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Abstract

Reward-free data is abundant and contains rich prior knowledge of human behav-
iors, but it is not well exploited by offline reinforcement learning (RL) algorithms.
In this paper, we propose UBER, an unsupervised approach to extract useful be-
haviors from offline reward-free datasets via diversified rewards. UBER assigns
different pseudo-rewards sampled from a given prior distribution to different agents
to extract a diverse set of behaviors, and reuse them as candidate policies to facili-
tate the learning of new tasks. Perhaps surprisingly, we show that rewards generated
from random neural networks are sufficient to extract diverse and useful behaviors,
some even close to expert ones. We provide both empirical and theoretical evidence
to justify the use of random priors for the reward function. Experiments on multiple
benchmarks showcase UBER’s ability to learn effective and diverse behavior sets
that enhance sample efficiency for online RL, outperforming existing baselines. By
reducing reliance on human supervision, UBER broadens the applicability of RL
to real-world scenarios with abundant reward-free data.

1 Introduction

Self-supervised learning has made substantial advances in various areas like computer vision and
natural language processing (OpenAI, 2023; Caron et al., 2021; Wang et al., 2020) since it leverages
large-scale data without the need of human supervision. Offline reinforcement learning has emerged
as a promising framework for learning sequential policies from pre-collected datasets (Kumar et al.,
2020; Fujimoto & Gu, 2021; Ma et al., 2021; Yang et al., 2021; Hu et al., 2022), but it is not able to
directly take advantage of unsupervised data, as such data lacks reward signal for learning and often
comes from different tasks and different scenarios. Nonetheless, reward-free data like experience
from human players and corpora of human conversations is abundant while containing rich behavioral
information, and incorporating them into reinforcement learning has a huge potential to help improve
data efficiency and achieve better generalization.

How can we effectively utilize the behavioral information in unsupervised offline data for rapid online
learning? In online settings, Eysenbach et al. (2018); Sharma et al. (2019) investigate the extraction of
diverse skills from reward-free online environments by maximizing diversity objectives. Meanwhile,
in offline settings, a rich body of literature exists that focuses on leveraging the dynamic information
from reward-free datasets (Yu et al., 2022; Hu et al., 2023). However, the former approach is not
directly applicable to offline datasets, while the latter approach overlooks the behavioral information
in the dataset. Ajay et al. (2020); Singh et al. (2020) employ generative models to extract behaviors
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Phase 1: Offline Behavior Extraction Phase 2: Online Policy Reuse

Figure 1: The framework of UBER. The procedure consists of two phases. In the first offline phase,
we assign different reward functions to different agent to extract diverse and useful behaviors from
the offline dataset. In the second phase, we reuse previous behavior by adding them to the candidate
policy set to accelerate online learning for the new task.

in the offline dataset. However, using a behavior-cloning objective is conservative in nature and has a
limited ability to go beyond the dataset to enrich diversity.

To bridge this gap, we propose Unsupervised Behavior Extraction via Random Intent Priors (UBER),
a simple and novel approach that utilizes random intent priors to extract useful behaviors from offline
reward-free datasets and reuse them for new tasks, as illustrated in Figure 1. Specifically, our method
samples the parameters of the reward function from a prior distribution to generate different intents
for different agents. These pseudo-rewards encourage the agent to go beyond the dataset and exhibit
diverse behaviors. It also encourages the behavior to be useful since each behavior is the optimal
policy to accomplish some given intent. The acquired behaviors are then applied in conjunction with
policy expansion (Zhang et al., 2023) or policy reuse (Zhang et al., 2022) techniques to accelerate
online task learning. Surprisingly, we observe that random intent prior is sufficient to produce a wide
range of useful behaviors, some of which even approach expert performance levels. We provide
theoretical justifications and empirical evidence for using random intent priors in Section 4 and 5,
respectively.

Our experiments across multiple benchmarks demonstrate UBER’s proficiency in learning behavior
libraries that enhance sample efficiency for existing DRL algorithms, outperforming current baselines.
By diminishing the reliance on human-designed rewards, UBER expands the potential applicability
of reinforcement learning to real-world scenarios.

In summary, this paper makes the following contributions: (1) We propose UBER, a novel unsu-
pervised RL approach that samples diverse reward functions from intent priors to extract diverse
behaviors from reward-free datasets; (2) We demonstrate both theoretically and empirically that
random rewards are sufficient to generate diverse and useful behaviors within offline datasets; (3)
Our experiments on various tasks show that UBER outperforms existing unsupervised methods and
enhances sample efficiency for existing RL algorithms.

1.1 Related Works

Unsupervised Offline RL. Yu et al. (2021) considers reusing data from other tasks but assumes an
oracle reward function for the new tasks. Yu et al. (2022) and Hu et al. (2023) utilize reward-free
data for improving offline learning but assume a labeled offline dataset is available for learning a
reward function. Ye et al. (2022); Ghosh et al. (2023) consider the setting where reward and action
are absent. We focus on the reward-free setting and leverage offline data to accelerate online learning.

Unsupervised Behavior Extraction. Many recent algorithms have been proposed for intrinsic
behavioral learning without a reward. Popular methods includes prediction methods (Burda et al.,
2018; Pathak et al., 2017, 2019), maximal entropy-based methods (Campos et al., 2021; Liu &
Abbeel, 2021b,a; Mutti et al., 2020; Seo et al., 2021; Yarats et al., 2021b), and maximal mutual
information-based methods (Eysenbach et al., 2018; Hansen et al., 2019; Liu & Abbeel, 2021a;
Sharma et al., 2019). However, they require an online environment to achieve the diversity objective.
Ajay et al. (2020); Singh et al. (2020) employ generative models to extract behaviors in the offline
dataset but have a limited ability to enrich diversity.
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Offline-to-online learning and policy reuse. Offline-to-online RL has been popular recently since
it provides a promising paradigm to improve offline further learned policies. Nair et al. (2020) is
among the first to propose a direct solution to offline-to-online RL. (Lee et al., 2022) proposes to use
a balanced replay buffer and ensembled networks to smooth the offline-to-online transition; Zhang
et al. (2023) proposes to use the expanded policy for offline-to-online RL. Ball et al. (2023) proposes
to reuse the off-policy algorithm with modifications like ensembles and layer normalization. Zhang
et al. (2022) proposes a critic-guided approach to reuse previously learned policies. Zhang et al.
(2023) proposes a similar and simpler way to reuse previous policies.

Imitation Learning Our method is also related to imitation learning (Hussein et al., 2017). Popular
imitation learning methods include behavior cloning methods Pomerleau (1988) and inverse RL
methods Ho & Ermon (2016); Xiao et al. (2019); Dadashi et al. (2020). However, they assume
the demonstration in the dataset to be near optimal, while our method works well with datasets of
mediocre quality.

2 Preliminaries

2.1 Episodic Reinforcement Learning

We consider finite-horizon episodic Markov Decision Processes (MDPs), defined by the tuple
(S,A, H,P, r), where S is a state space, A is an action space, H is the horizon and P =
{Ph}Hh=1, r = {rh}Hh=1 are the transition function and reward function, respectively.

A policy π = {πh}Hh=1 specifies a decision-making strategy in which the agent chooses its actions
based on the current state, i.e., ah ∼ πh(· | sh). The value function V π

h : S → R is defined as the
sum of future rewards starting at state s and step h ∈ [H], and similarly, the Q-value function, i.e.

V π
h (s) = Eπ

[ H∑
t=h

rt(st, at)
∣∣∣ sh = s

]
, Qπ

h(s, a) = Eπ

[ H∑
t=h

rh(st, at)
∣∣∣ sh = s, ah = a

]
. (1)

where the expectation is with respect to the trajectory τ induced by policy π.

We define the Bellman operator as

(Bhf)(s, a) = E
[
rh(s, a) + f(s′)

]
, (2)

for any f : S → R and h ∈ [H]. The optimal Q-function Q∗, optimal value function V ∗ and optimal
policy π∗ are related by the Bellman optimality equation

V ∗
h (s) = max

a∈A
Q∗

h(s, a), Q∗
h(s, a) = (BhV

∗
h )(s, a), π∗

h(· | s) = argmax
π

Ea∼πQ
∗
h(s, a). (3)

We define the suboptimality, as the performance difference of the optimal policy π∗ and the current
policy πk given the initial state s1 = s. That is

SubOpt(π; s) = V π∗

1 (s)− V π
1 (s).

2.2 Linear Function Approximation

To derive a concrete bound, we consider the linear MDP (Jin et al., 2020, 2021) as follows, where the
transition kernel and expected reward function are linear with respect to a feature map.
Definition 2.1 (Linear MDP). MDP(S,A,H,P, r) is a linear MDP with a feature map ϕ : S ×A →
Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh = (µ

(1)
h , . . . , µ

(d)
h ) over S and

an unknown vector zh ∈ Rd, such that for any (s, a) ∈ S ×A, we have

Ph(· | s, a) = ⟨ϕ(s, a), µh(·)⟩, rh(s, a) = ⟨ϕ(s, a), zh⟩. (4)

Without loss of generality, we assume ||ϕ(s, a)|| ≤ 1 for all (s, a) ∈ S × A, and
max{||µh(S)||, ||zh||} ≤

√
d for all h ∈ [H].

When emphasizing the dependence over the reward parameter z, we also use rh(s, a, z), V π
h (s, z)

and V ∗
h (s, z) to denote the reward function, the policy value and the optimal value under parameter z,

respectively.
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3 Method

How can we effectively leverage abundant offline reward-free data for improved performance in
online tasks? Despite the absence of explicit supervision signals in such datasets, they may contain
valuable behaviors with multiple modes. These behaviors can originate from human expertise or the
successful execution of previous tasks. To extract these behaviors, we assume that each behavior
corresponds to specific intentions, which are instantiated by corresponding reward functions. Then,
by employing a standard offline RL algorithm, we can extract desired behavior modes from the offline
dataset using their associated reward functions. Such behavior can be reused for online fine-tuning
with methods such as policy expansion (Zhang et al., 2023) or policy reuse (Zhang et al., 2022).

Then, the question becomes how to specify possible intentions for the dataset. Surprisingly, we found
that employing a random prior over the intentions can extract diverse and useful behaviors effectively
in practice, which form the offline part of our method. The overall pipeline is illustrated in Figure 1.
Initially, we utilize a random intention prior to generating diverse and random rewards, facilitating
the learning of various modes of behavior. Subsequently, standard offline algorithms are applied to
extract behaviors with generated reward functions. Once a diverse set of behaviors is collected, we
integrate them with policy reuse techniques to perform online fine-tuning.

Formally, we define Z as the space of intentions, where each intention z ∈ Z induces a reward
function rz : S × A → R that defines the objective for an agent. Let the prior over intentions
be β ∈ ∆(Z). In our case, we let Z be the weight space W of the neural network and β be a
distribution over the weight w ∈ W of the neural network fw and sample N reward functions from β
independently. Specifically, we have

ri(s, a) = fwi
(s, a), wi ∼ β, ∀i = 1, . . . , N.

We choose β to be a standard initialization distribution for neural networks (Glorot & Bengio, 2010;
He et al., 2015). We choose TD3+BC (Fujimoto & Gu, 2021) as our backbone offline algorithm, but
our framework is general and compatible with any existing offline RL algorithms. Then, the loss
function for the offline phase can be written as

Loffline
critic (θi) = E(s,a,ri,s′)∼Doff

i

[(
ri + γQθ′

i
(s′, ã)−Qθi(s, a)

)2]
, (5)

Loffline
actor (ϕi) = −E(s,a)∼Doff

i

[
λQθi(s, πϕi

(s))− (πϕi
(s)− a)2

]
, (6)

where ã = πϕ′
i
(s′)+ϵ is the smoothed target policy and λ is the weight for behavior regularization. We

adopt a discount factor γ even for the finite horizon problem as commonly used in practice (Fujimoto
et al., 2018).

As for the online phase, we adopt the policy expansion framework (Zhang et al., 2023) to reuse
policies. We first construct an expanded policy set π̃ = [πϕ1

, . . . , πϕN
, πw], where {ϕi}Ni=1 are the

weights of extracted behaviors from offline phase and πw is a new randomly initialized policy. We
then use the critic as the soft policy selector, which generates a distribution over candidate policies as
follows:

Pπ̃[i] =
exp (α ·Q(s, π̃i(s)))∑
j exp (α ·Q(s, π̃j(s)))

,∀i ∈ {1, · · · , N + 1}, (7)

where α is the temperature. We sample a policy i ∈ {1, · · · , N + 1} according to Pπ̃ at each time
step and follows πi to collect online data. The policy πw and Qθ-value network undergo continuous
training using the online RL loss, such as TD3 (Fujimoto et al., 2018)):

Lonline
critic (θ) = E(s,a,r,s′)∼Don [(r + γQθ′(s′, ã)−Qθ(s, a))]

2
, (8)

Lonline
actor (w) = −E(s,a)∼Don [Qθ(s, πw(s))] . (9)

The overall algorithm is summarized in Algorithm 1 and 2. We highlight elements important to our
approach in purple.
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Algorithm 1 Phase 1: Offline Behavior Extraction

1: Require: Behavior size N , offline reward-free dataset Doff , prior intention distribution β
2: Initialize parameters of N independent offline agents {Qθi , πϕi}Ni=1
3: for i = 1, · · · , N do
4: Sample a reward function from priors zi ∼ β
5: Reannotate Doff as Doff

i with reward rzi
6: for each training iteration do
7: Sample a random minibatch {τj}Bj=1 ∼ Doff

i

8: Calculate Loffline
critic (θi) as in Equation (5) and update θi

9: Calculate Loffline
actor (ϕi) as in Equation (6) and update ϕi

10: end for
11: end for
12: Return {πϕi

}Ni=1

Algorithm 2 Phase 2: Online Policy Reuse

1: Require: {πϕi
}Ni=1, offline dataset Doff , update-to-data ratio G

2: Initialize online agents Qθ, πw and replay buffer Don

3: Construct expanded policy set π̃ = [πϕ1
, . . . , πϕN

, πw]
4: for each episode do
5: Obtain initial state s1 from the environment
6: for step t = 1, · · · , T do
7: Construct Pπ̃ According to Equation (7)
8: Pick an policy to act πt ∼ Pπ̃ , at ∼ πt(·|st)
9: Store transition (st, at, rt, st+1) in Don

10: for g = 1, · · · , G do
11: Calculate Lonline

critic (θ) as in Equation (8) and update θ
12: end for
13: Calculate Lonline

actor (w) as in Equation (9) and update w
14: end for
15: end for

4 Theoretical Analysis

How sound is the random intent approach for behavior extraction? This section aims to establish
a theoretical characterization of our proposed method. We first consider the completeness of our
method. We show that any behavior can be formulated as the optimal behavior under some given
intent, and any behavior set that is covered by the offline dataset can be learned effectively given
the corresponding intent set. Then we consider the coverage of random rewards. We show that with
a reasonable number of random reward functions, the true reward function can be approximately
represented by the linear combination of the random reward functions with a high probability. Hence
our method is robust to the randomness in the intent sampling process.

4.1 Completeness of the Intent Method for Behavior Extraction

We first investigate the completeness of intent-based methods for behavior extraction. Formally, we
have the following proposition.
Proposition 4.1. For any behavior π, there exists an intent z with reward function r(·, ·, z) such that
π is the optimal policy under r(·, ·, z). That is, for any π = {πh}Hh=1, πh : S → ∆(A), there exists
z ∈ Z such that

V π
h (s, z) = V ∗

h (s, z), ∀(s, a, h) ∈ S ×A× [H].

Proof. Please refer to Appendix A.1 for detailed proof.

Proposition 4.1 indicates that any behavior can be explained as achieving some intent. This is intuitive
since we can relabel the trajectory generated by any policy as successfully reaching the final state in
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hindsight (Andrychowicz et al., 2017). With Proposition 4.1, we can assign an intent z to any policy
π as πz . However, it is unclear whether we can learn effectively from offline datasets given an intent
set Z . This is guaranteed by the following theorem.

Theorem 4.2. Consider linear MDP as defined in Definition 2.1. With an offline dataset D with size
N , and the PEVI algorithm (Jin et al., 2021), the suboptimality of learning from an intent z ∈ Z
satisfies

SubOpt(π̂; s, z) = O

√C†
zd2H3ι

N

 , (10)

for sufficiently large N , where ι = log(dN |Z|/δ), c is an absolute constant and

C†
z = max

h∈[H]
sup

∥x∥=1

x⊤Σπz,hx

x⊤Σρh
x
,

with Σπz,h = E(s,a)∼dπz,h(s,a)[ϕ(s, a)ϕ(s, a)
⊤], Σρh

= Eρh
[ϕ(s, a)ϕ(s, a)⊤].

Proof. Please refer to Appendix A.2 for detailed proof.

C†
z represents the maximum ratio between the density of empirical state-action distribution ρ and

the density dπz induced from the policy πz . Theorem 4.2 states that, for any behavior, πz that
is well-covered by the offline dataset D, we can use standard offline RL algorithm to extract it
effectively, in the sense that learned behavior π̂ has a small suboptimality under reward function
r(·, ·, z). Compared to standard offline result (Jin et al., 2021), Theorem 4.2 is only worse off by a
factor of log |Z|, which enables us to learn multiple behaviors from a single dataset effectively, as
long as the desired behavior mode is well contained in the dataset.

4.2 Coverage of Random Rewards

This section investigates the coverage property of random rewards. Intuitively, using random rewards
may suffer from high variance, and it is possible that all sampled intents lead to undesired behaviors.
Theorem 4.3 shows that such cases rarely happen since with a reasonable number of random reward
functions, the linear combination of them can well cover the true reward function with a high
probability.

Theorem 4.3. Assume the reward function r(s, a) admits a RKHS represention ψ(s, a) with
∥ψ(s, a)∥∞ ≤ κ almost surely. Then with N = c0

√
M log(18

√
Mκ2/δ) random reward func-

tions {ri}Ni=1, the linear combination of the set of random reward functions r̂(s, a) can approximate
the true reward function with error

E(s,a)∼ρ[r̂(s, a)− r(s, a)]2 ≤ c1 log
2(18/δ)/

√
M,

with probability 1− δ, where M is the size of the offline dataset D, c0 and c1 are universal constants
and ρ is the distribution that generates the offline dataset D.

Proof. Please refer to Appendix A.3 for detailed proof.

Theorem 4.3 indicates that RL algorithms are insensitive to the randomness in the reward function
used for learning, as long as we are using a reasonable number of such functions. This phenomenon is
more significant in offline algorithms since they are conservative in nature to avoid over-generalization.
This partly explains why using random rewards is sufficient for behavior extraction, and can even
generate policies comparable to oracle rewards. Such a phenomenon is also observed in prior
works (Shin et al., 2023; Li et al., 2023).
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Figure 2: Comparison between UBER and baselines in the online phase in the Mujoco domain. We
adopt datasets of various quality for offline training. We adopt a normalized score metric averaged
with five random seeds.
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Figure 3: Comparison between UBER and baselines including unsupervised behavior extraction
(PARROR OPAL) and data-sharing methods (UDS). The result is averaged with five random seeds.
Our method outperforms these baselines by leveraging the diverse behavior set.

5 Experiments

Our evaluation studies UBER as a pre-training mechanism on reward-free data, focusing on the
following questions: (1) Can we learn useful and diverse behaviors with UBER? (2) Can the learned
behaviors from one task using UBER be reused for various downstream tasks? (3) How effective is
each component in UBER?

To answer the questions above, we conduct experiments on the standard D4RL benchmark (Fu et al.,
2020) and the multi-task benchmark Meta-World (Yu et al., 2020), which encompasses a variety of
dataset settings and tasks. We adopt the normalized score metric proposed by the D4RL benchmark,
and all experiments are averaged over five random seeds. Please refer to Appendix D for more
experimental details.

5.1 Experiment Setting

We extract offline behavior policies from multi-domains in D4RL benchmarks, including locomotion
and navigation tasks. Specifically, The locomotion tasks feature online data with varying levels of
expertise. The navigation task requires composing parts of sub-optimal trajectories to form more
optimal policies for reaching goals on a MuJoco Ant robot.

Baselines. We compare UBER with baselines with various behavior extraction methods. We
compare our method with BC-PEX, which uses a behavior-cloning objective and other unsuper-
vised behavior extraction methods (Yang et al., 2022), including OPAL (Ajay et al., 2020) and
PARROT (Singh et al., 2020). We also compare our method with a strong offline-to-online method,
RLPD (Ball et al., 2023) and an unsupervised data sharing method, UDS (Yu et al., 2022). Specifi-
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Figure 4: The return distribution of the dataset (DATASET) and different behaviors generated from
random intent priors (UBER) and behavior cloning (BC). UBER can generate a diverse behavior set
that span a return distribution wider than the original dataset.

500k step scores RLPD (w\o true reward) BC-PEX UBER (Ours) RLPD (w true reward)

umaze 0.0±0.0 99.8±0.3 97.9±0.3 99.9±0.1
umaze-diverse 0.0±0.0 99.9±0.1 98.8±0.5 99.9±0.1
medium-play 0.0±0.0 0.0±0.0 94.0±3.1 98.7±0.9

medium-diverse 0.0±0.0 0.0±0.0 96.5±1.5 98.5±1.3
large-play 0.0±0.0 0.0±0.0 83.3±7.7 94.8±1.5

large-diverse 0.0±0.0 0.0±0.0 88.7±1.5 93.5±1.6

100k step scores RLPD (w\o true reward) BC-PEX UBER (Ours) RLPD (w true reward)

umaze 0.0±0.0 95.8±1.4 90.7±1.8 82.5±0.2
umaze-diverse 0.0±0.0 95.5±3.7 94.5±1.1 83.3±0.3
medium-play 0.0±0.0 0.0±0.0 91.9±2.9 79.5±0.6

medium-diverse 0.0±0.0 0.0±0.0 91.3±1.4 75.3±1.3
large-play 0.0±0.0 0.0±0.0 62.8±2.6 62.1±3.7

large-diverse 0.0±0.0 0.0±0.0 82.7±2.8 61.4±4.4

Table 1: Comparison between UBER and baselines in the online phase in the Antmaze domain at
100k and 500k environment steps. Pure online methods without an offline dataset fail completely due
to the difficulty of exploration.

cally, BC-PEX first extracts behavior from the offline dataset based on behavior cloning and then
conducts online policy reuse with PEX (Zhang et al., 2023) following the schedule of Algorithm 2.
As for OPAL-PEX and PARROT-PEX, we extract behavior based on the VAE and FLOW models,
and then conduct the same online policy reuse pipeline. We set the reward of the offline dataset to
zero to implement UDS-PEX. As for the pure online baseline, we use RLPD without prior offline
data, named RLPD (no prior) as our baseline.

5.2 Experimental Results

Answer of Question 1: To show that UBER can generate diverse behaviors, we plot the return
distribution of behaviors generated by UBER, as well as the original return distribution from the
dataset. The experimental results are summarized in Figure 4. We also provide the entropy of the
return distribution in Table 3 for a numerical comparison. We can see that (1) UBER can extract
policies that perform better than the dataset, especially when the dataset does not have high-quality
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Figure 5: Experimental results on the meta-world based on two types of offline datasets, expert and
replay. All experiment results were averaged over five random seeds. Our method achieves better or
comparable results than the baselines consistently.
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Figure 6: Ablation study for the online policy reuse module. Using policy expansion (PEX) for
downstream tasks is better than critic-guided policy reuse (CUP) in general.

data; (2) UBER can learn a diverse set of behaviors, spanning a wider distribution than the original
dataset. We hypothesize that diversity is one of the keys that UBER can outperform behavior
cloning-based methods.

Further, we conduct experiments to test if the set of random intents can cover the true intent. We
calculate the correlation of N = 256 random rewards with the true reward and measure the linear
projection error. The results in Table 2 indicate that random intents can have a high correlation with
true intent, and linear combinations of random rewards can approximate the true reward function
quite well.

To test whether UBER can learn useful behaviors for downstream tasks, we compare UBER with
BC-PEX, AVG-PEX, and TD3 in the online phase in the Mujoco domains. The experimental results
in Figure 2 show that our method achieves superior performance than baselines. By leveraging the
behavior library generated from UBER, the agent can learn much faster than learning from scratch,
as well as simple behavior cloning methods. Further, the results in Figure 3 show that UBER also
performs better than behavior extraction and data sharing baselines in most tasks. This is because
prior methods extract behaviors in a behavior-cloning manner, which lacks diversity and leads to
degraded performance for downstream tasks.

In addition, to test UBER’s generality across various offline and online methods on various domains,
we also conduct experiments on Antmaze tasks. We use IQL (Kostrikov et al., 2021) and RLPD (Ball
et al., 2023) as the backbone of offline and online algorithms. The experimental results in Table 1
show that our method achieves stronger performance than baselines. RLPD relies heavily on offline
data and RLPD without true reward has zero return on all tasks. Differently, UBER extracts a useful
behavior policy set for the online phase, achieving similar sample efficiency as the oracle method
that has reward label for the offline dataset. We also provide the learning curve for the antmaze
environment in Figure 11.
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Figure 7: Ablation study for the random intent priors module. Using average reward for policies
learning can lead to nearly optimal performances on the original task. Nevertheless, our method
outperforms such a baseline (AVG-PEX) consistently, showing the importance of behavioral diversity.

Answer of Question 2: To test whether the behavior set learned from UBER can benefit multiple
downstream tasks, we conducted the multi-task experiment on Meta-World (Yu et al., 2020), which
requires learning various robot skills to perform various manipulation tasks. We first extract behaviors
with random intent priors from the selected tasks and then use the learned behaviors for various
downstream tasks. The experimental results in Appendix B show that the prior behaviors of UBER
can be successfully transferred across multi-tasks than baselines. Please refer to Appendix B for the
experimental details and results.

Answer of Question 3: To understand what contributes to the performance of UBER, we perform
ablation studies for each component of UBER. We first replace the policy expansion module with
critic-guided policy reuse (CUP; Zhang et al., 2022), to investigate the effect of various online policy
reuse modules. The experimental results in Figure 6 show that UBER+PEX generally outperforms
UBER+CUP. We hypothesize that CUP includes a hard reuse method, which requires the optimized
policy to be close to the reused policies during training, while PEX is a soft method that only uses the
pre-trained behaviors to collect data. This makes PEX more suitable to our setting since UBER may
generate undesired behaviors.

Then, we ablate the random intent priors module. We use the average reward in the offline datasets to
learn offline policies and then follow the same online policy reuse process in Algorithm 2. Using
average reward serves as a strong baseline since it may generate near-optimal performance as observed
in Shin et al. (2023). We name the average reward-based offline behavior extraction method as AVG-
PEX. The experimental results in Figure 7 show that while average reward-based offline optimization
can extract some useful behaviors and accelerate the downstream tasks, using random intent priors
performs better due to the diversity of the behavior set.

6 Conclusion

This paper presents Unsupervised Behavior Extraction via Random Intent Priors (UBER), a novel
approach to enhance reinforcement learning using unsupervised data. UBER leverages random intent
priors to extract diverse and beneficial behaviors from offline, reward-free datasets. Our theorem
justifies the seemingly simple approach, and our experiments validate UBER’s effectiveness in
generating high-quality behavior libraries, outperforming existing baselines, and improving sample
efficiency for deep reinforcement learning algorithms.

UBER unlocks the usage of abundant reward-free datasets, paving the way for more practical
applications of RL. UBER focuses on learning behaviors, which is orthogonal to representation
learning. It is an interesting future direction to further boost online sample efficiency by combining
both approaches. Consuming large unsupervised datasets is one of the keys to developing generalist
and powerful agents. We hope the principles and techniques encapsulated in UBER can inspire
further research and development in unsupervised reinforcement learning.
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A Missing Proofs

A.1 Proof of Proposition 4.1

Proposition A.1 (Proposition 4.1 restated). For any behavior π, there exists an intent z with reward
function r(·, ·, z) such that π is the optimal policy under r(·, ·, z). That is, for any π = {πh}Hh=1, πh :
S → ∆(A), there exists z ∈ Z such that

V π
h (s, z) = V ∗

h (s, z), ∀(s, a, h) ∈ S ×A× [H].

Moreover, if π is deterministic, then there exists z ∈ Z such that π is the unique optimal policy under
r(·, ·, z), in the sense that for all optimal policy π∗

z , π
∗
h,z(·|s) = πh(·|s),∀dπh(s) > 0.

Proof. For any policy π and any reward function rh(·, ·, z), we have

V π
h (sh, z) =

H∑
t=h

∫
rt(s, a, z)d

π
t (s, a, sh)dsda, (11)

where dπt (s, a, sh) is the visitation density at step t for π starting from sh.

Let rh(s, a, z) = 1(∃sh ∈ S, dπh(s, a, sh) > 0), then we have

V π
h (·, z) = H − h = Vh,max = V ∗

h (·, z). (12)

If π is deterministic, then dπh(s, a) is a one-hot distribution at any given s. So any π′ such that there
exists sh, πh(·|sh) ̸= π′

h(·|sh) and dπh(sh) > 0, we have

∫
rh(sh, a, z)d

π′

h (sh, a)da < 1,

Then we have V π′

h (sh, z) < Vh,max, which means π′ is not optimal. Therefore, the optimal policy π
is unique.

Proposition 4.1 shows that any deterministic policy can be uniquely determined by some intent z so
that it is extractable via standard RL.

A.2 Proof of Theorem 4.2

Theorem A.2 (Theorem 4.2 restated.). Consider linear MDP as defined in Definition 2.1. With an
offline dataset D with size N , and the PEVI algorithm (Jin et al., 2021), the suboptimality of learning
from an intent z ∈ Z with size |Z| satisfies

SubOpt(π̂; rz) ≤ 4c

√
C†

zd2H3ι

N
, (13)

with probability 1− δ for sufficiently large N , where ι = log 4dN |Z|
δ is a logarithmic factor, c is an

absolute constant and

C†
z = max

h∈[H]
sup

∥x∥=1

x⊤Σπz,hx

x⊤Σρh
x
,

with

Σπz,h = E(s,a)∼dπz,h(s,a)[ϕ(s, a)ϕ(s, a)
⊤], Σρh

= Eρh
[ϕ(s, a)ϕ(s, a)⊤].

Proof. Using the fact that any linear reward function is still a linear MDP, we can reuse the proof for
standard offline RL.

Let δ′ = δ
|Z| and following Jin et al. (2021), we have the result immediately with a union bound.

Note that the original bound in Jin et al. (2021) scales as Õ(d3), but it can be improved to Õ(d2) by
finer analysis without changing the algorithm (Xiong et al., 2022).
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A.3 Proof of Theorem 4.3

Proof. Each random reward function can be seen as one dimension of random feature for linear
regression. Following Theorem 1 in Rudi & Rosasco (2017), and note that the true reward function
has zero error, we have that the linear estimator r̂ridge generated by ridge regression satisfy

E(s,a)∼ρ(r̂ridge(s, a)− r(s, a))2 = E(s,a)∼ρ

(∑
i

ŵridge
i ri(s, a)− r(s, a)

)2

≤ c1 log
2(18/δ)/

√
M.

Noting that

min
w

E(s,a)∼ρ

(∑
i

wiri(s, a)− r(s, a)

)2

≤ E(s,a)∼ρ

(∑
i

ŵridge
i ri(s, a)− r(s, a)

)2

,

we have result immediately.

B Experiments on Multi-task Transfer

Answer of Question 2: We evaluate our method on Meta-World (Yu et al., 2020), a popular
reinforcement learning benchmark composed of multiple robot manipulation tasks. These tasks are
correlated (performed by the same Sawyer robot arm) while being distinct (interacting with different
objectives and having different reward functions). Following Zhang et al. (2022), we use datasets
from three representative tasks: Reach, Push, and Pick-Place, as shown in Figure 8 and we choose
Push-Wall, Pick-Place-Wall, Push-Back, and Shelf-Place as the target tasks.

Pick-Place-v2

Push-v2

Reach-v2

Figure 8: Visualization of three representative tasks in the metaworld.

Two types of offline datasets were considered: an expert policy dataset and a replay dataset generated
by TD3. The expert dataset comprised 0.1M data points obtained from expert demonstrations, while
the replay dataset consisted of 0.3M data points sampled from 3M TD3 experiences.

Our experimental results, depicted in Figure 9, reveal that UBER outperforms the baselines in most
tasks. This underscores UBER’s ability to effectively repurpose learned behaviors from various tasks
for different downstream applications.
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C Additional Experiments

Correlation and projection error of random rewards. To investigate whether random rewards has
a good coverage and a high correlation with the true reward, we calculate the maximum correlation
between random rewards and the true reward, as well as the projection error of the true reward on the
linear combination of random rewards on Mujoco tasks, as shown in Table 2.

Tasks Max Correlation Min Correlation Projection Error

hopper-medium-v0 0.569 -0.568 0.016
hopper-medium-expert-v0 0.498 -0.540 0.015

hopper-expert-v0 0.423 -0.415 0.011
halfcheetah-medium-v0 0.569 -0.568 0.016

halfcheetah-medium-expert-v0 0.605 -0.589 0.047
halfcheetah-expert-v0 0.370 -0.461 0.021
walker2d-medium-v0 0.475 -0.582 0.046

walker2d-medium-expert-v0 0.495 -0.472 0.042
walker2d-expert-v0 0.358 -0.503 0.019

Table 2: Minimum and maximum correlation and linear projection error for the true reward function
using random reward functions on various tasks. The projection error ϵ is defined as ϵ = ∥r− r̂∥/∥r∥,
where r̂ is the best approximation using linear combination of random rewards. Note that we use
random reward functions (represented by neural networks) based on (s, a) inputs rather than entirely
random ones, which have a near-zero correlation with the true reward and 40% projection error.

Entropy of return distribution. To numerically show that UBER can generate a diverse behavior
set beyond the original dataset, we calculate the entropy of the return distribution for each task, as
shown in Table 3.

Methods halfcheetah-m halfcheetah-me halfcheetah-e hopper-m hopper-me hopper-e

BC 0 0 0 0 0 0
DATASET 1.21 1.47 0.86 0.71 1.97 0.82

UBER 2.01 1.92 2.69 2.45 2.32 1.11

Methods walker2d-m walker2d-me walker2d-e antmaze-md antmaze-mr

BC 0 0 0 0 0
DATASET 1.44 1.88 2.43 0.63 0.29

UBER 2.67 2.61 0.41 1.77 1.69
Table 3: Entropy of the return distribution for different methods. Our method generate a behavior set
that has a higher entropy in the return distribution than the original dataset consistently across various
tasks.

Distribution of behaviors. To show that UBER can generate diverse behaviors, we plot the
distribution of behaviors generated by UBER, as well as the original distribution from the dataset.
The experimental results are summarized in Figure 10. We can see that when there are expert
behaviors, most of the behaviors generated by UBER successfully lock to the optimal policy. When
there are multiple modes of behavior like medium-expert, UBER can learn both behaviors, matching
the distribution of the dataset. When there are no expert behaviors, UBER can learn diverse behaviors,
some of which can achieve near-optimal performance. We hypothesize that diversity is one of the
keys that UBER can outperform behavior cloning-based methods.

Learning curve for the Antmaze environment. Here we provide the detailed learning curve for
the Antmaze experiment to demonstrate the efficiency of UBER. We can see from Figure 11 that
UBER learns a good strategy in hard exploration tasks like medium and large, indicating UBER’s
strong ability to learn useful behaviors.
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Ablation study for the online policy reuse module. We first replace the policy expansion module
with CUP (Zhang et al., 2022), UBER (CUP) to investigate the effect of various online policy
reuse modules. The experimental results in Figure 12 show that UBER+PEX generally outperforms
UBER+CUP. We hypothesize that CUP includes a hard reuse method, which requires the optimized
policy to be close to the reused policies during training, while PEX is a soft method that only uses the
pre-trained behaviors to collect data. This makes PEX more suitable to our setting since UBER may
generate undesired behaviors.

Complete comparison with baselines. Here we provide a complete comparison with several
baselines, including OPAL, PARROT and UDS, as shown in Figure 13. Our method outperform these
baselines due to the ability to extract diverse behaviors.

Ablation study for the random intent priors module. we conduct an ablation study for the
random intent priors module. We use the average reward in the offline datasets to learn offline policies
and then follow the same online policy reuse process in Algorithm 2. Using average reward serves as
a strong baseline since it may generate near-optimal performance as observed in Shin et al. (2023).
We name the average reward-based offline behavior extraction as AVG-PEX. The experimental results
in Figure 14 show that while average reward-based offline optimization can extract some useful
behaviors and accelerate the downstream tasks, using random intent priors performs better due to the
diversity of the behavior set.
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Figure 9: Complete experimental results on the meta-world based on two types of offline datasets,
expert and replay. All experiment results were conducted over five random seeds.
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Figure 10: Distribution of random intent priors, datasets, and behavior cloning policies. We restrict
the y-axis to a small range to make the distribution clearer.
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Figure 11: Comparison between UBER and baselines in the online phase in the Antmaze domain.
Oracle is the performance of RLPD at 500k step. We adopt a normalized score metric averaged with
three random seeds.
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Figure 12: Complete result for the ablation study for the online policy reuse module. Using policy
expansion (PEX) for downstream tasks is better than critic-guided policy reuse (CUP) in general
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Figure 13: Complete result for the comparison between UBER and baselines including unsupervised
behavior extraction and data-sharing method. We adopt a normalized score metric averaged with five
random seeds.
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Figure 14: Complete result for the ablation study for the random intent priors module. Using average
reward for policies learning can lead to nearly optimal performances on the original task. Neverthe-
less, our method outperforms such a baseline (AVG-PEX) consistently, showing the importance of
behavioral diversity.
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D Experimental Details

Experimental Setting. For BC-PEX, we first extract behavior from the offline dataset based on the
Behavior Cloning, then conduct online policy expansion based on Algorithm 2. For Avg-PEX, we
first use the average reward for the offline optimization, then conduct online policy expansion based
on Algorithm 2. For RLPD, we load the offline dataset with the true reward value for the prior data.
For RLPD (no prior), we do not load offline-dataset into the buffer.

Hyper-parameters. For the Mujoco and metaworld tasks, we adopt the TD3+BC and TD3 as the
backbone of offline and online algorithms. For the Antmaze tasks, we adopt the IQL and RLPD as
the backbone of offline and online algorithms. We outline the hyper-parameters used by UBER in
Table 4, Table 5 and Table 6.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
TD3+BC parameter α 2.5

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Random Net hidden dim 256
Random Net hidden layers 2
Random Net activation function ReLU

UBER Parameters Value

Random reward dim n 256
PEX temperature α 10

Table 4: Hyper-parameters sheet of UBER in Mujoco tasks.

Baselines Implementation. We adopt the author-provided implementations from GitHub for TD3 *,
TD3+BC †, IQL ‡, RLPD § and DrQ-v2 ¶. All experiments are conducted on the same experimental
setup, a single GeForce RTX 3090 GPU and an Intel Core i7-6700k CPU at 4.00GHz.

*https://github.com/sfujim/TD3
†https://github.com/sfujim/TD3_BC
‡https://github.com/ikostrikov/implicit_q_learning
§https://github.com/ikostrikov/rlpd
¶https://github.com/facebookresearch/drqv2
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Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
TD3+BC parameter α 2.5

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Random Net hidden dim 256
Random Net hidden layers 2
Random Net activation function ReLU

UBER Parameters Value

Random reward dim n 100
PEX temperature α 10

Table 5: Hyper-parameters sheet of UBER in metaworld tasks.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
IQL parameter τ 0.9
RLPD parameter G 20
Ensemble Size 10

Architecture Value

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Random Net hidden dim 256
Random Net hidden layers 2
Random Net activation function ReLU

UBER Parameters Value

Random reward dim n 256
PEX temperature α 10

Table 6: Hyper-parameters sheet of UBER in Antmaze tasks.
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