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A Appendix513

Table 1: Characteristics of the models employed for extracting representations.

Model #Blocks Emb. dim. #Heads #Params Dataset Reference
ProtBert 30 1024 16 420M UR100 [16]

ProtT5-XL-U50 24 1024 32 3B UR50 | BFD [16]
ESM-1b 33 1280 20 650M UR50/D [35]
ESM-1v 33 1280 20 650M UR90 [29]

ESM-2(8M) 6 320 20 8M UR50/D [24]
ESM-2(35M) 12 480 20 35M UR50/D [24]

ESM-2(150M) 30 640 20 150M UR50/D [24]
ESM-2(650M) 33 1280 20 650M UR50/D [24]

ESM-2(3B) 36 2560 40 3B UR50/D [24]
ESM-2(15B) 48 5120 40 15B UR50/D [24]
iGPT-S(76M) 24 512 8 76M ImageNet [8]

iGPT-M(455M) 36 1024 8 455M ImageNet [8]
iGPT-L(1.4B) 48 1536 16 1.4B ImageNet [8]

A.1 Experimental setup514

A.1.1 Hardware515

All experiments were performed on a machine with 2 Intel(R) Xeon(R) Gold 6226 with a total of 48516

threads, 256GB RAM equipped with 2 Nvidia V100 GPUs with 32GB memory. The GPUs were517

used to generate embeddings and to compute nearest neighbors.518

A.2 Experiments519

A.2.1 Two Nearest Neighbors ID estimator520

To estimate the intrinsic dimension of hidden representations, we use the Two-Nearest Neighbors-521

Based (TwoNN) ID estimator [17]. The algorithm is based on a simple analytical result: under the522

hypothesis of a uniform density of points in Rd, the cumulative probability distribution of the random523

variable µ = r2
r1

, where r1, r2 are respectively the distance to the first and the second neighbor of a524

given point, is given by F (µ) = 1� µ
�d. Therefore, for a given dataset whose points are indexed by525

i = 1, . . . , N in RD (with D >> d in interesting cases), we compute for each point the ratios µi, sort526

them in ascending order with a permutation �, and, by defining the empirical cumulative distribution527

F
emp(µ�(i) :=

i
N , we can obtain an estimate of d as the slope given by a linear regression (passing528

through the origin) of the following variables: (log(µi),� log(1� F
emp(µi)))|i = 1, ..., N . The529

TwoNN algorithm requires minimal information: the distances to each point’s first and second nearest530

neighbor; therefore, the strong hypothesis of a uniform density used to obtain the main result can be531

relaxed to a weak assumption of local uniformity. We estimate the ID and its reliability through a532

progressive, random decimation process that allows testing the stability of the result with respect to a533

change in spatial scale. Since the estimate is approximately scale-invariant, we take the ID estimate534

as the mean over the values collected during the decimation.535

A.2.2 GPU kNN search536

The nearest neighbor searches for the calculation of the neighborhood overlap as in [18] were carried537

out by means of the Python interface of the Facebook AI Similarity Search library [21], version 1.7.2.538

The library is particularly suited for large datasets embedded in high dimensions since it is based on a539

reliable approximate and extremely fast similarity search procedure.540
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A.3 Further results541

A.3.1 The ID shape for different pLMs architectures542

The latest developments in the application of pre-trained pLMs for the solution of diverse biological543

tasks have been fuelled by two families of models: Prot-Trans [16] and Evolutionary Scale Modelling544

(ESM) [35, 34, 29, 24]. During the last years pLMs with different architectures, number of parameters,545

and embedding sizes have been trained on several datasets obtained starting from the UniProt [10]546

database. In Fig. 5 we complement our analysis in Section 3.1 including several models whose547

architectural details and training strategies are described in Table 1. Despite the significant differences548

of the pLMs considered in the analysis, the consistency of the three-phased behavior of the ID curve549

is remarkable: an initial peak is followed by a plateau where the ID assumes low values, and the ID550

grows again to values close to the one measured after the positional embedding.551

A.3.2 Nearest neighbor search in plateau layers improves identification of protein relations552

It was recently shown in [38] that first nearest neighbor searches for remote homologous protein553

domains based on the last hidden layer representations of the ProtT5-XL-U50 pLM outperform554

state-of-the-art methods based on sequence similarity. Adapting the approach in 3.2, we mimic the555

experiment performed in Section 2 of [38] by 1) considering protein domains in SCOPe belonging to556

a super-family with at least 2 sequences, 2) setting the number of neighbors to k = 1. Considering557

representations in the plateau layer improves the accuracy of the 1-kNN homology search. In558

particular, in Fig. 5 [Right] we observe an improvement of ⇠ 6% performing the search on a plateau559

layer instead of the last layer before the output. It is important to notice that the performance gain of560

⇠ 6% is obtained without any further training.561

Figure 5: Further experiments. [Left] The ID curves for different pLMs trained on different datasets
consistently show the three-phased behavior consisting of a peak, a plateau, and a final ascent. [Right]
First nearest neighbor SCOPe super-family retrieval accuracy of Prot-T5-XL-U50 is higher in plateau
layers.

A.3.3 NO curves are robust w.r.t. the number of neighbors562

It was shown in [14], Fig. A.1 (a), that the trend of the neighborhood overlap (NO) curve is robust563

with respect to the choice of the hyperparameter k. We verify this also for pLMs and iGPT analyzing564

the NO curves of ESM-2(650M) and iGPT-L for different choices of number of neighbors k. The565

results of this analysis, reported in Fig. 6, show that the qualitative behavior of the NO curves566

is independent of k. As expected, the alignment of the neighbor composition with ground truth567

classes �l,gt
k decreases when k becomes larger. When considering the ESM-2(650M) model, due568

to the possibility of certain superfamilies having fewer than 50 elements, it is expected to observe569

significantly lower values of �l,l+1
k and �

l,gt
k when k = 50.570

A.3.4 Self-supervised pre-training is crucial for emergence of three-phased behavior571

Different models pre-trained on different datasets present a similar ID shape characterized by a572

three-phased structure, and the global picture is shared across models and datasets. In particular,573
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Figure 6: Neighborhood Overlap curves for varying hyperparameter k. [Top Left] and [Bottom Left].
The NO curves describing the overlap �

l,l+1
k between successive layers are essentially unchanged for

k < 50. [Top Right] and [Bottom Right] The NO curve �l,gt
k showing the alignment of neighborhood

composition and classification have the same qualitative behavior.

Figure 5(a) shows that the ID shape of pLMs is affected only by slight modifications when the pre-574

trained dataset passes from UniRef50 to Uniref90 (ESM-1v) or to a combination of UniRef and BFD575

(ProtT5-XL-U50). In order to inspect further the role of pre-training on the behavior of the ID curve576

we perform an experiment whose results are reported in Figure 7. We consider a Vision Transformer577

(ViT) model [15], which has a very similar architecture to iGPT, with weights obtained through the578

weakly-supervised pretraining protocol by [39] followed by fine-tuning on ImageNet-1k. One can579

observe that in this setting the ID curve changes towards matching the hunchback shape that has been580

observed by [3] in the context of convolutional neural networks trained on Imagenet-1k classification,581

even if on a different scale of ID values. This highlights the crucial role of self-supervised pre-training582

for the emergence of the three-phased behavior.583

A.3.5 ID curve of transformers for Natural Language Processing584

The complexity of language data is extraordinarily high, requiring extremely heterogeneous tasks and585

probes to fully capture it. In addition, there is another substantial discriminant that separates pLMs586

(and vision transformers) from transformers applied in the NLP domain: for pLM models, we already587

reached an overparameterization regime on the UniRef dataset, as observed by [24], while this is588

far from true in the context of language, where large LMs that are exponentially increasing in size589

are still far from saturation. Furthermore, there is scarce consensus in the literature on which is the590

most appropriate method to construct sentence-level representations (CLS token, token concatenation,591

averages across tokens, etc.). For all these reasons, the experiments we report in this Section should592

be intended as an initial experiment on the geometry of representations of language transformers that593

will require a more in-depth analysis in future work.594
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Figure 7: ID of representations of the Vision Transformer model plotted against relative depth. The
ID profile of ViT in the fist half of the self-attention blocks is characterized by a prominent peak. In
the second part, it presents a much less pronounced peak wrt iGPT followed by a progressive descent
of the ID. The fine-tuning procedure pushes the ViT ID curve towards the hunchback shape observed
in [3].

We analyze representations extracted from GPT-2 XL [32] with 1.5B parameters trained by next-token595

prediction on WebText, a specifically curated dataset selection of internet scraping from 2017. In596

particular, we report in Fig. 8 the ID curves obtained performing inference on two datasets: the597

English Penn Treebank [28] containing 38.219 sequences collected and annotated for evaluations of598

syntactic and semantic sequence-labelling tasks (Fig. 8 [Left]); the Stanford Sentiment Treebank v.2599

(SST-2) [30] consisting of 43.296 sequences from movie reviews constructed as a benchmark for a600

complete analysis of the compositional effects of sentiment in language (Fig. 8, [Right]).601

In both cases, the ID values at the last layers are very close to the initial ones. The most prominent602

feature of the ID profiles is their symmetry, which is consistent with what is observed for iGPT. In603

particular, the GPT-2 ID curve presents a single ID peak approximately in the middle of the network,604

with two small minima immediately after the input and before the output. It is important to notice605

that the ID spans a totally different range when considering different language datasets: the ID varies606

around the value 4 for the SST-2 dataset, and around 31 for the Penn Treebank dataset. This difference607

is particularly remarkable given the fact that we are considering representations of the same model;608

once again, this dissimilarity is a trace of the complexity and heterogeneity of language datasets.609

Figure 8: ID of GPT-2 XL representations plotted against relative depth for the Penn Treebank dataset
[Left], and Stanford Sentiment Treebank [Right]. The ID curves have a single ID peak approximately
in the middle of the network. The ID spans remerkably different values for the two datasets.
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