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Abstract

Advances in optical and electrophysiological recording technologies have made it
possible to record the dynamics of thousands of neurons, opening up new possibili-
ties for interpreting and controlling large neural populations in behaving animals.
A promising way to extract computational principles from these large datasets is to
train data-constrained recurrent neural networks (dRNNs). Performing this training
in real-time could open doors for research techniques and medical applications to
model and control interventions at single-cell resolution and drive desired forms of
animal behavior. However, existing training algorithms for dRNNs are inefficient
and have limited scalability, making it a challenge to analyze large neural record-
ings even in offline scenarios. To address these issues, we introduce a training
method termed Convex Optimization of Recurrent Neural Networks (CORNN)1. In
studies of simulated recordings, CORNN attained training speeds ∼100-fold faster
than traditional optimization approaches while maintaining or enhancing modeling
accuracy. We further validated CORNN on simulations with thousands of cells that
performed simple computations such as those of a 3-bit flip-flop or the execution of
a timed response. Finally, we showed that CORNN can robustly reproduce network
dynamics and underlying attractor structures despite mismatches between generator
and inference models, severe subsampling of observed neurons, or mismatches
in neural time-scales. Overall, by training dRNNs with millions of parameters in
subminute processing times on a standard computer, CORNN constitutes a first
step towards real-time network reproduction constrained on large-scale neural
recordings and a powerful computational tool for advancing the understanding of
neural computation.

1 Introduction

Understanding the relationship between neural dynamics and computational function is fundamental
to neuroscience research [1]. To infer computational structure from neural population dynamics,

∗These authors contributed equally to this work.
†These authors co-supervised this work.
1CORNN software and reproduction code are available at https://github.com/schnitzer-lab/CORNN-public

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



neuroscientists regularly collect and analyze large-scale neural recordings using electrophysiological
or optical imaging recording methods. Both recording modalities have undergone rapid progress in
recent years, yielding a steady increase in the numbers of cells that can be recorded and manipulated
[2–7]. Owing to this progress, an urgent need has emerged for developing and refining theoretical
and computational tools suited for the analysis of large recording datasets.

Data-driven modeling of neural network dynamics, in which recordings of neural activity are trans-
formed into a computational model through network reconstruction, provides a promising way of
bridging experiments and theory [8]. This approach not only complements recent experimental
breakthroughs in targeted stimulation of individual neurons ([9, 10]) for hypothesis testing and
brain-machine interfaces but also facilitates the distillation of fundamental computational principles
from large amounts of experimental data [1, 11, 12]. Historically, especially for recordings of indi-
vidual or small numbers of cells, hand-crafted network models were used [13–20]. While valuable,
traditional hand-crafted models often struggle to handle the large datasets generated in contemporary
neuroscience.

To bridge the gap, a new approach has recently emerged in which artificial networks are trained on
tasks mimicking those performed in the laboratory by animal models [21–23]. However, this approach
lacks the ability to transform observed patterns of neural activity into data-driven, mechanistic
computational models. A promising solution to these issues, which retains the advantages of neural
network-based modeling, is the training of dRNNs [24–29]. These models, part of a broader suite
of computational strategies [11, 21, 30–32], align the dynamics of the neural units within the RNN
to the activities of recorded neurons. This data-constrained methodology for RNN training has
the potential to modernize estimations of functional connectivity [33]—still a mainstay in systems
neuroscience [6]—and provides a viable path to distill underlying computations by extracting the
state-space representations of the learned dRNNs [12]. Additionally, dRNNs may open the door to
computational control for causal experimentation [9, 10], serving as a valuable computational adjunct
to widely used techniques like optogenetics [8, 34].

Despite recent advances in the dRNN framework, how to perform fast and scalable reconstructions
of neural activity traces from large-scale empirical recordings has remained unclear. Notably, the
slowness of existing dRNN optimization algorithms may often necessitate the use of high-performance
clusters and several days of computation in large-scale experiments. These limitations might have
been a barrier to the widespread adoption of dRNN approaches. Moreover, to fully harness the
potential of dRNNs, it is essential to extend their range of applicability from offline analyses to
on-the-fly applications within individual recording sessions. An approach to training dRNNs in
a nearly immediate manner would be a key advancement that would enable novel experimental
approaches, such as theory-driven real-time interventions targeting individual cells with specific
computational or functional roles (Fig. 1). However, realizing these benefits requires having an
optimization routine that is fast, robust, and scalable to large networks.

In this work, we present CORNN, a convex solver designed for fast and scalable network reproduction.
We demonstrate its accuracy and efficiency compared to alternative network training methods such as
FORCE [35] and back-propagation through time (BPTT), which have been employed in previous
seminal works utilizing dRNNs [24–29]. Our main contributions include the development of CORNN
(Fig. 2), the introduction of an initialization strategy to accelerate convergence (Figs. 2, S4, and
S6), and the demonstration of CORNN’s scalable speed (Figs. 3, 5, S2, S3, S5, S8, and S9), which
enables rapid training on the activity patterns of thousands of neurons (Figs. 4, 5, S7, S8, S9, S10,
and S11). CORNN’s performance can be further enhanced by 1-2 orders of magnitude through the
use of a standard graphical processing units (GPU) on a desktop computer (Figs. S5 and S8). Unlike
BPTT and FORCE, CORNN does not require fine-tuning (Figs. S1, S6), making it a user-friendly
technology for biologists. Lastly, we highlight CORNN’s robustness against non-idealities such as
mismatches in the assumed dynamical system equations (Figs. 4, 5, S10, and S11), subsampling
of neural populations (Fig. 5), differences in dynamical time-scales (Fig. S10), and existence of
non-Gaussian (Fig. S3) or correlated noise (Fig. S11).

By enabling user-friendly, subminute training on standard computers, CORNN represents a first
necessary step in transforming data-constrained recurrent neural networks from a theoretical concept
into an experimental/computational technology. While this work focuses on introducing and validating
the fast solver on simulated benchmarks, future work with CORNN should focus on addressing the
challenges that arise when analyzing large-scale neural recordings from experimental neuroscience.
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Figure 1: Using data-constrained recurrent neural networks for the interpretation and
manipulation of brain dynamics within a potential experimental pipeline. This approach centers
around online modeling of network dynamics, which can enhance hypothesis testing at the single-cell
level and support advancements in brain-machine interface research. The training process is motivated
by three objectives: (i) predicting the patterns of neural populations, (ii) revealing inherent attractor
structures, and (iii) formulating optimal control strategies for subsequent interventions.

2 Approach

2.1 Experimental setup for real-time interventions using dRNNs

Previous work suggested the use of dRNNs for real-time feedback between experimental and com-
putational research [8]. To date, however, the use of dRNNs has remained offline. Past studies
extracted computational principles from neural recordings by fitting dRNNs after data collection
[24–29]. Moreover, the use of dRNNs has generally required the expertise of computational neu-
roscientists, likely due to the complications associated with the optimization and training of neural
network models. However, with the advent of large-scale recordings and data-driven approaches,
real-time brain-machine interface research is likely a forthcoming application [36–38]. In such use
cases, neurobiologists might wish to train dRNNs via a user-friendly approach. Hence, a fast and
straightforward dRNN training procedure would enable a new breed of interventional experiments to
dissect the brain’s microcircuitry.

To appreciate the advantages of fast data-driven reconstruction of neural dynamics, consider a
hypothetical scenario in which dRNNs, facilitated by CORNN, enable real-time interventions at the
single-cell level (Fig. 1). In this scenario, neural activities from mice performing behavioral tasks
are captured and extracted in real-time using advanced imaging or electrophysiological technologies
and pre-processing algorithms [2, 3, 7, 39–41]. As the experiment progresses, neural activity traces
from each mouse are reproduced by training dRNNs, which are then reverse-engineered to reveal
underlying attractor structures. Rapid dRNN training allows for a tight feedback loop between
incoming measured data and optimal experimental design, in order to refine the inferred model.
Techniques similar to adversarial attacks [42] might be used to devise optimal cell targeting strategies
from these dRNNs [8], allowing one to test hypotheses about the computational roles of individual
neurons or to identify optimal neurons for use within brain-machine interfaces. Once a perturbation
strategy is determined, it can be tested on subsequent trials of the experiment, using the same animal
whose recorded neural dynamics led to the trained dRNN. Thus, a fast dRNN training algorithm could
allow for better fitting of a dynamical system model to the experimental data and provide a natural
testbed to probe hypotheses about the computational structure of the biological neural circuitry.

Motivated by the goals described above, our paper focuses on training dRNNs accurately and as fast as
possible. However, experimental concerns and the need for biological interpretability lead to several
constraints. Firstly, to ensure real-time communication with the experimental apparatus, we require
that the training process takes place on standard lab computers, not clusters. Secondly, given the
computational complexity of real-time processing in large scale recordings, especially with thousands
of neurons, we expect that at least one of the GPUs is reserved for extracting neural activities
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Figure 2: CORNN: Convex and scalable solver for dRNNs via ADMM [51]. The CORNN
algorithm optimizes the parameters of a recurrent neural network so that activity in hidden units
align with activities measured from a ground-truth system, we refer to as a generator. The choice of
objective function results in a convex loss landscape. The algorithm starts by finding a fixed point for
initialization, where the Hessians of all subproblems are aligned to the correlation matrix of neural
activities, which can be pre-computed and pre-inverted. The optimization loop then iterates through
predicting the neural activities, computing the prediction error, updating the parameter values, and
checking for convergence. The final output is the set of optimized parameters, which represents the
functional connections between the neurons in the data-constrained recurrent neural network.

from brain-imaging movies [43] (though see [44] for a promising development in smaller scale
experiments), or spikes from electrophysiological recordings [7], leaving the central processing unit
(CPU), or perhaps a second GPU, for training dRNNs. Finally, maintaining biological interpretability
via 1-1 matching of observed and modeled neurons is crucial, as arbitrariness brought by hidden
units can explain away existing functional connectivity and/or contributions of observed neurons to
underlying attractor structures. These concerns make many traditional machine learning architectures
and optimization routines, typically trained on large clusters with billions of parameters, unsuitable
for our purposes. This includes recent work on the dynamical system reconstruction paradigm
[31, 45–50], which chiefly aims to maximize reconstruction accuracy of dynamical systems without
regard to biological interpretability, training speed, and scalability.

2.2 Inference model and estimator family of interest

Recurrent neural networks are universal approximators for dynamical systems, whose internal
computations can be reverse engineered and interpreted [12, 52]. Thus, we choose leaky firing-rate
RNNs as the inference models of CORNN, which follow the dynamical system equations [22]:

τ
dri
dt

= −ri + tanh(zi) + ϵconi , zi =

Nrec∑
j=1

W rec
ij rj +

Nin∑
j=1

W in
ij uj + ϵinputi , (1)

where τ is the neural decay time, zi is the total input to the recurrent unit i, ri is the firing rate of
the unit i, and tanh(.) is the pre-defined non-linearity, W rec

ij is the weight matrix for the recurrent
connections, W in

ij is the weight matrix from the input to the recurrent units, uj is the input vector,
and ϵinputi is the input noise to the recurrent units. Unlike previous literature, given our goal of
reconstruction, we also consider the existence of a conversion noise ϵconi that accounts for errors
and mismatches in the non-linearity. Additionally, the inference model has the constraint W rec

ii = 0
preventing any self-excitation of neurons.

Suitable estimators for reconstructing such a model can be obtained (recursively) by discretizing the
differential equation:

r̂t+1,i = (1− α)r̂t,i + αf(ẑt,i), (2)

where we define the time scale parameter α = ∆t
τ . Here, the model parameters influence ẑi,t

explicitly linearly, and implicitly through previous time activities, such that ẑt,i =
∑

j x̂t,j θ̂ji. We
define the short-hand notations x = [r;u] and θ̂ = [W rec;W in]T as concatenated matrices. The goal
of the estimation problem is to find θ̂ minimizing a loss function.
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A reasonable choice for the loss function of this regression problem is the traditional L2 loss:

L2(θ̂) =

nrec∑
i=1

T∑
t=1

(r̂t,i − rt,i)
2. (3)

However, due to the time recurrent definition of the general estimator r̂t,i, this minimization problem
would require backpropagation through time (BPTT). It is not apriori clear if BPTT is the right
optimization method for network reproduction, for which one has access to high information content
regarding the internal dynamics of the network. We discuss this in the results below.

Instead of using BPTT, we consider a smaller subset of estimators during training where r̂t,i is
teacher-forced to rt,i when computing r̂t+1,i. This turns the potentially infinite time problem into a
single time-step one, which we call “single step prediction error paradigm.” Under this condition, the
L2 loss function transforms to a simpler form:

L2(θ̂) = α2
nrec∑
i=1

T∑
t=1

(d̂t,i − dt,i)
2, (4)

where we define dt,i =
rt+1,i−(1−α)rt,i

α and correspondingly d̂t,i = tanh(ẑt,i) becomes an estimator
consisting of a linear term through a single non-linearity. However, this simplified version of the loss
is not convex and leads to a counter-intuitive global loss function with vanishing gradients (Fig. 2).

2.3 Convexification of the loss function

Rather than minimizing the naive L2 loss function, we observe that 1+d̂t,i

2 follows a linear + sigmoid
form. As a result, we replace the L2 loss function with a cross-entropy loss function that is well
known to be convex under this estimator. In fact, in the limit of dt,i → ±1, the problem reduces to
logistic regression. Instead of a naive replacement, we use a weighted loss of the form:

Lweighted(θ̂) =

nrec∑
i=1

T∑
t=1

ct,iCE

(
1 + d̂t,i

2
,
1 + dt,i

2

)
. (5)

Here, we use CE to denote the cross-entropy loss function and ct,i are non-negative weighting factors
chosen as ct,i = [1 − d2t,i]

−1 for the CORNN solver. The specific choice of ct,i, which resembles
(but is not) preconditioning [53], is motivated from a theoretical view in Supplementary Section S1.3.
The reader can verify that the Hessian of this loss, derived in Eq. (S4), is positive semi-definite. For
now, we write down the regularized loss function for CORNN as:

LCORNN(θ̂) =
1

T
Lweighted(θ̂) +

λ

2
||θ̂||2F , (6)

where ||θ̂||F is the Frobenius norm of θ̂ and λ is the regularization parameter.

2.4 Fundamental principle of CORNN: Subproblem Hessians align to the correlation matrix
of neural activity traces

Having convexified the loss function, we next observe that the loss function itself is perfectly separable
such that LCORNN(θ̂) =

∑
i Li(θ̂:,i), where θ̂:,i denotes the ith column of the parameter matrix θ̂

(See Eq. S1). This means that the original problem can be divided into nrec sub-problems and solved
independently. However, inspired by the fact that solving least-squares for a vector or a matrix target
has the same complexity, we can devise a faster method. Specifically, the choice of the specific
weighting factors, ct,i = [1− d2t,i]

−1, leads to a shared (approximate) Hessian for all subproblems
(See Eq. (S4)):

H ≈ 1

T
XTX + λI, (7)

where X stands for xt,i in the matrix form, I is the identity matrix, and λ is the regularization
parameter. We note that the approximation is exact in the limit d̂t,i = dt,i. In other words, we
align the Hessian of each subproblem to the correlation matrix of neural activities. Unlike for
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least-squares minimization, this is a local, not global, Hessian; but as long as we can initialize the
network sufficiently close to the optimal solution, we expect that the descent direction with the
approximate Hessian converges quickly. In this sense, the approximation in Eq. (7) shows similarities
with quasi-Newton methods [53] but is distinct in the pre-computed nature of the Hessian.

Following straightforward algebra, we obtain the gradient as

∇θ̂LCORNN(θ̂) = − 1

T
XTE + λθ̂, (8)

where we define the prediction error matrix Et,i =
[dt,i−d̂t,i]

1−d2
t,i

. It is worth noting that each column of
the gradient matrix contains the gradient for the scalar subproblem corresponding to the ith output.
Then, defining the inverse (fixed-point) Hessian matrix as

A+ =
[
XTX + TλI

]−1
. (9)

we obtain the following update rule (See Eq. (S20))

θk+1 = A+XTXθk +A+XTEk, (10)

where we highlight all quantities that can be pre-computed with blue. In essence, the update rule,
which we call “Hessian aligned prediction error (HAPE) update,” consists of computing the prediction
error followed by matrix multiplications; thus is well suited to be accelerated on a GPU if available,
but still can be efficiently computed on CPU cores.

The alignment of subproblem Hessians relies on the assumption that we can find a “close-enough”
starting position, called the fixed-point, for the initial parameters θ̂(0). As we show in Supplementary
Section S1.2, a suitable candidate is the approximate least-squares solution:

θls := A+XTZ. (11)

Then, the initial set of predictions becomes d̂t,i := tanh(
∑

j xt,j(θls)j,i), which is subsequently
refined through the HAPE iterations. This step is computationally negligible, as the blue colored
matrix is already pre-computed for the iterations that follow.

In this section, we focused on the leaky firing rate RNNs as described in Eq. (1). However, CORNN
can be applied to the other widely used variant of RNNs, i.e., the leaky current RNN described in Eq.
(S28) and regularly employed in neuroscience literature [12, 26, 52]. The reproduction of the leaky
current RNNs can be made convex by observing the direct link between the firing rates, r, and the
currents, z, via a linear plus non-linear relationship, i.e., r = tanh(z) and subsequently replacing
dt,i with rt,i in Hessian and gradient calculations. To prevent introducing unnecessary complexity,
we focus on leaky firing rate RNNs in this work.

3 Results

3.1 CORNN as a versatile base model

While Hessian alignment, and subsequent HAPE updates, are the core principles driving the fast
solver of CORNN, a versatile base model should be able to incorporate various regularization schemes
and sparsity constraints. For example, the addition of constraints W rec

ii = 0 or a potential low-rank
regularization would prevent the Hessian alignment and subsequently the use of fast HAPE updates.
However, these constraints could be biologically relevant and perhaps vital to eliminate overfitting in
the reproduced network. In fact, for the inference model given in Eq. (1), rt,i ≈ rt+1,i for small α;
making the unconstrained problem ill-posed since self excitation would explain a good amount of the
activity of each neuron. Thus, to incorporate the equality constraint and many others, we developed a
solver using the alternating direction method of multipliers (ADMM) [51] (summarized in Fig. 2).

In the ADMM solver, the primary problem is divided into two subproblems that are solved indi-
vidually during subsequent iterations, yet linked through a consensus variable that ensures agree-
ment between the solutions of both subproblems upon convergence. In this framework, the first
subproblem solves the unconstrained optimization problem, whereas the second one enforces the
constraints/regularization (See Supplementary Section S1 for derivations). This division allows the
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use of fast HAPE updates in the computationally extensive first subproblem, where Hessians can be
aligned.

While we only considered the equality constraint in this work, the ADMM framework can be used to
add additional L1 and/or nuclear norm regularizations to the learned connectivity matrix [51, 54], and
utilize biological priors for further inductive biases. Finally, we note that given the highly irregular
nature of the prediction error when dt,i ≈ ±1, we supplied the fast solver with a simple automated
outlier detection step explained in Supplementary Section S1.5.

3.2 Backpropagation through time on the L2 loss is suboptimal

In a traditional setting, in which neural activations are hidden and need to be learned through training
to provide a correct output, backpropagation through time (BPTT) is necessary to learn long-term
dependencies in the data. However, in the network reproduction where neural activations are no
longer hidden, it is not clear whether BPTT would be beneficial for the learning, since long-term
dependencies are inherently present in the state space of the dynamical system, whose equations are
given in Eq. (1). Specifically, given that Eq. (1) has only a single time derivative, the time evolution
is performed in a Markovian manner, i.e., given the current state, the next state can be computed
without need for additional information (up to a corruption by random noise).

To test whether BPTT is a suitable training algorithm for network reproduction, we examined
randomly connected chaotic recurrent neural networks as a synthetic ground-truth benchmark (See
Section S3.1 for details). As shown in Fig. S1, contrary to expectation, teacher-forcing enhanced the
convergence speed of the BPTT. Moreover, we also observed higher reproduction accuracy with the
cross-entropy loss compared to the traditional L2 loss, inline with our observation from Fig. 2 that
L2 loss leads to vanishing gradients in large error regime. As expected, BPTT took around a minute
even in the toy example of Fig. S1 with 100 time points and 100 neurons, approximately two orders
of magnitude smaller than a standard calcium imaging session in both dimensions.

3.3 CORNN decreases training times several orders of magnitude

Having shown that teacher-forcing can speed-up convergence in chaotic networks, we next validated
that chaotic dynamics can be reconstructed via a single step prediction error paradigm that CORNN
utilizes. Specifically, we initialized randomly connected recurrent neural networks as generators,
extracted neural activities for a fixed duration of length T , and trained the dRNNs using CORNN,
Newton’s solver, gradient descent, and FORCE on varying number of iterations to benchmark their
speed and accuracy (See Supplementary Sections S2 and S3.1 for details). All algorithms were able to
train, some achieving near perfect accuracies in reproducing the internal connectivity of the generator
network (See Figs. 3, S2, and S3). However, FORCE, the current default method in neuroscience
literature for dRNN training [24, 25, 28, 29], was 4 orders of magnitude slower (Fig. 3) and needed
fine-tuned hyperparameters to barely outperform the fixed-point initialization (Fig. S4).

Whether minimizing the weighted or logistic loss led to more accurate reconstruction depended
on the underlying noise distribution (we tested two noise distributions: Poisson(mean) and
N (mean, variance)) of the data as shown in Figs. 3, S2, and S3. However, CORNN outper-
formed all other algorithms in speed in both cases with several orders of magnitude and converged
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in sub-second times even with the CPU implementation, whereas others took up to several days for
training (Fig. 3). We also observed increased efficiency for CORNN on a GPU (Fig. S5) and that
fixed-point initialization could stabilize other algorithms (Figs. S4 and S6).

3.4 CORNN runtimes scale linearly with data size and polynomially with the network size

To this point, we provided validity evidence for the speed and accuracy of CORNN, or single-step
prediction error paradigm in general, via the randomly connected chaotic RNN generators. Next, we
focused on RNNs with more structured connectivity matrices. Specifically, we trained a model RNN
using BPTT to perform a 3-bit flip flop task following [12] as shown in Fig. S7 (See Supplementary
Section S3.2 for details). Fig. S7A shows the output of an example test trial, not used for the generator
RNN training or the CORNN reproduction, with 200 time points followed by 100 time points of inter
trial interval. We observed that CORNN reproduced network performed the task the same way the
original network did; potentially making similar mistakes. Thus, as a first step, we confirmed that
CORNN can learn to output the same outputs as the original network.

Next, we looked at underlying neural activities of an example (original) generator and reproduced
(CORNN learned) network in Fig. S7B. The reproduction matched not only the output of the network,
but also the internal firing dynamics of individual units. Yet, as shown in Fig. S7C, the synaptic
connections were not perfectly learned even in such a simple scenario with matching models, which
required more trials and potentially interventional data [15]. Thus, we next tested whether increasing
the number of trials could lead to better reproduction of the original network and whether CORNN
can scale well to fit the increased data and network size.

Fig. S8 shows that accurately reproducing the large networks required significantly more trials.
Moreover, the data size requirement for the estimation process increased with the number of units
in the generator network, which emphasizes the importance of an optimization algorithm that can
scale well to multiple day recordings [55]. Fortunately, CORNN had a near-linear scaling of training
times vs. the increasing number of trials and hence can handle large datasets (See Fig. S8). In the
other direction, we observed that the training times scaled polynomially (Fig. S9), following nβ
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Figure 4: CORNN can reproduce underlying neural dynamics and attractor structures despite
several non-idealities in the timed-response task. A. To assess the robustness of CORNN against
time-scale mismatches, assumed inference models, and unobserved influences from subsampled
neural populations, we trained 10 networks using a different generator model than CORNN for the
timed-response task. B. We conducted a set of novel test trials to evaluate the reproduction accuracy
of CORNN when the network was disturbed by a small distractor, which was not present during the
learning of the timed-response task. C. Despite observing only 500 out of 5000 neurons and with an
average 10% mismatch between αG and αI , the CORNN-learned network reproduced both the neural
dynamics and the output. D. When reproducing the original network without subsampling or time-
scale mismatches but with generator-inference mismatches, the learned weights exhibited imperfect,
but non-zero, correlation with the ground truth. E. Similar to D, we reproduced the network shown
in C with subsampling and time-scale mismatches. Parameters: nG = 5000, ϵRNN ∼ N (0, 10−2)
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with β ∈ [1.3, 2.2], vs. the increasing number of neurons. Bringing both observations together, we
concluded that there is an O(nβ

recT ) scaling of the empirical training times.

3.5 CORNN is robust to a diverse set of non-ideal conditions

To this point, we had considered ideal scenarios in which the generator network shared the same
dynamical system equations as the inference network, all neurons were observed, and the time-scales
of the generator and inference RNN units matched perfectly. Next, we considered cases in which
these assumptions are violated (See Fig. 4A). Specifically, we trained a generator RNN with different
governing equations (See Supplementary Section S3.3) to perform a timed-response task (See Fig.
4B), which put the network in a limit-cycle like dynamical attractor state initiated by an input. We
tested the existence of the underlying attractor through a novel distractor input, which was not
present during the training of the task (See Fig. 4B, C). If CORNN was able to learn the underlying
state-space geometry, the reproduced network activities should be able to return to their attractive
trajectory under novel perturbations.

When we subsampled the generator networks by 10% and introduced jitter in the time scales, we
observed that the inference model reproduced the neural dynamics in the observed population in
a novel perturbation trial (See Fig. 4C), even though the sub-connectivity matrix was not well
reproduced (See Fig. 4D, E). On the one hand, this observation reinforces the findings of previous
literature that the connectivity matrices learned by dRNNs should be interpreted as functional
connections, accounting for the behavior of networks at the level of neural dynamics, and not synaptic
connections [15, 25]. On the other hand, the ability of the mismatched network to reproduce neural
activities in a novel perturbation trial provided evidence that the effects of the underlying attractor
structures can be robustly reproduced with CORNN despite severe experimental non-idealities. We
quantified these robustness aspects in Figs. 5A,B (subsampling), S10 (time-scale mismatch), and
S11 (correlated noise). Moreover, we observed the nβ

rec scaling for the training times with increased
number of network size (Fig. 5C), inline with the results of Fig. S9.

4 Discussion

To place in perspective the experimental paradigm enabled by CORNN introduced in this work,
we now return to the experimental scenario in Fig. 1. Imagine an experiment in which mice
perform a predefined task several times, e.g., for an half hour, with imaging of 3000-4000 neurons.
This experimental scenario yields roughly ten million parameters to be trained in the dRNN. The
current study showcased CORNN’s efficacy in training networks of thousands of neurons, requiring
just O(10) iterations, each comparable in complexity to gradient computation and taking seconds.
Consequently, training such a network from the initial imaging session would take less than a minute.
Once trained, the network can enable real-time planning of experimental interventions, testing
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Figure 5: CORNN runtimes scale polynomially with increasing number of neurons, whereas
reconstruction accuracies remain robust to subsampling. We use the timed-response task as
a testbed for quantifying the robustness of CORNN to unobserved influences due to subsampling
in neural populations. A Reconstruction accuracy of input weights are plotted as a function of
subsampling ratio (fraction of observed neurons), B reconstruction accuracy of neural activities,
measured as the R2 between the ground truth and predicted activations, and C the linear scaling of
the training times with asymptotic slopes ∈ [1.2, 1.3] vs increasing number of neurons on a log-log
plot, hinting at polynomial scaling. The different colors in the plot correspond to different number of
training trials. Parameters: α = 0.1, ϵRNN ∼ N (0, 10−2) for the training trials. See Supplementary
Section S3.3 for further details. Data points: mean, error bars: s.e.m. over 10 networks.
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multiple scenarios in parallel to identify several optimal targeting strategies, a template of potential
interventions, for neuron combinations driving desired animal behavior. Moreover, with CORNN’s
rapid convergence and typical inter-trial intervals of a few seconds in behavioral experiments, the
network and the interventional strategy can be refined between trials with incoming data streams,
facilitating real-time learning.

To understand the timescales for real-time inference with a dRNN for within-trial intervention
experiments using calcium imaging, we can look at typical values. Acquiring each image frame takes
about 30 ms [2]. While new frames continue to be acquired, motion correction and neural activity
extraction can happen in ∼5 ms per frame [56]. In addition to these ongoing imaging steps, the
simulation and decision-making with the CORNN-fitted dRNN needs to be performed. The dRNN
starts with the current observed activity and can quickly simulate multiple future responses under
different input scenarios, i.e., potential interventions. Since the simulation involves only iterative
matrix multiplications and point-wise nonlinearities, it finishes very quickly—in just a few ms. For
instance, running a 1000neuron RNN forward for 10 timesteps (∼ a second), for 100 different initial
conditions, takes < 6 ms on a GPU, and < 25 ms on a CPU, in our hands. Once a desired intervention
is identified from the simulations, the phase mask on a spatial light modulator can be updated in ∼10
ms to optically stimulate the chosen neurons [56]. Putting all the steps together, in under 100 ms
one could capture brain activity, simulate future responses, decide on an intervention, and update
the optical stimulation parameters. This is fast enough for real-time closed-loop applications. By
streamlining network training, CORNN provides dRNNs for these types of experiments.

An important final point in considering the use of CORNN in experimental settings comes from
the fact that neural networks are, in general, non-identifiable [57]. That is, for any given settings
of the parameters, there are other settings which give the same input-output function. This means
that CORNN does not aim to infer the true underlying synaptic connectivity matrix from a neural
activity dataset. Instead, the main use of CORNN is to infer an RNN model which recapitulates the
dynamical trajectories in a neural population. CORNN may also capture the underlying attractor
structure of a system. However, we caution that any claim having to do with attractor structures must
be experimentally validated with perturbation experiments that directly test for attractors. In our
work, we simulated such experimental validation (Figs. 4 and 5) and found that in the setting tested,
CORNN was able to predict the dynamical effects of perturbations on the neural population.

5 Conclusion

In this work, we introduced a fast and scalable convex solver (CORNN) for rapid training of data-
constrained recurrent neural networks. We showed that CORNN is as accurate yet faster than existing
approaches by orders of magnitude and can easily scale to the large datasets of today, training in
seconds to a few minutes depending on the data, network size and the availability of a GPU. CORNN,
as a base model, lays the groundwork for future developments and can be improved by integrating
experimentally relevant assumptions and regularizations within the ADMM framework.

When applied to simulated data from structured networks, CORNN picked up the underlying attractor
structure despite non-idealities (Figs. 4, 5, S10, and S11). Inspired by this observation, further devel-
opment of data-constrained RNNs can support systems neuroscience research aiming to understand
inter-area interactions and can complement or augment studies of canonical or pairwise correlations
toward characterizations of functional connectivity [33]. Moreover, reverse engineering the learned
network may provide a deeper understanding of how neuronal populations contribute to emergent
computation, cognition, and memory [12, 30]. Finally, with the advent of interventional methods
such as single-cell targeted optogenetics [10], dRNNs can be trained to test causal connections
computationally and supply theoretical predictions at a scale previously unachievable for single-cell
targeted experimentation [8].

This work constitutes a first step towards the application of CORNN to experimental data. However,
several steps remain to apply dRNNs in real-time to interventional experiments. Some example steps
may include the transformation of calcium traces or spike trains into traces of firing rates normalized
within [−1, 1], applying the CORNN solver developed in this work into first offline and then online
experimental scenarios, estimation of neuronal time-scales from the experimental data instead of
tuning them as hyperparameters, and perhaps implementing a low-rank regularization approach that
opens the door to interpreting the observed dynamics in terms of latent variables [26, 52].
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S1 Details on CORNN derivations and implementation

S1.1 Separation into subproblems and derivation of the gradient and Hessian

The loss function given in Eq. (6) can be written in details as:

L(θ̂) =
nrec∑
i=1

 1

T

T∑
t=1

ct,iCE

(
1 + d̂t,i

2
,
1 + dt,i

2

)
+

ntot∑
j=1

λ

2
θ̂2ji


︸ ︷︷ ︸

Li(β̂(i))

, (S1)

where ntot = nrec +nin. We note that for a given i, the functions Li depend only on β̂(i) := θ̂:,i, i.e.,
the ith column of the θ̂ matrix. In other words, the lack of cross-talk between the columns of θ̂ in the
loss function means each output can be regressed independently with respect to the corresponding
part of the loss function, i.e., Li(θ̂i). Thus, for the rest of this section, without loss of generality,
we simply considered one instance of the regression, i.e., fix i, derived the learning rule, and later
generalized to the full problem.

The loss function of interest for the subproblem is:

L(β̂) = 1

T

T∑
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ctCE
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,
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The gradient can be computed as:

(∇β̂L(β̂))k =
1
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ct(d̂t − dt)xt,k + λβ̂k

(S3)

The Hessian follows directly from the gradient and the fact that tanh′(x) = (1− tanh2(x)):

(∇2
β̂
L(β̂))kl =

1

T

T∑
t=1

ct(1− d̂2t )xt,kxt,l + λδkl. (S4)

At this point, it is worth emphasizing that while xt,i are shared across all subproblems, dt are not.
In fact, for any neuron i, a different set of dt,i would contribute to the Hessian of the corresponding
subproblem. Thus, in its current form, using the exact Hessian would require repeating matrix
inversions for each of the Nrec neurons. We performed benchmarking with the exact Newton method,
See Supplementary Section S2, though the repeated matrix inversion was no longer feasible for large
networks (Fig. 3). To mitigate this, we took a fixed-point solver approach in CORNN, described
below.

First, we assumed that one can initialize the full problem with an initial point, call it d̄t = tanh(β̂T
fpxt),

such that d̄t ≈ dt. We discussed in Supplementary Section S1.2 on how to estimate β̂fp. Then, we
replaced the Hessian with a local approximation ∇2

β̂
L(β̂) ≈ ∇2

β̂
L(β̂fp) within the vicinity of d̄t ≈ dt,

leading to the the local approximate Hessian:

(∇2
β̂
L(β̂fp))ij =

1

T

T∑
t=1

1− d̂2t
1− d̄2t︸ ︷︷ ︸

≈1

xt,ixt,j + λδij ≈
1

T
XTX + λI = Hfp. (S5)

From this equation, we can infer why the choice of ct in the main text was scalable. The local Hessian
depends only on the inputs, which are shared across all the nrec independent subproblems, and not on
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the predicted or true outputs (d̂t or dt). Moreover, it needs to be computed once, and at the beginning
of the optimization only.

Using the approximate Hessian and gradient, the parameter update rule simply follows:

∆fp = −H−1
fp ∇β̂L(β̂). (S6)

Even though ∇β̂L(β̂) was a vector for the subproblem, given that the (approximate) Hessians for all

subproblems are aligned to the correlation matrix, we can promote the gradient to a matrix ∇θ̂L(θ̂)
to solve all subproblems at once. Thus, one can vectorize the computation for each subproblem, i.e.,
minimization of Li(β̂

(i)) for i = 1, . . . , Nrec, without the need for an external for loop.

At this point, we note that since Hfp ⪰ 0 is positive semi-definite (PSD), the direction of the
parameter updates is guaranteed to be a descent direction. This is because the update direction has a
negative angle with the gradient following ∆T

fp∇θ̂L(θ̂) = −∇θ̂L(θ̂)
TH−1

fp ∇θ̂L(θ) ≤ 0 by positive
semi-definiteness. Thus, even if the error between d̄t and dt is large for an instance, e.g., fixed-point
is incorrectly chosen, it can only hurt the speed of the optimization. Bringing all together, fixed-point
updates can be written as:

θ(k+1) := θ(k) − γkH
−1
fp ∇θL(θ(k)), (S7)

where γk is the user-controlled learning parameter chosen either as 1 (to bypass the line search if
fixed-point was close enough) or through back-tracking line search. For this work, we simply picked
γk = 1 without any line search as we did not observe any convergence issues. We will simplify Eq.
(S7) to its final form when discussing the ADMM solver in Supplementary Section S1.4.

S1.2 Fixed point initialization

To derive the fixed point update in Eq. (11), we performed a Taylor approximation of the gradient
and carried out a single update near the vicinity of the putative fixed-point:

β̂(t+1) : = β̂(t) −H−1
fp ∇β̂L(β̂

(t)),

≈ β̂(t) −
(
1

T
XTX + λI

)−1 [(
1

T
XTX + λI

)
β̂(t) − 1

T
XTZ

]
,

= β̂(t) − β̂(t) +

(
1

T
XTX + λI

)−1
1

T
XTZ,

= β̂ls,

(S8)

where a single-step converges to β̂ls =
(
XTX + TλI

)−1
XTZ, i.e., the solution to the least squares

problem on the currents Z. Thus, β̂ls is expected to be near to both the solution β∗ and the regime
described by the fixed-point Hessian Hfp; thus a suitable candidate to be the fixed-point itself. As an
added bonus, this choice did not increase the complexity of the solver; since

(
XTX + TλI

)−1
XT

has already been pre-computed for the iterative updates.

S1.3 Interpretation of the weighted convex loss

To interpret CORNN’s loss function, we consider the low error limit of the cross entropy CE(p̂, p)
around p̂ ≈ p:

CE(p̂, p) = −p log(p̂)− (1− p) log(1− p̂),

= −H(p)− d

dp̂
[p log(p̂) + (1− p) log(1− p̂)]

∣∣∣
p̂=p

(p̂− p)

− d2

2 dp̂2[t]
[p log(p̂) + (1− p) log(1− p̂)]

∣∣∣
p̂=p

(p̂− p)2,

= −H(p) +
(p̂− p)2

2p(1− p)
+O((p̂− p)3),

16



where −H(p) is a constant independent of the optimization variables, and thus can be ignored. Then,
the low-error limit of the CORNN loss is:

1

T

T∑
t=1

ctCE

(
1 + d̂t

2
,
1 + dt

2

)
≈ 1

T

T∑
t=1

(dt − d̂t)
2

2(1− d2t )
2
,

≈ 1

T

T∑
t=1

(dt − dt − (1− d2t )[ẑ − f−1(dt)])
2

2(1− d2t )
2

,

=
1

T

T∑
t=1

[ẑ − f−1(dt)]
2

2
.

(S9)

Here, in the second row, we performed a Taylor approximation around the optimal value d̂t ≈ dt +

(d̂′t)|d̂t=dt
(ẑ−f−1(dt)). In this low error limit, minimizing the scalable weighted loss approximately

accounts to minimizing the L2 loss on the currents. The main difference is, since the original
weighted loss is on the firing rates and not currents, the weighted loss can account for the conversion
noise, or non-linearity mismatches, that would induce bias in the explicit conversion z = f−1(d).
The observation that low-error limit of the CORNN loss approximates the least-squares provided
additional support to the claim that least-squares solution serves as a suitable initialization.

S1.4 Derivation of the ADMM updates

So far, we discussed the fixed-point solver for minimizing the unconstrained CORNN loss with L2
regularization. In this section, we discuss how to add constraints on weights. Specifically, in a general
scenario, it is unexpected that all neurons would be connected to each other. Rather, in many cases,
one might be interested in introducing a trainable parameter mask such that ∀(i, j) ∈ B(i, j) Wij = 0.
To account for this scenario, we incorporated our fast solver into the ADMM framework.

S1.4.1 Setting up the full problem

In this section, we will first setup the full problem of interest with constraints, and then review the
ADMM equations [51]. To start with, we considered a problem of the following form:

minimize L(β̂) = 1

T

T∑
t=1

ctCE

(
1 + d̂t

2
,
1 + dt

2

)
+ λ

ntot∑
j=1

(β̂j)
2

2
,

subject to ∀k ∈ B(k), β̂k = 0.

(S10)

We transformed this problem by adding a new variable χ̂, which was constrained to be equal to β̂:

minimize
1

T

T∑
t=1

ctCE

(
1 + d̂t

2
,
1 + dt

2

)
+ λ

ntot∑
j=1

(β̂j)
2

2
,

subject to ∀k ∈ B(k), χ̂k = 0, χ̂ = β̂.

(S11)

Defining the indicator function 1(x) as

1(x) =

{
0 if x is true,
∞ if x is false

(S12)

The ADMM loss function became:

minimize LADMM(β̂, χ̂) =
1

T

T∑
t=1

ctCE

(
1 + d̂t

2
,
1 + dt

2

)
+ λ

ntot∑
j=1

(β̂j)
2

2︸ ︷︷ ︸
LCORNN(β̂)

+
∑

k∈B(k)

1(χ̂k = 0)

︸ ︷︷ ︸
Lconstraint(χ̂)

,

subject to χ̂ = β̂.
(S13)
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ADMM Lagrangian has two separable loss functions of independent variables, connected through a
linear equality constraint, which can be augmented to obtain:

Lρ(β̂, χ̂, κ) = LADMM(β̂, χ̂) + κT (β̂ − χ) +
ρ

2
||β̂ − χ̂||22, (S14)

where κ is the dual variable. The ADMM steps (after re-defining κ → (1/ρ)κ) became (See Eqs.
(3.5-3.7) in [51]):

β̂k+1 := argmin
β̂

(
LCORNN(β̂) + (ρ/2)||β̂ − χ̂k + κk||22

)
, (S15a)

χ̂k+1 := argmin
χ̂

(
Lconstraint(χ̂) + (ρ/2)||β̂k+1 − χ̂+ κk||22

)
, (S15b)

κk+1 := κk + β̂k+1 − χ̂k+1. (S15c)

S1.4.2 Solving first ADMM iteration via fixed-point updates

Similar to the unconstrained case, we started by finding the gradient and the fixed-point Hessian:

∇β̂

[
LCORNN(β̂) + (ρ/2)||β̂ − χ̂k + κk||22

]
= − 1

T
XTE + (λ+ ρ)β̂ + ρ(κk − χ̂k), (S16a)

∇2
β̂fp

[
LCORNN(β̂) + (ρ/2)||β̂ − χ̂k + κk||22

]
≈ 1

T
XTX + (λ+ ρ)I, (S16b)

where we recall the prediction error matrix:

Et,i =
dt,i − d̂t,i
1− d2t,i

. (S17)

Then, a single fixed-point update step became:

∆fp = −
[
1

T
XTX + (λ+ ρ)I

]−1 [
− 1

T
XTE + (λ+ ρ)β̂ + ρ(κk − χ̂k)

]
,

=
[
XTX + T (λ+ ρ)I

]−1
[
XTE − T (λ+ ρ)β̂ + Tρ(χ̂k − κk)

]
,

= A+XTE − (λ̃+ ρ̃)A+β̂ + ρ̃A+(χ̂k − κk),

(S18)

with λ̃ = Tλ and ρ̃ = Tρ. Here, we defined the short-hand notation for the inverse matrix:

A+ =
[
XTX + (λ̃+ ρ̃)I

]−1

. (S19)

Consequently, the update rule for γk = 1 became:
β̂k+1 = β̂k +A+XTEk − (λ̃+ ρ̃)A+β̂k + ρ̃A+(χ̂k − κk),

= A+XTXβ̂k +A+XTEk + ρ̃A+(χ̂k − κk),
(S20)

where we highlighted all quantities that can be pre-computed with blue. For ρ = 0, this reproduces
the update rule for the unconstrained problem in Eq. (10). As before, we promoted the vector β̂ to a
matrix θ̂, hence vectorized across the full problem.

S1.4.3 Solving second ADMM iteration via projection

For this step, the goal is to minimize

minimize
ntot∑
j=1

(ρ/2)(β̂k+1
j − χ̂j + κk

j )
2,

subject to ∀k ∈ B(k), χ̂k = 0.

(S21)

Fortunately, this problem was perfectly separable across the vector entries of χ̂j . For cases where
χk = 0 was constrained, this was the only feasible point and thus the answer to that particular problem.
For when j /∈ B(j), we obtained the minimum loss value by simply picking χ̂j = β̂k+1

j + κk
j . In

short notation, the update rule for this subproblem became:

χ̂k+1 := argmin
χ̂

(
Lconstraint(χ̂) + (ρ/2)||β̂k+1 − χ̂+ κk||22

)
= ΠB

(
β̂k+1 + κk

)
, (S22)

where we defined ΠB as the projection operator to the constraint satisfying subspace (i.e., ∀k ∈
B(k), χ̂k = 0). Similar to before, we promoted the vector χ̂ to a matrix to vectorize the full problem.
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S1.4.4 Variable initialization and choice of ρ

A priori, it was not clear how ρ should be chosen. However, looking at the Hessian inverse A+, we
observed that ρ ≥ λ was an appropriate choice for the step size ρ to have a reasonable impact on the
optimization problem. Empirically, we observed that ρ ≫ λ lead to faster convergence.

We initialized the primal and dual variables with χ0 = β̂0 = β̂fp, i.e. the pre-computed least-squares
solution, β̂fp = A+XTZ , without additional computational complexity. Moreover, given that
ADMM ensured convergence χ̂ = θ̂, the dual variable κ was bound to converge to non-zero values
only at the diagonal such that the 2nd ADMM step would converge.

To sum up, without any additional computational cost, we defined the initial conditions for all three
variables as:

β̂0 = A+XTZ, (S23a)

χ̂0 = A+XTZ, (S23b)

κ0 = 0. (S23c)

S1.5 Automated outlier detection and the pseudo-code for the full solver

Upon close inspection of the prediction error, we observed that the extremely large error values
stemming from dt ≈ 1 would amplify the conversion noise and carry little-to-no learning signal.
Thus, we implemented a simple outlier detection by ignoring errors larger than some value such that
|Et,i| > v =⇒ Et,i = 0. In the CPU solver, we scaled the gradient to account for the missing data
points. Since these data points constituted small percentages, mostly < 1% of the full dataset, we did
not perform the scaling for the GPU based solver to prevent unnecessary overhead.

It is worth emphasizing that this choice of outlier detection takes away the convexity of the problem
since zeroing out part of the prediction error leads to a non-convex global loss. However, the outliers
tended to be ignored throughout the optimization process, thus the problem remained convex in
remaining data points. Future work can consider a Huber-like [58] global convex robust loss that
would automatically detect outliers. For the purpose of this work, we observed that the version of
outlier detection we employed here performed well on empirical benchmarks.

For all solvers, we also defined a working precision δ (= 10−6) and whenever |dt| ≥ |1 − δ|, we
projected dt back to ±(1− δ) to prevent numerical overflow errors. For experiments in Figs. S1 and
S6 with BPTT, we projected the firing rates |rt| ≥ |1 − δ| to the boundary rt = ±(1 − δ) for the
same reasons. Empirically, this stabilized all solvers and was performed to ensure a fair comparison.

Bringing all together, we state the full CORNN solver in Algorithm 1. We note that for the figures
in this work, we simply used a maximum number of iterations (30-100 depending on experiment)
instead of monitoring the convergence of CORNN; as CORNN runtimes remained sub-minute and a
few more iterations than ideal were perfectly tolerable.

S2 Implementation details for other solvers

S2.1 Back-propagation through time

We performed back-propagation through time for the experiments in Figs. S1 and S6. In our
experiments, the teacher forcing means that the neural activities at time t+ 1 is computed via Eq. (2),
but we replace x̂t,i in ẑt,i =

∑
j θ̂t,j x̂t,j with the data xt,i, and r̂t,i with rt,i. Initially, x̂t,i depends

on θ̂ implicitly, so this replacement cuts off the time-dependent computation graph for the gradient.
The probability of teacher forcing is the probability with which the replacement is performed at every
single time point during the forward propagation of the network. Specifically, we use the following
forward-propagation equations:

r̂t+1,i =

{
(1− α)rt,i + αf(zt,i), u < p,

(1− α)r̂t,i + αf(ẑt,i), u ≥ p,
(S24)
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Algorithm 1: Convex and scalable solver for CORNN via ADMM framework
CORNN.fit (X,D, λ, nIter = 30, ρin = 100);

% X contains the aggregated input, e.g. firing rates and input units. It is of size [T ×Ntot];
% D contains the targets. It is of size [T ×Nrec];
% To start, rescale the regularization parameter λ := Tλ
ρ := ρinλ %ρ is picked to be comparable to entries of XTX and rescaled λ;
% Pre-compute the inverses once during initialization;
A+ := (XTX + (ρ+ λ)I)−1;
X+ := A+XT ;
X− := A+XTX = X+X;
Z := f−1(D) %Compute the currents from the targets ;
θfp := X+Z%Initialize the fixed-point to the ls solution;
% Initialize the primary and dual variables;
θ := θfp %Initialize to the least-squares solution;
χ := θfp %Initialize to the least-squares solution;
u := 0 ∗ θfp %Initialize the dual variable;
for i = 1 : nIter;

Predict the targets D̂ = f(Xθk);
Compute the prediction error Ek = (D − D̂)⊘ (1−D ⊙D) and perform outlier detection
% ⊘/⊙ stand for element-wise division/product ;
Update first primal variable θk+1 := X−θk +X+Ek + ρA+(χk − κk);
Update second primal variable χk+1 := ΠB

(
θk+1 + uk

)
;

Update the dual variable uk+1 := κk + θk+1 − χk+1;
Probe convergence by checking ||χk+1 − θk+1||, continue if not converged;

end
return χ

where u is a uniform random number generated between 0 and 1. It is worth emphasizing that the
teacher forcing in this context is distinct from [59], where the teacher signal is acquired not from the
real-data but from a second network, though the overall idea is similar.

S2.2 Current and firing rate based FORCE

We followed the approach by [25] for training the recurrent weights to reproduce target neural
activities via FORCE. For both network types, we defined the prediction errors as:

e[t] = (r̂[t]− r[t])/α, or e[t] = x̂[t])− x[t]. (S25)

Here, r̂[t] is the predicted firing rate at time point t, vice versa for x̂[t]. We no longer performed any
teacher forcing, thus r[t− 1] and x[t− 1] needed to predict r̂[t] came from the previous prediction
step of the network, and were not the ground truth values.

The recurrent weights and the corresponding inverse covariance matrix P [t] were updated by the
following rule:

P [t] = P [t− 1]− P [t− 1]r̂[t− 1]r̂T [t− 1]P [t− 1]

1 + r̂T [t− 1]P [t− 1]r̂[t− 1]
, (S26a)

Wrec[t] = Wrec[t− 1]− e[t](P [t]r̂[t− 1])T . (S26b)

Here, e[t] was an Nrec dimensional vector, rather than a scalar as was the case for the original work
[35]. We initialized P [t] = λ−1I , where λ is the regularization parameter.

Short-comings of FORCE for dRNN training

Despite its wide use in the literature for dRNN training [24, 25, 27–29], there are several short-
comings of this way of training RNNs using FORCE that render it incompatible with the realities of
experiments:
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1. The training procedure requires a particular range of λ to converge (See Fig. S4). Even
when FORCE does converge, this is for a very limited range of λ and epochs of training.

2. FORCE is initially designed for theoretical investigations and requires the training dataset to
be continuous. Even subtle jumps in the data results in stability issues with FORCE training,
as the premise of FORCE approach is to have small error from the start to the end [35].

Point 1 necessitates low-level hyperparameter tuning. The only work around to point 2 is to re-
initialize the inverse covariance matrix P whenever there is a jump in data points. This practically
means that if we want to perform multiple training steps on the same data, each epoch simply
corresponds to picking a better initialization for the next epoch, whereas all the learned correlation
structure, which is stored in the inverse covariance matrix P , needs to be forgotten. The latter point
showcases that FORCE is fundamentally ill-suited to many aspects of experimental data, for example,
when multiple imaging sessions need to be combined.

S2.3 Newton’s method and gradient descent with single-step prediction error

We implemented Newton’s method by using the exact Hessian given in Eq. (S5) for two different
scenarios: i) when ct = 1 corresponding to minimizing cross entropy loss, and ii) when ct =
[1 − d2t ]

−1 corresponding to the weighted loss. When implementing ii), we performed the outlier
detection not only on the gradient, but also the Hessian level; since the division by [1− d2t ] could
have destabilized the training. Given that each subproblem had a unique Hessian for the Newton
descent, we solved the separate subproblems in parallel using multiprocessing tool in numpy.

To implement the gradient descent, we used a single-layer Pytorch model with a linear + tanh structure.
We implemented both a CPU and GPU version, and used the ADAM and SGD optimizers. Gradient
descent was implemented for two types of loss functions: i) loss function, and ii) cross-entropy with
ct = 1.

S3 Benchmarking details for generator RNNs

S3.1 Randomly initialized chaotic RNNs

When benchmarking dRNNs on randomly initialized chaotic RNNs, we picked the recurrent weights
of the generator randomly from a normal distribution W rec

ij ∼ N
(
0, g2

nrec

)
with zero mean and

standard deviation of g√
nrec

. For g > 1 and sufficiently large nrec, these networks can sustain
their activities without any external stimulus and exhibit chaotic behavior [60]. For these chaotic
generators, we picked g = 3 throughout this work to ensure the networks were deep into the
sustainable spontaneous activity regime. We chose the chaotic regime specifically, since previous
work established that teacher-forcing when training an RNN to output a function can have potentially
harmful consequences to the stability of the network training [35]. We aimed to test whether this
generalized to the reproduction task we considered in our work.

We note that in figures with randomly initialized chaotic RNNS, where we compared CORNN to other
optimizers, we omitted the zero self-excitation constraint, i.e., W rec

ii = 0, to remain conservative
in our speed comparisons. This is because 2nd order methods (FORCE and Newton descent)
cannot incorporate the zero self-excitation constraint without additional optimization steps since
projected 2nd order steps are not necessarily descent directions, whereas projected gradient descent is
notoriously slower compared to the unconstrained version. In contrast, CORNN was approximately
equally fast with or without the ADMM solver; since both ADMM and HAPE updates converged in
more or less the same number of iterations.

S3.2 Training of RNNs for the 3-bit flip flop task

To benchmark CORNN on diverse conditions, on top of the randomly connected RNNs discussed
above, we established ground truth data by training RNNs on a 3-bit flip flop task. The architecture
of the generator RNN was as follows:

r(t) = (1− α)r(t− 1) + α tanh [Winu(t) +Wrecr(t− 1)], (S27a)
o(t) = Woutr(t), (S27b)
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where r(t) is the hidden state of the RNN at time t, α is the time-constant associated with the
dynamics, Win is the weight matrix governing input into the RNN, u is the input into the RNN, Wrec

are the recurrent weights, o is the output of the RNN and Wout are the weights which take the hidden
state to the output. Since CORNN does not learn Wout, to compute the outputs for the CORNN
learned networks in Fig. S8, we used the same projection matrix Wout as the original network. See
the accompanying code for further details on network training and benchmarking experiments.

S3.3 Training of RNNs for the timed-response task

To test robustness of CORNN to mismatches between generator and inference network dynamics,
we established ground truth data by training leaky current RNNs on a timed-response task with the
following architecture:

x(t) = (1− α)x(t− 1) + αWinu(t) + αWrecr(t− 1) + αϵRNN, (S28a)
r(t) = tanh(x(t)), (S28b)
o(t) = Woutr(t). (S28c)

Here, unlike the CORNN and 3-bit flip flop equations (See Eq. (S27)), the time-derivative was at
the level of currents (x), not firing rates (r). Upon receiving an input during t ∈ [0, 100]ms, we
trained 10 networks to output a Gaussian pulse centered at t = 500ms with standard deviation 20ms;
otherwise zero everywhere.

During test trials in Figs. 5, S10, and S11, we introduced a novel distractor input ten times stronger
than the cue at t ∈ [400, 410]ms. To allow fair comparison between networks trained on different
numbers of neurons, we computed the R2 of the neural activities from the first 100 neurons across
three 1s trials and performed a uniform average. For the illustrative Fig. 4, to allow visualization
of finer details in time-activities after distraction, we instead plotted a scenario with an earlier and
weaker (half strength than the cue) distractor at t ∈ [200, 210]ms. To obtain the correlated noise in
Fig. S11, we first sampled random noise from a normal distribution, then convolved the i.i.d. noise
with a 2D Gaussian kernel across time points (s.d. of 3ms) and neurons (s.d. of 5 neurons), and
re-scaled by the targeted standard deviation. See accompanying code for further details.

S3.4 The mismatch between leaky-firing and leaky-current RNNs

In this section, we briefly discuss the extent of generator mismatch between leaky-firing and leaky-
current networks. To see this, we consider the dynamics of the currents (z) under the leaky-firing rate
RNNs:

τ
dz(t)

dt
= τW rec dr(t)

dt
+ τW in du(t)

dt
,

τ
dz(t)

dt
= −z(t) +W recf(z(t)) +W inu(t) + τW in du(t)

dt
.

(S29)

Although the current dynamics look similar to the leaky-current RNNs, there are several key dif-
ferences. Firstly, the term τW in du(t)

dt is added to the leaky-current equation, which can act as an
unobserved current when the input stimuli change. Second, the definition of the firing rates are
different, with the firing-rate RNNs performing a low-pass filter in time on the linear + non-linear
term, f(z), (hence the name, leaky firing-rate RNN). Finally, under non-homogeneous time-scales for
the leaky firing-rate RNN, τ would promote to a diagonal matrix and would not necessarily commute
with W rec, so that the Eq. (S29) no longer holds, leading to a stronger mismatch.

S4 Benchmarking CORNN’s speed and scalability

To obtain the CORNN’s solver in Algorithm 1, we took five distinct steps:

1. Single-step prediction error paradigm, where we teacher-forced r̂t,i, the RNN unit activities
at time t, to the observed neural activities, rt,i, to predict rt+1,i, with a single-step back-
propagation.

2. Convexification of the loss function, where we replaced the L2 loss function with a cross-
entropy loss.
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3. Hessian alignment to neural activity correlations, where we weighted individual samples
to align subproblem Hessians to a pre-computable quantity, i.e., the correlation matrix of
observed neural activities.

4. Initialization to a fixed-point, where we used the approximate least square solution to
initialize the networks.

5. Using ADMM approach to enforce constraints without increasing algorithmic runtimes.

In this work, we performed several benchmarking experiments to delineate the contribution of each
step we take towards the final convex solver to the scalability and speed of CORNN. We proved, with
targeted experiments, the need for each of these steps, as we discuss below.

S4.1 Single-step prediction error paradigm

As discussed in Section 2.2, the first step we took was to restrict the family of interest for the inference
models to the models that can perform single-step predictions well. This simplifying assumption
mapped the recurrent estimation problem to a single layer feed-forward network with a sigmoid/tanh
non-linearity. Here, the inputs of the network are ut,i and rt,i , whereas the outputs are rt+1,i. Since
this step eliminated the need for the back-propagation through time, both the training times and
memory requirements decreased significantly (Compare Figs. S1 and S2).

However, a priori, it was not clear whether the restrictive assumption of single-step prediction error
minimization would lead to decreased performance. To test this, we performed the experiments in Fig.
S1 and observed that teacher forcing increases the efficiency of the training, and was not deleterious.
A potential explanation may lie in the observation that, unlike the traditional scenario where a sparse
error signal needs to be propagated back in time to perform credit assignment, network reproduction
training had access to rich variety of error signals at each time step and for each neuron.

S4.2 Convexification of the loss function

As discussed in Section 2.3, the convexification of the loss function plays an important role in
speeding up the learning process. However, by itself alone, convexification is not the reason of the
speed improvement. For example, in Fig. 3, gradient descent on L2 loss converges faster than the
gradient descent on the logistic loss. On the other hand, for smaller networks with 200 neurons (Figs.
S2, S3, S5), convex loss function merits the use of Newton descent and leads to faster convergence
than gradient descent. Yet, as shown in Figs. S2 and S5, CORNN is at least an order of magnitude
faster even for these small networks. Hence, though convexification of the loss function is crucial, it
cannot explain the speed or the scalability of CORNN by itself.

S4.3 Hessian alignment

The main contribution of our work is to pick ct,i, which approximates the problem as a local least-
squares as discussed in Supplementary Section S1.3, and aligns the Hessians of each subproblem
to a pre-computable quantity, i.e., the correlation matrix of neural activities, as discussed in Section
S1. This alignment allows the use of HAPE updates that have complexity of gradient descent but
converge in O(10) iterations thanks to the approximate Hessian. Figs. S2 and S5 show that Newton’s
descent with exact Hessian computations on the weighted CORNN loss is an order of magnitude
slower than CORNN. Hence, the Hessian alignment was a cruical step to speed up the learning, but
most importantly allow scaling to large networks due to its gradient-level complexity.

S4.4 Fixed-point initialization

The fixed-point initialization relies on an approximate solution when the final error is low (See
Supplementary Sections S1.2 and S1.3). This initialization is a good first guess, since, if there was
no conversion noise at all, one could have simply performed least-squares on the currents estimated
via z = arctanh(r). This is akin to regressing to the inverse of the output before the non-linearity in
a single layer network. Though such an approach can provide a good first guess, it is not robust to
conversion noise. This was shown in Figs. 3 and S3, where non-Gaussian noise components lead to
low accuracy for the initialization. Finally, the least-squares solution does not satisfy any additional
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constraints on the connectivity matrix, thus is not suitable as a valid solution itself. Yet, since the
least-squares solution is computationally negligible, we used it as an initialization for CORNN.

S4.5 Alternating direction method of multipliers

We chose to use ADMM approach to enforce the no self-excitation constraints and present a ver-
satile base model that can incorporate additional design choices such as L1 and/or nuclear norm
regularization. In our comparison experiments, we omitted any constraints since other solvers were
considerably slower, or outright incompatible. However, in our speed benchmarking results in Figs. 5,
S8, and S9, we used the full CORNN solver with the ADMM described in Algorithm 1. The choice
of ADMM for enforcing constraints is rooted in our observation that both the ADMM steps and
the original HAPE updates take O(10) iterations to converge. Moreover, other parts of the ADMM
updates are negligible compared to the primal problem, where the HAPE updates take place. In other
words, the fact that HAPE updates and ADMM converge in similar steps creates a mutual synergy
that increases accuracy and promotes versatility in our work without hurting convergence times.

S5 Reproducibility

We provided the code to reproduce each figure in our Github. All experiments, except for those in
Figures 3, 5, and S4, were run on a standard computer with Geforce RTX 3090 Ti GPU and Intel
Core i9-9900X Skylake X 10-Core processor. Experiments in Fig. 5 were run on a computer with two
Geforce RTX 3080 Ti GPUs (though using only one) and Intel Core i9-10980XE 18-Core processor.
Experiments in Figure S4 were divided to run on both of the aforementioned computers. Experiments
in Figure 3 were run on a computer with two NVIDIA Geforce RTX 4090 (though using only one)
and an AMD Ryzen Threadripper PRO 5975WX 32-Core processor (though using only 5 cores due
to memory limitations). Illustrative figures are plotted on an Apple Macbook Air with M1 Chip. See
the accompanying code provided in the Github repo2 for the specific hyperparameters used for the
experiments.

2Reproduction code is available at https://github.com/schnitzer-lab/CORNN-public
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Figure S1: Backpropagation through time (BPTT) on an L2 loss function is suboptimal,
whereas teacher-forcing can increase the reconstruction accuracy. To assess the optimality of
BPTT on an L2 loss function and investigate the potential drawbacks of teacher-forcing, we conducted
reproduction experiments on chaotic networks with low (A) and high (B) input to conversion noise
ratio. We varied the levels of teacher forcing applied to BPTT and employed two distinct loss
functions: cross-entropy and L2 loss function. Surprisingly, our results challenge traditional beliefs,
since cross-entropy with teacher forcing emerged as the superior method compared to BPTT. This
superiority may be attributed to the rich information content available during network reproduction
training. Parameters: A, B: α = 0.9, nrec = 100, T = 100, nepoch = 3000. ∀t = 1, . . . , T, u(t) =
0.1 with W in ∼ N (0, g2) and g = 3. A: ϵconv ∼ N (0, 10−8), ϵinput ∼ N (0, 10−4). B: ϵconv ∼
N (0, 10−10), ϵinput ∼ N (0, 10−2). Box plots are obtained from 10 random generator networks
shared across optimization algorithms. Orange lines denote median values; boxes span the 25th to
75th percentiles; outliers are not shown.
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Figure S2: CORNN achieves a better combination of speed and accuracy compared to al-
ternatives, dramatically accelerating convergence. The plots illustrate the relationship between
accuracy (Pearson’s correlation coefficient between ground truth and inferred weights) and training
time, measured in seconds on a log scale, with low (A) and high (B) input to conversion noise ratio.
The blue line represents the performance of our newly developed method, which combines fixed-point
initialization and CORNN, and achieves high accuracy while significantly accelerating convergence
compared to other methods. Parameters: A-B: α = 0.1, nrec = 200, T = 3000. No input. A:
ϵconv ∼ N (0, 10−8), ϵinput ∼ N (0, 10−4). B: ϵconv ∼ N (0, 10−10), ϵinput ∼ N (0, 10−2). In all
plots, data points indicate median values, and error bars denote standard error of the mean (SEM)
over 100 runs of the simulation.
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Figure S3: CORNN is
robust to non-Gaussian
noise injections. Same
as in Figure S2, but with
parameters: α = 0.1,
nrec = 200, T = 1500,
No input. ϵconv ∼
Poisson(10−1), ϵinput ∼
Poisson(10−2).

25



R
ec

on
st

ru
ct

io
n 

ac
cu

ra
cy

 (r
) o

f W
re

c

R
ec

on
st

ru
ct

io
n 

ac
cu

ra
cy

 (r
) o

f W
re

cA B

Fixed point initialization only

Original FORCE applied
to currents (z)

Modified FORCE applied
to firing rates (r)

0

0.5

10-4 10-2 1 100
Regularization level (a.u.) Regularization level (a.u.)

10-4 10-2 1 100

CORNN1

0

0.5

1

Figure S4: The traditional FORCE approach is severely suboptimal, underperforms compared
to fixed point initialization, and is hyper-sensitive to the regularization level. This plot describes
the relationship between the reconstruction accuracy (correlation between ground truth and inferred
weights) and the strength of regularization applied to the weights during training. The results show
that while the FORCE algorithm, as previously applied to a similar task [24, 25, 27–29], is highly
sensitive to the choice of hyperparameters, CORNN, whose accuracy is practically bounded below
by the initialization, is not. Moreover, in majority of the cases, FORCE cannot train beyond the
fixed-point initialization we developed in this work. A with fixed point initialization and B with
random initialization. Parameters are the same as in Fig. S2A. In all plots, data points indicate mean
values, and error bars denote SEM over 10 runs of the simulation.
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Figure S5: CORNN can be drammatically accelerated with on a standard GPU. The same as in
Fig. S2, but with GPU acceleration for CORNN and gradient descent algorithms.
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Figure S6: Fixed-point initialization speeds up the convergence. A-B Same as in Figure S1, but
with fixed-point initialization. C We conducted an ablation study to investigate the effectiveness
of our proposed fixed-point initialization method. The results show that the CORNN algorithm
with fixed-point initialization (purple) outperforms all other methods, including the vanilla CORNN
without this fixed-point initialization technique. Parameters: α = 0.1, nrec = 500, T = 10000,
ϵconv ∼ N (0, 10−10), ϵinput ∼ N (0, 10−2). All algorithms are ran on CPU. For A,B, the boxes
cover from the lower quartile to the upper quartile, with an orange line at the median. For C, in all
plots, data points indicate median values, and error bars denote SEM over 100 runs of the simulation.
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Figure S7: CORNN can reproduce an RNN performing 3-bit flip flop task through dRNN
training. We use CORNN to reproduce the behavior of a synthetic RNN trained on a 3-bit flip-flop
task [12], where the network is given a short input pulse at a random time. If the input pulse is +1,
the output of the network must transition to +1 or stay at +1. If the input pulse is -1, the network’s
output must transition to -1 or stay at -1, ignoring input pulses that do not match. Through dRNN
training, CORNN is able to accurately reproduce, left, the inputs and outputs of the task-trained RNN,
middle, spatiotemporal pattern of the neural population dynamics, and, right, the inputs and (partially)
recurrent weights of the synthetic RNN. Parameters: α = 0.9, nrec = 1000, T = 200 trials (100 data
points per trial), ϵconv ∼ N (0, 10−6), ϵinput ∼ N (0, 10−4).
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Figure S8: CORNN runtimes scale linearly with increasing trial data, which can facilitate
learning from larger networks. Top, reconstruction accuracy of network weights, measured
as the correlation between recurrent weights, are plotted as a function of dataset size (number of
trials), middle, reconstruction accuracy of network outputs, measured as the R2 between the output
units, and, bottom, the linear scaling of algorithmic wallclock runtimes with near-unity slope vs
increasing number of trials on a log-log plot. The different colors in the plot correspond to different
number of neurons in the generator network. Missing data points correspond to the limits of the GPU
memory, which can be mitigated by computing prediction errors in temporal chunks in real-data
applications, though not implemented for this case study. Parameters: α = 0.5, ϵconv ∼ N (0, 10−6),
ϵinput ∼ N (0, 10−4). In all plots, data points indicate mean values, and error bars denote SEM over
20 runs of the simulation.
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Figure S9: CORNN scales polynomially to large network sizes. Using the networks with 3000
neurons trained for the 3-bit flip flop task in Figure S7, we subsampled neural populations and
collected CORNN runtimes for CPU and GPU implementations. Parameters: α = 0.5, ϵconv ∼
N (0, 10−6), ϵinput ∼ N (0, 10−4). A with 200 trials (20,000 data points) and B with a single trial
(100 data points).
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Figure S10: CORNN is robust to variations in the time-scales compared to the ground truth.
Same as in Figure 5, but with 500 observed neurons and varying levels of uncertainties in time-scales.
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