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Abstract

In recent years, knowledge distillation methods based on contrastive learning
have achieved promising results on image classification and object detection
tasks. However, in this line of research, we note that less attention is paid to
semantic segmentation. Existing methods heavily rely on data augmentation
and memory buffer, which entail high computational resource demands when
applying them to handle semantic segmentation that requires to preserve high-
resolution feature maps for making dense pixel-wise predictions. In order to
address this problem, we present Augmentation-free Dense Contrastive Knowledge
Distillation (Af-DCD), a new contrastive distillation learning paradigm to train
compact and accurate deep neural networks for semantic segmentation applica-
tions. Af-DCD leverages a masked feature mimicking strategy, and formulates a
novel contrastive learning loss via taking advantage of tactful feature partitions
across both channel and spatial dimensions, allowing to effectively transfer dense
and structured local knowledge learnt by the teacher model to a target student
model while maintaining training efficiency. Extensive experiments on five main-
stream benchmarks with various teacher-student network pairs demonstrate the
effectiveness of our approach. For instance, the DeepLabV3-Res18|DeepLabV3-
MBV2 model trained by Af-DCD reaches 77.03%|76.38% mIOU on Cityscapes
dataset when choosing DeepLabV3-Res101 as the teacher, setting new perfor-
mance records. Besides that, Af-DCD achieves an absolute mIOU improvement of
3.26%|3.04%|2.75%|2.30%|1.42% compared with individually trained counterpart
on Cityscapes|Pascal VOC|Camvid|ADE20K|COCO-Stuff-164K. Code is available
at https://github.com/OSVAI/Af-DCD.

1 Introduction

In computer vision, semantic segmentation is a mainstream dense prediction task aiming to assign the
corresponding class to every pixel of input images. Although fundamental models in this task have
achieved remarkable progress [1–3], the heavy computational burden and latency of these models
severely prohibit their deployment on resource-constrained devices. As a popular solution to this
bottleneck, Knowledge Distillation (KD) [4] aims to transfer the knowledge from large models to
light-weight ones. Considering KD in supervised semantic segmentation, teachers usually have
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Figure 1: The overall framework of Af-DCD, which contains two major parts: (i) masked feature
reconstruction; (ii) augmentation-free contrastive distillation loss. Detail illustrations on Af-DCD are
shown in Figure 2.

stronger ability of capturing detailed local information of images where the dense and structured
knowledge contributes significantly to segment complicated areas, such as boundary and occlusion.
Therefore, distillation methods tailored to this task should keep the integrity of dense and structured
knowledge, rather than compressing it excessively such as simply using global representations or
salient areas. As a result, directly applying traditional KD methods in semantic segmentation, like
vanilla KD [4] or feature imitation [5], cannot achieve promising results in most cases.

Thanks to the development of contrastive learning, some distillation methods, like SSKD [6], CRD
[7] and G-DetKD [8], employed this paradigm into their designs, which promoted the performance
significantly, as they exploited teacher’s intrinsic knowledge in the consistencies among different
augmentations or various same-category instances. In semantic segmentation, CIRKD [9] designed
an implicit contrastive method which aimed to guarantee pixel-pixel and pixel-region consisten-
cies between teacher and student by involving additional contrastive samples. On one side, these
existing methods have achieved remarkable progress in image-level or object-level contrastive mim-
icking. On the other side, however, the efficacy of the aforementioned methods heavily relies on
the augmentation and memory buffer, which entail heavy computational and memory cost. Besides,
previous contrastive distillation methods have not explicitly modeled relations among pixel-wise or
more fine-grained representations within each local patch to transfer teacher’s dense and structured
knowledge to student, which is critical in semantic segmentation. Thus, when designing a contrastive
distillation method for this task, two vital technical problems should be tackled: (i) High resource
demands: No matter leveraging augmented samples or storing feature maps in memory buffer,
more computational or storage cost is required. For one, the forward of augmented samples incurs
extra computational cost. For another, the output feature maps for semantic segmentation are in
high resolution. If we want to make dense and structured contrasting, these feature maps should be
originally preserved, which occupy a large amount of memories; (ii) Structured knowledge transfer:
Although CIRKD defined pixel-wise alignment between student and teacher, it employed contrastive
pixel-wise representations from other images, rather than local areas within the same image. It means
that no explicit contrasting was defined between student-specific pixel-wise representation to each
teacher’s pixel-wise representation within local areas, which was agnostic to the structure in teacher’s
feature. In brief, a contrastive distillation method specially tailored to semantic segmentation, which
also entails no extra high resource demands (data augmentation and memory buffer), is essential.

Driven by achieving this target, we first look into the aforementioned two problems and surprisingly
discover both of them are incurred from the simple inheritance in the basic definitions of traditional
contrastive learning [10, 11]. Therefore, our Augmentation-free Dense Contrastive Knowledge
Distillation (Af-DCD) for supervised semantic segmentation tasks can come out, by re-defining these
basic concepts: (i) Contrasting samples are not coarse-grained representations of images or objects.
Instead, in our Af-DCD, we move further on pixel-level representations and divide each of them
into several disjoint partitions (fine-grained representations), which are treated as our contrasting
samples; (ii) Positive and negative pairs are not conditioned on categories or objects. Instead, based
on the definition of contrasting samples, we define our pairs in a specific teacher-student feature pair
(F t, F s), where fine-grained representations having the same absolute positions in feature maps are
used to formulate positive pairs, while representations having different absolute positions but within
neighbourhoods are used as negative pairs. Based on these definitions, our Af-DCD can naturally
tackle those two problems discussed above. To the first problem, unlike previous methods which had
to introduce data augmentation and memory buffer to construct sufficient positive and negative pairs,
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our Af-DCD can directly construct these pairs in each local patch without any extra computational
and memory cost. To the second problem, we approach it by introducing two new contrastive designs,
Spatial Contrasting and Channel Contrasting, which enable student to capture teacher’s local
dense and structured knowledge by focusing on contextual and positional channel-group information,
respectively. As a natural progression, we introduce a hybrid design called Omni-Contrasting,
which combines Spatial Contrasting and Channel Contrasting in a neat manner. This design facilitates
the simultaneous transfer of both types of information from the teacher to the student, enabling
effective augmentation-free contrastive knowledge distillation. Despite leveraging rather dense
contrasting, our Af-DCD also performs efficiently. This is due to the patch separation technique we
use, which significantly reduces the computational complexity. Additionally, the distance measuring
and contrasting calculation can be carried out in parallel, further enhancing the overall efficiency of
our method.

Experimental results demonstrate that: (i) Af-DCD exhibits superior performance compared to
state-of-the-art methods, on various benchmarks with different teacher-student network pairs; (ii)
Af-DCD exhibits even more significant improvements on larger datasets, such as ADE20K, indicating
it can enhance student’s generalization capability. Moreover, our analytical experiments illustrate that
by effectively learning teacher’s self-similarity distribution within neighbourhoods and thus reducing
the fine-grained feature distances to the teacher, Af-DCD benefits addressing difficult scenarios in
semantic segmentation.

2 Related Works

Knowledge Distillation. Knowledge distillation can be generally divided into probability-based
approach and feature-based approach. Specifically, the former one forces student to mimic teacher’s
logits as soft-labels [4, 12], while the later one leverages teacher’s hidden feature maps or its variants
[5, 13, 14] as distillation supervisions. Some recent feature-based approaches [15–17] designed their
distillation methods based on masked image modeling mechanism [18, 19] and achieved promising
performance in various tasks, as the feature reconstruction can enhance the interdependencies among
pixels, which is beneficial to feature distillation.

Knowledge Distillation in Semantic Segmentation. As semantic segmentation is a dense prediction
task, the methods specially designed for this task aimed to capture teacher’s structured local infor-
mation. In order to achieve this target, SKD [20] directly measured the similarities of pixel-wise
representations between teacher and student, while He et al. [21] leveraged non-local operation
with autoencoder to encode local information. CWD [22] evaluated channel-wise pixel distribution
contributing to learn teacher’s spatial information in each individual channel. Some methods further
explored intrinsic knowledge among different samples. For instance, IFVD [23] measured distances
from prototypes of different classes and forced student to mimic teacher’s intra-class relations, and
CIRKD [9] forced student to keep pixel-wise and region-wise consistencies to teacher among various
samples in memory buffer.

Contrastive Knowledge Distillation. Inspired by the development of contrastive learning in self-
supervised [10, 24] and supervised tasks [11], some recent works leveraged this paradigm and
designed new contrastive distillation methods, which made contrasting between teacher’s and student’s
features by employing different views generated from data augmentation [6], or using various samples’
features [25, 7] as well as gradients [26] stored in memory buffer. Specifically in dense prediction
tasks, G-DetKD [8] constructed ROI feature pairs and executed soft semantic-guided matching which
promoted the performance in object detection, and CIRKD [9] designed an implicit contrastive
method which leveraged both pixel and region representations to learn structured information in
spatial dimension.

3 Method

3.1 Overall Framework

Figure 1 illustrates our distillation process in semantic segmentation from a pre-trained teacher T to a
student S which needs to be trained on a specific dataset. The output features of T and S are denoted
as F̂ t ∈ RH×W×Ct

and F̂ s ∈ RH×W×Cs

respectively, where H and W are height and width of
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Figure 2: Detailed illustrations on three different types of Af-DCD, which are Spatial Contrasting (top
left), Channel Contrasting (top right) and Omni-Contrasting (bottom). For brevity, the contrasting
process is illustrated merely using a specific contrastive sample in student feature maps, denoted
as F s

i,j , F s
i,j,k, F s

p,i,j,k in three Af-DCD designs, respectively. The red arrows denote constructing
positive pairs, while the blue arrows denote constructing negative pairs. The gray blocks denote other
patches which are not considered in calculating the loss in this patch.

feature maps, Ct and Cs are the number of channels of teacher and student, respectively. Our method
uses a random mask M ∈ RH×W×1 to overlap F̂ s in spatial dimension and then inputs the masked
feature into a generator, which can be formulated as F s = fgenerator(M ⊙ F̂ s). Finally, we can
get F s ∈ RH×W×Ct

, which has the same dimension as teacher’s feature. In order to fit general
definition, teacher’s feature is also processed by a transform F t = ft(F̂

t). In our design, ft is an
identity transformation, thus F t = F̂ t. After these operations, the reconstructed student feature F s

has been projected into the same feature space as teacher’s feature F t. The feature imitation loss Lfd

and our Af-DCD loss LAf−DCD are calculated based on feature pair (F t, F s). Besides, following
the settings in [9, 22], we also employ vanilla logits-based KD loss [4]. In general, the overall loss of
our method can be defined as:

L = Ltask + λ1Lkd + λ2Lfd + λ3LAf−DCD, (1)

where λi is the balancing weight.

3.2 Augmentation-free Dense Contrastive Knowledge Distillation

After illustrating the overall framework, we further explain our core design in detail, which contains
two major parts, Lfd and LAf−DCD. As we mentioned above, both of them are based on the same
feature pair (F t, F s). Therefore, in order to clarify our design, we first answer two key questions:
(i) What are the targets of Lfd and LAf−DCD separately? (ii) How these two losses cooperate with
each other? To the first question, Lfd directly help student to imitate teacher’s global and salient
features, while LAf−DCD is designed to mimic teacher’s dense structured knowledge within local
areas, which can further force F s to approach F t in the micro and fine-grained views. To the second
question, in terms of mimicking dense and structured knowledge, these two losses are inextricably
bound up with each other. For one, Lfd provides LAf−DCD an absolute imitation trend, which
cannot be implemented in contrastive loss. For another, LAf−DCD offers Lfd essential constrains
on encouraging this process towards mimicking teacher’s structured knowledge in each local patch,
making student further approach teacher.

Masked Reconstruction based Feature Imitation. The feature imitation loss Lfd is a basic part of
our design, which forces student feature F s to imitate teacher feature F t directly. Previous methods
commonly leverage simple upsampling to align teacher’s and student’s feature dimensions. Recently,
some methods leveraged masked image reconstruction [15, 17], which is a stronger baseline, as it
can promote the performance by strengthening the interdependencies among pixels. This process can
be formulated as:

F s = fgenerator(M ⊙ F̂ s), (2)
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where M ∈ RH×W×1 is the mask matrix generated randomly with the mask ratio ζ ∈ [0, 1). Then
feature distillation can be formulated as:

Lfd =

Ct∑
k=1

H∑
i=1

W∑
j=1

(F t
i,j,k − F s

i,j,k)
2. (3)

Although masked reconstruction achieves promising performance, one potential weakness may
affect its gain in semantic segmentation: Reconstructed features tend to be similar in local areas
3. However, in semantic segmentation, local differences indicate structured knowledge, in which
student’s reconstructed feature maps should keep these differences. Here comes out why we choose
masked reconstruction as our basic feature distillation method: (i) choosing a stronger baseline to
further test the effectiveness of our Af-DCD; (ii) examining whether our Af-DCD can promote masked
reconstruction for generating more structured representations, enhancing feature imitation process.

Motivation and Key Ideas of Af-DCD. In semantic segmentation, we notice two important facts. On
one side, different pixels within local areas may contain different semantic information, as they may
belong to different categories or different parts of an object. We call this as contextual information.
On the other side, differences among channel groups of a pixel representation implicitly indicate the
semantic meaning of this pixel, as each output channel is a specific projection of all input feature
maps. We call this as positional channel-group information. In short, the contextual and positional
channel-group information within each local area in spatial and channel dimensions is of significance
in semantic segmentation. If both types of information from teacher’s feature maps can be densely
utilized as the distillation guidance to facilitate the training of the student model, we conjecture that
student’s performance and generalization capability can be greatly boosted. However, traditional
feature imitation loss Lfd is difficult to capture these two types of information, as they are not directly
observable and measurable comparing to salient representation. Aiming to tackle this problem, we
define contrastive loss across student’s and teacher’s pixel-level or more fine-grained representations
to explicitly model such kind of knowledge transfer. Specifically, as shown in Figure 2, Af-DCD
incorporates three key ideas:

(1) Spatial Contrasting. With the first phenomenon, we leverage pixel-wise representations
in F s and F t and define pixel-wise dense contrasting based on spatial positions, aiming to
transfer teacher’s spatial contextual information to student;

(2) Channel Contrasting. With the second phenomenon, we then move further on pixel-wise
dense contrasting and split every pixel-specific representation into disjoint groups and define
group-wise dense contrasting based on channel positions, aiming to force student to learn
teacher’s positional channel-group information;

(3) Omni-Contrasting. Progressively, we unify the above two contrasting methods in an hybrid
design, which takes advantage of tactful feature partitions across both channel and spatial
dimensions in local areas by splitting the feature map into disjoint patches of the same size.

Formulation of Af-DCD. The formulation of Af-DCD follows the notations in Section 3.1. The
projected feature maps of teacher and student are denoted as F t ∈ RH×W×Ct

and F s ∈ RH×W×Ct

,
respectively. In the perspective of contrastive learning, we first clarify some important concepts in
our Af-DCD:

(1) Samples and Views. Different from existing contrastive distillation methods in classification
and detection, the samples in Af-DCD are pixel-level or more fine-grained representations
in feature maps of the same image, which are naturally dense. Furthermore, we define
that representations of teacher and student are two views which should be aligned by our
contrastive loss;

(2) Positive Pairs and Negative Pairs. Under the definitions above, a positive pair can be
defined as: a teacher-student sample pair (F s

i , F
t
j ) which has the same index i = j, where i

and j are general location indices. Similarly, a negative pair can be defined as: a teacher-
student sample pair (F s

i , F
t
j ) whose indices are different i ̸= j.

3Experimental results illustrate that the distances between feature partitions within local areas are usually
small (see in Figure 3b).
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Based on the above definitions, the loss for a specific sample F s
i ∈ F s can be formulated as:

lAf−DCD(F s
i , F

t) = −log
exp(−d(F s

i , F
t
i )/τ)∑N

j=1 1i ̸=j exp(−d(F s
i , F

t
j )/τ)

, (4)

where τ denotes the temperature score, N is the total number of contrastive pairs and 1i̸=j is an
indicator function which is 1 iff. i ̸= j. Different from traditional contrastive loss that adopts cosine
distance on measuring similarities, we use Euclidean distance to measure sample pair similarities,
where d(F s

i , F
t
i ) = ||F s

i − F t
i ||22. Our ablative experiments illustrate that improved performance

would be attained when we select the same type of the distance function for Lfd and LAf−DCD.

Spatial Contrasting. As shown in Figure 2 (top left), aiming to learn teacher’s spatial contextual
information, Spatial Contrasting constructs dense contrasting operations between teacher’s and
student’s pixel-level representations, where for each sample F s

i,j , the positive pair is (F s
i,j , F

t
i,j),

while the other {(F s
i,j , F

t
u,v)}u,v ̸=i,j are all negative pairs. In such condition, we obtain 1 postive

pair and HW − 1 negative pairs. Then Spatial Contrasting can be formulated as:

lSC
Af−DCD(F s

i,j , F
t) = −log

exp(−d(F s
i,j , F

t
i,j)/τ)

H∑
u=1

W∑
v=1

1u,v ̸=i,j exp(−d(F s
i,j , F

t
u,v)/τ)

. (5)

Channel Contrasting. As shown in Figure 2 (top right), Channel Contrasting first splits each pixel
representation into M non-overlapping channel groups of the same length. Specifically, F s

i,j and F t
i,j

are split into {F s
i,j,w}w=1...M and {F t

i,j,w}w=1...M , where w is the index of channel group. Then, in
order to transfer teacher’s channel-group information at each pixel position, the dense contrasting
happens on each pixel-level representation pair between {F s

i,j,w}w=1...M and {F t
i,j,w}w=1...M . For

each fine-grained representation F s
i,j,k, the positive pair is (F s

i,j,k, F
t
i,j,k) and negative pairs are

{(F s
i,j,k, F

t
i,j,w)}w ̸=k, where the number of positive and negative pairs is 1 and M − 1, respectively.

Then we substitute these pairs into Formula 4, where w denotes the index. Channel contrasting can
be formulated as:

lCC
Af−DCD(F s

i,j,k, F
t
i,j) = −log

exp(−d(F s
i,j,k, F

t
i,j,k)/τ)

M∑
w=1

1w ̸=k exp(−d(F s
i,j,k, F

t
i,j,w)/τ)

. (6)

Omni-Contrasting. Omni-Contrasting is an neat combination of Channel Contrasting and Spa-
tial Contrasting, shown in Figure 2 (bottom). Different from the design of Spatial Contrasting,
Omni-Contrasting does not contrast all positions of feature maps. Instead, in order to exploit local
information, Omni-Contrasting groups pixels into a series of local patches and leverages spatial and
channel contrasting within each local patch. This local contrasting can force student to learn teacher’s
spatial contextual information and positional channel-group information simultaneously, which are
beneficial for accurately segmenting the boundary and correctly classify those pixels. After that,
F t and F s are split into {F t

p}p=1...N and {F s
p }p=1...N , where F t

p, F
s
p ∈ RĤ×Ŵ×Ct

and N = HW
ĤŴ

.
Then, like the operation in Channel Contrasting, the channels will be divided into M non-overlapping
groups. Teacher’s and student’s representations at position (i, j, k) in local patch p are denoted as
F t
p,i,j,k and F s

p,i,j,k, respectively, where F t
p,i,j,k, F

s
p,i,j,k ∈ R1×1×Ct

M . For F s
p,i,j,k, the positive pair

is (F s
p,i,j,k, F

t
p,i,j,k, ), while negative pairs are (F s

p,i,j,k, F
t
p,u,v,w) for any u, v, w ̸= i, j, k, where the

number of positive and negative pairs is 1 and ĤŴM − 1, respectively. The Omni-Contrasting can
be defined as:

lOC
Af−DCD(F s

p,i,j,k, F
t
p) = −log

exp(−d(F s
p,i,j,k, F

t
p,i,j,k)/τ)

Ĥ∑
u=1

Ŵ∑
v=1

M∑
w=1

1u,v,w ̸=i,j,k exp(−d(F s
p,i,j,k, F

t
p,u,v,w)/τ)

. (7)

Finally, the overall Omni-Contrasting loss can be defined as:

LOC
Af−DCD =

1

HWM

N∑
p=1

Ĥ∑
i=1

Ŵ∑
j=1

M∑
k=1

lOC
Af−DCD(F s

p,i,j,k, F
t
p). (8)
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Table 1: Performance comparison of Af-DCD and recent state-of-the-art distillation methods on
Cityscapes, evaluated with different teacher-student segmentation network pairs. † denotes distillation
without Lkd. We follow the way in CIRKD [9] to calculate FLOPs. Best results are bolded.

(a) The same framework with different backbones

Method Params (M) FLOPs (G)
mIOU (%)
Val Test

T: DeepLabV3-Res101 61.1M 2371.7G 78.07 77.46

S: DeepLabV3-Res18

13.6M 572.0G

74.21 73.45
SKD [20] 75.42 74.06
IFVD [23] 75.59 74.26
CWD [22] 75.55 74.07
CIRKD [9] 76.38 75.05
MasKD [17] 77.00 75.59
Af-DCD 77.03 75.12

S: DeepLabV3-MBV2

3.2M 128.9G

73.12 72.36
SKD [20] 73.82 73.02
IFVD [23] 73.50 72.58
CWD [22] 74.66 73.25
CIRKD [9] 75.42 74.03
MasKD [17] 75.26 74.23
Af-DCD 76.38 75.06

(b) Different frameworks with the same backbone

Method Params (M) FLOPs (G) Val mIOU (%)

T: PSPNet-Res101 68.07M 1868.5G 78.34

S: DeepLabV3-Res18

13.6M 572.0G

73.20
SKD [20] 73.87
CWD [22] 75.93
MGD†[15] 76.02
MGD [15] 76.31
Af-DCD† 76.44
Af-DCD 76.52

S: PSPNet-Res18

12.9M 507.4G

69.85
SKD [20] 72.70
CWD [22] 73.53
MGD†[15] 73.63
MGD [15] 74.10
Af-DCD† 73.92
Af-DCD 74.22

4 Experiments

4.1 Datasets and Experimental Setups.

Datasets. Five popular semantic segmentation datasets, including Cityscapes [27], Pascal VOC [28],
Camvid [29], ADE20K [30] and COCO-Stuff-164K [31], are used in our experiments. We conduct
our ablation studies on both Cityscapes and ADE20K, which help us to ensure the best setting in
most experiments and analyse the effectiveness of our design. Details for these five datasets are
described in supplemental material.

Experimental Settings. Following general settings [9, 20, 15] in semantic segmentation distilla-
tion, we adopt DeeplabV3 [32] and PSPNet [3] for segmentation framework, ResNet-18 [33] and
Mobilenetv2 [34] for student backbones, Resnet-101 for teacher backbone and group various teacher-
student pairs. In order to make fair comparison with different state-of-the-art methods, we implement
our method on both MMSegmentation codebase [35] and CIRKD codebase [9]. In training and
evaluation, we use mean Intersection-over-Union (mIoU) to measure the performance of all methods.
In training phase, all models are optimized by SGD with the momentum of 0.9, the initial learning rate
of 0.02, and the batch size of 16. The input size is 512× 1024, 400× 400, 512× 1024, 512× 1024,
for experiments on Pascal VOC, CamVid, ADE20K and COCO-Stuff-164K, respectively. The input
size for experiments on Cityscapes are different in the two codebase, 512× 1024 in CIRKD codebase
and 512× 512 in MMSegmentation codebase [15]. In evaluation phase, we follow general settings
in [22], which evaluate the performance with the original image size. Our masked reconstruction
generator consists of two 3 × 3 convolutional layers with ReLU, following [15]. Other default
hyper-parameter settings and implementation details are described in supplemental material.

4.2 Main Results

In this part, we intend to compare the distillation performance of our method Af-DCD with recent
state-of-the-art methods for semantic segmentation. Aiming for comprehensive comparison, we
conduct experiments on the aforementioned five public datasets following general settings.

Results on Cityscapes. In Table 1, we conduct experiments on the most popular Cityscapes dataset
to validate the generalization ability of our method to different teacher-student network pairs. The
experimental results show that Af-DCD outperforms state-of-the-art methods in most cases, with
the maximal margin of 1.12%. In average, Af-DCD brings 3.44% gain to the baseline student
models, with the maximal gain of 4.37%. From the results shown in Table 1a, we can see that our
method can well handle teacher-student network pairs in which students (e.g., DeepLabV3-Res18
and DeepLabV3-MBV2) have the same segmentation framework but with different backbones. The
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Table 2: Performance comparison of Af-DCD and recent state-of-the-art distillation methods on the
other four datasets. We follow the way in CIRKD [9] to calculate FLOPs. Best results are bolded.

(a) Pascal VOC

Method Params (M) FLOPs (G) Val mIOU (%)

T: DeepLabV3-Res101 61.1M 1294.6G 77.67

S: DeepLabV3-Res18

13.6M 305.0G

73.21
SKD [20] 73.51
IFVD [23] 73.85
CWD [22] 74.02
CIRKD [9] 74.50
Af-DCD 76.25

S: PSPNet-Res18

12.9M 260.0G

73.33
SKD [20] 74.07
IFVD [23] 73.54
CWD [22] 73.99
CIRKD [9] 74.78
Af-DCD 76.14

(b) Camvid

Method Params (M) FLOPs (G) Test mIOU (%)

T: DeepLabV3-Res101 61.1M 280.2G 69.84

S: DeepLabV3-Res18

13.6M 61.0G

66.92
SKD [20] 67.46
IFVD [23] 67.28
CWD [22] 67.71
CIRKD [9] 68.21
Af-DCD 69.27

S: PSPNet-Res18

12.9M 45.6G

66.73
SKD [20] 67.83
IFVD [23] 67.61
CWD [22] 67.92
CIRKD [9] 68.65
Af-DCD 69.48

(c) ADE20K

Method Params (M) FLOPs (G) Val mIOU (%)

T: DeepLabV3-Res101 61.1M 1294.6G 42.70

S: DeepLabV3-Res18
13.6M 305.0G

33.91
CIRKD [9] 35.41
Af-DCD 36.21

(d) COCO-Stuff-164K

Method Params (M) FLOPs (G) Val mIOU (%)

T: DeepLabV3-Res101 61.1M 1294.6G 38.71

S: DeepLabV3-Res18
13.6M 305.0G

32.60
CIRKD [9] 33.11
Af-DCD 34.02

results of Table 1b further show that our method can also generalize well to teacher-student network
pairs in which students (e.g., DeepLabV3-Res18 and PSPNet-Res18) have different segmentation
frameworks but with the same backbone.

Results on Four Other Datasets. In Table 2, we evaluate the performance of Af-DCD on four
other datasets including PASCAL VOC, Camvid, ADE20K and COCO-Stuff-164K to examine the
generalization of our design to handle different semantic segmentation tasks. According to the results
shown in Table 2a-2d, Af-DCD outperforms state-of-the-art methods by significant margins on these
four datasets, with the maximal and average margin of 1.75% and 1.22%, respectively. Furthermore,
we can observe that our method consistently shows significant absolute mIOU gains (from 1.42% to
3.04%) to different student models on small-size (Camvid), medium-size (Cityscapes and PASCAL
VOC) and large-size (ADE20K and COCO-Stuff-164K) datasets.

4.3 Ablation Studies

Ablation Study on Different Loss Terms. In our formulation, the overall loss contains three
distillation terms, including Lkd, Lfd and LAf−DCD. Accordingly, we conduct experiments that
independently test the gain from each term to explore the nature of Af-DCD. From the results shown in
Table 3, we can get following observations: (i) The accuracy gain of Baseline+LOC

Af−DCD is slight
on relatively small dataset Cityscapes (0.28% mIOU gain), but it is notably pronounced on much larger
dataset ADE20K (1.50% mIOU gain); (ii) Compared to Baseline+ Lfd, Baseline+ LOC

Af−DCD

gets student model with better accuracy on ADE20K dataset, while maintaining almost the same
training efficiency; (iii) Baseline + Lfd + LOC

Af−DCD gets student models with 76.44% mIOU
and 36.01% mIOU on Cityscapes dataset and ADE20K dataset, respectively, which are obviously
better than both Baseline+ Lfd and Baseline+ LOC

Af−DCD, showing that two loss terms Lfd and
LOC
Af−DCD are complementary; (vi) Lkd can further bring minor extra gains, 0.08% and 0.2%, to

Baseline+ Lfd + LOC
Af−DCD on Cityscapes and ADE20K dataset, respectively.

Ablation Study on Different Designs. In this study, we conduct a set of experiments on our
three basic contrasting designs, namely Channel Contrasting (CC), Spatial Contrasting (SC) and
Omni-Contrasting (OC), in order to exploit the gains from different contrasting dimensions and
further verify the necessity of our OC. In Table 3a and 3b, we can observe two phenomena:
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Table 3: Ablation studies on loss terms and their different combinations. The experiments for
Cityscapes and ADE20K are conducted on the first teacher-student network pair in Table 1b and 2c,
respectively. The training time is measured on 8 NVIDIA RTX A5000 GPUs with 40000 iterations.

(a) Ablation on Cityscapes

Method mIOU (%) ∆mIOU (%) Ttrain (h)

Baseline 73.20 n/a n/a
+Lfd 75.88 +2.68 4.02
+LOC

Af−DCD 73.48 +0.28 4.06
+Lfd + LOC

Af−DCD 76.44 +3.24 4.25
+Lfd + Lkd 76.04 +2.84 4.05
+Lfd + Lkd + LOC

Af−DCD 76.52 +3.32 4.27

Baseline 73.20 n/a n/a
+Lfd + LCC

Af−DCD 76.23 +3.03 4.13
+Lfd + LSC

Af−DCD 76.26 +3.06 4.18
+Lfd + LCC

Af−DCD + LSC
Af−DCD 76.33 +3.13 4.29

+Lfd + LOC
Af−DCD 76.44 +3.24 4.25

(b) Ablation on ADE20K

Method mIOU (%) ∆mIOU (%) Ttrain (h)

Baseline 33.91 n/a n/a
+Lfd 34.92 +1.01 4.32
+LOC

Af−DCD 35.41 +1.50 4.35
+Lfd + LOC

Af−DCD 36.01 +2.10 4.48
+Lfd + Lkd 35.22 +1.31 4.34
+Lfd + Lkd + LOC

Af−DCD 36.21 +2.30 4.51

Baseline 33.91 n/a n/a
+Lfd + LCC

Af−DCD 35.72 +1.81 4.41
+Lfd + LSC

Af−DCD 35.22 +1.31 4.45
+Lfd + LCC

Af−DCD + LSC
Af−DCD 35.81 +1.90 4.54

+Lfd + LOC
Af−DCD 36.01 +2.10 4.48

(a) Ablation on τ (b) Ablation on λ3 (c) Ablation on M (d) Ablation on N (e) Ablation on ζ

Figure 3: Ablation studies on major hyper-parameters. In (d), 4* denotes N = 4 with 4 × 4 max
pooling, which can further enhance training efficiency. Best viewed with zoom in.

(i) CC has similar gain to baseline model as SC on Cityscapes, while has much stronger per-
formance on ADE20K, exceeding 0.5% to SC; (ii) The combination of CC and SC performs
better than CC and SC, but worse than OC on both datasets (in distillation accuracy and train-
ing speed). The above two observations show the superiority of OC, which comes from the
neat combination of CC and SC. Specifically, OC groups pixels into a number of disjoint local
patches and tactfully leverages CC and SC within each local patch instead of the holistic feature
maps to better exploit dense and structured local information for contrastive feature mimicking.

Table 4: Ablation study on the choice of
the function d in the Omni-Contrasting loss.
The experimental setups are the same to
Table 1 (default setting without Lkd). Best
results are bolded.

Function d in Formula 7 Dataset mIOU (%) ∆mIOU (%)

Baseline

CityScapes

73.20 n/a
L1-normed distance 75.97 +2.77
Cosine similarity 76.10 +2.90
L2-normed distance 76.44 +3.24

Baseline

ADE20K

33.91 n/a
L1-normed distance 35.82 +1.91
Cosine similarity 35.95 +2.04
L2-normed distance 36.01 +2.10

Ablation Study on Choice of the Function d in the
Omni-Contrasting Loss. We compare Formula 7 of
our method with 3 types of the function d including L2-
normed distance (our choice), cosine similarity (com-
mon choice in contrastive loss) and L1-normed distance.
From the results summarized in Table 4, we can see
that our method always shows significant mIOU gains
to the baseline with all 3 types of the function d. Com-
paratively, our method with L2-normed distance is the
best, which supports our intuition that improved perfor-
mance would be attained by choosing the same type of
the function d for the feature distillation loss (Formula
3) and the Omni-Contrasting loss (Formula 7).

Table 5: Comparison of training re-
sources used by CIRKD and Af-DCD,
under the settings of the first teacher-
student network pair in Table 1a. Best
results are bolded.

Method mIOU (%) GPU memory (G) Ttrain (h)

CIRKD 76.38 10.09 4.34
Af-DCD 77.03 7.94 4.23

Ablation Study on Training Efficiency. Our Af-DCD is
naturally augmentation-free and memory-buffer-free. We
evaluate the efficiency of our design in terms of training time
and GPU memory occupation. In Table 3a, we can observe
that Af-DCD introduces minor extra training cost, from 4.02
hours to 4.25 hours, which only increases 5.7% training time
to feature distillation. From the results shown in Table 5, we
can see Af-DCD uses less memory and training time, but
achieves better performance, compared to CIRKD.

Ablation Studies on Major Hyper-parameters. Recall that our method has five hyper-parameters,
we also perform experiments to study them. As shown in Figure 3, the effectiveness of our method
is relative stable when values of these hyper-parameters are changing. Notably, we find using max
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(a) Feature distance between T and S (b) Feature distance within local areas

(c) Heat maps of areas where model using Af-DCD segments correctly but using FD segments wrong

Figure 4: Verification experiments. We leverage the models in Table 3b, and count 131M fine-grained
representations from 2000 samples. In (a), we randomly select 10K fine-grained representations
and measure the distances between student and teacher. In (b), we measure the distances among
fine-grained representations within 4× 4 local areas of a specific sample, and randomly select 10K
to calculate the probability density. In (c), we choose several difficult cases and highlight areas that
LAf−DCD can help Lfd segment correctly.

pooling with proper scale has no obvious effect on model performance but it has better efficiency
than larger N . Other detailed analysis is referred to supplementary materials.

4.4 Discussion

After demonstrating the superior performance of Af-DCD in Section 4.2 and analysing the gain of
Af-DCD in Section 4.3, we perform some verification experiments, aiming to discuss how LAf−DCD

boosts the distillation performance of Ltask + Lfd (denoted as FD for abbreviation).

As shown in Figure 4b, the self-similarity distribution of fine-grained representations projected by
FD has large differences from that of teacher’s feature representations. In order to alleviate the
aforementioned problem, LAf−DCD contrasts feature partitions within each local patch between
student and teacher. The results in Figure 4a and Figure 4b are summarized as below:

(1) LAf−DCD dramatically decreases the distances of student to teacher in views of fine-gained
representations and self-similarities, which proves our basic assumption that LAf−DCD can
further make student approach teacher in the micro and fine-grained views;

(2) LAf−DCD increases both the mean and variance of the self-similarity distribution of student.
Such observation verifies that LAf−DCD can force student to learn dense and structured
knowledge implicitly contained among teacher’s feature partitions.

The above two improvements are proved to be effective in addressing segmenting various difficult
scenarios in semantic segmentation, such as object boundary, small object, object occlusion, difficult
category and rare view. Heat maps shown in Figure 4c illustrate that LAf−DCD can effectively help
FD correctly classify these difficult pixels, which further verifies the superiority of Af-DCD.

More examples and detailed analysis are referred to supplementary material.

5 Conclusion
In this paper, we present Af-DCD, an augmentation-free dense contrasive distillation method tailored
to semantic segmentation. The dense contrasting in Af-DCD is an omni-dimensional design. Thus,
it can effectively transfer teacher’s contextual and positional channel-group information to student.
Experimental results show that Af-DCD is effective on different teacher-student network pairs and
datasets while maintaining training efficiency, as it is born with augmentation-free and memory-buffer
free. We hope our work can inspire researchers to explore more powerful and efficient contrastive
distillation methods in the future.
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