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Abstract

The empirical loss, commonly referred to as the average loss, is extensively utilized
for training machine learning models. However, in order to address the diverse
performance requirements of machine learning models, the use of the rank-based
loss is prevalent, replacing the empirical loss in many cases. The rank-based loss
comprises a weighted sum of sorted individual losses, encompassing both convex
losses like the spectral risk, which includes the empirical risk and conditional
value-at-risk, and nonconvex losses such as the human-aligned risk and the sum
of the ranked range loss. In this paper, we introduce a unified framework for the
optimization of the rank-based loss through the utilization of a proximal alternating
direction method of multipliers. We demonstrate the convergence and convergence
rate of the proposed algorithm under mild conditions. Experiments conducted on
synthetic and real datasets illustrate the effectiveness and efficiency of the proposed
algorithm.

1 Introduction

The empirical risk function is the cornerstone of machine learning. By minimizing this function,
machine learning models typically achieve commendable average performance. However, as these
models find applications across a diverse spectrum of real-world scenarios, the evaluation standards
for machine learning performance have evolved to include factors such as risk aversion and fairness
[49, 9]. This has led to the empirical loss function often being supplanted by other loss functions,
many of which fall under the category of the rank-based loss, which consists of a weighted sum
of sorted individual losses. We consider the following optimization problem in this paper, which
minimizes the rank-based loss plus a regularizer:

min
w∈Rd

Ω(w) + g(w), where Ω(w) :=

n∑
i=1

σil[i] (−y ⊙ (Xw)) . (1)

Here, l(u) ≜ [l(u1), . . . , l(un)]
⊤
: Rn → Rn represents a vector-valued mapping where l : R→ R

denotes an individual loss function and ui is the i-th element of u, l[1](·) ⩽ · · · ⩽ l[n](·) denotes the
order statistics of the empirical loss distribution, g : Rd → R is a regularizer that induces desired
structures, w ∈ Rd represents the parameters of the linear model, X ∈ Rn×d is the data matrix,
and y ∈ {±1}n is the label vector. In the definition of Ω(w), the subscript [i] denotes the i-th
smallest element, σi ∈ [0, 1] is the weight corresponding to the i-th smallest element, and “⊙"
represents the Hadamard product. Depending on the values of σi, the rank-based loss can encompass
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a significant range of losses often used in machine learning and other fields: the L-risk or the spectral
risk [1, 2, 35], the trimmed risk or the sum of the ranked-range loss [27], the human-aligned risk
based on the cumulative prospect theory [31].

Related work. When the values of σi are constant and monotonically increase, i.e., σ1 ≤ · · · ≤ σn,
the rank-based loss is referred to as the spectral risk [1]. Several methods have been proposed in the
literature, including: a derivative-free method proposed by [25] that utilizes a stochastic smoothing
technique; an adaptive sampling algorithm proposed by [14] for the minimization of conditional value
at risk (CVaR), which is a special case of the spectral risk; and a stochastic algorithm developed by
[36] for minimizing the general spectral risk by characterizing the subdifferential of the rank-based
loss. In the case of nonconvex rank-based losses, [27] utilizes the difference of convex algorithm
for minimizing the average of ranked-range (AoRR) loss. The nonconvex human-aligned risk was
minimized by [31] by directly computing the gradient of the function, even though the rank-based
loss is nondifferentiable, without any convergence guarantee. Despite the increasing applications of
the rank-based loss, a unified framework for addressing the rank-based loss minimization remains
elusive. Moreover, stochastic methods may encounter bias issues [36], existing methods for the
spectral risk cannot deal with nonconvex rank-based losses, and existing methods for human-aligned
risk lack convergence guarantee [31].

Our Contribution. We present a unified framework for the minimization of the rank-based loss
to overcome the challenges of existing methods. Specifically, we focus on monotone increasing
loss functions, such as the hinge loss and the logistic loss, and use weakly convex regularizers.
We leverage the alternating direction multiplier method (ADMM), which is widely used in solving
nonsmooth nonconvex composite problems [8, 32, 48]. To utilize the ADMM framework, we
introduce an auxiliary variable to represent the product of the data matrix and parameter vector. The
two subproblems are either strongly convex (with a proximal term), which can be solved by various
existing methods, or can be efficiently solved by the pool adjacent violators algorithm (PAVA) [6].
We demonstrate that our algorithm can find an ϵ-KKT point in at most O(1/ϵ2) iterations under mild
conditions. To relax the assumptions further, we propose a variant of the ADMM with a smoothing
technique when the regularizer is nonsmooth. Notably, when the Moreau envelope is applied to
smooth the nonsmooth regularizer, we show that our algorithm can find an ϵ-KKT point within
O(1/ϵ4) iterations.

Our contributions can be summarized as follows:

1) We propose a unified framework for the rank-based loss minimization for monotonically increas-
ing loss functions. This approach is versatile, effectively dealing with both convex and nonconvex
loss functions by allowing different settings of weights σi.

2) Furthermore, the regularizer in our problem can be weakly convex functions, extending existing
works that only consider convex or smooth regularizers, such as the l1 and l2 penalty.

3) We theoretically demonstrate that our ADMM algorithm converges to an ϵ-approximate KKT
point under different assumptions.

4) We conducted experiments in three different aggregate loss function frameworks to demonstrate
the advantages of the proposed algorithm.

2 Preliminaries

In this section, we explore the wide variety of rank-based losses and introduce the Moreau envelope
as a smooth approximation of weakly convex functions.

2.1 Rank-Based Loss

Let {(X1, y1), . . . , (Xn, yn)} be an i.i.d. sample set from a distribution P over a sample space
(X ,Y), and L be the individual loss function. Then Y = L(w, X, y) is also a random variable, and
Yi = L(w, Xi, yi) represents the i-th training loss with respect to the sample (Xi, yi), i ∈ {1, . . . , n}.
Let Y[1] ≤ . . . ≤ Y[n] be the order statistics. The rank-based loss function in problem (1) can be
rewritten as:

Ω(w) =

n∑
i=1

σiY[i]. (2)
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Spectral Risk The spectral risk, as defined in [1], is given by:

Rσ(w) =

∫ 1

0

VaRt(w)σ(t) dt, (3)

where VaRt(w) = inf {u : Fw(u) ≥ t} denotes the quantile function, and Fw represents the cu-
mulative distribution function of Y . The function σ : [0, 1]→ R+ is a nonnegative, nondecreasing
function that integrates to 1, known as the spectrum of Ω(w). The discrete form of (3) is consistent
with (2), with σi =

∫ i/n

(i−1)/n
σ(t) dt [36]. The spectral risk builds upon previous aggregate losses that

have been widely used to formulate learning objectives, such as the average risk [46], the maximum
risk [43], the average top-k risk [21], value-at-risk and conditional value-at-risk [39]. By choosing a
different spectral σ(t), such as the superquantile [30], the extremile [15], and the exponential spectral
risk measure [11], can be constructed for various spectral risks.

Human-Aligned Risk With the growing societal deployment of machine learning models for aiding
human decision-making, these models must possess qualities such as fairness, in addition to strong
average performance. Given the significance of these additional requirements, amendments to risk
measures and extra constraints have been introduced [28, 23, 19]. Inspired by the cumulative prospect
theory (CPT) [45], which boasts substantial evidence for its proficiency in modeling human decisions,
investigations have been carried out in bandit [24] and reinforcement learning [41]. Recently, [31]
also utilized the concept of CPT to present a novel notion of the empirical human risk minimization
(EHRM) in supervised learning. The weight assigned in (3) is defined as σi = wa,b(

i
n ), where

wa,b(t) =
3− 3b

a2 − a+ 1

(
3t2 − 2(a+ 1)t+ a

)
+ 1.

These weights assign greater significance to extreme individual losses, yielding an S-shaped CPT-
weighted cumulative distribution. Moreover, we consider another CPT-weight commonly employed
in decision making [45, 41]. Let ẑ = −y ⊙ (Xw) and B be a reference point. Unlike previous
weight settings, σi is related to the value of ẑ[i] and is defined as

σi(ẑ[i]) =

{
ω−(

i
n )− ω−(

i−1
n ), ẑ[i] ≤ B,

ω+(
n−i+1

n )− ω+(
n−i
n ), ẑ[i] > B,

(4)

where

ω+(p) =
pγ

(pγ + (1− p)γ)
1/γ

, ω−(p) =
pδ

(pδ + (1− p)δ)
1/δ

, (5)

with γ and δ as hyperparameters.

Ranked-Range Loss The average of ranked-range aggregate (AoRR) loss follows the same struc-
ture as (2), where

σi =

{
1

k−m , i ∈ {m+ 1, . . . , k},
0, otherwise,

(6)

with 1 ≤ m < k ≤ n. The ranked-range loss effectively handles outliers, ensuring the robustness
of the model against anomalous observations in the dataset [27]. It is clear that AoRR includes the
average loss, the maximum loss, and the average top-k loss, and the median loss [34]. [27] utilized the
difference-of-convex algorithm (DCA) [40] to solve the AoRR aggregate loss minimization problem,
which can be expressed as the difference of two convex problems.

2.2 Weakly Convex Function and Moreau Envelope

A function g : Rd → R is said to be c-weakly convex for some c > 0 if the function g + c
2∥ · ∥

2 is
convex. The class of weakly convex functions is extensive, encompassing all convex functions as
well as smooth functions with Lipschitz-continuous gradients [37]. In our framework, we consider
weakly convex functions as regularizers. It is worth noting that weakly convex functions constitute
a rich class of regularizers. Convex Lp norms with p ≥ 1 and nonconvex penalties such as the
Minimax Concave Penalty (MCP) [52] and the Smoothly Clipped Absolute Deviation (SCAD) [20]
are examples of weakly convex functions [7].
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Next, we define the Moreau envelope of c-weakly convex function g(w), with proximal parameter
0 < γ < 1

c :

Mg,γ(w) = min
x

{
g(x) +

1

2γ
∥x−w∥2

}
. (7)

The proximal operator of g with parameter γ is given by

proxg,γ(w) = argmin
x

{
g(x) +

1

2γ
∥x−w∥2

}
.

We emphasize that proxg,γ(·) is a single-valued mapping, and Mg,γ(w) is well-defined since the
objective function in (7) is strongly convex for γ ∈

(
0, c−1

)
[7].

The Moreau envelope is commonly employed to smooth weakly convex functions. From [7] we have

∇Mg,γ(w) = γ−1
(
w − proxg,γ(w)

)
∈ ∂g

(
proxg,γ (w)

)
. (8)

Here ∂ represents Clarke generalized gradient [10]. Recall that for locally Lipschitz continuous
function f : Rd → R, its Clarke generalized gradient is donated by ∂f(x). We say x is stationary
for f if 0 ∈ ∂f(x). For convex functions, Clarke generalized gradient coincides with subgradient in
the sense of convex analysis. Under assumptions in Section 3.3, both Ω and g are locally Lipschitz
continuous [12, 47]. Thus the stationary point of Ω and g can be characterized by Clarke generalized
gradient, so is Lρ(w, z;λ) defined in Section 3.1.

3 Optimization Algorithm

Firstly, we make the basic assumption about the loss function l and the regularizer g:

Assumption 1 The individual loss function l(·) : D → R is convex and monotonically increas-
ing, where D ⊂ R is the domain of l. The regularizer g(·) : Rd → R ∪ {∞} is proper, lower
semicontinuous, and c-weakly convex. Furthermore, l(·) and g(·) are lower bounded by 0.

Many interesting and widely used individual loss functions satisfy this assumption, such as logistic
loss, hinge loss, and exponential loss. Our algorithm described below can also handle monotonically
decreasing loss functions, by simply replacing σi with σn−i+1 in (9). We assume f and g are lower
bounded, and take the infimum to be 0 for convenience. The lower bounded property of l implies that
the rank-based loss Ω is also lower bounded by 0 since σi ≥ 0 for all i.

3.1 The ADMM Framework

By Assumption 1, the original problem is equivalent to

min
w

n∑
i=1

σil
(
(Dw)[i]

)
+ g(w),

where l is the individual loss function, D = −diag(y)X and diag(y) denotes the diagonal matrix
whose diagonal entries are the vector y.

To make use of the philosophy of ADMM, by introducing an auxiliary variable z = Dw, we
reformulate the problem as

min
w,z

n∑
i=1

σil
(
z[i]
)
+ g(w) s.t. z = Dw. (9)

Note that for human-aligned risk, σi should be written as σi(z[i]) since it is a piecewise function with
two different values in (4), but for simplicity, we still write it as σi.

The augmented Lagrangian function can then be expressed as

Lρ(w, z;λ) =

n∑
i=1

σil
(
z[i]
)
+

ρ

2
||z −Dw +

λ

ρ
||2 + g(w)− ||λ||

2

2ρ
.
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The ADMM, summarised in Algorithm 1, cyclically updates w, z and λ, by solving the w- and z-
subproblems and adopting a dual ascent step for λ. In Algorithm 1, we assume the w- subproblem can
be solved exactly (for simplicity). When g(w) is a smooth function, the w-subproblem is a smooth
problem and can be solved by various gradient-based algorithms. Particularly, the w-subproblem is
the least squares and admits a closed-form solution if g(w) ≡ 0 or g(w) = µ

2 ||w||
2
2, where µ > 0

is a regularization parameter. When g(w) is nonsmooth, if proxg,γ(w) is easy to compute, we can
adopt the proximal gradient method or its accelerated version [4]. Particularly, if g(w) = µ

2 ||w||1,
then the subproblem of w becomes a LASSO problem, solvable by numerous effective methods such
as the Coordinate Gradient Descent Algorithm (CGDA) [22], the Smooth L1 Algorithm (SLA) [42],
and the Fast Iterative Shrinkage-Thresholding Algorithms (FISTA) [4].

Algorithm 1 ADMM framework

Input: X , y, w0, z0, λ0, ρ, r, and σi, i = 1, ..., n.
1: for all k = 0, 1, ... do
2: zk+1 = argminz

∑n
i=1 σil

(
z[i]
)
+ ρ

2 ||z −Dwk + λk

ρ ||
2.

3: wk+1 = argminw
ρ
2 ||z

k+1 −Dw + λk

ρ ||
2 + g(w) + r

2∥w −wk∥2.
4: λk+1 = λk + ρ(zk+1 −Dwk+1).
5: end for

At first glance, the z-subproblem is nonconvex and difficult to solve. However, we can solve an
equivalent convex chain-constrained program that relies on sorting and utilizes the pool adjacent
violators algorithm(PAVA). More specifically, we follow the approach presented in [13, Lemma
3] and introduce the auxiliary variable m = Dwk+1 − λk

ρ (we remove the superscript for m for
simplicity). This enables us to express the z-subproblem in the equivalent form below

min
z

n∑
i=1

σil(zpi
) +

ρ

2
(zpi
−mpi

)2 s.t. zp1
≤ zp2

≤ · · · ≤ zpn
,

where {p1, p2, . . . , pn} is a permutation of {1, . . . , n} such that mp1
⩽ mp2

⩽ · · · ⩽ mpn
.

3.2 The Pool Adjacent Violators Algorithm (PAVA)

To introduce our PAVA, for ease of notation and without loss of generality, we consider m1 ⩽ m2 ⩽
· · · ⩽ mn, i.e., the following problem

min
z

n∑
i=1

σil(zi) +
ρ

2
(zi −mi)

2 s.t. z1 ≤ z2 ≤ · · · ≤ zn. (10)

The above problem constitutes a convex chain-constrained program. Although it can be solved by
existing convex solvers, the PAVA [6] is often more efficient.

The PAVA is designed to solve the following problem

min

n∑
i=1

θi(zi) s.t. z1 ≤ z2 ≤ · · · ≤ zn,

where each θi represents a univariate convex function. In our problem, θi(zi) = σil(zi) +
ρ
2 (zi −

mi)
2. The PAVA maintains a set J that partitions the indices {1, 2, . . . , n} into consecutive blocks

{[s1 + 1, s2], [s2 + 1, s3], · · · , [sk + 1, sk+1]} with s1 = 0 and sk+1 = N . Here, [a, b] represents
the index set {a, a+ 1, . . . , b} for positive integers a < b, and by convention, we define [a, a] = a.
A block [p, q] is termed a single-valued block if every zi in the optimal solution of the following
problem has the same value,

min

q∑
i=p

θi(zi) s.t. zp ≤ zp+1 ≤ · · · ≤ zq,

i.e., z∗p = z∗p+1 = · · · = z∗q . In line with existing literature, we use v[p,q] to de-
note this value. For two consecutive blocks [p, q] and [q + 1, r], if v[p,q] ≤ v[q+1,r], the
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two blocks are in-order; otherwise, they are out-of-order. Similarly, the consecutive blocks
{[sk, sk+1] , [sk+1 + 1, sk+2] , · · · , [sk+t + 1, sk+t+1]} are said to be in-order if v[sksk+1] ≤
v[sk+1+1,sk+2] ≤ · · · ≤ v[sk+t+1,sk+t+1]; otherwise they are out-of-order. Particularly, if v[sksk+1] >
v[sk+1+1,sk+2] > · · · > v[sk+t+1,sk+t+1], the consecutive blocks are said to be consecutive out-of-
order. The PAVA initially partitions each integer from 1 to n into single-valued blocks [i, i] for
i = 1, . . . , n. When there are consecutive out-of-order single-valued blocks [p, q] and [q + 1, r], the
PAVA merges these two blocks by replacing them with the larger block [p, r]. The PAVA terminates
once all the single-valued blocks are in-order.

Algorithm 2 A refined pool-adjacent-violators algorithm for solving problem (10)
Input: J = {[1, 1], [2, 2], . . . , [n, n]}, θi, i = 1, 2, . . . , n.
Output: {y∗1 , y∗2 , . . . , y∗N}

1: for each [i, i] ∈ J do
2: Compute the minimizer v[i,i] of θi(y)
3: end for
4: while exists out-of-order blocks in J do
5: Find consecutive out-of-order blocks C = {[sk, sk+1], [sk+1 + 1, sk+2], · · · , [sk+t +

1, sk+t+1]}.
6: J ← J\C ∪ {[sk, sk+t+1]}, compute the minimizer v[sk,sk+t+1] of

∑sk+t+1

i=sk
θi(z).

7: end while
8: for each [m,n] ∈ J do
9: y∗i = v[m,n], ∀i = m,m+ 1, . . . , n.

10: end for

Traditional PAVA processes the merging of out-of-order blocks one by one, identifying two consecu-
tive out-of-order blocks and then solving a single unconstrained convex minimization problem to
merge them. For constant σi, our proposed Algorithm 2, however, leverages the unique structure
of our problem to improve the PAVA’s efficiency. Specifically, we can identify and merge multiple
consecutive out-of-order blocks, thereby accelerating computation. This acceleration is facilitated by
the inherent properties of our problem. Notably, in case the spectral risk and the rank-ranged loss, the
function θi(zi) demonstrates strong convexity due to the presence of the quadratic term ρ

2 (zi −mi)
2

and the convex nature of l(zi). This key observation leads us to the following proposition.

Proposition 1 For constant σi, suppose v[m,n] > v[n+1,p], the blocks [m,n] and [n + 1, p] are
consecutive out-of-order blocks. We merge these two blocks into [m, p]. Then the block optimal value,
denoted by v[m,p], satisfies v[n+1,p] ≤ v[m,p] ≤ v[m,n].

Proposition 1 provides a crucial insight: when we encounter consecutive out-of-order blocks with a
length greater than 2, we can merge them simultaneously, rather than performing individual block
merges. This approach significantly improves the efficiency of the algorithm. To illustrate this
concept, consider a scenario where we have a sequence of values arranged as v[1,2] > v[3,4] > v[5,6].
Initially, we merge the blocks [1, 2] and [3, 4], resulting in v[1,4] ≥ v[3,4] > v[5,6]. However, since
v[1,4] is still greater than v[5,6], we need to merge the blocks [1, 4] and [5, 6] as well. Rather than
calculating v[1,4] separately, we can streamline the process by directly merging the entire sequence
into a single block, namely [1, 6], in a single operation. By leveraging this approach, we eliminate
the need for intermediate calculations and reduce the computational burden associated with merging
individual blocks. This results in a more efficient version of the PAVA. Further details can be found
in Appendix B.3.

It is worth noting that when θi(zi) is convex with respect to zi, the PAVA guarantees to find a global
minimizer [6]. However, when considering the empirical human risk minimization with CPT-weight
in (4), the function θi(zi) is nonconvex, which is because σi is a piecewise function with two different
values. In such cases, we can still find a point that satisfies the first-order condition [12, Theorem 3].
In summary, we always have

0 ∈ ∂zLρ(w
k+1, z;λk). (11)
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3.3 Convergence Analysis of Algorithm 1

We now demonstrate that Algorithm 1 is guaranteed to converge to an ϵ-KKT point of problem (9).
To this end, we shall make the following assumptions.

Assumption 2 The sequence {λk} is bounded and satisfies
∑∞

k=1 ∥λ
k − λk+1∥2 <∞.

It is worth noting that Assumption 2 is commonly employed in ADMM approaches [51, 44, 3].

Next, we present our convergence result based on the aforementioned assumptions. As mentioned
in Section 3.2, the PAVA can always find a solution for the z-subproblem that satisfies the first-order
condition (11). When σi is constant, which is the case of the spectral risk and the AoRR risk,
the subproblems of PAVA are strongly convex, and we can observe the descent property of the
z-subproblem:

Lρ(z
k,wk,λk)− Lρ(z

k+1,wk,λk) ≥ 0. (12)
However, if σi has different values for z less than and larger than the reference point B as in (4), the
subproblems of PAVA may lose convexity, and the descent property may not hold. Thus, we assume
that (12) holds for simplicity. By noting that the w-subproblem can be solved exactly as it is strongly
convex, we make the following assumption.

Assumption 3 The w-subproblem is solved exactly, and the z-subproblem is solved such that (11)
and (12) hold.

Theorem 1 Assume that Assumptions 1, 2 and 3 hold. Then Algorithm 1 can find an ϵ-KKT point
(zk+1,wk+1,λk+1) of problem (9) within O(1/ϵ2) iterations, i.e.,

dist
(
−λk+1, ∂Ω

(
zk+1

))
≤ ϵ, dist

(
D⊤λk+1, ∂g

(
wk+1

))
≤ ϵ, ∥zk+1 −Dwk+1∥ ≤ ϵ,

where dist(a, A) = min{∥a− x∥ : x ∈ A} defines the distance of a point a to a set A.

In the absence of Assumption 2, a common assumption for nonconvex ADMM is that g(w) possesses
a Lipschitz continuous gradient [48, 32], e.g., g(w) = µ

2 ∥w∥
2. Under this assumption, Algorithm 1

guarantees to find an ϵ-KKT point within O(1/ϵ2) iterations [48, 32].

4 ADMM for a Smoothed Version of Problem (1)

In Section 3.3, our convergence result is established under Assumption 2 when a nonsmooth regular-
izer g(w) is present. In this section, to remove this assumption, we design a variant of the proximal
ADMM by smoothing the regularizer g(w). We employ the Moreau envelope to smooth g(w) and
replace g(w) in Algorithm 1 with Mg,γ(w). We point out that Mg,γ(w) is a γ−1 weakly convex
function if 0 < cγ ≤ 1

3 . Thus the w-subproblem is still strongly convex and can be solved exactly.
See Appendix A.1 for proof. We assume that the sequence {λk} is bounded, which is much weaker
than Assumption 2. We will show that within O(1/ϵ4) iterations, (zk, w̃k,λk) is an ϵ-KKT point,
where w̃k = proxg,γ(w

k).

To compensate for the absence of Assumption 2, we introduce the following more practical assump-
tions.

Assumption 4 We assume zk ∈ Im(D) ∀k, where Im(D) = {Dx : x ∈ Rd}.

A stronger version of Assumption 4 is that DD⊤ = (diag(y)X)(diag(y)X)⊤ =
diag(y)XX⊤diag(y) ≻ 0 [32]. It is worth noting that the full row rank property of the data
matrix is often assumed in the high dimensional setting classification (m < d and each entry of y
belongs to {−1, 1}). Here we do not impose any assumptions on the rank of data matrix X .

Assumption 5 ∇Mg,γ(w) is bounded by M > 0, i.e., ∥∇Mg,γ(w)∥ ≤M, ∀w ∈ Rn.

Regarding nonsmooth regularizers, Assumption 5 is satisfied by weakly convex functions that are
Lipschitz continuous [7], due to the fact that Lipschitz continuity implies bounded subgradients and
(8). Common regularizers such as l1-norm, MCP and SCAD are all Lipschitz continuous.
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The following proposition establishes the relationship between {(zk,wk,λk)} and {(zk, w̃k,λk)}.

Proposition 2 Suppose g is c-weakly convex and Assumption 3 holds. Suppose the sequence
{(zk,wk,λk)} is produced during the iterations of Algorithm 1 with replacing g(w) by Mg,γ(w)

and w̃k = proxg,γ(w
k). Then we have

0 ∈ ∂Ω(zk+1) + λk+1 + ρD(wk+1 −wk), DTλk+1 + r(wk −wk+1) ∈ ∂g(w̃k+1). (13)

Before presenting our main results, we introduce a Lyapunov function that plays a significant role in
our analysis

Φk = Lρ(w
k, zk,λk) +

2r2

σρ
∥wk −wk−1∥2.

The following lemma demonstrates the sufficient decrease property for Φk.

Lemma 1 Let r > γ−1. Under Assumptions 1, 3, 4 and 5, if 0 < cγ ≤ 1
3 , then we have

Φk − Φk+1 ≥ (
2r − γ−1

2
− 4r2

σρ
− 2

σργ2
)∥wk+1 −wk∥2 + 1

ρ
∥λk+1 − λk∥2. (14)

The sufficient decrease property for the Lyapunov function is crucial in the proof of nonconvex
ADMM. Using Lemma 1, we can control ∥wk+1 −wk∥ and ∥λk+1 − λk∥ through the decrease of
the Lyapunov function. We are now ready to present the main result of this section.

Theorem 2 Suppose {λk} is bounded. Set γ = ϵ ≤ 1
3c , ρ = C1

ϵ , r = C2

ϵ , where C1 and C2 are

constants such that C2 > 1 and C1 >
8C2

2+
1
3c+4

σ(2C2−1) . Under the same assumptions in Lemma 1, Algo-

rithm 1 with replacing g(w) by Mg,γ(w) finds an ϵ-KKT point (zk+1, w̃k+1,λk+1) within O(1/ϵ4)
iterations, i.e.,

dist
(
−λk+1, ∂Ω

(
zk+1

))
≤ ϵ, dist

(
DTλk+1, ∂g

(
w̃k+1

))
≤ ϵ, ∥zk+1 −Dw̃k+1∥ ≤ ϵ.

5 Numerical Experiment

In this section, we perform binary classification experiments to illustrate both the robustness and the
extensive applicability of our proposed algorithm.

When using the logistic loss or hinge loss as individual loss, the objective function
of problem (1) can be rewritten as

∑n
i=1 σi log

(
1 + exp

(
(−y ⊙Xw)[i]

))
+ g(w) or∑n

i=1 σi

[
1 + (−y ⊙Xw)[i]

]
+
+ g(w), where g(w) = µ

2 ∥w∥
2
2 or g(w) = µ

2 ∥w∥1.

We point out some key settings:

1) For the spectral risk measures, we use the logistic loss and hinge loss as individual loss, and use
ℓ1 and ℓ2 regularization with µ taken as 10−2.

2) For the average of ranked range aggregate loss, we use the logistic loss and hinge loss as
individual loss and use ℓ2 regularization with µ = 10−4.

3) For the empirical human risk minimization, we use the logistic loss as individual loss, and use ℓ2
regularization with µ = 10−2.

As shown in Section 2.1, we can apply this to a variety of frameworks such as the spectral risk
measure (SRM), the average of ranked-range (AoRR) aggregate loss, and the empirical human risk
minimization (EHRM). We compare our algorithm with LSVRG, SGD, and DCA: LSVRG(NU)
denotes LSVRG without uniformity, and LSVRG(U) denotes LSVRG with uniformity, as detailed
in [36]; SGD denotes the stochastic subgradient method in [36]; DCA denotes the difference-of-
convex algorithm in [40]; sADMM refers to the smoothed version of ADMM.

The details of our algorithm setting, more experiment settings and detailed information for each
dataset are provided in Appendix B. Additional experiments with synthetic datasets are presented
in Appendix C.
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5.1 Spectral Risk Measures

In this section, we select σ(t) ≡ 1 in (3) to generate the empirical risk minimization (ERM) and
σ(t) = 1[q,1](t)/(1− q) to generate superquantile, the latter having garnered significant attention in
the domains of finance quantification and machine learning [30].

Setting. For the learning rates of SGD and LSVRG, we use grid search in the range
{10−2, 10−3, 10−4, 1/Nsamples, 1/ (Nsamples ×Nfeatures)}, which is standard for stochastic algorithms,
and then we repeat the experiments five times with different random seeds.

Results. Tables 1 and 2 present the mean and standard deviation of the results in different
regularizations. The first row for each dataset represents the objective value of problem (1) and the
second row shows test set accuracy. Bold numbers indicate significantly better results. Tables 1 and 2
show that our ADMM algorithm outperforms existing methods in terms of objective values for most
instances and has comparable test accuracy. In addition, we highlight the necessity of reselecting
the learning rate for SGD and LSVRG algorithms, as the individual loss and dataset undergo
modifications—a highly intricate procedure. Conversely, our proposed algorithm circumvents the
need for any adjustments in this regard.

Table 1: Results in real data with SRM superquantile framework and ℓ2 regularization.

Datasets Logistic Loss Hinge Loss

ADMM LSVRG(NU) LSVRG(U) SGD ADMM LSVRG(NU) LSVRG(U) SGD

SVMguide
0.6522 (0.0058) 0.6522 (0.0058) 0.6522 (0.0058) 0.6523 (0.0058) 0.7724 (0.0214) 0.7724 (0.0214) 0.7724 (0.0214) 0.7738 (0.0219)

0.9566 (0.0035) 0.9563 (0.0038) 0.9561(0.0036) 0.9566 (0.0032) 0.9568 (0.0033) 0.9568 (0.0033) 0.9568 (0.0033) 0.9574 (0.0035)

AD
0.1539 (0.0092) 0.1538 (0.0092) 0.1538 (0.0091) 0.1560 (0.0114) 0.0787 (0.0132) 0.0852 (0.0129) 0.0833 (0.0134) 0.0815 (0.0137)

0.9629 (0.0071) 0.9633 (0.0070) 0.9633 (0.0070) 0.9631 (0.0067) 0.9521 (0.0112) 0.9559 (0.0099) 0.9578 (0.0098) 0.9576 (0.0097)

Table 2: Results in real data with SRM superquantile framework and ℓ1 regularization.

Datasets Logistic Loss Hinge Loss

ADMM sADMM LSVRG(NU) LSVRG(U) SGD ADMM sADMM LSVRG(NU) LSVRG(U) SGD

SVMguide
0.6280 (0.0129) 0.6280 (0.0129) 0.6280 (0.0129) 0.6280 (0.0129) 0.6282 (0.0128) 0.6789 (0.0273 ) 0.6789 (0.0273 ) 0.9121 (0.0133) 0.6789 (0.0273) 0.8569 (0.0210)

0.9561 (0.0037) 0.9561 (0.0037) 0.9563 (0.0039) 0.9561 (0.0037) 0.9561 (0.0038) 0.9566 (0.0036) 0.9566 (0.0036) 0.9558 (0.0039) 0.9563 (0.0035) 0.9555 (0.0040)

AD
0.2601 (0.0079) 0.2602 (0.0079) 0.2614 (0.0080) 0.2614 (0.0080) 0.2641 (0.0105) 0.1352 (0.0094) 0.1370 (0.0096) 0.1457 (0.0110) 0.1449 (0.0100) 0.1402 (0.0101)

0.9673 (0.0054) 0.9673 (0.0054) 0.9680 (0.0054) 0.9680 (0.0054) 0.9673 (0.0039) 0.9589 (0.0060) 0.9589 (0.0060) 0.9644 (0.0045) 0.9639 (0.0039) 0.9635 (0.0023)

Figure 1 illustrates the relationship between time and sub-optimality of each algorithm in the ERM
framework with logistic loss, which is a convex problem whose global optimum can be achieved.
The learning rate of the other algorithms is the best one selected by the same method. The Figure 1
depicts that ADMM exhibits significantly faster convergence towards the minimum in comparison to
the other algorithms. Conversely, although sADMM fails to achieve the accuracy level of ADMM, it
nevertheless demonstrates accelerated convergence when compared to other algorithms.

5.2 Empirical Human Risk Minimization

Since [31] utilizes gradient-based algorithms akin to those in [36], we compare our algorithm with
the one referenced in Section 5.1.

Results. The mean and standard deviation of the results are tabulated in Table 3. SPD, DI, EOD,
AOD, TI, and FNRD are fairness metrics detailed in Appendix B.6. The bold numbers highlight the
superior result. It is evident that our proposed algorithm outperforms the other algorithms in terms
of objective values and accuracy, and also shows enhanced performance across almost all fairness
metrics.

5.3 Average of Ranked Range Aggregate Loss

As mentioned in Section 2.1, DCA can be used to solve for AoRR aggregate loss minimization [27].
Therefore, we compare our algorithm with the DCA algorithm in this section.

Results. Table 4 displays the mean and standard deviation of both the objective value and time
results. Given that this is a nonconvex problem, the objective value may not be the optimal value.
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Figure 1: Time vs. Sub-optimality gap in synthetic datasets with ERM framework. (a-d) for ℓ2
regularization, and (e-f) for ℓ1 regularization. Sub-optimality is defined as F k − F ∗, where F k

represents the objective function value at the k-th iteration or epoch and F ∗ denotes the minimum
value obtained by all algorithms. Plots are truncated when F k − F ∗ < 10−8.

Table 3: Comparison with EHRM framework. ‘objval’ denotes the objective value of problem (1).

ADMM LSVRG(NU) LSVRG(U) SGD ADMM LSVRG(NU) LSVRG(U) SGD

objval 0.4955 (0.0045) 0.5383 (0.0022) 0.5384 (0.0023) 0.6093 (0.0013) EOD -0.0521 (0.0160) -0.0238 (0.0114) -0.0231 (0.0110) -0.0160(0.0103)

Accuracy 0.7759 (0.0076) 0.7445 (0.0050) 0.7448 (0.0054) 0.6334 (0.0205) AOD 0.0130 (0.0090) 0.0449 (0.0199) 0.0450 (0.0196) 0.0426 (0.0078)

SPD 0.0300 (0.0071) 0.0585 (0.0161) 0.0587 (0.0158) 0.0459 (0.0050) TI 0.0838 (0.0018) 0.0933 (0.0018) 0.0934 (0.0018) 0.1062 (0.0052)

DI 1.0533 (0.0126) 1.1034 (0.0300) 1.104 (0.0297) 1.0586 (0.0065) FNRD 0.0521 (0.0160) 0.0238 (0.0114) 0.0231 (0.0110) 0.0160 (0.0103)

Nevertheless, as evidenced in Table 4, our proposed algorithm achieves better objective value in a
shorter time for all the instances.

Table 4: Comparison with AoRR framework. ‘objval’ denotes the objective value of problem (1).

Datasets Monks Australian Phoneme Titanic Splice

ADMM DCA ADMM DCA ADMM DCA ADMM DCA ADMM DCA

Logistic
objval 0.0025 (0.0001) 0.5857 (0.1258) 0.0011 (0.0001) 0.6919 (0.0003) 0.0031 (0.0001) 0.685 (0.0090) 0.0027 (0.0001) 0.6912 (0.0003) 0.0018 (0.0001) 0.6914 (0.0003)

time (s) 3.15 (0.11) 46.73 (0.29) 3.54 (0.34) 53.85 (0.98) 55.36 (5.89) 116.24 (27.16) 40.98 (9.36) 51.8 (0.21) 17.58 (0.37) 63.91 (5.41)

Hinge
objval 0.0093 (0.0017) 0.8556 (0.1701) 0.0017 (0.0010) 0.9949 (0.0012) 0.0060 (0.0005) 0.8842 (0.1657) 0.0127 (0.0021) 0.9923 (0.0013) 0.0038 (0.0005) 0.9931 (0.0013)

time (s) 1.05 (0.02) 23.80 (0.13) 1.62 (0.05) 24.15 (0.07) 20.28 (3.31) 39.09 (1.60) 7.22 (1.26) 14.53 (1.53) 9.12 (1.42) 114.52 (26.94)

6 Conclusion

This paper considers rank-based loss optimization with monotonically increasing loss functions
and weakly convex regularizers. We propose a unified ADMM framework for rank-based loss
minimization. Notably, one subproblem of the ADMM is solved efficiently by the PAVA. Numer-
ical experiments illustrate the outperformance of our proposed algorithm, with all three practical
frameworks delivering satisfactory results. We also point out some limitations of our algorithm. To
effectively utilize our algorithm, individual losses must exhibit monotonicity, as this allows us to
use the PAVA to solve subproblems. If the sample size is large, the PAVA’s computational efficiency
may be hindered, potentially limiting its overall effectiveness. Future work may explore a variant
using mini-batch samples, potentially improving early-stage optimization performance and overall
computational efficiency.

Acknowledgement Rujun Jiang is partly supported by NSFC 12171100 and Natural Science
Foundation of Shanghai 22ZR1405100.

10



References
[1] Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk

aversion. Journal of Banking & Finance, 26(7):1505–1518.

[2] Acerbi, C. and Simonetti, P. (2002). Portfolio optimization with spectral measures of risk. arXiv
preprint cond-mat/0203607.

[3] Bai, X., Sun, J., and Zheng, X. (2021). An augmented lagrangian decomposition method for
chance-constrained optimization problems. INFORMS Journal on Computing, 33(3):1056–1069.

[4] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

[5] Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P., Martino,
J., Mehta, S., Mojsilovic, A., et al. (2018). Ai fairness 360: An extensible toolkit for detecting,
understanding, and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943.

[6] Best, M. J., Chakravarti, N., and Ubhaya, V. A. (2000). Minimizing separable convex functions
subject to simple chain constraints. SIAM Journal on Optimization, 10(3):658–672.

[7] Böhm, A. and Wright, S. J. (2021). Variable smoothing for weakly convex composite functions.
Journal of optimization theory and applications, 188:628–649.

[8] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends®
in Machine learning, 3(1):1–122.

[9] Chow, Y., Tamar, A., Mannor, S., and Pavone, M. (2015). Risk-sensitive and robust decision-
making: a CVAR optimization approach. Advances in neural information processing systems,
28.

[10] Clarke, F. H. (1990). Optimization and nonsmooth analysis. SIAM.

[11] Cotter, J. and Dowd, K. (2006). Extreme spectral risk measures: An application to futures
clearinghouse margin requirements. Journal of Banking & Finance, 30(12):3469–3485.

[12] Cui, X., Jiang, R., Shi, Y., and Yan, Y. (2023). Decision making under cumulative prospect
theory: An alternating direction method of multipliers. arXiv preprint arXiv:2210.02626.

[13] Cui, X., Sun, X., Zhu, S., Jiang, R., and Li, D. (2018). Portfolio optimization with nonparametric
value at risk: A block coordinate descent method. INFORMS Journal on Computing, 30(3):454–
471.

[14] Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. (2020). Adaptive sampling for stochastic
risk-averse learning. Advances in Neural Information Processing Systems, 33:1036–1047.

[15] Daouia, A., Gijbels, I., and Stupfler, G. (2019). Extremiles: A new perspective on asymmetric
least squares. Journal of the American Statistical Association, 114(527):1366–1381.

[16] Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239.

[17] Derrac, J., Garcia, S., Sanchez, L., and Herrera, F. (2015). Keel data-mining software tool: Data
set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued
Logic Soft Comput, 17.

[18] Dua, D., Graff, C., et al. (2017). Uci machine learning repository, 2017. URL http://archive. ics.
uci. edu/ml, 7(1).

[19] Duchi, J. C., Hashimoto, T., and Namkoong, H. (2019). Distributionally robust losses against
mixture covariate shifts. Under review, 2:1.

[20] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360.

11



[21] Fan, Y., Lyu, S., Ying, Y., and Hu, B. (2017). Learning with average top-k loss. Advances in
neural information processing systems, 30.

[22] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1.

[23] Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480.

[24] Gopalan, A., Prashanth, L., Fu, M., and Marcus, S. (2017). Weighted bandits or: How bandits
learn distorted values that are not expected. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

[25] Holland, M. J. and Haress, E. M. (2022). Spectral risk-based learning using unbounded losses.
In International Conference on Artificial Intelligence and Statistics, pages 1871–1886. PMLR.

[26] HSU, C.-W. (2010). A practical guide to support vector classification. http://www. csie. ntu.
edu. tw/˜ cjlin/papers/guide/guide. pdf.

[27] Hu, S., Ying, Y., Lyu, S., et al. (2020). Learning by minimizing the sum of ranked range.
Advances in Neural Information Processing Systems, 33:21013–21023.

[28] Kamishima, T., Akaho, S., and Sakuma, J. (2011). Fairness-aware learning through regulariza-
tion approach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages
643–650. IEEE.

[29] Kushmerick, N. (1999). Learning to remove internet advertisements. In Proceedings of the
third annual conference on Autonomous Agents, pages 175–181.

[30] Laguel, Y., Pillutla, K., Malick, J., and Harchaoui, Z. (2021). Superquantiles at work: Machine
learning applications and efficient subgradient computation. Set-Valued and Variational Analysis,
29(4):967–996.

[31] Leqi, L., Prasad, A., and Ravikumar, P. K. (2019). On human-aligned risk minimization.
Advances in Neural Information Processing Systems, 32.

[32] Li, G. and Pong, T. K. (2015). Global convergence of splitting methods for nonconvex composite
optimization. SIAM Journal on Optimization, 25(4):2434–2460.

[33] Lin, Z., Li, H., and Fang, C. (2022). Alternating Direction Method of Multipliers for Machine
Learning. Springer.

[34] Ma, Y., Li, L., Huang, X., and Wang, S. (2011). Robust support vector machine using least
median loss penalty. IFAC Proceedings Volumes, 44(1):11208–11213.

[35] Maurer, A., Parletta, D. A., Paudice, A., and Pontil, M. (2021). Robust unsupervised learning
via l-statistic minimization. In International Conference on Machine Learning, pages 7524–7533.
PMLR.

[36] Mehta, R., Roulet, V., Pillutla, K., Liu, L., and Harchaoui, Z. (2023). Stochastic optimization
for spectral risk measures. In International Conference on Artificial Intelligence and Statistics,
pages 10112–10159. PMLR.

[37] Nurminskii, E. A. (1973). The quasigradient method for the solving of the nonlinear program-
ming problems. Cybernetics, 9(1):145–150.

[38] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

[39] Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk.
Probabilistic constrained optimization: Methodology and applications, pages 272–281.

12



[40] Phan, D. N. (2016). DCA based algorithms for learning with sparsity in high dimensional
setting and stochastical learning. PhD thesis, Université de Lorraine.

[41] Prashanth, L., Jie, C., Fu, M., Marcus, S., and Szepesvári, C. (2016). Cumulative prospect
theory meets reinforcement learning: Prediction and control. In International Conference on
Machine Learning, pages 1406–1415. PMLR.

[42] Schmidt, M., Fung, G., and Rosales, R. (2007). Fast optimization methods for l1 regularization:
A comparative study and two new approaches. In Machine Learning: ECML 2007: 18th European
Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007. Proceedings 18, pages
286–297. Springer.

[43] Shalev-Shwartz, S. and Wexler, Y. (2016). Minimizing the maximal loss: How and why. In
International Conference on Machine Learning, pages 793–801. PMLR.

[44] Shen, Y., Wen, Z., and Zhang, Y. (2014). Augmented lagrangian alternating direction method
for matrix separation based on low-rank factorization. Optimization Methods and Software,
29(2):239–263.

[45] Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation
of uncertainty. Journal of Risk and uncertainty, 5:297–323.

[46] Vapnik, V. (2013). The Nature of Statistical Learning Theory. Springer Science & Business
Media.

[47] Vial, J.-P. (1983). Strong and weak convexity of sets and functions. Mathematics of Operations
Research, 8(2):231–259.

[48] Wang, Y., Yin, W., and Zeng, J. (2019). Global convergence of admm in nonconvex nonsmooth
optimization. Journal of Scientific Computing, 78:29–63.

[49] Williamson, R. and Menon, A. (2019). Fairness risk measures. In International Conference on
Machine Learning, pages 6786–6797. PMLR.

[50] Wnek, J. (1992). MONK’s Problems. UCI Machine Learning Repository. DOI: 10.24432/
C5R30R.

[51] Xu, Y., Yin, W., Wen, Z., and Zhang, Y. (2012). An alternating direction algorithm for matrix
completion with nonnegative factors. Frontiers of Mathematics in China, 7:365–384.

[52] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, pages 894–942.

[53] Zhang, Z., Song, Y., and Qi, H. (2017). Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5810–5818.

13

10.24432/C5R30R
10.24432/C5R30R


Appendix

A Proofs

A.1 Proofs for properties of Moreau envelope

Lemma 2 Let g : Rn → R ∪ {∞} be a c-weakly convex function. For 0 < cγ ≤ 1
3 , the Moreau

envelope Mg,γ of g is γ−1-weakly convex.

A.1.1 Proof of Lemma 2

Lemma 3 Let g : Rn → R ∪ {∞}. Then g is c-weakly convex if and only if the following holds

⟨v −w,x− y⟩ ≥ −c∥x− y∥2,

for x,y ∈ Rn, v ∈ ∂g(x),w ∈ ∂g(y).

Proof: See [16, Lemma 2.1]. ■

Lemma 4 Suppose g(w) is c-weakly convex. If 0 < cγ ≤ 1
3 , then we have

∥proxg,γ(x)− proxg,γ(y)∥2 ≤ 3∥y − x∥2.

Proof: Suppose x,y ∈ Rn. By (8) and Lemma 3 we have

− c∥ proxg,γ(x)− proxg,γ(y)∥2

≤ γ−1⟨
(
y − proxg,γ(y)

)
−
(
x− proxg,γ(x)

)
,proxg,γ(y)− proxg,γ(x)⟩

=
1

2γ
[−∥y − proxg,γ(y)− x+ proxg,γ(x)∥2 − ∥ proxg,γ(y)− proxg,γ(x)∥2

+ ∥x− y∥2].

Thus we have

(1− 2cγ)∥ proxg,γ(y)− proxg,γ(x)∥2 ≤ −∥y − proxg,γ(y)− x+ proxg,γ(x)∥2 + ∥x− y∥2

≤ ∥x− y∥2.

Note that (1− 2cγ)−1 ≤ 3 when 0 < cγ ≤ 1
3 . Thus we have

∥proxg,γ(y)− proxg,γ(x)∥2 ≤ (1− 2cγ)−1∥x− y∥2 ≤ 3∥x− y∥2.

■

Proof of Lemma 2

Proof: For any x,y ∈ Rn, we have

⟨∇Mg,γ(x)−∇Mg,γ(y),x− y⟩
=γ−1⟨x− proxg,γ(x)− y + proxg,γ(y),x− y⟩
=γ−1∥x− y∥2 + γ−1⟨proxg,γ(y)− proxg,γ(x),x− y⟩

≥γ−1∥x− y∥2 − 1

2γ
∥x− y∥2 − 1

2γ
∥ proxg,γ(x)− proxg,γ(y)∥2

≥ 1

2γ
∥x− y∥2 − 3

2γ
∥x− y∥2

=− 1

γ
∥x− y∥2,

where the first equality follows from (8) and the last inequality follows from Lemma 4. Thus g is
γ−1-weakly convex by Lemma 3. ■
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A.2 Proofs for ADMM in Section 3

A.2.1 Proof of Proposition 1

Proof: First we define h[a,b](z) =
∑b

i=a θi(z). Due to convexity, we have

0 ∈ ∂h[m,n](v[m,n]) and 0 ∈ ∂h[n+1,p](v[n+1,p]).

Noting that v[m,n] > v[n+1,p], due to the strong convexity of h, we further have

∂h[m,n](v[n+1,p]) < 0, and ∂h[n+1,p](v[m,n]) > 0,

where we use the convention that a set A > 0 (or < 0) denotes that all elements g ∈ A satisfies g > 0
(or < 0). Therefore we obtain that there exist s[m,n], s[n+1,p] ∈ R such that

∂h[m,p](v[m,n]) = ∂h[m,n](v[m,n]) + ∂h[n+1,p](v[m,n]) ∋ s[m,n] > 0,

∂h[m,p](v[n+1,p]) = ∂h[m,n](v[n+1,p]) + ∂h[n+1,p](v[n+1,p]) ∋ s[n+1,p] < 0.

As h[m,p] is strongly convex in [v[n+1,p], v[m,n]], the subgradient ∂h[m,p] is strictly increasing in
[v[n+1,p], v[m,n]]. That is, ∀x, y ∈ [v[n+1,p], v[m,n]],∀sx ∈ ∂h[m,p](x), sy ∈ ∂h[m,p](y), (sx −
sy)(x− y) ≥ 0. The above facts, together with the strong convexity of h[m,p], the unique minimizer
v[m,p] of h[m,p] must lie in the interval [v[n+1,p], v[m,n]]. ■

A.2.2 Proof of Theorem 1

Proof: We use the extended formula for Clark generalized gradient of a sum of two functions in our
proofs: ∂(f1 + f2)(x) ⊂ ∂f1(x) + ∂f2(x) if f1 and f2 are finite at x and f2 is differentiable at x.
The equality holds if f1 is regular at x. [10, Theorem 2.9.8].

By Assumption 3, we have

0 ∈ ∂z

(
Ω(zk+1) +

ρ

2
||zk+1 −Dwk +

λk

ρ
||2
)

⊂ ∂Ω(zk+1) + λk + ρ(zk+1 −Dwk)

= ∂Ω(zk+1) + λk + ρ(zk+1 −Dwk+1) + ρD(wk+1 −wk)

= ∂Ω(zk+1) + λk+1 + ρD(wk+1 −wk),

(15)

and
Lρ(z

k,wk,λk)− Lρ(z
k+1,wk,λk) ≥ 0. (16)

Here the last equality of (15) follows from λk+1 = λk + ρ(zk+1 −Dwk+1).

By Assumption 3 and (r − c)-strong convexity of the w-subproblem, we have

0 ∈ ∂w

(
ρ

2
||zk+1 −Dwk+1 +

λk

ρ
||2 + g(wk+1) +

r

2
∥wk+1 −wk∥2

)
= ∂g(wk+1)−D⊤λk − ρD⊤(zk+1 −Dwk+1) + r(wk+1 −wk)

= ∂g(wk+1)−D⊤λk+1 + r(wk+1 −wk),

(17)

and
Lρ(z

k+1,wk,λk)− Lρ(z
k+1,wk+1,λk) ≥ 2r − c

2
∥wk+1 −wk∥2. (18)

The second equality of (17) is due to the fact that weakly convex functions are regular [47, Proposition
4.5]. By the dual update we have

Lρ(z
k+1,wk+1,λk)− Lρ(z

k+1,wk+1,λk+1)

=
(
λk − λk+1

)⊤ (
zk+1 −Dwk+1

)
=− 1

ρ
∥λk+1 − λk∥2.

(19)
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Summing (16), (18) and (19) we obtain that

Lρ(z
k,wk,λk)− Lρ(z

k+1,wk+1,λk+1) ≥ 2r − c

2
∥wk+1 −wk∥2 − 1

ρ
∥λk − λk+1∥2. (20)

By Assumptions 1 and 2 we have that

Lρ(z
k,wk,λk) = Ω(zk) + g(wk) + (λk)⊤(zk −Dwk) +

ρ

2
∥zk −Dwk∥2

= Ω(zk) + g(wk) +
ρ

2
∥zk −Dwk +

λk

ρ
∥2 − ∥λ

k∥2

2ρ

≥ −∥λ
k∥2

2ρ
> −∞.

(21)

So Lρ(z
k,wk,λk) is bounded below by some L⋆. Moreover,

∑K
k=1 ∥λ

k+1 − λk∥2 ≤∑∞
k=1 ∥λ

k+1 − λk∥2 <∞ for ∀K ≥ 1.

Let L̂ := Lρ(z
1,w1,λ1)− L⋆ +

∑∞
k=1

2
ρ∥λ

k+1 − λk∥2 <∞. Then telescoping (20) from k = 1

to K, we obtain that

L̂ ≥ Lρ(z
1,w1,λ1)− Lρ(z

K ,wK ,λK) +

K∑
k=1

2

ρ
∥λk+1 − λk∥2

≥
K∑

k=1

2r − c

2
∥wk+1 −wk∥2 +

K∑
k=1

1

ρ
∥λk+1 − λk∥2.

(22)

This implies that

min
k≤K

2r − c

2
∥wk+1 −wk∥2 + 1

ρ
∥λk+1 − λk∥2 ≤ L̂

K
.

Letting k = argmini≤K
2r−c
2 ∥w

i+1 −wi∥2 + 1
ρ∥λ

i+1 − λi∥2, we have

∥wk+1 −wk∥ ≤

√
2L̂

K(2r − c)
,

∥λk+1 − λk∥ ≤

√
ρL̂

K
.

Letting K = 1
ϵ2 , by (15) and (17) we further have

dist
(
−λk+1, ∂Ω

(
zk+1

))
≤ ρ∥D∥∥wk+1 −wk∥ ≤ ρ∥D∥

√
2L̂

K(2r − c)
= O(ϵ),

dist
(
DTλk+1, ∂g

(
wk+1

))
≤ r∥wk+1 −wk∥ ≤ r

√
2L̂

K(2r − c)
= O(ϵ),

∥zk+1 −Dwk+1∥ = 1

ρ
∥λk+1 − λk∥ ≤

√
L̂

ρK
= O(ϵ).

■

The proof of Theorem 1 is adapted from [33, Theorem 4.1].
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A.3 Proofs for smoothed ADMM in Section 4

A.3.1 Proof of Proposition 2

Proof: By Assumption 3, similar to (15), we have
0 ∈ ∂Ω(zk+1) + λk + ρ(zk+1 −Dwk)

= ∂Ω(zk+1) + λk + ρ(zk+1 −Dwk+1) + ρD(wk+1 −wk)

= ∂Ω(zk+1) + λk+1 + ρD(wk+1 −wk),

where the last equality follows from λk+1 = λk + ρ(zk+1 −Dwk+1).

By the first order condition of the w-subproblem and Assumption 3, we have
0 = ∇Mg,γ(w

k+1)−D⊤λk − ρD⊤(zk+1 −Dwk+1) + r(wk+1 −wk)

= ∇Mg,γ(w
k+1)−D⊤λk+1 + r(wk+1 −wk).

(23)

Note that∇Mg,γ(w
k+1) ∈ ∂g

(
proxg,γ

(
wk+1

))
= ∂g(w̃k+1). This completes the proof. ■

A.3.2 Proof of Lemma 1

Lemma 5 Under Assumption 4, if 0 < cγ ≤ 1
2 , then for ∀k = 0, 1, . . . , we have

∥λk+1 − λk∥2 ≤ σ−1(γ−2 + r2)∥wk+1 −wk∥2 + σ−1r2∥wk−1 −wk∥2,
where σ is the smallest positive eigenvalue of DD⊤.

Proof: By Assumption 4 we have λk+1 −λk = ρ(zk+1 −Dwk+1) ∈ Im(D). Then we obtain that

∥λk − λk+1∥2 ≤ σ−1∥D⊤
(
λk − λk+1

)
∥2

≤σ−1∥∇Mg,γ(w
k+1)−∇Mg,γ(w

k)∥2 + σ−1r2∥wk −wk+1∥2 + σ−1r2∥wk−1 −wk∥2

≤σ−1(γ−2 + r2)∥wk+1 −wk∥2 + σ−1r2∥wk−1 −wk∥2,
where the second inequality follows from (23) and the last inequality follows from the fact that Mg,γ

has γ−1 Lipschitz continuous gradient when 0 < cγ ≤ 1
2 [7]. ■

Proof of Lemma 1

Proof: By Assumption 3 we have
Lρ(z

k,wk,λk)− Lρ(z
k+1,wk,λk) ≥ 0. (24)

Since 0 < cγ ≤ 1
3 , Mg,γ(w) is γ−1-weakly convex by Lemma 2. By the optimality of wk+1 and

(r − γ−1)-strong convexity of the w-subproblem we have

Lρ(z
k+1,wk,λk)− Lρ(z

k+1,wk+1,λk) ≥ 2r − γ−1

2
∥wk+1 −wk∥2. (25)

By the update of dual variable

Lρ(z
k+1,wk+1,λk)− Lρ(z

k+1,wk+1,λk+1) = −1

ρ
∥λk+1 − λk∥2. (26)

Summing (24), (25) and (26) we have

Lρ(z
k,wk,λk)−Lρ(z

k+1,wk+1,λk+1) ≥ 2r − γ−1

2
∥wk+1−wk∥2− 1

ρ
∥λk+1 − λ

k
∥2. (27)

Finally, we obtain that
Φk − Φk+1

=Lρ(z
k,wk,λk)− Lρ(z

k+1,wk+1,λk+1) +
2r2

ρσ
∥wk−1 −wk∥2 − 2r2

ρσ
∥wk −wk+1∥2

≥(2r − γ−1

2
− 2r2

ρσ
)∥wk+1 −wk∥2 + 2r2

ρσ
∥wk −wk−1∥2 + (−2

ρ
+

1

ρ
)∥λk+1 − λk∥2

≥(2r − γ−1

2
− 4r2

σρ
− 2

σργ2
)∥wk+1 −wk∥2 + 1

ρ
∥λk+1 − λk∥2,

where the first inequality follows from (27) and the second inequality follows from Lemma 5. ■
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A.3.3 Proof of Theorem 2

Proof: First note that 0 < cγ ≤ 1
3 , so Lemma 1 holds. Let E0 := 1

3c and E1 := r−γ−1

2 − 4r2

σρ −
2

σργ2 .
Using the definitions of γ, ρ and r we have

E1 =
2r − γ−1

2
− 4r2

σρ
− 2

σργ2

=
1

2σργ2

(
2σρrγ2 − σργ − 8r2γ2 − 4

)
=

2σC1C2 − σC1 − 8C2
2 − 4

2σC1ϵ

>
E0

2σC1ϵ
>

1

2σC1
> 0.

(28)

Since {λk} is bounded, we obtain that Lρ(z
k,wk,λk) is bounded below by a similar manner of

(21) and Assumption 1. Thus Φk is lower bounded by some Φ⋆ as well, i.e., Φk ≥ Φ⋆, for ∀k ≥ 1.
Telescoping (14) from k = 1 to K we have:

Φ1 − Φ⋆ ≥
K∑

k=1

E1∥wk+1 −wk∥2 +
K∑

k=1

1

ρ
∥λk+1 − λk∥2.

Thus we have:

min
k≤K
E1∥wk+1 −wk∥2 + 1

ρ
∥λk+1 − λk∥2 ≤ Φ1 − Φ⋆

K
.

Let k = argmini≤K E1∥wi+1 −wi∥2 + 1
ρ∥λ

i+1 − λi∥2, we have

∥wk+1 −wk∥ ≤

√
Φ1 − Φ⋆

KE1
,

∥λk+1 − λk∥ ≤
√

ρ(Φ1 − Φ⋆)

K
.

Recall w̃k = proxg,γ(w
k). Note that by (28), E−1

1 is upper bounded by the constant 2σC1. Letting
K = 1

ϵ4 , by Propositon 2, the definations of r and ρ and the above two equations, we have

dist
(
−λk+1, ∂Ω

(
zk+1

))
≤ ρ∥D∥∥wk+1 −wk∥ = O(ϵ),

dist
(
DTλk+1, ∂g

(
w̃k+1

))
≤ r∥wk+1 −wk∥ = O(ϵ),

∥zk+1 −Dw̃k+1∥ ≤ ∥zk+1 −Dwk+1∥+ ∥D(w̃k+1 −wk+1)∥

≤ 1

ρ
∥λk+1 − λk∥+ γ∥D∥M = O(ϵ),

where the second inequality follows from (8) and Assumption 5. This completes the proof. ■

Our proof of Theorem 2 draws inspiration from [33, Theorem 4.1] and [32]. In our method, we
employ the Moreau envelope Mg,γ instead of g(w) to obtain a smoothed version of Problem (1).
However, the solution obtained through Algorithm 1 may not satisfy the ϵ-KKT conditions of the
original problem. Nonetheless, our analysis demonstrates that by setting w̃k = proxg,γ(w

k), our
algorithm guarantees an ϵ-KKT point of the original problem in at most O(1/ϵ4) iterations.

B Additional Experimental Details

B.1 Source Code

The source code is available in the https://github.com/RufengXiao/ADMM-for-rank-based-loss.
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B.2 Experimental Environment

All algorithms are implemented in Python 3.8 and all the experiments are conducted on a Linux
server with 256GB RAM and 96-core AMD EPYC 7402 2.8GHz CPU.

B.3 Details for the PAVA

Proposition 3 Given two consecutive blocks [m,n] and [n+ 1, p], if they are out-of-order, then we
have ∑n

i=m σi

n−m+ 1
<

∑p
i=n+1 σi

p− n
.

Proof: Suppose on the contrary that v[m,n] > v[n+1,p] but∑n
i=m σi

n−m+ 1
≥
∑p

i=n+1 σi

p− n
.

We use the conventions that h[a,b](z) =
∑b

i=a θi(z). For any g ∈ ∂l(v[m,n]), we must have g ≥ 0
because l is monotonically increasing (see the beginning of Section 3.1). Therefore we have∑n

i=m σi

n−m+ 1
g + ρ

(
v[m,n] −

∑n
i=m mi

n−m+ 1

)
≥
∑p

i=n+1 σi

p− n
g + ρ

(
v[m,n] −

∑n
i=m mi

n−m+ 1

)
≥
∑p

i=n+1 σi

p− n
g + ρ

(
v[m,n] −

∑p
i=n+1 mi

p− n

)
,

where the first inequality is due to the non-negativity of g, and the second inequality is due to the fact
that mi ≤ mi+1 for i = m,m+ 1, . . . , p. Note also that∑n

i=m σi

n−m+ 1
g + ρ

(
v[m,n] −

∑n
i=m mi

n−m+ 1

)
∈ 1

n−m+ 1
∂h[m,n](v[m,n])

and ∑p
i=n+1 σi

p− n
g + ρ

(
v[m,n] −

∑p
i=n+1 mi

p− n

)
∈ 1

p− n
∂h[n+1,p](v[m,n])

We also have 0 ∈ ∂h[m,n](v[m,n]) from the optimality condition. This implies that there exists some
s ∈ ∂h[n+1,p](v[m,n]) such that s ≤ 0.

Now if there exists another s′ ∈ ∂h[n+1,p](v[m,n]) such that s′ > 0, then we have 0 ∈
∂h[n+1,p](v[m,n]), which contradicts with the uniqueness of the optimal point v[n+1,p] to h[n+1,p]

(due to its strongly convexity). So we must have s ≤ 0 for all s ∈ ∂h[n+1,p](v[m,n]). Then we
must have v[m,n] ≤ v[n+1,p] from the optimality of v[n+1,p] to h[n+1,p] and convexity of h[n+1,p].
However, this contradicts the fact that [m,n] and [n+ 1, p] are out-of-order. ■

Proposition 3 presents an additional opportunity to accelerate the PAVA, particularly for the top-k loss
and AoRR framework. Consider the case of top-k loss, where σi = 1 if i = k and σi = 0 otherwise.
In this scenario, the condition for merging blocks is satisfied only when i = k. Therefore, we only
need to examine the block containing k, its preceding block, and its subsequent block. Consequently,
the time complexity of searching for out-of-order blocks in line 5 of Algorithm 2 is reduced to O(1).

By leveraging this insight, we enhance the efficiency of our algorithm, specifically for top-k loss. An
analogous acceleration can also be applied to the AoRR loss. This optimization dramatically reduces
computational complexity, thereby facilitating faster execution of the PAVA for both top-k loss and
AoRR loss.

In our implementation of the PAVA, we use either the bisection method or Newton’s method to find
a minimizer of the convex function h[m,n]. Assuming the maximum number of iterations for these
methods as T , the computation of the minimizer v[m,n] exhibits a time complexity of O(T ). In
the PAVA, as we merge out-of-order blocks, the size of the index set J decreases by at least one.
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Initially, J comprises n blocks. Hence, the minimizer needs to be computed no more than O(n) times
throughout the algorithm. Furthermore, before each merge, we perform up to O(n) comparisons.
However, this complexity is reduced to O(1) for top-k loss and AoRR loss due to the structures of
these losses. Overall, the time complexity of our PAVA is O(n2 + nT ). Notably, for top-k loss and
AoRR loss, the time complexity is reduced to O(n+ nT ).

Moreover, in the empirical human risk minimization with CPT-weight in (4), θi(zi) is nonconvex
with regard to zi because σi is dependent on the value of zi. Specifically, θi(zi) takes the form of a
two-piece function for zi ∈ (−∞, B] and (B,∞), where B represents a certain threshold. However,
despite its nonconvexity, θi(zi) remains convex within each piece. Exploiting this property, we can
determine the minimizer of such a function by comparing the minimizers of the two separate pieces.
Considering this observation, the overall time complexity of the PAVA for the empirical human risk
minimization is still O(n2 + nT ).

B.4 Datasets Description

Datasets for our experiments are generated in two ways.

Synthetic data. We construct synthetic datasets where the data matrix X and label vector y are gen-
erated artificially. We utilize the datasets.make_classification() function from the Python
package scikit-learn [38] to generate two-class classification problem datasets of various dimen-
sions.

Real data. In the case of real data, the data matrix X and label vector y are derived from existing
datasets. The ‘SVMguide’ [26] dataset, frequently used in support vector machines, is included in our
experiments. We also employ ‘AD’ [29], which comprises potential advertisements for Internet pages,
and ‘Monks’ [50], the dataset based on the MONK’s problem that served as the first international
comparison of learning algorithms. The ‘Splice’ dataset from the UCI [18] is used for the task of
recognizing DNA sequences as exons or introns. We additionally include ‘Australian’, ‘Phoneme’,
and ‘Titanic’ dataset from [17]. Lastly, the ‘UTKFace’ dataset [53] is used to predict gender based
on facial images. Detailed statistics for each dataset are presented in Table 5.

Table 5: Statistical details of eight real datasets.

Datasets # Classes # Samples # Features Class Ratio

AD 2 2,359 1,558 0.20
SVMguide 2 3,089 4 1.84
Monks 2 432 6 1.12

Australian 2 690 14 0.80
Phoneme 2 5,404 5 0.41
Titanic 2 2,201 3 0.48
Splice 2 3,190 60 0.93
UTKFace 2 9,778 136 1.24

B.5 Details of Our Algorithm Setting

In the experiments, we set the maximum iteration limit in our algorithm to 300. We utilize FISTA to
solve the w-subproblem in our algorithm and L-BFGS for the smoothed w-subproblem. For varying
frameworks, we adopt different choices of {ρk}, which varies when the iteration number k increase,
in Algorithm 1. To enable the replication of our experiments, we provide a suggested selection for
{ρk}. The specifics regarding these choices for {ρk} are detailed in Table 6. We set the γ in Section 4
to γk = max{10−5 × 0.9k, 10−9}.

B.6 Details of Experiments Setting

Spectral Risk Measures. Our objective is to demonstrate the versatility of our algorithm and its
ability to converge to a globally optimal solution in the convex problem. Consequently, we utilize two
real binary classification problem datasets and several synthetic datasets to highlight the advantages
of our algorithm. We compare our method with the algorithms in [36]. We adapt their implementation
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Table 6: The choices for {ρk}

Framework ρ0 ρk

SRM 10−5 1.2kρ0
AoRR 2× 10−7 5⌊(k−7)/3⌋ρ0

EHRM 10−4 if ∥zk −Dkwk∥2 > 10−2 then ρk = 1.02ρk−1

else ρk = 1.07ρk−1

by replacing the gradient of the ℓ2 norm with the soft threshold operator to incorporate the ℓ1
regularization. For simplicity, we set the regularization parameter µ as 0.01 and q as 0.8. The datasets
are divided into 60% for training and 40% for testing. Both SGD and LSVRG are run for 2000 epochs
and the batch size of SGD is set to 64, and the epoch lengths are set to 100 as recommended in [36].
We give an example of how we choose the learning rate. For comparative purposes, we have chosen
the learning rate that yields the lowest objective value in a single randomized experiment among five
different learning rates from {10−2, 10−3, 10−4, 1/Nsamples, 1/ (Nsamples ×Nfeatures)}. We illustrate
this approach using the AD dataset under the SRM superquantile framework as an example. The
results are compiled in Table 7. The learning rate corresponding to the bold values, indicating the
minimal objective value, is subsequently chosen.

Table 7: Objective value in different learning rates for SGD and LSVRG.

Logistic Loss Hinge Loss

Learning Rate LSVRG(NU) LSVRG(U) SGD LSVRG(NU) LSVRG(U) SGD

g(w) = µ
2 ∥w∥

2
2

0.01 0.49612 0.19169 0.16200 0.18016 0.22529 0.11009
0.001 0.15757 0.15753 0.16210 0.08600 0.09591 0.08702

0.0001 0.17936 0.17930 0.27038 0.09270 0.09261 0.11568
1/Nsamples 0.15761 0.15758 0.16755 0.08609 0.08940 0.08911

1/(Nsamples ×Nfeatures) 0.65849 0.65849 0.68518 0.85333 0.85333 0.96771

g(w) = µ
2 ∥w∥1

0.01 0.34731 0.37191 0.27573 0.56240 0.45764 0.17956
0.001 0.26991 0.26986 0.28041 0.16954 0.16959 0.15089

0.0001 0.30385 0.30385 0.38138 0.15621 0.15471 0.18250
1/Nsamples 0.27084 0.27078 0.28763 0.16805 0.15828 0.15198

1/(Nsamples ×Nfeatures) 0.66741 0.66743 0.68723 0.87358 0.87358 0.97219

Average of Ranked Range Aggregate Loss. We employ the same real datasets as those used in [27].
Consistent with their experimental setup, we randomly split each dataset into a 50% training set, a
25% validation set, and a 25% test set. As [27] only considered ℓ2 regularization with µ = 10−4, our
experiments in this section also utilize the AoRR aggregate loss with ℓ2 regularization. The choice
of hyper-parameters k and m and the selection of inner and outer epochs for each dataset follow
[27].Table 8 presents the hyper-parameters for individual logistic loss, while Table 9 displays those
for individual hinge loss.

Empirical Human Risk Minimization. We set γ = 0.61 and δ = 0.69 in (5) based on the
recommendations in [45]. We set B = log (1 + exp (−5)) in (4). For simplicity, we only use ℓ2
regularization. We employ the ‘UTKFace’ dataset [53], also used in [31], for gender prediction. The
experiments are performed five times with different random seeds. In this experimental segment,
we exclusively use the logistic loss as the individual loss since hinge loss has most of the zeros so
that it is not easy to determine the corresponding B in (4) which means that its distribution is not
suitable for this framework. The cumulative distribution function of loss F is derived from synthetic
data, and F (B) is approximately equal to 0.05. The datasets are divided into 60% for training and
40% for testing. Other settings are similar to those in [31]. In accordance with [31], we divide the
population into two groups based on race (white G1 and other race G2). However, for simplicity, we
only obtain the parameters w for gender prediction by minimizing the problem (1) without using
a neural network. The parameter settings mirror those in Section 5.1. We use the same method to
get the learning rate, and the learning rate for all three algorithms is set to 1/ (Nsamples ×Nfeatures).
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Let TPR denote the true positive rate, FPR the false positive rate, and FNR the false negative rate.
Additionally, let X ∈ X represent the dataset and Y ∈ {0, 1} the label. We utilize the same fairness
metrics suggested by [5], as followed in [31]. Considering the privileged group G1 ⊆ X and the
unprivileged group G2 ⊆ X , the definitions of the following metrics are from [31]:

• Statistical Parity Difference (SPD): P (Y = 1 | X ∈ G2)− P (Y = 1 | X ∈ G1).

• Disparate Impact (DI): P (Y=1|X∈G2)
P (Y=1|X∈G1)

.

• Equal Opportunity Difference (EOD): TPR (G2)− TPR (G1).

• Average Odds Difference (AOD): 1
2 (FPR (G2)− FPR (G1) + (TPR (G2)− TPR (G1))).

• Theil Index (TI): 1
n

∑n
i=1

bi
µ ln

(
bi
µ

)
where bi = Ŷi − Yi + 1 and µ = 1

n

∑n
i=1 bi. Here, Ŷi

is the prediction of Xi and n represents the number of samples.

• False Negative Rate Difference (FNRD): FNR (G2)− FNR (G1).

Table 8: AoRR hyper-parameters on real datasets for individual logistic loss.

Datasets k m # Outer epochs # Inner epochs Learning rate

Monk 70 20 5 2000 0.01
Australian 80 3 10 1000 0.01
Phoneme 1400 100 10 1000 0.01
Titanic 500 10 10 1000 0.01
Splice 450 50 10 1000 0.01

Table 9: AoRR hyper-parameters on real datasets for individual hinge loss.

Datasets k m # Outer epochs # Inner epochs Learning rate

Monk 70 45 5 1000 0.01
Australian 80 3 5 1000 0.01
Phoneme 1400 410 10 500 0.01
Titanic 500 10 5 500 0.01
Splice 450 50 10 1000 0.01

C Additional Experimental Results

In this section, synthetic datasets labeled 1, 2, 3, and 4 are utilized. Detailed descriptions of datasets
1, 2, 3, and 4 can be found in Table 10.

Table 10: Details of the synthetic datasets.

Datasets num_sample num_feature Datasets num_sample num_feature

1 1000 500 3 5000 1000
2 2000 1000 4 10000 1000

C.1 Experiments of Synthetic Datasets with ERM

The experimental settings implemented in this section are consistent with those discussed in Sec-
tion 5.1. The datasets are replaced with the synthetic datasets. We use the same method to get the
learning rate for other algorithms. Tables 11, 12, and 13 enumerate the mean and standard deviation
of the results, primarily focusing on the objective value and test accuracy. ‘sADMM’ stands for the
ADMM applied to the smoothed problem. Tables 11, 12, and 13 show that under most scenarios
in the ERM framework, our ADMM algorithm exhibits superior performance in terms of objective
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values when compared to existing methods. This superiority is particularly evident in instances of
hinge loss, with the algorithm demonstrating a test accuracy that is analogous to other methods.

Figure 2 graphically demonstrates the correlation between time and sub-optimality for each algorithm
within the superquantile framework and hinge loss, which represents a convex problem whose global
optimum is achievable. The figure indicates that ADMM displays a more rapid convergence towards
the minimum relative to other algorithms. While sADMM does not match the performance of ADMM,
it does achieve a commendable rate of convergence when compared to other algorithms.

Table 11: Results in synthetic datasets with SRM ERM framework and ℓ2 regularization. ‘objval’
denotes the objective value of problem (1).

Logistic Loss Hinge Loss

Datasets ADMM LSVRG(NU) LSVRG(U) SGD ADMM LSVRG(NU) LSVRG(U) SGD

1
objval 0.0923 (0.0057) 0.0923 (0.0057) 0.0923 (0.0057) 0.0923 (0.0057) 0.0088 (0.0011) 0.0095 (0.0013) 0.0096 (0.0012) 0.0091 (0.0012)

Accuracy 0.7875 (0.0113) 0.7875 (0.0113) 0.7875 (0.0113) 0.7875 (0.0113) 0.7590 (0.0185) 0.7770 (0.0143) 0.7765 (0.0153) 0.7760 (0.0171)

2
objval 0.0800 (0.0012) 0.0800 (0.0012) 0.0800 (0.0012) 0.08 (0.0012) 0.0068 (0.0002) 0.0075 (0.0004) 0.0075 (0.0003) 0.0071 (0.0002)

Accuracy 0.8483 (0.0115) 0.8485 (0.0111) 0.8485 (0.0111) 0.8485 (0.0111) 0.8193 (0.0079) 0.8330 (0.0072) 0.8325 (0.0068) 0.8303 (0.0060)

3
objval 0.1704 (0.0037) 0.1704 (0.0037) 0.1704 (0.0037) 0.1704 (0.0037) 0.0732 (0.0045) 0.0807 (0.0047) 0.0809 (0.0044) 0.0756 (0.0046)

Accuracy 0.8347 (0.0039) 0.8347 (0.0039) 0.8347 (0.0039) 0.8341 (0.0035) 0.7999 (0.0091) 0.8138 (0.0075) 0.8135 (0.0053) 0.8091 (0.0090)

4
objval 0.1395 (0.0014) 0.1395 (0.0014) 0.1395 (0.0014) 0.1395 (0.0014) 0.0664 (0.0020) 0.0716 (0.0021) 0.0716 (0.0021) 0.0667 (0.0020)

Accuracy 0.9400 (0.0014) 0.9401 (0.0014) 0.9401 (0.0014) 0.9402 (0.0014) 0.9250 (0.0046) 0.9330 (0.0029) 0.9330 (0.0028) 0.9261 (0.0049)

Table 12: Results in synthetic datasets with SRM ERM framework, ℓ1 regularization, and logistic
loss. ‘objval’ denotes the objective value of problem (1).

Datasets ADMM sADMM LSVRG(NU) LSVRG(U) SGD

1
objval 0.1829 (0.012) 0.1829 (0.012) 0.1829 (0.012) 0.1829 (0.012) 0.1845 (0.0118)

Accuracy 0.8490 (0.0076) 0.8495 (0.0087) 0.8490 (0.0076) 0.8495 (0.008) 0.8500 (0.0079)

2
objval 0.1693 (0.0037) 0.1693 (0.0037) 0.1693 (0.0037) 0.1693 (0.0037) 0.1729 (0.0037)

Accuracy 0.9190 (0.0061) 0.9193 (0.0061) 0.9190 (0.0061) 0.9190 (0.0061) 0.9193 (0.0056)

3
objval 0.2584 (0.0049) 0.2584 (0.0049) 0.2585 (0.0049) 0.2585 (0.0049) 0.2596 (0.0049)

Accuracy 0.9005 (0.0053) 0.9005 (0.0053) 0.9005 (0.0053) 0.9005 (0.0053) 0.9005 (0.0051)

4
objval 0.1475 (0.0037) 0.1476 (0.0037) 0.1479 (0.0037) 0.1479 (0.0037) 0.1495 (0.0037)

Accuracy 0.9599 (0.0026) 0.9599 (0.0027) 0.9599 (0.0027) 0.9599 (0.0027) 0.9599 (0.0025)

Table 13: Results in synthetic datasets with SRM ERM framework, ℓ1 regularization, and hinge loss.
‘objval’ denotes the objective value of problem (1).

Datasets ADMM sADMM LSVRG(NU) LSVRG(U) SGD

1
objval 0.0777 (0.0075) 0.0782 (0.0074) 0.0856 (0.0087) 0.0856 (0.0088) 0.0802 (0.0076)

Accuracy 0.8095 (0.0200) 0.8085 (0.0181) 0.8000 (0.0181) 0.7995 (0.0181) 0.8045 (0.0192)

2
objval 0.0786 (0.0023) 0.0790 (0.0023) 0.0877 (0.0022) 0.0876 (0.0023) 0.0836 (0.0023)

Accuracy 0.8880 (0.0143) 0.8895 (0.0148) 0.8823 (0.0121) 0.8833 (0.0105) 0.8848 (0.0130)

3
objval 0.1983 (0.0058) 0.1985 (0.0058) 0.2038 (0.0057) 0.2037 (0.0058) 0.2006 (0.0058)

Accuracy 0.8783 (0.0056) 0.8776 (0.0057) 0.8770 (0.0061) 0.8780 (0.0057) 0.8783 (0.0048)

4
objval 0.1192 (0.0031) 0.1193 (0.0031) 0.1229 (0.0042) 0.1221 (0.0027) 0.1206 (0.0030)

Accuracy 0.9563 (0.0018) 0.9565 (0.0015) 0.9564 (0.0020) 0.9564 (0.0021) 0.9561 (0.0019)

C.2 Experiments of Synthetic Datasets with AoRR

In the application of AoRR to synthetic data, we have configured the parameters k and m to be
0.8 and 0.2 times the size of the training set, respectively. In other words, k = ⌊0.8Ntrain⌋ and
m = ⌈0.2Ntrain⌉. We maintain the learning rate in the DCA at 0.01, and set the outer epoch at 10,
and the inner epoch at 2000. The parameters for SGD and LSVRG are identical to those employed
in the preceding experiment (the learning rate is chosen from the same method). Tables 14 and 15
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Figure 2: Time vs. Sub-optimality gap in synthetic datasets with superquantile framework. (a-d) for
ℓ2 regularization, and (e-f) for ℓ1 regularization. Sub-optimality is defined as F k − F ∗, where F k

represents the objective function value at the k-th iteration or epoch and F ∗ denotes the minimum
value obtained by all algorithms. Plots are truncated when F k − F ∗ < 10−8.

enumerate the mean and standard deviation of results for the objective value, accuracy, and time. A
careful examination of Tables 14 and 15 suggests that our algorithm, in most scenarios, achieves
lower objective values and comparable accuracy in a shorter time span relative to existing methods.

Table 14: Comparison with AoRR framework, k = ⌊0.8×Ntrain⌋, m = ⌈0.2×Ntrain⌉ and logistic
loss. ‘objval’ denotes the objective value of problem (1).

Datasets ADMM DCA LSVRG(NU) LSVRG(U) SGD

1

objval 1.75×10−3 (9.52×10−5 ) 7.12×10−1 (3.94×10−2 ) 2.10×10−3 (1.56×10−4 ) 2.14×10−3 (1.17×10−4 ) 4.65×10−3 (3.32×10−4 )

Accuracy 0.7641 (0.0429) 0.7729 (0.0325) 0.7514 (0.0329) 0.7394 (0.0151) 0.7737 (0.0312)

Time 11.43 (0.87) 125.7 (21.88) 110.24 (8.13) 94.86 (7.58) 285.43 (1.17)

2

objval 1.41×10−3 (2.99×10−5 ) 7.22×10−1 (2.73×10−2 ) 1.71×10−3 (3.85×10−5 ) 1.81×10−3 (7.96×10−5 ) 2.21×10−3 (5.86×10−5 )

Accuracy 0.8283 (0.0073) 0.8315 (0.0159) 0.8248 (0.0158) 0.808 (0.0094) 0.8427 (0.0139)

Time 19.33 (1.98) 107.27 (20.81) 124.14 (12.98) 104.22 (4.69) 399.86 (11.15)

3

objval 2.75×10−3 (6.88×10−5 ) 7.49×10−1 (1.22×10−2 ) 3.00×10−3 (9.22×10−5 ) 3.07×10−3 (1.14×10−4 ) 3.33×10−3 (1.09×10−4 )

Accuracy 0.8149 (0.0109) 0.7936 (0.0112) 0.8083 (0.0095) 0.8075 (0.012) 0.8222 (0.0058)

Time 56.95 (2.07) 127.18 (19.86) 161 (14.01) 149.78 (8.62) 746.75 (72.28)

4

objval 3.24×10−3 (3.13×10−5 ) 7.43×10−1 (2.30×10−2 ) 3.23×10−3 (3.05×10−5 ) 3.27×10−3 (3.99×10−5 ) 3.20×10−3 (3.39×10−5 )

Accuracy 0.9417 (0.0039) 0.9302 (0.0045) 0.9325 (0.0056) 0.9273 (0.0018) 0.9385 (0.0044)

Time 222.35 (19.30) 154.46 (43.08) 222.37 (62.44) 205.76 (64.40) 525.84 (237.37)

C.3 Experiments about Figure 1

We increased the sample size to further observe the performance of our algorithm and the experimental
results are shown in Figure 3. It can be seen that both ADMM and sADMM exhibit relatively fast
convergence compared to other algorithms. An interesting phenomenon is that in the case of a
large amount of data, random algorithms are able to achieve decent results in the early stages
of optimization. The underlying reason for this phenomenon may be that existing methods use
mini-batch samples that are independent of the sample size to update model parameters, thereby
reducing the computational cost per iteration. This allows existing methods to update parameters
more frequently, leading to faster convergence in the early stages of optimization. In contrast, the
proposed algorithm uses the entire batch of samples in each iteration, resulting in slower iteration
speeds. This leads to suboptimal solutions in the early stages compared to existing methods. In
Appendix B.3, we provide a detailed explanation of the time complexity of the PAVA, which is
O(n+ nT ) for top-k loss and AoRR loss, where T represents the maximum number of iterations
when solving each PAVA subproblem, and n represents the sample size. Therefore, with an increase in
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Table 15: Comparison with AoRR framework, k = ⌊0.8×Ntrain⌋, m = ⌈0.2×Ntrain⌉ and hinge
loss. ‘objval’ denotes the objective value of problem (1).

Datasets ADMM DCA LSVRG(NU) LSVRG(U) SGD

1

objval 2.97×10−5 (1.92×10−6) 9.99×10−1 (2.66×10−2) 1.71×10−3 (1.49×10−4) 1.72×10−3 (1.38×10−4) 3.68×10−5 (2.34×10−6)

Accuracy 0.7700 (0.0371) 0.7750 (0.0409) 0.7600 (0.0427) 0.7620 (0.0415) 0.7680 (0.0315)

Time 4.37 (0.66) 137.22 (28.90) 116.39 (3.64) 114.37 (2.93) 286.19 (1.35)

2

objval 2.12×10−5 (6.51×10−7) 1.00×100 (2.66×10−2) 7.05×10−4 (5.90×10−5) 1.21×10−3 (3.85×10−4) 2.42×10−5 (5.20×10−7)

Accuracy 0.8320 (0.0093) 0.8270 (0.0099) 0.8420 (0.0113) 0.6940 (0.0277) 0.8380 (0.0093)

Time 5.54 (0.64) 172.5 (24.82) 104.79 (2.87) 93.35 (3.00) 352.67 (4.98)

3

objval 4.82×10−5 (1.49×10−6) 9.89×10−1 (1.90×10−2) 2.94×10−4 (9.49×10−6) 2.78×10−4 (4.43×10−5) 6.30×10−5 (2.01×10−6)

Accuracy 0.8130 (0.0113) 0.8060 (0.0084) 0.8100 (0.0101) 0.8070 (0.0135) 0.8180 (0.0066)

Time 15.36 (0.70) 290.7 (26.15) 112.68 (8.08) 99.52 (4.88) 540.62 (66.63)

4

objval 8.53×10−4 (1.59×10−4) 9.82×10−1 (2.51×10−2) 1.22×10−4 (3.17×10−6) 1.08×10−4 (3.85×10−6) 8.16×10−5 (1.00×10−6)

Accuracy 0.9430 (0.0053) 0.9360 (0.0046) 0.9310 (0.0049) 0.9240 (0.0028) 0.9350 (0.0048)

Time 31.42 (3.34) 396.03 (31.66) 129.22 (14.09) 115.06 (8.46) 633.69 (82.42)
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Figure 3: Time vs. Sub-optimality gap in synthetic dataset with ERM framework and ℓ1 regularization.
The datasets with the same number of samples are generated by different random number seeds.
Sub-optimality is defined as F k − F ∗, where F k represents the objective function value at the k-th
iteration or epoch and F ∗ denotes the minimum value obtained by all algorithms. Plots are truncated
when F k − F ∗ < 10−8.

sample size, the time required for our proposed algorithm will also increase. Nevertheless, compared
to existing algorithms, we are still able to achieve higher accuracy within a reasonable time frame.
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