 and 100 epochs, and every 10
epochs beyond 100.

Figure 2: (top panel) A wide (d = 5, w = 512) and (bottom panel) a deep CNN (d = 10, w = 128)
in SP trained on the CIFAR-10 dataset with MSE loss for t = 10 steps using vanilla SGD with
learning rates η = c/λH

0 and batch size B = 512.

Figure 3: Phase diagrams of early training of neural networks trained with MSE loss using SGD.
Panels (a-c) show phase diagrams with width: (a) FCNs (d = 8) trained on the MNIST dataset, (b)
CNNs (d = 7) trained on the Fashion-MNIST dataset, (c) ResNet (d = 18) trained on the CIFAR-10
(without batch normalization). Panels (d-f) show phase diagrams with depth: FCNs trained on the
Fashion-MNIST dataset for different widths. Each data point in the figure represents an average of
ten distinct initializations, and the solid lines represent a two-degree polynomial y = a+ bx+ cx2

fitted to the raw data points. Here, where x = 1/w, and y can take on one of three values: closs, csharp
and cmax.

Figure 4: (a) FCNs in SP with d ∈ {4, 8, 16} and w ∈ {256, 512, 1024, 2048}trained on the MNIST
dataset, (b) CNNs in SP with d ∈ {5, 7, 10} and w ∈ {64, 128, 256, 512} trained on the Fashion-
MNIST dataset, (c) ResNet in SP with d ∈ {18, 34} and w ∈ {32, 64, 128} trained on the CIFAR-10
dataset (without batch normalization).

Figure 6: Phase diagrams of d = 8 layer FCNs trained on the CIFAR-10 dataset using MSE,
demonstrating the effect of output scale at initialization: (a) vanilla network, (b) centered network, and
(c) network initialized with the last layer set to zero. The values of widths are the same as in Figure 3.

Figure 5: Normalized sharpness measured at cτ = 200 against the learning rate constant for 7-layer
CNNs in SP trained on the CIFAR-10 dataset, with w ∈ {128, 256, 512}. Each data point is an
average over five random initialization. Smoothening details are provided in Appendix I.2.

Figure 7: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)
the top eigenvalue of Hessian λH

t , (b) the trace of Hessian tr(Ht) and (c) the square of the Frobenius
norm tr(HT

t Ht) used as a measure of sharpness. In (a), the learning rate is scaled as η = c/λH
0 ,

while in (b) and (c), the learning rate is scaled as η = k/tr(H0). The vertical dashed line shows c = 2
(k = 2) for reference. Each data point is an average over 500 random initializations.

Figure 8: Training trajectories of the uv model with (a, b) large (w = 512) and (c, d) small (w = 2)
width, trained for t = 10 training steps on a single example (x, y) = (1, 0) with MSE loss using
vanilla gradient descent with learning rates (a, c) c = 0.5 and (b, d) c = 2.50.
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Figure 9: Training trajectories of the uv model with (a) large (w = 512) and (v) a small (w = 2)
widths trained for t = 10 training steps on a single example (x, y) = (1, 0). For the wide network,
closs = 2.1, csharp = 2.6, cmax = 4.0, and for the narrow network, closs = 3.74, csharp = 4.63,
cmax = 4.93.

B Additional results for the uv model

B.1 Details of the model

Consider a two-layer linear network in (NTP) with unit input-output dimensions

f(x) =
1√
w
vTux, (4)

where x, f(x) ∈ R. Here, u, v ∈ Rw are trainable parameters, with each element initialized using
the normal distribution, ui, vi ∼ N (0, 1) for i ∈ {1, . . . , w}. The model is trained using MSE loss
on a single training example (x, y) = (1, 0), which simplifies the loss to

L(u, v) = 1

2
f2. (5)

The trace of the Hessian tr(H) has a simple expression in terms of the norms of the weight vectors

tr(H) =
x2

w

(
∥u∥2 + ∥v∥2

)
, (6)

which is equivalent to the NTK for this model. The Frobenius norm of the Hessian ∥H∥F can be
written in terms of the loss L and tr(H)

∥H∥2F = tr(H)2 + 2f2

(
1 +

2

w

)
= tr(H)2 + 4L

(
1 +

2

w

)
(7)

The gradient descent updates of the model trained using MSE loss on a single training example
(x, y) = (1, 0) are given by
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Figure 10: (a) Normalized sharpness measured at τ = 100 steps against the learning rate constant for
the uv model trained on (x, y) = (1, 0), with varying widths. Each data point is an average of over
500 initializations, where the shaded region depicts the standard deviation around the mean trend. (b,
c) Smooth estimations of the first two derivatives, χτ and χ′

τ , of the, averaged normalized sharpness
wrt the learning rate constant. The vertical dashed lines denote ccrit estimated for each width, using
the maximum of χ′

τ . Here, we have removed the points beyond c = 3.5 for the calculation of
derivatives to avoid large fluctuations near the divergent phase. Smoothening details are described in
Appendix I.2.

vt+1 = vt − ηft
1√
w
utx (8)

ut+1 = ut − ηft
1√
w
vtx (9)

The update equations in function space can be written in terms of the trace of the Hessian tr(H).

ft+1 = ft

(
1− η tr(Ht) +

η2f2
t

w

)

tr(Ht+1) = tr(Ht) +
ηf2

t

w
(η tr(Ht)− 4) .

(10)

Figure 9 shows the training trajectories of the uv model trained on (x, y) = (1, 0) using MSE loss
for 10 training steps. The model shows similar dynamics to those presented in Section 2. It is worth
mentioning that the above equations have been analyzed in [49] at large width. In the following
subsections, we extend their analysis by incorporating the higher-order terms to analyze the effect of
finite width.

B.2 The intermediate saturation regime

The uv model trained on (x, y) = (1, 0) does not show the progressive sharpening and late-time
regimes (iii) and (iv) described in Section 1. Hence, we can measure sharpness at the end of training
to analyze how it is reduced upon increasing the learning rate and to compare it with the intermediate
saturation regime results in Section 3.

Figure 10(a) shows the normalized sharpness measured at τ = 100 steps for various widths. This
behavior reproduces the results observed in the intermediate saturation regime in Section 3. In
particular, we can see stages (1) and (2), where λH

τ /λH
0 starts off fairly independent of learning rate

constant c, and then dramatically reduces when c > 2; stage (3), where λH
τ /λH

0 plateaus at a small
value as a function of c is too close to the divergent phase in this model to be clearly observed. The
corresponding derivatives of the averaged normalized sharpness, χτ , and χ′

τ , are shown in Figure
10(b, c). The vertical dashed lines denote ccrit estimated for each width, using the maximum of χ′

τ .
We observe that ccrit = 2 for all widths.
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Figure 11: (a, b) The averaged loss at the first step ⟨L1/L0⟩ against the learning rate constant k for
varying widths obtained from (a) inequality 16 and (b) numerical experiments. The intersection of
⟨L1/L0⟩ with the horizontal line y = 1 depicts kloss. The two vertical lines k = 2 and k = 4 mark the
endpoints of kloss at small and large widths. The shaded region in (b) shows the standard deviation
around the mean trend. (c) The scaling of λH

0 and tr(H0) with width.

B.3 Opening of the sharpness reduction phase in the uv model

This section shows that O(1/w) terms in Equation (10) effectively lead to the opening of the sharpness
reduction phase with 1/w in the uv model. In Appendix B.2, we demonstrated that for the uv model,
ccrit = 2 for all values of widths. Hence, it suffices to show that closs increases from the value 2
as 1/w increases. We do so by finding the smallest k such that the averaged loss over initializations
increases during early training.

It follows from Equation 10 that the averaged loss increases in the first training step if the following
holds

〈L1

L0

〉
=

〈(
1− η tr(H0) +

η2f2
0

w

)2
〉

> 1, (11)

where ⟨.⟩ denotes the average over initializations. On scaling the learning rate with trace as η =
k/tr(H0), we have

〈L1

L0

〉
=

〈(
1− k +

k2

w

f2
0

tr(H0)2

)〉
> 1 (12)

〈L1

L0

〉
=

(
(1− k)2 + 2(1− k)

k2

w

〈
f2
0

tr(H0)2

〉
+

k4

w2

〈
f4
0

tr(H0)4

〉)
> 1. (13)

The required two averages have the following expressions as shown in Appendix B.8.

〈
f2
0

Tr(H0)2

〉
=

w

4(w + 1)
(14)

〈
f4
0

Tr(H0)4

〉
=

3(w + 2)w3

16

Γ(w)

Γ(w + 4)
. (15)

Inserting the above expressions in Equation 13, on average the loss increases in the very first step if
the following inequality holds

〈L1

L0

〉
=

(
(1− k)2 +

k2(1− k)

2(w + 1)
+

3k4

16(w + 3)(w + 1)

)
> 1 (16)
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The graphical representation of the above inequality shown in Figure 11(a) is in excellent agreement
with the experimental results presented in Figure 11(b).

Let us denote k′loss as the minimum learning rate constant such that the average loss increases in the
first step. Similarly, let kloss denote the learning rate constant if the loss increases in the first 10 steps.
Then, k′loss increases from the value 2 as 1/w increases as shown in Figure 11(a). By comparison, the
trace reduces at any step if η tr(Ht) < 4. At initialization, this condition becomes k < 4. Hence, for
k < k′loss, both the loss and trace monotonically decrease in the first training step. These arguments
can be extended to later training steps, revealing that the loss and trace will continue to decrease for
k < k′loss.

Next, let ηloss denote the learning rate corresponding to closs. Then, we have ηloss = closs
λH
0

= kloss

tr(H0)
,

implying

closs = kloss
λH
0

tr(H0)
. (17)

Figure 11(c) shows that λH
0 ≥ tr(H0) for all widths, implying closs ≥ kloss. Hence, closs increases

with 1/w as observed in Figure 7(a). In Appendix B.2, we demonstrated that for the uv model,
ccrit = 2 for all values of widths. Incorporating this with closs increases with 1/w, we have sharpness
reduction phase opening up as 1/w increases.

B.4 Opening of the loss catapult phase at finite width

In this section, we use the Frobenius norm of the Hessian ∥H∥F as a proxy for the sharpness and
demonstrate the emergence of the loss-sharpness catapult phase at finite width. In particular, We
analyze the expectation value ⟨tr(HTH)⟩ after the first training step near k = kloss and show that
kloss ≤ kfrob, with the difference increasing with 1/w. First, we write tr(HT

t Ht) in terms of Lt and
tr(Ht)

tr(HT
t Ht) = tr(Ht)

2 + 4

(
1 +

2

w

)
Lt. (18)

Next, using Equations 1, we write down the change in tr(HT
t Ht) after the first training step in terms

of tr(H0) and L0

∆tr(HT
1 H1) = tr(HT

1 H
T
1 )− tr(HT

0 H0) = tr(H1)
2 − tr(H0)

2 + 4

(
1 +

2

w

)
(L1 − L0)

∆ tr(HT
1 H1) =

ηf2
0

w
(η tr(H0)− 4)

[
ηf2

0

w
(η tr(H0)− 4) + 2 tr(H0)

]
+ 4

(
1 +

2

w

)
(L1 − L0)

(19)

Next, we substitute η = k/ tr(H0) to obtain the above equation as a function of k

∆tr(HT
1 H1) =

k(k − 4)

w

[
k(k − 4)

w

f4
0

tr(H0)2
+ 2f2

0

]
+ 4

(
1 +

2

w

)
(L1 − L0)

(20)

Finally, we calculate the expectation value of ⟨∆tr(HT
1 H1)⟩

〈
∆tr(HT

1 H1)
〉
=

k(k − 4)

w

[
k(k − 4)

w

〈
f4
0

tr(H0)2

〉
+ 2⟨f2

0 ⟩
]
+ 4

(
1 +

2

w

)
⟨L1 − L0⟩,

(21)
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Figure 12: The relationship between the critical constants for the uv model trained on a single training
examples (x, y) = (1, 0) with MSE loss using gradient descent. Each data point corresponds to a
random initialization

by estimating
〈

f4
0

tr(H0)2

〉
using the approach demonstrated in the previous section

〈
f4
0

tr(H0)2

〉
=

3w

4(w + 3)
. (22)

Inserting
〈

f4
0

tr(H0)2

〉
in Equation 21 along with ⟨f2

0 ⟩ = 1, we have

〈
∆tr(HT

1 H1)
〉
=

k(k − 4)

w

[
3k(k − 4)

4(w + 3)
+ 2

]

︸ ︷︷ ︸
I(k,w)

+4

(
1 +

2

w

)
⟨L1 − L0⟩ (23)

At infinite width, the above equation reduces to
〈
∆tr(HT

1 H1)
〉
= 4 ⟨L1 − L0⟩, and hence, kfrob =

kloss. For any finite width, I(k,w) < 0 for 0 < k < 4. At k ≤ kloss, L1 − L0 ≤ 0, and therefore〈
∆tr(HT

1 H1)
〉
< 0. In order for the sharpness to catapult, we require

〈
∆tr(HT

1 H1)
〉
> 0 and

therefore kfrob > kloss. As 1/w increases |I(k,w)| also increases, which means a higher value of
L1 − L0 is required to reach a point where

〈
∆tr(HT

1 H1)
〉
≥ 0. Thus kfrob − kloss increases with

1/w.

B.5 The early training trajectories

Figure 9 shows the early training trajectories of the uv model with large (w = 512) and small (w = 2)
widths. The dynamics depicted show several similarities with early training dynamics of real-world
models shown in Figure 2. At small widths, the loss catapults at relatively higher learning rates
(specifically, at closs = 3.74, which is significantly higher than the critical value of ccrit = 2).

B.6 Relationship between critical constants

Figure 12 shows the relationship between various critical constants for the uv model. The data show
that the inequality closs ≤ csharp ≤ cmax holds for every random initialization of the uv model.

B.7 Phase diagrams with error bars

This section shows the variation in the phase diagram boundaries of the uv model shown in Figure 7(a,
b). Figure 13 shows these phase diagrams. Each data point is an average of over 500 initializations.
The horizontal bars around each data point indicate the region between 25% and 75% quantile.

B.8 Derivation of the expectation values

Here, we provide the detailed derivation of the averages
〈

f2
0

Tr(H0)2

〉
and

〈
f4
0

Tr(H0)4

〉
. We begin by

finding the average
〈

f2
0

Tr(H0)2

〉
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Figure 13: The phase diagram of the uv model trained with MSE loss using gradient descent with (a)
sharpness λH

t (b) trace of Hessian trH0 and (c) the square of the Frobenius norm tr(HT
t Ht) used as a

measure of sharpness. In (a), the learning rate is scaled as η = c/λH
0 , while in (b) and (c), the learning

rate is scaled as η = k/tr(H0). Each data point denotes an average of over 500 initialization, and the
smooth curve represents a 2-degree polynomial fitted to the raw data. The horizontal bars around the
average data point indicate the region between 25% and 75% quantile.

〈
f2
0

Tr(H0)2

〉
= w

∫ ∞

−∞

w∏

i=1

(
dvidui

2π

)
exp

(
−∥u∥2 + ∥v∥2

2

) ∑w
j,k=1 ujvjukvk

(∥u∥2 + ∥v∥2)2
, (24)

where ∥.∥ denotes the norm of the vectors.

The above integral is non-zero only if j = k. Hence, it is a sum of w identical integrals. Without any
loss of generality, we solve this integral for j = 1 and multiply by w to obtain the final result, i.e.,

〈
f2
0

Tr(H0)2

〉
= w2

∫ ∞

−∞

w∏

i=1

(
dvidui

2π

)
exp

(
−∥u∥2 + ∥v∥2

2

)
u2
1v

2
1

(∥u∥2 + ∥v∥2)2
(25)

Consider a transformation of u, v ∈ Rw into w dimensional spherical coordinates such that

u1 = ru cosφu1 , v1 = rv cosφv1 , (26)

which yields,

〈
f2
0

Tr(H0)2

〉
=

w2

(2π)w

∫
drudrvdΩu,wdΩv,wr

w−1
u rw−1

v exp

(
−r2u + r2v

2

)
r2u cos

2 φu1
r2v cos

2 φu1

(r2u + r2v)
2

(27)
〈

f2
0

Tr(H0)2

〉
=

w2

(2π)w

∫
drudrv exp

(
−r2u + r2v

2

)
r2ur

2
v(

rw+1
u + rw+1

v

)2
∫

dΩu,wdΩv,w cos2 φu1
cos2 φv1

(28)

〈
f2
0

Tr(H0)2

〉
=

w2

(2π)w

∫
drudrv exp

(
−r2u + r2v

2

)
r2ur

2
v(

rw+1
u + rw+1

v
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where dΩ denotes the w dimensional solid angle element. Here, we denote the radial and angular
integrals by Ir and Iφ respectively. The radial integral Ir is
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0

drudrv
rw+1
u rw+1

v

(r2u + r2v)
2 exp

(
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2

)
. (30)

Let ru = R cos θ and rv = R sin θ with R ∈ [0,∞) and θ ∈ [−π
2 ,

π
2 ], then we have

Ir =

∫ ∞

0

dR R2w−1e−R2/2

∫ π/2

0

dθ cosw+1 θ sinw+1 θ (31)
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√
π

23
Γ(w) Γ

(
w+2
2

)

Γ
(
w+3
2

) , (32)

where Γ(.) denotes the Gamma function. The angular integral Iφ is

Iφ =

∫
dφ1dφ2 . . . dφw−1 sin

w−2 φ1 cos
2 φ1 sin

w−3 φ2 . . . sinφw−2 (33)
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2 )

. (35)

Plugging in Equations 32 and 35 into Equation 29, we obtain a very simple expression
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The other integral
〈

f4
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Tr(H0)4

〉
can be obtained by generalizing the above approach as described below
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The integral is zero if either j = k and l = m or j = k = l = m, which we consider separately.
Without loss of generality, we find the following integrals
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which have the following expressions
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24



2−1 20 21 22 23

c

2−11

2−10

2−9

2−8

1/
w

〈closs〉
〈csharp〉
〈cmax〉

(a) d = 4

2−1 21 23

c

2−11

2−10

2−9

2−8

1/
w

〈closs〉
〈csharp〉
〈cmax〉

(b) d = 8

2−1 21 23 25

c

2−11

2−10

2−9

2−8

1/
w

〈closs〉
〈csharp〉
〈cmax〉

(c) d = 16

Figure 14: Phase diagrams of FCNs in NTP with varying depths trained on the MNIST dataset using
MSE loss.

where Γ(.) denotes the gamma function. On combining the expressions with their multiplicities, we
obtain the final result

〈
f4
0

Tr(H0)4

〉
= 3w(w − 1)
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〉
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4

(42)
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Tr(H0)4

〉
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3(w + 2)w3

16

Γ(w)

Γ(w + 4)
(43)

B.9 Insights into the catapult effect in crossentropy loss using uv model

In this section, we summarize the main intuition behind the discrepancy in the values of closs for
cross-entropy loss at large widths. We consider the uv model trained on a classification task using
logistic loss, as presented in [50].

Consider the uv model trained on a binary classification task using the logistic loss on two training
examples (x1, y1) = (1, 1) and (x2, y2) = (1,−1). Then, the total loss is L(f) = 1

2 log(2 +
2 cosh(f)). Hence, the loss grows monotonically as the output function |f | increases. The update
equation of the function is given by:

ft+1 = ft

(
1− η tr(Ht)L′(f)

ft
+

η2L′(ft)
2

n

)
, (44)

where η is the learning rate and L′(.) is the derivative of the loss. At large width, if the condition
|1− η tr(H)L′(f)/f | < 1 holds, then output function continues to decrease. Given that L′(f)/f ≤
1/2 in the above case, this decrease persists for η tr(H) < 4. This result provides some intuition
behind the discrepancy.

C Phase diagrams of early training

This section describes experimental details and shows additional phase diagrams of early training.
The results include (1) FCNs in NTP trained on MNIST, Fashion-MNIST, and CIFAR-10 datasets,
(2) CNNs in SP trained on Fashion-MNIST and CIFAR-10, and (3) ResNets in SP trained on CIFAR-
10 datasets using MSE loss. Figures 14 to 19 show these results. The depths and widths are the same
as specified in Appendix A. Each data point is an average over 10 initializations. The horizontal bars
around the average data point indicate the region between 25% and 75% quantile. Phase diagrams
for cross-entropy results are shown in Appendix F.

Additional experimental details : We train each model for t = 10 steps using SGD with learning
rates η = c/λH

0 and batch size of 512, where c = 2x with x ∈ {0.0, . . . xmax} in steps of 0.1.
Here, xmax is relatd to the maximum trainable learning rate constant as cmax = 2xmax . We have
considered 10 random initializations for each model. As mentioned in Appendix A, we do not
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Figure 15: Phase diagrams of FCNs in NTP with varying depths trained on the Fashion-MNIST
dataset.
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Figure 16: Phase diagrams of FCNs in NTP with varying depths trained on the CIFAR-10 dataset.
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Figure 17: Phase diagrams of Convolutional Neural Networks (CNNs) in SP with varying depths
trained on the Fashion-MNIST dataset.
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Figure 18: Phase diagrams of Convolutional Neural Networks (CNNs) in SP with varying depths
trained on the CIFAR-10 dataset.
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Figure 19: Phase diagrams of Resnets in SP with different depths trained on the CIFAR-10 dataset.
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Figure 20: Phase diagrams of FCNs in NTP with varying widths trained on the CIFAR-10 dataset.

consider averages over SGD runs as the randomness from initialization outweighs it. Hence, we
obtain 10 values for each of the critical values in the following results. For each initialization, we
compute the critical constants using Definitions 1 and 3. To avoid a random increase in loss and
sharpness due to fluctuations, we round off the values of λH

t /λH
0 and Lt/L0 to their second decimal

places before comparing with 1. We denote the average values using data points and variation using
horizontal bars around the average data points, which indicate the region between 25% and 75%
quantile. The smooth curves are obtained by fitting a two-degree polynomial y = a+ bx+ cx2 with
x = 1/w and y can take on one of three values: closs, csharp and cmax.

Phase diagrams with depth Figure 20: shows the phase diagrams with depth for FCNs in NTP
trained on the CIFAR-10 dataset. The phase diagrams look qualitatively similar compared to the 1/w
phase diagrams.

D Relationship between various critical constants

Figure 21 illustrates the relationship between the early training critical constants for models and
datasets. The experimental setup is the same as in Appendix C. Typically, we find that closs ≤
csharp ≤ csharp holds true. However, there are some exceptions, which are observed at high values
of d/w (see 21 (d, e)), where the trends of the critical constants converge, and large fluctuations can
cause deviations from the inequality.

E The effect of d/w on the noise in dynamics

In this section, we demonstrate that for FCNs with d/w ≳ 1/16, the dynamics becomes noise-
dominated. This aspect makes it challenging to distringuish the underlying deterministic dynamics
from random fluctuations. To demonstrate this, we consider FCNs trained on CIFAR-10 using MSE
and cross-entropy loss and use 4096 training examples for estimating sharpness.
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Figure 21: The relationship between various critical constants for various models and datasets. Each
data point corresponds to a model with random initialization. The dashed line denotes the values
where x = y.
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Figure 22: Training loss trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset
with MSE loss using SGD with learning rate η = c/λH

0 and batch size B = 512.

Figures 22 and 23 show the training loss and sharpness of FCNs with d = 16 and varying widths,
trained on CIFAR-10 using MSE loss. We observe that the sharpness dynamics becomes noisier for
w ≲ 64.

Figures 24 and 25 shows the training dynamics with loss switched to cross-entropy, while keeping
the initialization and SGD batch sequence the same as in the MSE loss case. In comparison to MSE
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Figure 23: Sharpness trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset with
MSE loss using SGD with learning rate η = c/λH

0 and batch size B = 512.
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Figure 24: Training loss trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset
with cross-entropy loss using SGD with learning rate η = c/λH

0 and batch size B = 512.

loss, the training loss and sharpness dynamics show a higher level of noise, especially for w ≲ 256.
As a result, it becomes difficult to characterize the training dynamics for d/w ≳ 1/16.

F Crossentropy

In this section, we provide additional results for models trained with cross-entropy (xent) loss and
compare them with MSE results. Broadly speaking, models trained with cross-entropy loss show
similar characterstics to those trained with MSE loss, such as, (i) sharpness reduction during early
training, (ii) an increase in critical constants closs, csharp with d and 1/w, (iii) closs ≤ csharp ≤ cmax.
However, the dynamics of models trained with cross-entropy loss is noisier compared to MSE as
shown in the previous section, and characterizing these dynamics can be more complex. In the
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Figure 25: Sharpness trajectories of ReLU FCNs with d = 16 trained on the CIFAR-10 dataset with
cross-entropy loss using SGD with learning rate η = c/λH

0 and batch size B = 512.
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Figure 26: The phase diagrams of early training of FCNs trained on the CIFAR-10 dataset using (a,
b, c) MSE and (d, e, f) cross-entropy loss. Each data point is an average over 10 initializations, and
solid lines represent a smooth curve fitted to raw data points. The horizontal bars around the averaged
data point indicates the region between 25% and 75% quantile. For cross-entropy phase diagrams,
the c = 2 line is shown for reference only and does not relate to ccrit.

following experiments, we consider models trained on the CIFAR-10 dataset and used 4096 training
examples to estimate sharpness.

F.1 Phase diagrams

Figure 26 compares the phase diagrams of FCNs in SP trained on the CIFAR-10 dataset, using both
MSE and cross-entropy loss. The estimated critical constants for cross-entropy loss are generally
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Figure 27: Comparison of the relationship between critical constants for FCNs in SP trained on
CIFAR-10 using MSE and cross-entropy loss. Each data point corresponds to a randomly initialized
model with depths and widths mentioned in Appendix A.

more noisy, as quantified by the confidence intervals. In comparison to phase diagrams of models
trained with MSE loss, we observe a few notable differences. First, the loss starts to catapult at a
value appreciably larger than c = 2 at large widths. Primarly, 4 ≲ closs ≲ 8. Additionally, cmax

generally decreases with 1/w. This decreasing trend becomes less sharp at large depths.

Despite these differences, the phase diagrams for both loss functions share various similarities. First,
we observe sharpness reduces during early training for c < csharp (see the first row of Figure 25).
Next, we observe that the inequality closs ≤ csharp ≤ cmax generally holds for both loss functions
as demonstrated in Figure 27, barring some exceptions.

Figure 28 shows the phase diagrams for CNNs and ResNets trained on the CIFAR-10 dataset using
cross-entropy loss. The observed critical constants are much noisier as quantified by the confidence
intervals. Nevertheless, the phase diagram shows similar trends as mentioned above. For large 1/w
models, we found that progressive sharpening begins after 5 − 10 training steps. For these cases,
we only use the first 5 steps to measure sharpness to avoid progressive sharpening. For CNNs, we
observed that the dynamics becomes difficult to characterize for w ≲ 32 and d ≳ 10, due to large
fluctuations. Consequently, we’ve opted not to include these particular results.
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Figure 28: Phase diagrams of (a, b) CNNs and (c) ResNets trained on the CIFAR-10 dataset with
cross-entropy loss using SGD with η = c/λH

0 and B = 512.

F.2 Intemediate saturation regime

Figure 29 shows the normalized sharpness measured at cτ = 100 for FCNs trained on CIFAR-10
using cross-entropy loss. 7 Similar to MSE loss, we observe an abrupt drop in sharpness at large
learning rates. However, this abrupt drop occurs at 2 ≲ ccrit ≲ 4. The estimated sharpness is noisier
(compare with Figure 38), which hinders a reliable estimation of ccrit. We speculate that we require a

7The time step τ = 100/c is in the middle of the intermediate saturation regime for most of the models. For
further details on estimating sharpness, see Appendix I.1.
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Figure 29: Sharpness measured at cτ = 100 against the learning rate constant for FCNs trained on
the CIFAR-10 dataset using cross-entropy loss, with varying depths and widths. Each curve is an
average over ten initializations, where the shaded region depicts the standard deviation around the
mean trend. The vertical dashed line shows c = 2 for reference.

large number of averages for a reliable estimation of ccrit for cross-entropy loss. We leave the precise
characterization of ccrit for cross-entropy loss for future work.

G The effect of setting model output to zero at initialization

In this section, we demonstrate the effect of network output f(x; θt) at initialization on the early
training dynamics. In particular, we set the network output to zero at initialization, f(x; θ0) = 0,
by (1) ‘centering’ the network by its initial value fc(x; θt) = f(x; θ) − f(x; θ0) or (2) setting the
last layer weights to zero at initialization. We show that both (1) and (2) remove the opening of the
sharpness reduction phase with 1/w. Resultantly, the average onset of loss catapult occurs at closs ≈ 2,
independent of depth and width.

Throughout this section, we use ‘vanilla’ networks to refer to networks initialized in the standard
way. For simplicity, we train FCNs using full batch gradient descent with MSE loss using a subset
consisting of 4096 examples of the CIFAR-10 dataset.

G.1 The effect of centering networks

Given a network function f(x; θt), we define the centered network fc(x; θt) as

fc(x; θt) = f(x; θt)− f(x; θ0), (45)

where f(x; θ0) is the network output at intialization. By construction, the network output is zero at
initialization. It is noteworthy that centering a network is an unusual way of training deep networks
as it doubles the cost of training because of two forward passes.

Figure 30 compares the training loss and sharpness dynamics of vanilla networks and centered
networks. Unlike vanilla networks, we do not observe a decrease in sharpness for c < closs during
early training. Rather, we observe a slight increase in sharpness. To distinguish this slight increase
from sharpness catapult, we introduce a threshold ϵ, comparing normalized sharpness λH

t /λH
0 with

1 + ϵ, to define a sharpness catapult.8 As demonstrated in Appendix G.3, the uv model trained on a
single training example (x, y) with y ̸= 0 sheds lights on this initial increase in sharpness.

Interestingly, irrespective of depth and width, we observe that loss catapults at closs ≈ 2, as
demonstrated in the phase diagrams in Figure 31(a, b, c). These findings suggest a strong correlation
between a large network output at initialization ∥f(x; θ0)∥ and the opening of the sharpness reduction
phase discussed in Section 2.

G.2 The effect of setting the last layer to zero

An alternative way to train networks with f(x; θ0) = 0 is by setting the last layer to zero at
initialization. The principle of criticality at initialization [55, 58, 68] does not put any constraints on

8In experiments, we set ϵ = 0.05. We use the same threshold for zero-init networks.
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Figure 30: Comparison of the early training dynamics of (a, b) vanilla, (c, d) centered, and (e, f) zero-
initialized FCNs (with depth = 8 and width = 512), trained on the CIFAR-10 dataset with MSE loss
using gradient descent for 20 steps.

the last layer weights. Hence, setting the last layer to zero does not affect signal/gradient propagation
at initialization. Yet, setting the last layer to zero results in initialization in a flat curvature region
at initialization, resulting in access to larger learning rates. We refer to these networks as ‘zero-init’
networks.

Figure 30 compares the training dynamics of zero-init networks with vanilla and centered networks.
We observe that the dynamics is quite similar to the centered networks: (i) sharpness does not reduce
for small learning rates and (ii) loss catapults closs ≈ 2, irrespective of depth and width. Figure 31(d,
e, f) show the phase diagrams of networks with zero-initialized networks. Like centered networks,
the critical constants do not scale with depth and width. Again, suggesting that a large network output
at initialization ∥f(x; θ0)∥ is related to the opening of the sharpness reduction phase in the early
training results shown in Section 2.
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Figure 31: The phase diagrams of early training dynamics of (a, b, c) centered and (d, e, f) zero-init
networks trained on CIFAR-10 using MSE using gradient descent. Each data point is an average over
10 initializations. The horizontal bars around the average data point indicate the region between 25%
and 75% quantile.

G.3 Insights from uv model trained on (x, y)

In this section, we gain insights into the effect of setting network output to zero at initialization using
uv model trained on an example (x, y). In particular, we show that loss catapults at kloss = 2 and
sharpness increases during early training.

Consider the uv model trained on a single training example (x, y) with y ̸= 0 9

f(x) =
1√
w

w∑

i

uivi x.

This simplifies the loss function to

L =
1

2
(f(x)− y)

2
=

1

2
∆f2, (46)

where ∆f is the residual. The trace of the Hessian tr(H) is

tr(H) =
x2

w

(
∥v∥2 + ∥u∥2

)
. (47)

The Frobeinus norm can be written in terms of the trace and the network output

∥H∥2F = λ2 + 2x2∆f2

(
1 +

2f

w∆f

)
. (48)

The function and residual updates are given by

9Note that for y = 0, the network is already at a minimum for f0 = 0.
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Figure 32: The early training dynamics of FCNs with a fixed output scale trained on the CIFAR-10
dataset with MSE loss using gradient descent.

ft+1 = ft − η tr(Ht) +
η2x2

w
ft∆f2

t (49)

∆ft+1 = ∆ft

(
1− η tr(Ht) +

η2x2

w
ft∆ft

)
. (50)

Similarly, we can obtain the trace update equations

tr(Ht+1) = tr(Ht) +
η∆f2

t x
2

w

(
η tr(Ht)− 4

ft
∆ft

)
. (51)

Let us analyze them for the networks with zero output at initialization. The loss at the first step
increases if
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〈
L1

L0

〉
=

〈(
1− η tr(H0) +

η2x2

n
f0∆f0

)2
〉

> 1 (52)

(53)

Setting f0 = 0 and scaling the learning rate as η = k/ tr(H0), we see that the loss increases at the
first step if k > 2.

〈
L1

L0

〉
=
〈
(1− k)2

〉
> 1 (54)

Next, we analyze the change in trace during the first training step. Setting f0 = 0, we observe that
the trace increases for all learning rates

tr(H1) = tr(H0) +
η2x2

w
∆f2

0 tr(H0), (55)

modulated by the learning rate and width. Finally, we analyze the change in Frobenius norm in the
first training step at k = kloss, which implies ∆f2

1 = ∆f2
0 ,

〈
∆∥H1∥2

〉
=

〈
tr(H1)

2 − tr(H0)
2 + 2x2

(
∆f2

1 −∆f2
0

)〉
. (56)

As tr(H) increases in the first training step, ∥H∥F also increases in the first training step.

H The effect of output scale on the training dynamics

Given a neural network function f(x) with depth d and width w, we define the scaled network as
fs(x) = αf(x), where α is referred to as the output scale. In this section, we empirically study the
impact of the output scale on the early training dynamics. In particular, we show that a large (resp.
small) value of ∥f(x; θ0)∥ relative to the one-hot encodings of the labels causes the sharpness to
decrease (resp. increase) during early training. Interestingly, we still observe an increase in ⟨closs⟩
with d and 1/w, unlike the case of initializing network output to zero, highlighting the unique impact
of output scale on the dynamics. For simplicity, we train FCNs using gradient descent with MSE loss
using a subset consisting of 4096 examples of the CIFAR-10 dataset, as in the previous section.

H.1 The effect of fixed output scale at initialization

In this section, we study the training dynamics of models trained with a fixed output scale at
initialization. Given a network output function f(θ), we define the ‘scaled network’ as

fs(θ) =
sf(θ)

∥f(θ0)∥
, (57)

where s is a scalar, fixed throughout training. By construction, the network output norm ∥fs(θ0)∥
equals s. For standard initialization, s = ∥f(θ0)∥ = O(

√
k), where k are the number of classes.

Figure 32 shows the training dynamics of FCNs for three different values of the output scale s. The
training dynamics of networks with s = 1.0 and s = 10.0 share qualitative similarities. In contrast,
networks initialized with a smaller output scale (s = 0.1) exhibit distinctly different dynamics. In
particular, we observe that for large output scales (s ≳ 0.5) sharpness decreases during early training,
while sharpness increases for small output scales 10. Furthermore, the training dynamics tends to

10We empirically observed that sharpness reduces for output scales as small as s ∼ 0.5, which is relatively
small compared to

√
k.
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Figure 33: The phase diagrams of early training dynamics for ReLU FCNs with fixed output scale
trained on a subset of the CIFAR-10 dataset using MSE loss using gradient descent. Each data point
is an average over 10 initializations. The horizontal bars around the average data point indicate the
region between 25% and 75% quantile.

be noisier at small output scales, making it difficult to characterize catapult dynamics amidst these
fluctuations. In summary, the training dynamics of networks with small output scale deviate from the
training dynamics discussed in the main text, particularly as the sharpness quickly increases during
early training.

Figure 33 shows the trends of various critical constants with width for FCNs for three different values
of s. Similar to vanilla networks, we observe that closs increases with d and 1/w. In comparison,
sharpness decreases (increases) for large (small) values of s. These experiments suggest that the
output scale primarly influences the increase/decrease in sharpness during early training and does not
affect the scaling of closs with depth and width.

Note that we do not generate phase diagrams for these experiments as the training dynamics of
networks with small output scales at initialization deviate from the training dynamics disucssed in the
main text.

H.2 Scaling the output scale with width

In this section, we study the training dynamics of models with an output scale scaled with width
as α = w−σ, which is commonly used in the literature [19, 6, 4]. We consider three distinct σ
values {−0.5, 0.0, 0.5}, where σ = −0.5 represents the lazy regime, σ = 0.5 corresponds to feature
learning (rich) regime and σ = 0.0 correponds to standard (vanilla) initialization.

Figure 34 shows the training loss and sharpness trajectories of FCNs trained on for different σ values.
We observe that the training trajectories in the lazy regime look identical to standard initialization. In
comparison, the training trajectories in the feature learning regime is distinctly different. We observe
that in the standard and lazy regimes, sharpness decreases during early training, whereas sharpness
tends to increase in the feature learning regime and eventually oscillates around the edge of stability
regime. Moreover, we observe that sharpness can catapult before the training loss in the feature
learning regime (compare catapult peaks in 34(e, f)). These results are in parallel to the fixed output
scale networks studied in the pervious section.
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Figure 34: The early training dynamics of FCNs with output scale α = w−σ trained on the CIFAR-
10 dataset with MSE loss using gradient descent.

Figure 35 summarizes the early training dynamics of FCNs with different σ values. We observe
similar results as in the previous section. The output scale affects the initial increase/decrease of
sharpness but does not affect the scaling trend of closs with depth and width. Moreover, we observe a
systematic pattern of cmax scaling with width. In the lazy regime, we observe that cmax increases
with 1/w, while cmax decreases with 1/w in the feature learning regime.

I Sharpness curves in the intermediate saturation regime

This section shows additional results for Section 3 for MSE loss. Cross-entropy results are shown in
Appendix F. Figures 36 to 40 show the normalized sharpness curves for different depths and widths.

I.1 Estimating the sharpness

This paragraph describes the procedure for measuring the sharpness to study the effect of the learning
rate, depth, and width in the intermediate saturation regime. We measure the sharpness λH

τ at a time
τ in the middle of the intermediate saturation regime. We choose τ so that cτ ≈ 200, for learning
rates c = 2x, where x ∈ [−1.0, 4.0] in steps of 0.1. The value 200 is chosen such that τ is in the
middle of the intermediate saturation regime. Next, we measure sharpness over a range of steps
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Figure 35: The phase diagrams of early training dynamics for ReLU FCNs with varying depths and
output scale.

t ∈ [τ − 5, τ + 5] and average over t to reduce fluctuations. We repeat this process for various
initializations and obtain the average sharpness.

2−1 20 21 22 23 24

c

0.0

0.2

0.4

0.6

0.8

λ
H τ
/λ

H 0

width
256

512

1024

2048

(a) d = 4

2−1 20 21 22 23 24

c

0.0

0.2

0.4

0.6

λ
H τ
/λ

H 0

width
256

512

1024

2048

(b) d = 8

2−1 20 21 22 23 24

c

0.0

0.2

0.4

0.6

λ
H τ
/λ

H 0

width
256

512

1024

2048

(c) d = 16

Figure 36: Sharpness measured at cτ = 200 against the learning rate constant for FCNs trained on
the MNIST dataset, with varying depths and widths. Each curve is an average over ten initializations,
where the shaded region depicts the standard deviation around the mean trend. The vertical lines
denote ccrit estimated using the maximum of χ′

τ .

I.2 Estimating the critical constant ccrit

This subsection explains how to estimate ccrit from sharpness measured at time τ . First, we normalize
the sharpness with its initial value, and then average over random initializations. Next, we estimate
the critical point ccrit using the second derivative of the order parameter curve. Even if the obtained
averaged normalized sharpness curve is somewhat smooth, the second derivative may become
extremely noisy as minor fluctuations amplify on taking derivatives. This can cause difficulties in
obtaining ccrit. We resolve this issue by estimating the smooth derivatives of the averaged order
parameter with the Savitzky–Golay filter [59] using its scipy implementation [63]. The estimated
ccrit is shown by vertical lines in the sharpness curves in Figures 36 to 40.
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Figure 37: Sharpness measured at cτ = 200 against the learning rate constant for FCNs trained
on the Fashion-MNIST dataset, with varying depths and widths. Each curve is an average over ten
initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of χ′

τ .

2−1 20 21 22 23 24

c

0.0

0.2

0.4

0.6

0.8

λ
H τ
/λ

H 0

width
256

512

1024

2048

(a) d = 4

2−1 20 21 22 23 24

c

0.0

0.2

0.4

0.6

λ
H τ
/λ

H 0

width
256

512

1024

2048

(b) d = 8

2−1 20 21 22 23 24

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

λ
H τ
/λ

H 0

width
256

512

1024

2048

(c) d = 16

Figure 38: Sharpness measured at cτ = 200 against the learning rate constant for FCNs trained on the
CIFAR-10 dataset, with varying depths and widths. Each curve is an average over ten initializations,
where the shaded region depicts the standard deviation around the mean trend. The vertical lines
denote ccrit estimated using the maximum of χ′

τ .
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Figure 39: Sharpness measured at cτ = 200 against the learning rate constant for Myrtle-CNNs
trained on the CIFAR-10 dataset, with varying depths and widths. Each curve is an average of over
ten initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of χ′

τ .

J The effect of batch size on the reported results

J.1 The early transient regime

Figure 41 shows the phase diagrams of early training dynamics of FCNs with d = 4 trained on the
CIFAR-10 dataset using two different batch sizes. The phase diagram obtained is consistent with the
findings presented in Section 2, except for one key difference. Specifically, we observe that when
d/w is small and small batch sizes are used for training, sharpness may increase from initialization
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Figure 40: Sharpness measured at cτ = 200 against the learning rate constant for ResNets trained
on the CIFAR-10 dataset, with varying depths and widths. Each curve is an average of over ten
initializations, where the shaded region depicts the standard deviation around the mean trend. The
vertical lines denote ccrit estimated using the maximum of χ′

τ .

at relatively smaller values of c. This is reflected in Fig. 41 by ⟨csharp⟩ moving to the left as B
is reduced from 512 to 128. However, this initial increase in sharpness is small compared to the
sharpness catapult observed at larger batch sizes. We found that this increase at small batch sizes is
due to fluctuations in gradient estimation that can cause sharpness to increase above its initial value
by chance.
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Figure 41: The phase diagram of early training for FCNs with d = 4 trained on the CIFAR-10 dataset
with MSE loss using SGD with different batch sizes.

J.2 The intermediate saturation regime
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Figure 42: (a) Normalized sharpness measured at cτ = 200 against the learning rate constant for
FCNs with d = 4 trained on the CIFAR-10 dataset, with varying widths. Each data point is an average
over 10 initializations, where the shaded region depicts the standard deviation around the mean
trend. (b, c) Smooth estimations of the first two derivatives, χτ and χ′

τ , of the averaged normalized
sharpness wrt the learning rate constant.

Figure 42 shows the normalized sharpness, measured at cτ = 200, and its derivatives for various
widths and batch sizes. The results are consistent with those in Section 3, with a lowering in the peak
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heights of the derivatives χ and χ′ at small batch sizes. The lowering of the peak heights means the
full width at half maximum increases, which implies a broadening of the transition around ccrit at
smaller batch sizes.

K The effect of bias on the reported results

In this section, we show that FCNs with bias show similar results as presented in the main text. We
considered FCNs in SP initialized with He initialization [29].

Figure 43 shows the phase diagrams of early training for FCNs with bias trained on the CIFAR-10
dataset. We observe a similar phase diagram compared to the no-bias case (compare with Figure 26).
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Figure 43: The phase diagram of early training for FCNs with bias trained on the CIFAR-10 dataset
with MSE loss using SGD with different depths.
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