
Appendix545

A Details of datasets and architectures546

A.1 Object Detection Image Dataset547

COCO (Common Objects in Context) [26] dataset is widely used for object detection tasks. It548

contains 80 object categories, including people, animals, vehicles and more. Each image can contain549

multiple instances of objects, providing ample opportunities for training and evaluating models550

capable of detecting and segmenting objects in complex scenes.551

Synthesized Traffic Sign dataset is designed by TrojAI [1] which focuses on traffic sign detection,552

featuring various types of traffic signs commonly encountered in real-world scenarios. There are553

in total over 4000 different traffic signs. Each model is trained on a randomly sampled subset of554

classes. The number of classes within these subsets exhibits variability, ranging from as few as 2 to a555

maximum of 128.556

DOTA (Detection in Aerial Images) dataset is designed for object detection in aerial images which557

consists of high-resolution images captured by aerial platforms. It contains 18 categories, including558

plane, ship, storage tank, baseball diamond and more. Its large-scale, fine-grained annotations, and559

challenging scenarios make it an ideal benchmark for evaluating and developing algorithms capable560

of detecting objects in aerial images accurately.561

A.2 Architecture562

We evaluate our method on three well-known model architectures:, i.e., SSD [28], Faster-RCNN [40],563

and DETR [2]. SSD (Single Shot MultiBox Detector) [28] is a popular object detection model564

which utilizes a series of convolutional layers to detect objects at multiple scales and aspect ratios.565

Faster-RCNN [40] is another widely adopted object detection model that combines region proposal566

generation with a region-based CNN for object detection. DETR (DEtection TRansformer) [2] is a567

state-of-the-art object detection model that utilizes a transformer-based architecture. It replaces the568

conventional two-stage approach with a single-stage end-to-end detection framework.569

A.3 Model Dataset570

TrojAI [1] initiative, spearheaded by IARPA, encompasses a multi-year, multi-round program.571

Its overarching objective revolves around the development of scalable and dependable automatic572

backdoor detection tools, specifically targeting the identification of backdoor trojans within Deep573

Learning models across diverse modalities. Presently, the program consists of a total of 13 rounds,574

each with distinct focuses and tasks. The initial four rounds and the eleventh round center their efforts575

on detecting trojans present in image classification models. In contrast, rounds five through nine576

concentrate on transformer models employed in various NLP tasks, including Sentiment Analysis,577

Named Entity Recognition, and Question Answering. Round twelve dedicates itself to the detection578

of backdoors in neural network-based PDF malware detection. Finally, rounds ten and thirteen579

direct their attention towards object detection models. For the evaluation of models, we exclusively580

utilize the training sets from rounds 10 and 13. Specifically, our evaluation entails 72 models trained581

on the Synthesis Traffic Sign dataset, encompassing all three model architectures. Among these582

models, 48 are benign, while 24 are deliberately poisoned, with an equal distribution of triggers for583

misclassification and evasion. Concerning the DOTA models, there exist two architectures, namely584

SSD and Faster-RCNN, resulting in a total of 24 models, including 16 benign models and 4 each585

poisoned with misclassification and evasion triggers. All COCO models adopt the SSD architecture,586

with a distribution of 36 clean models and 18 models poisoned by both misclassification and evasion587

triggers. Find more details in Table 5.588

B Details of evaluation metrics589

In our evaluation of backdoor detection methods, we employ four well-established metrics: Precision,590

Recall, ROC-AUC, and Average Scanning Overheads for each model. Precision quantifies the591

accuracy of a detection method by measuring the proportion of correctly identified positive instances592

14



among all predicted positives. In our case, we consider attacked models as positive instances and593

benign models as negatives. A higher precision indicates a lower rate of falsely identifying benign594

models as attacked. Recall, on the other hand, assesses the effectiveness of the detection method in595

correctly identifying positive instances. It measures the proportion of true positives among all actual596

positives. A higher recall suggests that the detection method is capable of identifying a significant597

portion of attacked models. ROC-AUC (Receiver Operating Characteristic - Area Under the Curve)598

plots the true positive rate against the false positive rate at various threshold values and calculates599

the area under the curve. A value of 1 indicates perfect classification, while a value of 0.5 indicates600

that the method is no better than random guessing. We also consider the overhead of the detection601

method, which quantifies the average time required to scan a single model. We use seconds (s) as602

the unit of measurement and set a maximum threshold of 1 hour (3600 s). If the scanning process603

exceeds 3600 seconds, it is terminated, and we rely on the existing results for making predictions.604

Low overhead signifies high efficiency of the method. By employing these four metrics, we aim to605

comprehensively evaluate the performance and efficiency of the backdoor detection methods. It is606

worth noting that the time limit we have set for scanning models is deliberately conservative when607

compared to the thresholds established in different rounds of the TrojAI competition. For example,608

in round 13, participants are granted a generous 30-minute duration for scanning a single model.609

To surpass the official benchmarks set in each round, a more aggressive and precise pre-processing610

approach may be necessary.611

C Details of Baseline Methods612

In this section, we introduce more details of baseline methods, including NC [51], Tabor [15],613

ABS [29], Pixel [49], Matrix Factorization(MF) [17] and MNTD [60].614

NC [51] adopts a specific trigger inversion approach for each class and considers a model to be615

attacked if it is able to generate an effective yet extremely small trigger for a target class. Tabor [15]616

enhances NC by incorporating additional well-designed regularization terms, such as penalties for617

scattered triggers, overlaying triggers, and blocking triggers. These additions aim to improve the618

reconstruction of injected triggers. Pixel [49] introduces a novel inversion function that generates a619

pair of positive and negative trigger patterns. This approach achieves better detection performance620

compared to NC. ABS [29] employs a stimulation analysis to identify compromised neurons, which621

serves as guidance for trigger inversion. ABS considers a model to be attacked if it can invert a trigger622

that achieves a high reconstructed ASR (REASR).623

To the best of our knowledge, there is no existing detection methods for object detection models.624

Therefore, we perform straight-forward but reasonable adaption to these existing methods designed625

on image classification tasks, such that they are able to work against backdoor attacks on object626

detection models. Specifically, the original objective of NC, Tabor, and Pixel is to invert small triggers627

while maintaining their effectiveness (high ASR). In our adaptation, we retain their design principles628

but re-define the ASR to align with object detection models, as explained in Section 3.1. Additionally,629

we introduce a threshold for the size of inverted triggers, enabling the differentiation between benign630

and attacked models. For ABS, we adhere to its original technique but employ the re-defined ASR as631

the optimization goal, and use REASR as the decision score. By employing these adaptations, we632

aim to enhance the detection capabilities of these existing methods specifically for backdoor attacks633

on object detection models.634

No modifications or adaptations are needed for meta classification-based methods when applied to635

object detection models. MNTD [60] trains a set of queries and a classifier to discern the feature-space636

distinctions between clean and attacked models. MF [17] directly trains a classifier on model weight637

features using specialized feature extraction techniques, i.e., matrix factorization. These methods638

solely rely on the feature extraction networks commonly utilized in both image classification and639

object detection models. As a result, MNTD and MF can be directly employed to detect backdoor640

attacks in object detection models without the need for additional adjustments or modifications.641

We collect the Precision, Recall, ROC-AUC and Overheads for each method across various datasets642

and model architectures. To ensure a fair comparison, we have conducted a search to determine the643

optimal thresholds for different decision scores associated with each method (trigger size for NC,644

Tabor, Pixel, REASR for ABS and output confidence for meta-classifiers). These thresholds are645

chosen to maximize accuracy. Besides, we set a fixed number of optimization steps for scanning646

15



Table 5: Dataset Details
Image Dataset

Model Source Architecture Number of Models

Round10 Round13 SSD Faster-RCNN DETR Benign Miscls Attack Evasion Attack

Synthesis Traffic Sign 7 3 3 3 3 48 12 12
DOTA 7 3 3 3 7 16 4 4
COCO 3 7 3 7 7 36 18 18

(a) IoU Threshold (b) Region Size (c) Score Threshold

Figure 6: Hyper-parameter Sensitivity.

a pair of victim-target label (100) for all inversion based baselines. For meta classification based647

methods that involve training, we have performed 5-fold cross-validation and reported the validation648

results exclusively.649

D Hyper-parameter Sensitivity Analysis650

To assess the sensitivities of the hyper-parameters used in DJANGO, we conduct experiments as651

described in Section 4.3.652

IoU Thresholds. We evaluate the IoU threshold used to calculate the ASR of inverted triggers. The653

results are summarized in Figure 6(a), where each row corresponds to a different model architecture,654

and each column represents a different choice of IoU threshold. It can be observed that IoU thresholds655

of 0.3 and 0.5 generally yield good performance. However, a threshold of 0.7 tends to degrade the656

performance, possibly due to the inverted triggers interfering with the bounding box predictions.657

Region Size. The impact of different regional initialization sizes is evaluated and the results are658

presented in Figure 6(b). Among the various choices, a region size of 30⇥30 consistently achieved659

the best performance. This is because larger initialization sizes tend to result in more false positive660

cases.661

Score Threshold. Different score thresholds are tested when computing the ASR of inverted triggers.662

The results, shown in Figure 6(c), indicate that a score threshold of 0.5 generally leads to the best663

performance across all model architectures. This choice represents a trade-off between false positives664

and false negatives. Higher score thresholds may introduce more false negatives, as the inverted665

trigger may not have high confidence similar to the injected one. On the other hand, lower score666

thresholds may result in more false positives. Thus, a moderate value of 0.5 provides the optimal667

balance.668

These experiments allowed us to gain insights into the sensitivities of the hyper-parameters in669

DJANGO, enabling us to make informed choices for achieving optimal performance.670

16


	Introduction
	Background & Threat Model
	Methodology
	Misalignment of CE Loss and ASR in Object Detection Model Trigger Inversion
	Our Solution: Trigger Inversion via Gaussian Focus Loss
	Compromised Label Proposal via Backdoor Leakage

	Evaluation
	Detection Performance
	Evaluation of Label Proposal Pre-processing
	Ablation Study
	Adaptive Attack

	Conclusion
	Details of datasets and architectures
	Object Detection Image Dataset
	Architecture
	Model Dataset

	Details of evaluation metrics
	Details of Baseline Methods
	Hyper-parameter Sensitivity Analysis

