
HQA-Attack: Toward High Quality Black-Box
Hard-Label Adversarial Attack on Text

Han Liu
Dalian University of Technology

Dalian, China
liu.han.dut@gmail.com

Zhi Xu
Dalian University of Technology

Dalian, China
xu.zhi.dut@gmail.com

Xiaotong Zhang˚

Dalian University of Technology
Dalian, China

zxt.dut@hotmail.com

Feng Zhang
Peking University

Beijing, China
zfeng.maria@gmail.com

Fenglong Ma
The Pennsylvania State University

Pennsylvania, USA
fenglong@psu.edu

Hongyang Chen
Zhejiang Lab

Hangzhou, China
dr.h.chen@ieee.org

Hong Yu
Dalian University of Technology

Dalian, China
hongyu@dlut.edu.cn

Xianchao Zhang˚

Dalian University of Technology
Dalian, China

xczhang@dlut.edu.cn

Abstract

Black-box hard-label adversarial attack on text is a practical and challenging task,
as the text data space is inherently discrete and non-differentiable, and only the
predicted label is accessible. Research on this problem is still in the embryonic
stage and only a few methods are available. Nevertheless, existing methods rely on
the complex heuristic algorithm or unreliable gradient estimation strategy, which
probably fall into the local optimum and inevitably consume numerous queries,
thus are difficult to craft satisfactory adversarial examples with high semantic
similarity and low perturbation rate in a limited query budget. To alleviate above
issues, we propose a simple yet effective framework to generate high quality textual
adversarial examples under the black-box hard-label attack scenarios, named HQA-
Attack. Specifically, after initializing an adversarial example randomly, HQA-attack
first constantly substitutes original words back as many as possible, thus shrinking
the perturbation rate. Then it leverages the synonym set of the remaining changed
words to further optimize the adversarial example with the direction which can
improve the semantic similarity and satisfy the adversarial condition simultaneously.
In addition, during the optimizing procedure, it searches a transition synonym
word for each changed word, thus avoiding traversing the whole synonym set and
reducing the query number to some extent. Extensive experimental results on
five text classification datasets, three natural language inference datasets and two
real-world APIs have shown that the proposed HQA-Attack method outperforms
other strong baselines significantly.

˚Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1 Introduction

Deep neural networks (DNNs) have achieved a tremendous success and are extremely popular in
various domains, such as computer vision [34, 35], natural language processing [31, 15], robotics
[2, 26] and so on. In spite of the promising performance achieved by DNN models, there are some
concerns around their robustness, as evidence shows that even a slight perturbation to the input
data can fool these models into producing wrong predictions [10, 19, 11, 5], and these perturbed
examples are named as adversarial examples. Investigating the generation rationale behind adversarial
examples seems a promising way to improve the robustness of neural networks, which motivates
the research about adversarial attack. Most existing adversarial attack methods focus on computer
vision [32, 36, 39] and have been well explored. However, the adversarial attack on text data is
still challenging, as not only the text data space is intrinsically discrete and non-differentiable, but
also changing words slightly may affect the fluency in grammar and the consistency in semantics
seriously.

Based on the accessibility level of victim models, existing textual adversarial attack methods can
be categorized into white-box attacks [9, 25, 7] and black-box attacks [19, 41, 20]. For white-box
attacks, the attackers are assumed to have full information about the victim model, including training
data, model architecture and parameters. Therefore, it is easy to formulate this type of attack as an
optimization problem and utilize the gradient information to generate adversarial examples. However,
as most model developers are impossible to release all the model and data information, white-box
attacks seem excessively idealistic and cannot work well in real-world applications. For black-box
attacks, the attackers are assumed to have only access to the predicted results, e.g., confidence scores
or predicted labels, which seem more realistic. Existing black-box textual attack methods can be
divided into soft-label setting [20, 6, 14] and hard-label setting [23, 38, 37]. For soft-label methods,
they require the victim model to provide the confidence scores to calculate the importance of each
word, and then replace words sequentially until an adversarial example is generated. However, it is
also impractical as most real APIs do not allow users to access the confidence scores. For hard-label
methods, they only need to know the predicted labels of the victim model to fulfill the attack task,
thus are more practicable and promising.

𝑥1
′

𝑥

𝑥2
′

𝑥𝑡
′

𝑥𝑇
′

Substituting

original

words back

Similarity

isohypse

Optimizing

the

adversarial

example

Initialization

Figure 1: The overview of HQA-Attack. (A) Generate
an adversarial example x1

1 by initialization. (B) Update
x1
tp1 ď t ď T q by substituting original words back.

(C) Obtain x1
t`1 by optimizing the adversarial example.

The similarity isohypse is a line which consists of points
having the equal semantic similarity with the original
example x.

Only a handful of methods are proposed to
deal with the black-box hard-label textual ad-
versarial attack task, which mainly rely on
heuristic-based [23] or gradient-based strate-
gies [38, 37]. Specifically, HLGA [23] is the
first hard-label adversarial attack method, which
leverages population-based heuristic optimiza-
tion algorithm to craft plausible and semanti-
cally similar adversarial examples. However, as
it requires a large population of adversarial can-
didates and population-based optimization strat-
egy is easy to fall into the local optimum, HLGA
inevitably consumes numerous query numbers.
TextHoaxer [38] formulates the budgeted hard-
label adversarial attack task on text data as a
gradient-based optimization problem of pertur-
bation matrix in the continuous word embedding
space. LeapAttack [37] utilizes the gradient-
based optimization by designing a novel mecha-
nism that can interchange discrete substitutions and continuous vectors. Although these gradient-
based methods improve the query efficiency to some extent, they still need some unnecessary queries
caused by inaccurate gradient estimation. Furthermore, in tight budget scenarios, query inefficiency
will directly bring about serious side effects on the semantic similarity and perturbation rate.

To alleviate the above issues, we propose a simple yet effective framework for producing High
Quality black-box hard-label Adversarial Attack, named HQA-Attack. The overview of HQA-
Attack is shown in Figure 1. By “high quality”, it means that the HQA-Attack method can generate
adversarial examples with high semantic similarity and low perturbation rate under a tight query
budget. Specifically, HQA-Attck first generates an adversarial example by initialization, and then

2

sequentially substitutes original words back as many as possible, thus shrinking the perturbation rate.
Finally, it utilizes the synonym set to further optimize the adversarial example with the direction
which can improve the semantic similarity and satisfy the adversarial condition simultaneously.
In addition, to avoid going through the synonym set, it finds a transition synonym word for each
changed word, thus reducing the query number to a certain extent. Experimental results on eight
public benchmark datasets and two real-word APIs (Google Cloud and Alibaba Cloud) have demon-
strated that HQA-Attack performs better than other strong baselines in the semantic similarity and
perturbation rate under the same query budget. The source code and demo are publicly available at
https://github.com/HQA-Attack/HQAAttack-demo.

2 Related Work

2.1 Soft-Label Textual Adversarial Attack

Adversarial attacks in soft-label settings rely on the probability distribution of all categories to
generate adversarial examples. A series of strategies [16, 21, 24] utilize the greedy algorithm to
craft adversarial examples, which first determine the word replacement order and greedily replace
each word under this order. TextFooler [16] first determines the word replacement order according
to the prediction change after deleting each word, and then replaces words back according to the
word importance until adversarial examples are generated. Similarly, TextBugger [21] calculates
the importance of sentences and the importance of words respectively by comparing the prediction
before and after removing them. In addition, there are some methods [40, 1] which use combinatorial
optimization algorithm to generate adversarial examples.

2.2 Hard-Label Textual Adversarial Attack

Adversarial attacks in hard-label settings only allow to access the predicted label, which seem more
challenging and practical. HLGA [23] is the first hard-label textual adversarial attack method. It uses
random initialization and search space reduction to get an incipient adversarial example, and then uses
the genetic algorithm including mutation, selection and crossover three operations to further optimize
the adversarial example. Although HLGA can generate adversarial examples with high semantic
similarity with the original example and low perturbation rate, it needs to maintain a large candidate
set in each iteration, which wastes a large number of queries. To alleviate this issue, TextHoaxer [38]
uses the word embedding space to represent the text, and introduces a perturbation matrix and a novel
objective function which consists of a semantic similarity term, a pair-wise perturbation constraint
and a sparsity constraint. By using the gradient-based strategy to optimize the perturbation matrix,
TextHoaxer can generate appropriate adversarial examples in a tight budget. LeapAttack [37] is
another gradient-based method. After random initialization, it optimizes the adversarial example by
constantly moving the example closer to the decision boundary, estimating the gradient and finding
the proper words to update the adversarial example. In Appendix K, we further discuss some potential
application scenarios about hard-label textual adversarial attack.

3 Problem Formulation

Table 1: Symbol explanation.
Symbol Explanation

x the original example x “ rw1, w2, ..., wns

x1 the adversarial example x1
“ rw1

1, w
1
2, ..., w

1
ns

x1
t the adversarial example in the t-th step

swi the transition word associated with wi

u the updating direction
vwi the word vector of wi

f the victim model
y the true label of x
Spwiq the synonym set of wi

x1
pwiq the example after replacing the i-th word of x1 with wi

Simp¨, ¨q the similarity function between sentences

In this paper, we focus on the task
of black-box hard-label textual
adversarial attack, i.e., attackers
can only access to the predicted
label from the victim model to
generate adversarial examples.
Specifically, given an original ex-
ample x “ rw1, w2, ..., wns with
the ground truth label y, where wi

is the i-th word, and n is the total
number of words in x. This task
aims to construct an adversarial
example x1 “ rw1

1, w
1
2, ..., w

1
ns

through replacing the original

3

word wi with a synonym w1
i in the synonym set Spwiq which includes wi itself, thus misleading the

victim model f to output an incorrect prediction result:

fpx1q ‰ fpxq “ y, (1)

where Eq. (1) can be seen as the adversarial condition. There may exist several adversarial examples
which can satisfy Eq. (1), but an optimal adversarial example x˚ is the one that has the highest
semantic similarity with the original example x among all the candidates. Formally,

x˚ “ argmax
x1

Simpx, x1q, s.t. fpx1q ‰ fpxq, (2)

where Simpx, x1q is the semantic similarity between x and x1. Table 1 summarizes the symbol
explanation in detail.

4 The Proposed Strategy

4.1 Initialization

To fulfill the black-box hard-label textual adversarial attack task, we follow previous works [23, 38,
37] to first utilize random initialization to generate an adversarial example. Specifically, considering
each word wi whose part-of-speech (POS) is noun, verb, adverb and adjective in the original example
x, we randomly select a synonym w1

i from the synonym set Spwiq of wi as the substitution of wi, and
repeat this procedure until the generated adversarial example x1 satisfies the adversarial condition.

Obviously, using random initialization to generate the adversarial example usually needs to change
multiple words in the original example, thus necessarily leading to the low semantic similarity and
large perturbation rate. To alleviate the above issue, we attempt to iteratively optimize the semantic
similarity between the original example x and the adversarial example in the t-th iteration x1

t, where
1 ď t ď T and T is the total number of iterations. Furthermore, given an adversarial example x1

t, we
can generate the adversarial example x1

t`1 by the following steps. (1) Substituting original words
back; (2) Optimizing the adversarial example.

4.2 Substituting Original Words Back

In order to improve the semantic similarity of the generated adversarial example, previous works
[23, 38, 37] first use the semantic similarity improvement brought by each original word as a measure
to decide the replacement order, and then continually put original words back in each iteration. It
means that in each iteration, by going through each word in the adversarial example, the semantic
similarity improvement is only calculated once, and the replacement order is determined beforehand.
However, making each replacement with the original word will change the intermediate generated
adversarial example, thereby affecting the semantic similarity between the original example and the
intermediate generated adversarial example, so just calculating the semantic similarity improvement
at the beginning of each iteration to decide the replacement order is inaccurate.

To address the above problem, we propose to constantly substitute the original word which can
make the intermediate generated adversarial example have the highest semantic similarity with the
original example until the adversarial condition is violated. Specifically, given the original sample
x “ rw1, w2, ..., wns and the adversarial example x1

t “ rw1
1, w

1
2, ..., w

1
ns in the t-th iteration, we can

substitute original words back with the following steps.

1. Picking out an appropriate substitution word w˚ from x with the following formula:

w˚ “ argmax
wiPx

Simpx, x1
tpwiqq ¨ Cpf, x, x1

tpwiqq, (3)

where Simpx, x1
tpwiqq is the semantic similarity between x and x1

tpwiq, and x1
tpwiq is the

example obtained by substituting the corresponding word w1
i with wi. Cpf, x, x1

tpwiqq is a
two-valued function defined as:

Cpf, x, x1
tpwiqq “

"

1, fpxq ‰ fpx1
tpwiqq

0, fpxq “ fpx1
tpwiqq

, (4)

where f denotes the victim model. C equals to 1 if fpxq ‰ fpx1
tpwiqq, and 0 otherwise.

4

2. If Cpf, x, x1
tpw˚qq “ 1, it indicates that x1

tpw˚q can attack successfully. We substitute the
corresponding original word in x1

t with w˚, and repeat the above step.

3. If Cpf, x, x1
tpw˚qq “ 0, it indicates that x1

tpw˚q cannot satisfy the adversarial condition. We
terminate the swapping procedure, and return the result of the previous step.

After the above procedure, we can obtain a new adversarial example x1
t which can retain the original

words as many as possible, thus improving the semantic similarity and reducing the perturbation rate.
The algorithm procedure is shown in Appendix A, and the analysis of computational complexity and
query numbers is shown in Appendix C.1.

4.3 Optimizing the Adversarial Example

To further ameliorate the quality of the generated adversarial example, we optimize the adversarial
example by leveraging the synonym set of each word. One may argue that we could directly traverse
the synonym set to seek out the most ideal synonym word which has the highest semantic similarity
and satisfies the adversarial condition simultaneously. However, in most real-world application
scenarios, the query number is usually limited. To avoid going through the synonym set, we propose
to optimize the adversarial example with the following two steps. (1) Determining the optimizing
order; (2) Updating the adversarial example sequentially. The analysis of computational complexity
and query numbers is shown in Appendix C.2.

4.3.1 Determining the Optimizing Order

In this step, we aim to determine a suitable optimizing order. To ensure the diversity of the gener-
ated adversarial example, we utilize the sampling method to determine the optimizing order. The
probability distribution used by the sampling method is generated as follows. For w1

i in x1
t and wi in

x, we first use the counter-fitting word vectors [27] to obtain their corresponding word vectors, and
calculate the cosine distance between them as follows:

di “ 1 ´ cospvwi
,vw1

i
q, (5)

where vwi
and vw1

i
denote the word vectors of wi and w1

i respectively. cosp¨, ¨q is the cosine
similarity function. Then we compute the probability pi associated with the position of wi in x with
the following formula:

pi “
2 ´ di

řm
j“1p2 ´ djq

, (6)

where m is the total number of changed words between x1
t and x. According to the probability

distribution, we can obtain the optimizing order for x1
t.

4.3.2 Updating the Adversarial Example Sequentially

According to the optimizing order, we update the adversarial example with the synonym set se-
quentially. In particular, for the adversarial example x1

t in the t-th iteration, we update it with the
following steps. (1) Finding the transition word; (2) Estimating the updating direction; (3) Updating
the adversarial example.

Finding the transition word. This step aims to search a reasonable transition word, thus
avoiding traversing the synonym set for each changed word. Given the adversarial example
x1
t “ rw1

1, w
1
2, ..., w

1
ns and the current optimized word w1

i, we randomly select r synonyms from
Spwiq to construct the set R “ tw

p1q

i , w
p2q

i , .., w
prq

i u, use each element in R to replace w1
i in x1

t, and
then obtain the transition word swi with the following formula:

swi “ argmax
w

pjq

i PR

Simpx, x1
tpw

pjq

i qq ¨ Cpf, x, x1
tpw

pjq

i qq, (7)

where x1
tpw

pjq

i q is the example obtained by substituting the corresponding word w1
i in x1

t with
w

pjq

i P R. According to Eq. (7), we can get that swi can make the example adversarial and improve
the semantic similarity to some extent, while avoiding going through the synonym set. Furthermore,
we can search other possible replacement words around the transition word swi.

5

Estimating the updating direction. As the transition word swi originates from a randomly generated
synonym set, we can further optimize it with a reasonable direction. Specifically, we first generate the
set K “ t sw

p1q

i , sw
p2q

i ..., sw
pkq

i u by randomly sampling k synonyms from Sp swiq, and then obtain the set
M “ tx1

tp sw
p1q

i q, x1
tp sw

p2q

i q, ..., x1
tp sw

pkq

i qu, where x1
tp sw

pjq

i q is the example by replacing w1
i in x1

t with
sw

pjq

i . By calculating the semantic similarity between each element in M and the original text x, we
can get the set S “ tsp1q, sp2q, ..., spkqu, where spjq “ Simpx, x1

tp sw
pjq

i qq is the semantic similarity
between x and x1

tp sw
pjq

i q. In the similar manner, the semantic similarity between x and x1
tp swiq can be

computed ssi “ Simpx, x1
tp swiqq.

Intuitively, if spjq ´ ssi ą 0, it indicates that pushing the word vector v
swi

towards v
sw

pjq

i
tends to

increase the semantic similarity, i.e., v
sw

pjq

i
´ v

swi
is the direction which can improve the semantic

similarity. And if spjq ´ ssi ă 0, moving the word vector along the inverse direction of v
sw

pjq

i
´ v

swi

can improve the semantic similarity. Based on the above intuition, we estimate the final updating
direction u by weighted averaging over the k possible directions. Formally,

u “

k
ÿ

j“1

αjpv
sw

pjq

i
´ v

swi
q, (8)

where αj is the corresponding weight associated with the direction v
sw

pjq

i
´ v

swi
, and it can be

calculated by αj “ pspjq ´ ssiq{
řk

l“1 |splq ´ ssi|.

Updating the adversarial example. Due to the discrete nature of text data, we need to use the
updating direction u to pick out the corresponding replacement word rwi from Spwiq, where rwi is the
word which has the maximum cosine similarity between u and v

rwi
´ v

swi and ensures that x1
tp rwiq

satisfies the adversarial condition. After obtaining rwi, we can generate x1
t`1 in the optimizing order

sequentially. In addition, to reduce the number of queries and shrink the perturbation rate, when
implementing the program, we first use x to initialize x1

t`1, and then replace the word rwi one by one
until x1

t`1 satisfies the adversarial condition.

4.4 The Overall Procedure

The detailed algorithm procedure of HQA-Attack is given in Appendix B. In particular, HQA-Attack
first gets the initial adversarial example by random initialization. Then it enters into the main loop. In
each iteration, HQA-Attack first substitutes original words back, then determines the optimizing order,
and finally updates the adversarial example sequentially. In addition, we provide some mechanism
analysis of HQA-Attack from the perspective of decision boundary in Appendix D.

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments on five public text classification datasets MR [28], AG’s News
[42], Yahoo [42], Yelp [42], IMDB [22], and three natural language inference datasets SNLI [3],
MNLI [33], mMNLI [33]. The detailed dataset description is shown in Appendix E. We follow the
previous methods [23, 38, 37] to take 1000 test examples of each dataset to conduct experiments.

Baselines. We compare with three state-of-the-art black-box hard-label textual adversarial attack
methods: (1) HLGA [23] is a hard-label adversarial attack method that employs the genetic algorithm
to generate the adversarial example. (2) TextHoaxer [38] is a hard-label adversarial attack method that
formulates the budgeted hard-label adversarial attack task on text data as a gradient-based optimization
problem of perturbation matrix in the continuous word embedding space. (3) LeapAttack [37] is a
recent hard-label adversarial attack method, which estimates the gradient by the Monte Carlo method.

Evaluation Metrics. We use two widely used evaluation metrics semantic similarity and perturbation
rate. For semantic similarity, we utilize the universal sequence encoder [4] to calculate the semantic
similarity between two texts. The range of the semantic similarity is between r0, 1s, and the larger
semantic similarity indicates the better attack performance. For perturbation rate, we use the ratio

6

of the number of changed words over the number of total words in the adversarial example, and the
lower perturbation rate indicates the better results.

Victim Models. We follow [23, 38, 37] to adopt three widely used natural language processing
models as victim models: BERT [8], WordCNN [17], and WordLSTM [13]. All the model
parameters are taken from the previous works [23, 38, 37]. We also attack some advanced models
like T5 [30] and DeBERT [12], and the results are shown in Appendix F. To further verify the
effectiveness of different algorithms in real applications, we also attempt to use Google Cloud API
(https://cloud.google.com/natural-language) and Alibaba Cloud API (https://ai.aliyun.com/nlp) as
the victim models.

Implementation Details. For the random initialization, we employ the same method used in previous
methods [23, 38, 37]. After the initialization, we follow [23, 38] to perform a pre-processing step
to remove the unnecessary replacement words. For the hyperparameters, we consistently set r “ 5
and k “ 5 for all the datasets. The detailed parameter investigation is provided in Appendix G. In
addition, during the optimization procedure, if we re-optimize the same adversarial example three
times and no new better adversarial examples are generated, we randomly go back to the last three
or four adversarial example. We do not re-optimize an adversarial example more than two times.
For fair comparison, we follow [23, 38, 37] to generate 50 synonyms for each word by using the
counter-fitting word vector. We also conduct experiments based on BERT-based synonyms, and the
results are shown in Appendix H.

5.2 Experimental Results

5.2.1 Comparison on Semantic Similarity and Perturbation Rate

We exactly follow the previous work [38] to set the query budget to 1000, i.e., the number of allowed
queries from the attacker is 1000. As different algorithms use the same random initialization step
which determines the prediction accuracy after the adversarial attack, so different algorithms have
the same prediction accuracy. Our goal is to generate the adversarial examples with higher semantic
similarity and lower perturbation rate. Tables 2 and 3 report the experimental results when attacking
text classification models. The best results are highlighted in bold.

As shown in Tables 2 and 3, when the query limit is 1000, for different datasets and tasks, HQA-
Attack can always generate adversarial examples that have the highest semantic similarity and
the lowest perturbation rate. Specifically, for the dataset MR with short text data, HQA-Attack
increases the average semantic similarity by 6.9%, 6.5%, 6.9% and decreases the average perturbation
rate by 0.777%, 0.832%, 0.983% compared with the second best method when attacking BERT,
WordCNN and WordLSTM respectively. For the dataset IMDB with long text data, HQA-Attack
increases the average semantic similarity by 4.5%, 3.4%, 2.7% and decreases the average perturbation
rate by 1.426%, 0.601%, 0.823% compared with the second best method when attacking BERT,
WordCNN and WordLSTM respectively. For the dataset with more than two categories like AG,
HQA-Attack increases the average semantic similarity by 10.6%, 8.8%, 11.6% and decreases the
average perturbation rate by 4.785%, 3.885%, 5.237% compared with the second best method
when attacking BERT, WordCNN and WordLSTM respectively. All these results demonstrate that
HQA-Attack can generate high-quality adversarial examples in the tight-budget hard-label setting.

5.2.2 Comparison on Attack Efficiency

The attack efficiency is an important criterion in evaluating the attack performance, as in most
DNN-based NLP platforms the number of queries is limited. Therefore, We further compare the
proposed HQA-Attack with two latest methods TextHoaxer and LeapAttack under different query
budgets r100, 300, 500, 700, 1000s on text classification datasets. As shown in Figure 2, with the
query budget increasing, the average semantic similarity of all the methods keeps increasing and the
average perturbation rate of all the methods keeps decreasing. In terms of semantic similarity and
perturbation rate, HQA-Attack always performs much better than other methods in all the budgets.
These results further validate that our proposed HQA-Attack has the ability to generate adversarial
examples with higher semantic similarity and lower perturbation rate in different budget limits.

5.2.3 Attack Real-World APIs

7

Table 2: Comparison of semantic similarity (Sim) and perturbation rate (Pert) with the budget limit
of 1000 when attacking text classification models. Acc stands for model prediction accuracy after the
adversarial attack, which is determined by the random initialization step and the same for different
adversarial attack models.

Dataset Method BERT WordCNN WordLSTM

Acc(%) Sim(%) Pert(%) Acc(%) Sim(%) Pert(%) Acc(%) Sim(%) Pert(%)

MR

HLGA

1.0

62.5 14.532

0.7

64.4 14.028

0.7

63.5 14.462
TextHoaxer 67.3 11.905 68.6 12.056 67.3 12.324
LeapAttack 61.6 14.643 63.2 14.016 61.3 14.435
HQA-Attack 74.2 11.128 75.1 11.224 74.2 11.341

AG

HLGA

2.8

60.5 17.769

1.4

71.9 13.855

5.7

61.8 17.890
TextHoaxer 63.2 15.766 73.9 12.716 63.8 16.520
LeapAttack 62.6 16.143 72.0 12.827 63.0 17.028
HQA-Attack 73.8 10.981 82.7 8.831 75.4 11.283

Yahoo

HLGA

0.8

68.7 7.453

0.8

71.9 8.564

1.9

63.8 9.531
TextHoaxer 70.2 6.841 74.8 7.740 67.0 8.502
LeapAttack 66.7 7.448 74.3 7.842 64.7 9.095
HQA-Attack 76.4 5.609 82.4 6.132 73.9 6.645

Yelp

HLGA

0.6

71.9 10.411

0.6

79.7 9.102

3.2

78.8 8.654
TextHoaxer 73.8 9.585 81.3 8.545 80.4 8.108
LeapAttack 72.7 9.877 80.1 8.816 79.6 8.111
HQA-Attack 81.9 6.756 87.8 6.312 86.7 5.786

IMDB

HLGA

0.1

83.2 5.571

0.0

87.6 4.464

0.3

87.6 4.464
TextHoaxer 84.7 5.202 88.8 4.197 88.8 4.197
LeapAttack 84.0 5.041 89.7 3.886 89.0 4.021
HQA-Attack 89.2 3.615 93.1 3.285 91.7 3.198

Table 3: Comparison of semantic similarity (Sim) and perturbation rate (Pert) with the budget limit
of 1000 when attacking the natural language inference model (BERT).

Method SNLI MNLI mMNLI

Acc(%) Sim(%) Pert(%) Acc(%) Sim(%) Pert(%) Acc(%) Sim(%) Pert(%)

HLGA

1.3

35.9 18.510

2.9

49.6 14.498

1.7

50.7 14.349
TextHoaxer 38.7 16.615 52.9 12.730 54.4 12.453
LeapAttack 35.0 19.905 49.1 15.728 50.2 15.135

HQA-Attack 54.2 15.958 64.7 12.093 65.4 11.502

Table 4: Comparison of semantic similarity and perturbation
rate when attacking against real-world APIs.

API Google Cloud Alibaba Cloud

Sim(%) Pert(%) PPL Sim(%) Pert(%) PPL

TextHoaxer 76.1 7.179 253 78.3 6.190 261
LeapAttack 73.2 10.699 295 77.7 7.198 285

HQA-Attack 81.8 7.117 244 83.4 6.183 255

To further verify the effectiveness
of different algorithms, we attempt
to use TextHoaxer, LeapAttack
and HQA-Attack to attack two
real-world APIs: Google Cloud
(https://cloud.google.com/natural-
language) and Alibaba Cloud
(https://ai.aliyun.com/nlp). To further
evaluate the fluency of the generated
adversarial examples, we add the perplexity (PPL) as the additional evaluation metric which is
calculated by using GPT-2 Large [29]. The lower PPL indicates the better performance. As Google
and Alibaba only provide limited service budgets, we select 100 examples from the MR dataset
whose lengths are greater than or equal to 20 words to perform experiments, and restrict that each
method can only query the API 350 times. Table 4 shows the results of TextHoaxer, LeapAttack and
HQA-Attack. It can be seen that compared with the second best results, HQA-Attack increases the
semantic similarity 5.7%, 5.1%, decreases the perturbation rate 0.062%, 0.007% and decreases the
PPL 9, 6 on Google Cloud and Alibaba Cloud respectively. We also compare the performance of
TextHoaxer, LeapAttack and HQA-Attack in different budget limits. The results are shown in Figure

8

50

55

60

65

70

75

80

100 300 500 700 1000

S
e
ma

nt
i
c

S
im

i
l
a
ri

t
y(

%)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(a) MR (Sim)

45

50

55

60

65

70

75

80

100 300 500 700 1000

S
e
ma

nt
i
c

S
im

il
a
ri

t
y(

%)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(b) AG (Sim)

45

50

55

60

65

70

75

80

100 300 500 700 1000

S
e
ma

nt
i
c

S
im

il
a
r
i
t
y(

%)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(c) Yahoo (Sim)

30

40

50

60

70

80

90

100 300 500 700 1000

S
e
ma

nt
ic
 S

im
il

ar
it

y(
%
)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(d) Yelp (Sim)

40

50

60

70

80

90

100

100 300 500 700 1000

S
e
ma

nt
i
c

S
im

il
a
ri

t
y(

%
)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(e) IMDB (Sim)

10

11

12

13

14

15

16

17

18

100 300 500 700 1000

P
e
rt

ur
b
at

i
on

R
a
te

(%

)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(f) MR (Pert)

9

11

13

15

17

19

21

23

25

27

29

100 300 500 700 1000

P
e
rt

ur
b
at

i
on

R
a
te

(%

)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(g) AG (Pert)

5

7

9

11

13

15

17

19

100 300 500 700 1000

P
e
rt

ur
b
at

i
on

R
a
te

(%

)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(h) Yahoo (Pert)

5

10

15

20

25

30

100 300 500 700 1000

P
e
rt

ur
b
at

i
on

R
a
te

(%

)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(i) Yelp (Pert)

0

5

10

15

20

25

30

100 300 500 700 1000

P
e
rt

ur
b
at

i
on

R
a
te

(%

)

Number of Budgets

 HQA-Attack
 LeapAttack
 TextHoaxer

(j) IMDB (Pert)

Figure 2: Comparison on semantic similarity and perturbation rate in different budget limits when
attacking against BERT.

60

65

70

75

80

85

50 100 200 300 350

S
e
ma

nt
i
c

S
im

il
a
ri

t
y(

%)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(a) Google (Sim)

7

8

9

10

11

12

13

14

50 100 200 300 350

P
e
rt

ur
b
at

i
on

 R
a
te

(%

)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(b) Google (Pert)

69

71

73

75

77

79

81

83

85

50 100 200 300 350

S
e
ma

nt
i
c

S
im

il
a
ri

t
y(

%)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(c) Alibaba (Sim)

6

6.5

7

7.5

8

8.5

50 100 200 300 350

P
e
rt

ur
b
at

i
on

 R
a
te

(%

)

Number of Budgets

 HQA-Attack

 LeapAttack

 TextHoaxer

(d) Alibaba (Pert)

Figure 3: Comparison of semantic similarity and perturbation rate in different budget limits when
attacking against real-world APIs.

Table 5: Human evaluation results in average classification accuracy(%).

Dataset HLGA TextHoaxer LeapAttack HQA-Attack

MR 82.6 84.8 84.0 87.4
IMDB 84.4 85.4 85.0 88.6

3. We can get that HQA-Attack can have the higher semantic similarity and lower perturbation rate
in most cases, which further demonstrates the superiority of HQA-Attack over other baselines.

5.2.4 Human Evaluation

We have conducted the human evaluation experiments on the BERT model using HLGA, TextHoaxer,
LeapAttack and HQA-Attack for the MR and IMDB datasets. Specifically, for each dataset, we
first randomly select 50 original samples, and use each adversarial attack method to generate the
corresponding 50 adversarial examples respectively. Then we ask 10 volunteers to annotate the class
labels for these samples, and calculate the average classification accuracy (Acc) for each method.
Intuitively, if the accuracy is higher, it means that the quality of the generated adversarial examples is
better. The Acc(%) results of clean examples are 94.2% and 93.6% for MR and IMDB respectively.
And the results of adversarial examples are shown in Table 5. The results show that the adversarial
examples generated by HQA-Attack are more likely to be classified correctly, which further verifies
the superiority of HQA-Attack in preserving the semantic information.

5.2.5 Attack Models which Defend with Adversarial Training

With the development of the AI security, a lot of works focus on defending against adversarial
attacks. We further compare the attack performance when the victim model is trained with three
effective adversarial training strategies HotFlip [9], SHIELD [18] and DNE [43]. We select the
BERT model as the victim model, set the query budget to 1000 and then perform experiments on the
AG dataset. We also use the perplexity (PPL) as the additional evaluation metric to judge the fluency

9

Table 6: Comparison results of attacking models which defend with adversarial training.

Method HotFlip SHIELD DNE

Acc(%) Sim(%) Pert(%) PPL Acc(%) Sim(%) Pert(%) PPL Acc(%) Sim(%) Pert(%) PPL

HLGA

21.7

55.8 17.185 538

12.6

59.8 15.206 565

18.6

58.6 14.132 444
TextHoaxer 55.5 17.145 463 67.8 12.312 469 66.5 11.517 363
LeapAttack 62.0 17.288 530 66.3 14.868 541 65.7 13.541 414
HQA-Attack 72.7 10.192 350 76.0 10.085 361 75.0 9.808 312

Table 7: Ablation study.

Dataset Acc(%) Random Initialization w/o Substituting w/o Optimizing HQA-Attack

Sim(%) Pert(%) Sim(%) Pert(%) Sim(%) Pert(%) Sim(%) Pert(%)

MR 0.7 18.2 39.234 74.4 12.638 74.2 11.673 75.1 11.224
AG 1.4 30.5 43.463 80.2 16.519 79.3 11.305 82.7 8.831

Yahoo 0.8 28.0 32.143 73.1 15.982 79.7 7.445 82.4 6.132
Yelp 0.6 18.3 38.595 71.6 19.342 85.2 7.883 87.8 6.312

IMDB 0.0 35.0 30.963 72.9 17.229 92.2 3.923 93.1 3.285

of the generated adversarial examples. Table 6 shows the attack performance. We can observe that
HQA-Attack can also obtain the best results compared with other strong baselines.

5.2.6 Ablation Study and Case Study

To investigate the effectiveness of different components, we make the ablation study on five text
classification datasets when attacking WordCNN. The results are shown in Table 7. Random Ini-
tialization means the adversarial examples generated only by the random initialization step. w/o
Substituting means that the HQA-Attack model without the substituting original words back step.
w/o Optimizing means that the HQA-Attack model which randomly selects a word that can keep the
example adversarial as the replacement after substituting original words back without optimizing the
adversarial example. It is easy to find that all modules contribute to the model, which verifies that
the substituting original words back step is useful and the optimizing the adversarial example step is
also indispensable. To further demonstrate the effectiveness of our proposed word back-substitution
strategy, we add some extra experiments in Appendix I. We also list some concrete adversarial exam-
ples generated by HQA-Attack, which are shown in Appendix J. These examples further demonstrate
that our proposed HQA-Attack model can generate a high-quality black-box hard-label adversarial
example with only a small perturbation.

6 Conclusion

In this paper, we propose a novel approach named HQA-Attack for crafting high quality textual
adversarial examples in black-box hard-label settings. By substituting original words back, HQA-
Attack can reduce the perturbation rate greatly. By utilizing the synonym set of the remaining changed
words to optimize the adversarial example, HQA-Attack can improve the semantic similarity and
reduce the query budget. Extensive experimental results demonstrate that the proposed HQA-Attack
method can generate high quality adversarial examples with high semantic similarity, low perturbation
rate and fewer query numbers. In future work, we plan to attempt more optimization strategies to
refine the model, thus further boosting the textual adversarial attack performance.

Acknowledgments and Disclosure of Funding

The authors are grateful to the anonymous reviewers for their valuable comments. This work was sup-
ported by National Natural Science Foundation of China (No. 62106035, 62206038, 61972065) and
Fundamental Research Funds for the Central Universities (No. DUT20RC(3)040, DUT20RC(3)066),
and supported in part by Key Research Project of Zhejiang Lab (No. 2022PI0AC01) and National
Key Research and Development Program of China (2022YFB4500300).

10

References
[1] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.

Generating natural language adversarial examples. In EMNLP, pages 2890–2896, 2018.

[2] Michal Bednarek, Michal R. Nowicki, and Krzysztof Walas. HAPTR2: improved haptic transformer for
legged robots’ terrain classification. Robotics and Autonomous Systems, 158:104236, 2022.

[3] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In EMNLP, pages 632–642, 2015.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. Universal sentence
encoder for english. In EMNLP, pages 169–174, 2018.

[5] Yangyi Chen, Hongcheng Gao, Ganqu Cui, Fanchao Qi, Longtao Huang, Zhiyuan Liu, and Maosong Sun.
Why should adversarial perturbations be imperceptible? rethink the research paradigm in adversarial NLP.
In EMNLP, pages 11222–11237, 2022.

[6] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with adversarial examples. In AAAI, pages 3601–3608. AAAI,
2020.

[7] Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly adversarial
inputs. In ACL, pages 4324–4333. ACL, 2019.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL, pages 4171–4186, 2019.

[9] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples for
text classification. In ACL, pages 31–36, 2018.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

[11] Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial attacks
against text transformers. In EMNLP, pages 5747–5757, 2021.

[12] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced bert with
disentangled attention. In ICLR, 2021.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, pages 1735–
1780, 1997.

[14] Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. On the
robustness of self-attentive models. In ACL, pages 1520–1529. ACL, 2019.

[15] Junjie Hu, Hiroaki Hayashi, Kyunghyun Cho, and Graham Neubig. DEEP: denoising entity pre-training
for neural machine translation. In ACL, pages 1753–1766, 2022.

[16] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A strong baseline for
natural language attack on text classification and entailment. In AAAI, pages 8018–8025, 2020.

[17] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, pages 1746–1751, 2014.

[18] Thai Le, Noseong Park, and Dongwon Lee. SHIELD: defending textual neural networks against multiple
black-box adversarial attacks with stochastic multi-expert patcher. In ACL, pages 6661–6674, 2022.

[19] Deokjae Lee, Seungyong Moon, Junhyeok Lee, and Hyun Oh Song. Query-efficient and scalable black-box
adversarial attacks on discrete sequential data via bayesian optimization. In ICML, pages 12478–12497,
2022.

[20] Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun, and Bill Dolan. Contex-
tualized perturbation for textual adversarial attack. In NAACL, pages 5053–5069, 2021.

[21] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Generating adversarial text against
real-world applications. In NDSS, 2019.

[22] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In ACL, pages 142–150, 2011.

11

[23] Rishabh Maheshwary, Saket Maheshwary, and Vikram Pudi. Generating natural language attacks in a hard
label black box setting. In AAAI, pages 13525–13533, 2021.

[24] Rishabh Maheshwary, Saket Maheshwary, and Vikram Pudi. A strong baseline for query efficient attacks
in a black box setting. In EMNLP, pages 8396–8409, 2021.

[25] Zhao Meng and Roger Wattenhofer. A geometry-inspired attack for generating natural language adversarial
examples. In COLING, pages 6679–6689, 2020.

[26] Luiz Henrique Mormille, Clifford Broni-Bediako, and Masayasu Atsumi. Regularizing self-attention on
vision transformers with 2d spatial distance loss. Artif. Life Robotics, 27(3):586–593, 2022.

[27] Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Lina Maria Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J. Young. Counter-fitting word vectors to linguistic
constraints. In NAACL, pages 142–148, 2016.

[28] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. In ACL, pages 115–124, 2005.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21:140:1–140:67, 2020.

[31] Amit Seker, Elron Bandel, Dan Bareket, Idan Brusilovsky, Refael Shaked Greenfeld, and Reut Tsarfaty.
Alephbert: Language model pre-training and evaluation from sub-word to sentence level. In ACL, pages
46–56, 2022.

[32] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank Cheng, and
Raquel Urtasun. Physically realizable adversarial examples for lidar object detection. In CVPR, pages
13713–13722, 2020.

[33] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In NAACL, pages 1112–1122, 2018.

[34] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In ICCV, pages 22–31, 2021.

[35] Wei Wu, Hao Chang, Yonghua Zheng, Zhu Li, Zhiwen Chen, and Ziheng Zhang. Contrastive learning-based
robust object detection under smoky conditions. In CVPR, pages 4294–4301, 2022.

[36] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan L. Yuille. Adversarial
examples for semantic segmentation and object detection. In ICCV, pages 1378–1387, 2017.

[37] Muchao Ye, Jinghui Chen, Chenglin Miao, Ting Wang, and Fenglong Ma. Leapattack: Hard-label
adversarial attack on text via gradient-based optimization. In KDD, pages 2307–2315, 2022.

[38] Muchao Ye, Chenglin Miao, Ting Wang, and Fenglong Ma. Texthoaxer: Budgeted hard-label adversarial
attacks on text. In AAAI, pages 3877–3884, 2022.

[39] Kan Yuan, Di Tang, Xiaojing Liao, XiaoFeng Wang, Xuan Feng, Yi Chen, Menghan Sun, Haoran Lu, and
Kehuan Zhang. Stealthy porn: Understanding real-world adversarial images for illicit online promotion. In
IEEE S&P, pages 952–966, 2019.

[40] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun.
Word-level textual adversarial attacking as combinatorial optimization. In ACL, pages 6066–6080, 2020.

[41] Zhiyuan Zeng and Deyi Xiong. An empirical study on adversarial attack on NMT: languages and positions
matter. In ACL, pages 454–460, 2021.

[42] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NeurIPS, pages 649–657, 2015.

[43] Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang, and Xuanjing Huang. Defense against synonym
substitution-based adversarial attacks via dirichlet neighborhood ensemble. In ACL, pages 5482–5492,
2021.

12

	Introduction
	Related Work
	Soft-Label Textual Adversarial Attack
	Hard-Label Textual Adversarial Attack

	Problem Formulation
	The Proposed Strategy
	Initialization
	Substituting Original Words Back
	Optimizing the Adversarial Example
	Determining the Optimizing Order
	Updating the Adversarial Example Sequentially

	The Overall Procedure

	Experiments
	Experimental Settings
	Experimental Results
	Comparison on Semantic Similarity and Perturbation Rate
	Comparison on Attack Efficiency
	Attack Real-World APIs
	Human Evaluation
	Attack Models which Defend with Adversarial Training
	Ablation Study and Case Study

	Conclusion

