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519520

A Fully interactive model521

In this appendix, we describe how to extend our results, presented in the sequentially interactive model,522

to the more general interactive setting. We first formally define this setting and the corresponding523

notion of protocols. Hereafter, we use ⇤ for the Kleene star operation, i.e., V ⇤ =
S1

n=0
V n.524

Definition 4 (Interactive Protocols). Let X1, . . . , Xn be i.i.d. samples from p✓, ✓ 2 ⇥, and W⇤ be525

a collection of sequences of pairs of channel families and players; that is, each element of W⇤ is526

a sequence (Wt, jt)t2N where jt 2 [n]. An interactive protocol ⇧ using W⇤ comprises a random527

variable U (independent of the input X1, . . . , Xn) and, for each t 2 N, mappings528

�t : Y1, . . . , Yt�1, U 7! Nt 2 [n] [ {?}
gt : Y1, . . . , Yt�1, U 7! Wt

with the constraint that ((W1, N1), . . . , (Wt, Nt)) must be consistent with some sequence from W⇤;529

that is, there exists ((Ws, js))s2N 2 W⇤ such that Ws 2 Ws and Ns = js for all 1  s  t. These530

two mappings respectively indicate (i) whether the protocol is to stop (symbol ?), and, if not, which531

player is to speak at round t 2 N, and (ii)) which channel this player selects at this round.532

In round t, if Nt = ?, the protocol ends. Otherwise, player Nt (as selected by the protocol, based533

on the previous messages) uses the channel Wt to produce the message (output) Yt according to the534

probability measure Wt(· | XNt). We further require that T := inf { t 2 N : Nt = ? } is finite a.s.535

The messages Y T = (Y1, . . . , YT ) received by the referee and the public randomness U constitute536

the transcript of the protocol ⇧.537
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In other terms, the channel used by the player Nt speaking at time t is a Markov kernel538

Wt : Yt ⇥ X ⇥ Yt�1 ! [0, 1] ,

with Yt ✓ Y ; and, for player j 2 [n], the allowed subsequences (Wt, jt)t2N:jt=j capture the possible539

sequences of channels allowed to the player. As an example, if we were to require that any single540

player can speak at most once, then for every j 2 [n] and every (Wt, jt)t2N 2 Wn, we would have541 P1
t=1

1{jt = j}  1.542

In the interactive model, we can then capture the constraint that each player must communicate at543

most ` bits in total by letting Wn be the set of sequences (Wcomm,`t
t

, jt)t2N such that544

8j 2 [n],
1X

t=1

`t · 1{jt = j}  ` .

In the simpler sequentially interactive model, this condition simply becomes the choice of Wn =545

(Wcomm,`, . . . ,Wcomm,`).546

A.1 Lower Bounds under Full Interactive Model547

Next we discuss how our technique extends to the full interactive model. For any full interactive548

protocol ⇧, let Y ⇤ 2 Y⇤ be the message sequence generated by the protocol. Then, for all y⇤ 2 Y⇤,549

we have550

Pr
Xn⇠p

[Y ⇤ = y⇤ ] = EXn⇠p

" 1Y

t=1

Wt

�
yt | X�t(y

t�1), y
t�1�

#
.

The following lemma states that if Xn are generated from a product distribution, the distribution of551

the transcript satisfies a property similar to the “cut-and-paste” property from [6].552

Lemma 2 ([20]). If Xn ⇠ p = ⌦n

t=1
pt, the transcript of the protocol satisfies553

Pr
Xn⇠p

[Y ⇤ = y⇤ ] =
nY

t=1

EXt⇠pt [gt(y
⇤, Xt)], (16)

where gt(y⇤, xt) =
Q1

j=1
Wj(yj | xt, yj�1)1

�
�j(yj�1) = t

 
.554

Hence, when Xn ⇠ p⌦n
z

we have555

py
⇤

z
:= Pr

Xn⇠p⌦n
z

[Y ⇤ = y⇤ ] =
nY

t=1

EXt⇠pz [gt(y
⇤, Xt)].

Here we can define a similar notion of “channel” for a communication protocol ⇧ for the ith player556

when the underlying distribution is pz by setting557

W̃t,pz (y
⇤ | x) = gt(y

⇤, x)

0

@
Y

j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

1

A. (17)

Then we have, for all t 2 [n],558

EXt⇠pz

h
W̃t,pz (y

⇤ | Xt)
i
= Pr

Xn⇠p⌦n
z

[Y ⇤ = y⇤ ].

We proceed to prove a bound similar to Theorem 1 in terms of the “channel” defined in Eq. (17), as559

stated below.560

Theorem 4 (Information contraction bound). Fix ⌧ 2 (0, 1/2]. Let ⇧ be a fully interactive pro-561

tocol using Wn, and let Z be a random variable on Z with distribution Rad(⌧)⌦k. Let (Y ⇤, U)562

be the transcript of ⇧ when the input X1, . . . , Xn is i.i.d. with common distribution pZ . Then,563

under Assumption 1,564
 
1

k

kX

i=1

d
TV

⇣
pY

⇤

+i
,pY

⇤

�i

⌘!2

 7

k
↵2

nX

j=1

max
z2Z

max
(Wt,jt)t2N2Wn

kX

i=1

Z

y⇤2Y⇤

Epz

h
�z,i(X)W̃j,pz (y

⇤ | X)
i2

Epz

h
W̃j,pz (y

⇤ | X)
i dµ ,
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where pY
⇤

+i
:= E

⇥
pY

⇤

Z

�� Zi = 1
⇤
, pY

⇤

�i := E
⇥
pY

⇤

Z

�� Zi = 1
⇤
.565

We can see the bound is in identical form to Theorem 1 except that we replace each player’s channel566

with the W̃j,pz (y
⇤ | X) we defined. Other similar bounds in Section 3 can also be derived under567

additional assumptions and specific constraints. We present the proof for Theorem 4 below and omit568

the detailed statements and proof for other bounds.569

Proof. Analogously to Eq. (33), we can get570

1

k

 
kX

i=1

d
TV

⇣
pY

⇤

+i
,pY

⇤

�i

⌘!2

 14
nX

t=1

EZ

"
kX

i=1

dH
⇣
pY

⇤

Z
,pY

⇤

t Z�i

⌘2
#

(18)

For all z 2 {�1,+1}k and i, t, by the definition of Hellinger distance and Eq. (16), we have571

2dH
⇣
pY

⇤

z
,pY

⇤

t z�i

⌘2
=

Z

y⇤2Y⇤

Y

1jn
j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

✓q
EXt⇠pz�i [gt(y

⇤, Xt)]�
q
EXt⇠pz [gt(y

⇤, Xt)]

◆2

dµ


Z

y⇤2Y⇤

⇣Y

j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

⌘ (EXt⇠pz [gt(y
⇤, Xt)]� EXt⇠pz�i [gt(y

⇤, Xt)])2

EXt⇠pz [gt(y
⇤, Xt)]

!
dµ ,

Proceeding from above, we get under Assumption 1,572

2dH
⇣
pY

⇤

z
,pY

⇤

t z�i

⌘2
 ↵2

Z

y⇤2Y⇤

0

@
Y

j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

1

A
 
EXt⇠pz [�z,i(Xt)gt(y⇤, Xt)]

2

EXt⇠pz [gt(y
⇤, Xt)]

!
dµ

= ↵2

Z

y⇤2Y⇤

EXt⇠pz

h
�z,i(Xt)gt(y⇤, Xt)

Q
j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

i2

EXt⇠pz

h
gt(y⇤, Xt)

Q
j 6=t

EXj⇠pz [gj(y
⇤, Xj)]

i dµ

= ↵2

Z

y⇤2Y⇤

EXt⇠pz

h
�z,i(Xt)W̃t,pz (y

⇤ | X)
i2

EXt⇠pz

h
W̃t,pz (y

⇤ | X)
i dµ .

Plugging the above bound into Eq. (18), we can obtain the bound in Theorem 4 by taking the573

maximum over all z 2 {�1,+1}k and all possible channel sequences.574

B A measure change bound575

We here provide a variant of Talagrand’s transportation-cost inequality which is used in deriv-576

ing Eq. (5) (under Assumption 3) in the second part of Theorem 2. We note that this type of result577

is not novel, and can be derived from standard arguments in the literature (see, e.g., [9, Chapter 8]578

or [27, Chapter 4]). However, the lemma below is specifically tailored for our purposes, and we579

provide the proof for completeness. A similar bound was derived in [2], where Gaussian mean testing580

under communication constraints was considered.581

Lemma 3 (A measure change bound). Consider a random variable X taking values in X and with582

distribution P . Let � : X ! Rk be such that the random vector �(X) is �2-subgaussian. Then, for583

any function a : X ! [0,1) such that E[a(X)] < 1, we have584

kE[�(X)a(X)]k2
2

E[a(X)]2
 2�2

E[a(X) ln a(X)]

E[a(X)]
+ 2�2 ln

1

E[a(X)]
.

Proof. By an application of Gibb’s variational principle (cf. [9, Corollary 4.14]) the following holds:585

For a random variable Z and distributions P and Q on the underlying probability space satisfying586

Q ⌧ P (that is, such that Q is absolutely continuous with respect to P ), we have587

�EQ[Z]  lnEP

⇥
e�Z

⇤
+D(QkP ).
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To apply this bound, set P to be the distribution of X and let Q ⌧ P be defined using its density588

(Radon–Nikodym derivative) with respect to P given by589

dQ

dP
=

a(X)

EP [a(X)]
.

Now, note that for any unit vector v, we have, setting Z = v|�(X) and using the �2-subgaussianity590

of �(X), that591

�EQ[v
|�(X)]  lnEP

h
e�v

|
�(X)

i
+D(QkP )  �2�2

2
+ D(QkP ).

In particular, for � = 1

�

p
2D(QkP ), we get592

EQ[v
|�(X)]  �

p
2D(QkP ).

Applying this to the unit vector v := EQ[�(X)]

kEQ[�(X)]k
2

then yields593

kEQ[�(X)]k
2
 �

p
2D(QkP ).

To conclude, it then suffices to observe that594

D(QkP ) =
EP [a(X) ln a(X)]

EP [a(X)]
+ ln

1

EP [a(X)]
.

The proof is completed by combining the bounds above, as EQ[�(X)] = EP [�(X)a(X))]

EP [a(X)]
.595

C Upper bounds596

We now describe and analyze the interactive algorithms for the estimation tasks we consider.597

C.1 Product Bernoulli Distributions598

Recall that Bd,s, the family of d-dimensional s-sparse product Bernoulli distributions, is defined as599

Bd,s :=

8
<

:

dO

j=1

Rad(
1

2
(µj + 1)) : µ 2 [�1, 1]d, kµk

0
 s

9
=

; . (19)

We now provide the interactive protocols achieving the upper bounds of Theorem 3 for sparse product600

Bernoulli mean estimation under LDP and communication constraints .601

Our protocols has two ingredients described below:602

• Estimating non-zero mean coordinates.In this step we will start with S0 = [d], the set of603

all possible coordinates. Then we will iteratively prune the set S0 ! S1 ! . . . ! ST , such604

that |ST | = 3s (this step is skipped if s � d/3) is a good estimate for the set of coordinates605

with non-zero mean.606

• Estimating the non-zero means. We then estimate the means of the coordinates in ST ,607

which is equivalent to solving a dense mean estimation problem in 3s dimensions.608

In the next two sections, we provide the details of the algorithm that matches the lower bounds609

obtained in Section 5 for interactive protocols under LDP and communication constraints respectively.610

C.1.1 LDP constraints611

In this subsection, we will focus on the case " 2 (0, 1] (high-privacy regime). For the case " > 1,612

we rely a privatization of the communication-limited algorithm, which will be discussed at the end613

of Appendix C.1.2. Our protocol for Bernoulli mean estimation under LDP constraints is described614

in Algorithm 1. As stated above, in each round t = 1, . . . , T , for each j 2 St�1 a new group of615

players apply the well known binary Randomized Response (RR) mechanism [29, 24] to their jth616
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coordinate. Using these messages we then guess a set of coordinates with highest possible means (in617

absolute value) and prune the set to St. This is done in Lines 2-6 of Algorithm 1.618

In Lines 7-12, the algorithm uses the same approach to estimate the means of coordinates within ST619

and sets remaining coordinates to zero.620

The privacy guarantee follows immediately from that of the RR mechanism, and further, this only621

requires one bit of communication per player.622

Algorithm 1 LDP protocol for mean estimation for the product of Bernoulli family
Require: n players, dimension d, sparsity parameter s, privacy parameter ".

1: Set T := log
3

d

3s
, ↵ := e

"

1+e"
, S0 = [d], N0 := n

6d
.

2: for t = 1, 2, . . . , T do

3: for j 2 St�1 do

4: Get a group of new players Gt,j of size Nt = N0 · 2t.
5: Player i 2 Gt,j , upon observing Xi 2 {�1,+1}d sends the message Yi 2 {�1,+1}

such that

Yi =

⇢
(Xi)j w.p. ↵,
�(Xi)j w.p. 1� ↵.

(20)

6: Set Mt,j :=
P

i2Gt,j
Yi. Let St ✓ St�1 be the set of the |St�1|/3 indices with the

largest |Mt,j |.
7: for j 2 ST do

8: Get a group of new players GT,j , j 2 ST of size NT+1 = N0 · 2T .
9: Player i 2 GT,j , sends the message Yi 2 {�1,+1} according to Eq. (20) and MT,j :=P

i2GT,j
Yi

10: for j 2 [d] do

11:

bµj =

(
Mj,T

(2↵�1)NT+1

if j 2 ST ,
0 otherwise.

12: return bµ.

The performance guarantee of Algorithm 1 is stated below, which matches the lower bounds obtained623

in Section 5.624

Proposition 1. Fix p 2 [1,1]. For n � 1 and " 2 (0, 1], Algorithm 1 is an (n, �)-estimator625

using W" under `p loss for Bd,s with � = O

✓q
pds2/p

n"2

◆
for p  2 log s and � = O

✓q
d log s

n"2

◆
for626

p > 2 log s.627

Proof. The total number of players used by Algorithm 1 uses is628

T+1X

t=1

|St�1| ·Nt = |S0| ·N0 ·
T+1X

t=1

2t

3t�1
 6|S0| ·N0 = n.

To prove the utility guarantee, we bound the estimation error in the estimated set ST and the error629

outside the set ST in the following lemma.630

Lemma 4. Let ST be the subset obtained from the first stage of Algorithm 1. Then,631

max

8
<

:E

2

4
X

j /2ST

|µj � bµj |p
3

5,E

2

4
X

j2ST

|µj � bµj |p
3

5

9
=

; = O

 
s

✓
pd

n"2

◆p/2
!
.

The proposition follows directly from the lemma. Indeed, for p > 2 log s, by monotonicity of `p632

norms we have kµ� µ̂k
p
 kµ� µ̂k

p0 for all p0  p, and thus choosing p0 := 2 log s is sufficient to633

obtain the stated bound.634
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Proof of Lemma 4. We prove the bound on each term individually. The first term captures the635

performance of our estimator within coordinates in ST and the second term states that we do not636

“prune” too many coordinates with high non-zero means.637

Bounding the first term. For j /2 ST , we output bµj = 0. Therefore,638

E

2

4
X

j /2ST

|µj � bµj |p
3

5 =
X

j

E[|µj � bµj |p · 1{j /2 ST }] =
X

j

|µj |p · Pr[ j /2 ST ].

Since µ is s-sparse, it will suffice to show that for all j with |µj | > 0,639

|µj |p · Pr[ j /2 ST ] = O

 ✓
pd

n"2

◆p/2
!
. (21)

Let640

H := 20

s
d

n(2↵� 1)2
.

Note that for " 2 (0, 1], we have 2↵� 1 � e�1
e+1

". Therefore, if |µj |  H , then Eq. (21) holds since641

Pr[ j /2 S ]  1. We hereafter assume |µj | > H , and let µj = �jH with �j > 1. Let Et,j be the642

event that coordinate j is removed in round t given that j 2 St�1. Then we have643

Pr[ j /2 ST ] 
TX

t=1

Pr[Et,j ].

We proceed to bound each Pr[Et,j ] separately. Note that for i 2 Gt,j , Yi 2 {�1,+1} and by Eq. (20)644

E[Yi] = (2↵� 1) · µj = (2↵� 1)�jH. (22)

Let at,j be the number of coordinates j0 with µj0 = 0 and |Mt,j0 | � 1

2
Nt(2↵ � 1)�jH . Since we645

select the |St�1|/3 coordinates with the largest magnitude of the sum, for j /2 St to happen at least646

one of the following must occur: (i) at,j > 1

3
|St�1|� s, or (ii) Mt,j <

1

2
Nt(2↵� 1)�jH .647

By Hoeffding’s inequality, we have648

Pr


Mt,j <

1

2
Nt(2↵� 1)�jH

�
 exp

✓
�1

8
Nt((2↵� 1)�jH)2

◆
< exp

�
�5 · 2t�2

j

�
.

Let pt,j := e�5·2
t
�
2

j . Similarly, for any j0 such that µj0 = 0,649

Pr


|Mt,j0 | �

1

2
Nt(2↵� 1)�jH

�
 2pt,j .

Since all coordinates are independent, at,j is binomially distributed with mean at most 2pt,j |St�1|.650

By Markov’s inequality, we get651

Pr


at,j >

1

3
|St�1|� s

�
 E[at,j ]

|St�1|/3� s
 pt,j ,

recalling that |St�1| = d3t�1 � 9s. By a union bound and summing over t 2 [T ], we get652

Pr[ j /2 ST ] 
TX

t=1

Pr[Et,j ] 
TX

t=1

3pt,j = 3
TX

t=1

exp
�
�2t · 5�2

j

�
 6 exp

�
�5�2

j

�
.

Not that for x > 0, xpe�x
2 

�
p

2e

�p/2. Hence653

|µj |p · Pr[ j /2 ST ]  6Hp�p

j
e�5�

2

j 
✓
C

pd

n"2

◆p/2

,

for some absolute constant C > 0, completing the proof.654

Bounding the second term. Note that ST is a random variable itself. We show that the bound holds655

for any realization of ST . We need the following result which follows from standard moment bounds656

on binomial distributions.657
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Fact 1. Let p � 1, m 2 N, 0  q  1, and N ⇠ Bin(m, q). Then, E[|N �mq|p]  2�p/2mp/2pp/2658

.659

Applying this with m = NT � n

6d
, the transformation from Bernoulli to {�1,+1}, and the scaling660

by 2↵� 1, yields for j 2 ST , and using Eq. (22)661

E[|µj � bµj |p] 
✓

p

(n/6d)(2↵� 1)2

◆p/2

.

Upon summing over j 2 ST , we obtain662

E

2

4
X

j2ST

|µj � bµj |p
3

5  3s ·
✓

6(e+ 1)2d

(e� 1)2n"2

◆p/2

 3 · 6p · s
✓

pd

n"2

◆p/2

.

C.1.2 Communication constraints663

In Algorithm 2 we propose a protocol to estimate the mean of product Bernoulli distributions under664

`-bit communication constraints. As mentioned in the previous subsection, the "-LDP algorithm with665

" > 1 will follow from a simple modification of the communication-constrained one; we discuss666

how to privatize the latter to obtain the former at the end of the section. As in the LDP case when667

" 2 (0, 1], in 2–10 the algorithm iteratively prunes an initial set S0 = [d] to obtain a set ST of size668

max{3s, `}, which denotes the set of potential non-zero coordinates. We then estimate the mean669

of coordinates in ST . If ` > 3s, then we can directly send the values of all coordinates in ST and670

use it for estimation; otherwise, when 3s > `, we again partition ST into sets of size ` and each671

player sends the bits of its sample in this set. This is done in Lines 11–18. We state the performance672

of Algorithm 2 below.673

Proposition 2. Fix p 2 [1,1]. For n � 1 and `  d, we have Algorithm 2 is an (n, �)-estimator674

using W` under `p loss for Bd,s with � = O

✓q
pds2/p

n`
+ (p+log(2`/s))s2/p

n

◆
for p  2 log s and675

� = O

✓q
d log s

n`
+ log `

n

◆
for p > 2 log s.676

When `  3s, the bound we get is � .
q

pds2/p

n`
. The analysis is almost identical to the case under677

LDP constraints, since in both cases, the information we get about coordinate j are samples from a678

Rademacher distribution with mean (2↵� 1)µj . There are only two differences. (i) ↵ = 1 instead of679

⇥
�
"2
�
. (ii) There is a factor of ` more players in the corresponding groups. Combing both factors,680

we can obtain the desired bound by replacing "2 by `. We omit the detailed proof in this case.681

When ` > 3s, after T ⇣ log(d/`) rounds, we can find a subset ST of size ` which contains most of682

the coordinates with large biases. The protocol then asks new players to send all coordinates within683

ST using ` bits. In this case, it would be enough to prove Lemma 5 since for the coordinates outside684

ST , we can show the error is small following exactly the same steps as the proof for bouding the first685

term in Lemma 4 as we explained in the case when `  3s.686

Lemma 5. Let ST be the subset obtained from the first stage of Algorithm 2, we have687

E

2

4
X

j2ST

|µj � bµj |p
3

5 = O

0

@s

 
p+ log 2`

s

n

!p/2
1

A.

Proof. Similar to Lemma 4, we will prove that the statement is true for any realization of ST , which688

is a stronger statement than the claim.689
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|µj � bµj |p
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X

j2ST

|µj |p Pr[ j /2 ST+1 ].
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Algorithm 2 `-bit protocol for estimating product of Bernoulli family
Require: n players, dimension d, sparsity parameter s, communication bound `.

1: Set T := log
3
(d/max{3s, `}), S0 := [d], N0 := n`

18d
.

2: for t = 1, 2, . . . , T do

3: Set P := d

3t�1`
, and partition St�1 into P subsets St�1,1, . . . , St�1,P , each of size `.

4: for j = 1, 2, . . . , P do

5: Get a group of new players Gt,j of size Nt = N0 · 2t.
6: Player i 2 Gt,j , upon observing Xi 2 {�1,+1}d sends the message Yi =

{(Xi)x}x2St�1,j .
7: For x 2 St�1,j , let Mt,x :=

P
i2Gt,j

(Xi)x.

8: Set St ✓ St�1 to be the set of indices with the largest |Mt,x| and |St| = |St�1|/3.
9: if `  3s then

10: Partition ST into 3s/` subsets of size ` each, ST,j , j 2 [3s/`].
11: for j = 1, . . . , 3s/` do

12: Get a new group GT+1,j of players of size n`/(6s).
13: Player i 2 GT+1,j , sends the message Yi = {(Xi)x}x2ST,j .
14: For x 2 ST,j , let MT+1,x =

P
i2GT+1,j

(Xi)x. Set

bµx :=
6s

n`
MT+1,x,

15: For x /2 ST , set bµx = 0.
16: if ` > 3s then,
17: Get n/2 new players GT+1 and for i 2 GT+1, player i sends Yi = {(Xi)x}x2ST . This can

be done since |ST | = ` if ` > 3s.
18: For x 2 ST , let MT+1,x =

P
i2GT+1,j

(Xi)x. Set ST+1 ✓ ST to be the set of indices with
the largest |MT+1,x| and |ST+1| = 3s. For all x 2 ST+1, set

bµx :=
2

n
MT+1,x,

and for all x /2 ST+1, bµx = 0.
19: return bµ.

Fix ST+1. For each j 2 ST+1, MT+1,j is binomially distributed with mean µj and n/2 trials. By690

similar computations as Lemma 4, we have691

E

2

4
X

j2ST+1

|µj � bµj |p
3

5 = O

✓
s
⇣ p
n

⌘p/2◆
. (23)

Next we show for all j 2 ST such that µj 6= 0,692

|µj |p Pr[ j /2 ST+1 ]  2

 
p _ 64 ln 2`

s

n

!p/2

. (24)

If |µj |  H 0 := 8
q

ln
2`
s

n
, Eq. (24) always holds since Pr[ j /2 S ]  1. Hence we hereafter assume693

that |µj | > H 0, and write µj = �jH 0 for some �j > 1.694

Let aT+1,j be the number of coordinates j0 with µj0 = 0 and |MT+1,j0 | � n

2
· �jH

0

2
. Then since695

ST+1 contains the top 3s coordinates with the largest magnitude of the sum, we have j /2 ST+1696

happens only if at least one of the following occurs (i) aT+1,j > 2s, or (ii) MT+1,j <
n

2
· �jH

0

2
.697

By Hoeffding’s inequality, we have698

Pr


MT+1,j <

n

2
· �jH

0

2

�
 exp

 
�1

2
· n
2
·
✓
�jH 0

2

◆2
!

=

✓
2`

s

◆�4�2

j

:= pT+1,j .
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Similarly, for any j0 such that µj0 = 0,699

Pr


|MT+1,j0 | �

n

2
· �jH

0

2

�
 2pT+1,j .

Since all coordinates are independent, aT+1,j is binomially distributed with mean at most 2pT+1,j`,700

and therefore, by Markov’s inequality,701

Pr[ aT+1,j > 2s ]  2pT+1,j`

2s

✓
2`

s

◆1�4�2

j


✓
2`

s

◆�3�2

j

the last step since �j > 1. By a union bound, we have702

Pr[ j /2 ST ]  Pr[ aT+1,j > 2s ] + Pr


MT+1,j <

1

4

n

2
· �jH

0

2

�
 2

✓
2`

s

◆�3�2

j

.

Using the inequality xpa�x
2 

�
p

2e ln a

�p/2 which holds for all x > 0, we get overall703

|µj |p · Pr[ j /2 ST ]  2H 0p�p

j

✓
2`

s

◆�4�2

j

 2
⇣ p

en

⌘p/2
,

establishing Eq. (24). Combining Eq. (23) and Eq. (24) concludes the proof Lemma 5 since there are704

at most s unbiased coordinates.705

Algorithm under LDP with " > 1 To get a "-LDP algorithm in the regime " > 1 (low-privacy706

regime), we perform the following changes to obtain a private algorithm from Algorithm 2:707

• Each user independently flips each coordinate of their local sample to get Zi where, for all708

x 2 [d], (Zi)x = (Xi)x with probability e

e+1
and (Zi)x = 1� (Xi)x with probability 1

e+1
709

(note that this corresponds to applying Randomized Response independently to each bit710

with privacy parameter 1).711

• Users then follow Algorithm 2 with the setting ` = b"c and local data {Zi}i2[n], and obtain712

estimate bµ.713

• The final estimate is then e+1

e�1 bµ.714

The privacy guarantee of the algorithm comes from the fact that Algorithm 2 sends at most ` = b"c715

coordinates of each Zi, and for any S with |S|  b"c716

Pr[ {(Zi)x}x2S | Xi ]

Pr[ {(Zi)x}x2S | X 0
i
]
=
Y

x2S

Pr[ (Zi)x | (Xi)x ]

Pr[ (Zi)x | (X 0
i
)x ]

 eb"c.

The utility guarantee follows from observing that µZ = e�1
e+1

µ and hence any `p error guarantee will717

be preserved up to a constant.718

C.2 Gaussian Mean Estimation719

Recall that Gd,s denotes the family of d-dimensional spherical Gaussian distributions with s-sparse720

mean in [�1, 1]d, i.e.,721

Gd,s = { G(µ, I) : kµk1  1, kµk
0
 s } . (25)

We will prove the following results for LDP and communication constraints, respectively.722

Proposition 3. Fix p 2 [1,1]. For n � 1 and " 2 (0, 1], there exists an (n, �)-estimator using723

W" under `p loss for Gd,s with � = O

✓q
pds2/p

n"2

◆
for p  2 log s and � = O

✓q
d log s

n"2

◆
for724

p > 2 log s.725

Proposition 4. Fix p 2 [1,1]. For n � 1 and `  d, there exists an (n, �)-estimator using726

W` under `p loss for Gd,s with � = O

✓q
pds2/p

n`
+ (p+log(2`/s))s2/p

n

◆
for p  2 log s and � =727

O

✓q
d log s

n`
+ log `

n

◆
for p > 2 log s.728
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We reduce the problem of Gaussian mean estimation to that of Bernoulli mean estimation and then729

invoke Propositions 1 and 2 from the previous section. At the heart of the reduction is a simple idea730

that was used in, e.g., [10, 2, 11]: the sign of a Gaussian random variable already preserves sufficient731

information about the mean. Details follow.732

Let p 2 Gd,s with mean µ(p) = (µ(p)1, . . . , µ(p)d). For X ⇠ p, let Y = (sign(Xi))i2[d] 2733

{�1,+1}d be a random variable indicating the signs of the d coordinates of X . By the independence734

of the coordinates of X , note that Y is distributed as a product Bernoulli distribution (in Bd) with735

mean vector ⌫(p) given by736

⌫(p)i = 2 Pr
X⇠p

[Xi > 0 ]� 1 = Erf

✓
µ(p)ip

2

◆
, i 2 [d], (26)

and, since |µ(p)i|  1, we have ⌫(p) 2 [�⌘, ⌘]d, where ⌘ := Erf
�
1/

p
2
�
⇡ 0.623. Moreover, it737

is immediate to see that each player, given a sample from p, can convert it to a sample from the738

corresponding product Bernoulli distribution. We now show that a good estimate for ⌫(p) yields a739

good estimate for µ(p).740

Lemma 6. Fix any p 2 [1,1), and p 2 Gd. For b⌫ 2 [�⌘, ⌘]d, define bµ 2 [�1, 1]d by bµi :=741 p
2Erf�1(b⌫i), for all i 2 [d]. Then742

kµ(p)� bµk
p

r

e⇡

2
· k⌫(p)� b⌫k

p
.

Proof. By computing the maximum of its derivative,7 we observe that the function Erf�1 is
p
e⇡

2
-743

Lipschitz on [�⌘, ⌘]. By the definition of bµ and recalling Eq. (26), we then have744

kµ(p)� bµkp
p
=

dX

i=1

|µ(p)i � bµi|p = 2p/2 ·
dX

i=1

��Erf�1(⌫i)� Erf�1(b⌫i)
��p 

⇣e⇡
2

⌘p/2
·

dX

i=1

|⌫i � b⌫i|p,

where we used the fact that ⌫, b⌫ 2 [�⌘, ⌘]d.745

As previously discussed, combining Lemma 6 with Propositions 1 and 2 (with �0 :=
q

2

e⇡
�)746

immediately implies Propositions 3 and 4 for p 2 [1,1].747

Remark 3. Note that for the Gaussian family, we also consider the linear measurement constraint.748

Under linear measurement constraints, we can use the linear measurement matrix to obtain r out of d749

coordinates and perform the above reduction to product of Bernoulli family. The obtained bound will750

be same as that under communication constraints.751

D Relation to other lower bound methods752

We now discuss how our techniques compare with other existing approaches for proving lower bounds753

under information constraints. Specifically, we clarify the relationship between our technique and754

the approach using strong data processing inequalities (SDPI) as well as that based on van Trees755

inequality (a generalization of the Cramér–Rao bound).756

D.1 Strong data processing inequalities757

We note first that the bound in Eq. (5) can be interpreted as a strong data processing inequality. Indeed,758

the average discrepancy on the left-side of inequality can be viewed as the average information Y n759

reveals about each bit of Z. Here the information is measured in terms of total variation distance.760

The information quantity on the right-side denotes the information between the input Xn and the761

output Y n of the channels. Since the Markov relation Zn — Xn — Y n holds, the inequality is762

thus a strong data processing inequality with strong data processing constant roughly �2/k. Such763

7Specifically, we have that maxx2[�⌘,⌘] Erf
�1(x) = 1/

p
2 by definition of ⌘ and monotonicity of Erf .

Recalling then that, for all x 2 [�⌘, ⌘], (Erf�1)0(x) = 1
Erf0(Erf�1(x))

=
p
⇡
2 e(Erf�1(x))2 

p
⇡
2 e

1

2 , we get the
Lipschitzness claim.
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strong data processing inequalities were used to derive lower bounds for statistical estimation under764

communication constraints in [34, 10, 31]. We note that our approach recovers these bounds, and765

further applies to arbitrary constraints captured by W .766

D.2 Connection to the van Trees inequality767

The average information bound in (3), in fact, allows us to recover bounds similar to the van Trees768

inequality-based bounds developed in [7] and [8].769

For ⇥ ⇢ Rk and a parametric family8 P⇥ = {p✓, ✓ 2 ⇥}, recall that the Fisher information matrix770

J(✓) is a k ⇥ k matrix given by, under some mild regularity conditions,771

J(✓)i,j = �Ep✓


@2 logp✓
@✓i@✓j

(X)

�
, i, j 2 [k].

In particular, the diagonal entries equal772

J(✓)i,i = Ep✓

"✓
1

p✓(X)
· @p✓
@✓i

(X)

◆2
#
, i 2 [k].

For our application, given a channel W 2 W , we consider the family PW

⇥
:= {pW

✓
, ✓ 2 ⇥} of773

distributions induced on the output of the channel W when the input distributions are from P⇥. We774

denote the Fisher information matrix for this family by JW (✓), which we compute next under a775

refined version of our Assumption 1 described below.776

Let ✓ be a point in the interior of ⇥ and p✓ be differentiable at ✓. We set ✓z := ✓+ �

2
z, z 2 {�1,+1}k,777

and make the following assumption about the structure of the parametric family of distribution: For778

all z 2 {�1,+1}k and i 2 [k],779

dpz�i

dpz

= 1 + �⇠�
z,i

+ �2 �
z,i
, (27)

where Epz

⇥
⇠�
z,i
(X)2

⇤
and Epz

⇥
 �
z,i
(X)2

⇤
are assumed to be uniformly bounded for � sufficiently780

small; for concreteness, we assume Epz

⇥
 �
z,i
(X)2

⇤
 c2 for a constant c, for all � sufficiently small.781

Let ⇠z,i(x) := lim�!0 ⇠
�

z,i
(x), for all x.782

In applications, we expect the dependence of ⇠�
z,i

on � to be “mild,” and, in essence, the assumption783

above provides a linear expansion of the term ↵z,i�z,i from Assumption 1 as a function of the784

perturbation parameter �. Assuming that the densities are differentiable as a function of ✓, for the785

distribution pW

✓
of the output of a channel W with input X ⇠ p✓, we get786

@pW

✓
(y)

@✓i
= zi lim

�!0

pW

✓z
(y)� pW

✓z�i
(y)

�

= zi lim
�!0

Epz

⇥
(⇠�

z,i
(X) + � �

z,i
(X))W (y | X)

⇤

= ziEp✓ [⇠z,iW (y | X)],

where we used Eq. (27), the fact that lim�!0 ✓z = ✓, the fact that Epz

⇥
 �
z,i
(X)W (y | X)

⇤
787

c
p

Epz [W (y | X)2]  c, and the dominated convergence theorem. Thus, we get788

Tr
�
JW (✓)

�
=

kX

i=1

Z

Y

Ep✓ [⇠z,i(X)W (y | X)]2

Ep✓ [W (y | X)]
dµ . (28)

Our information contraction bound will be seen later (Section 5) to yield lower bounds for expected789

estimation error. For concreteness, we give a preview of a version here. We assume for simplicity790

that Wt = W for all t and consider the `2 loss function for the dense (⌧ = 1/2) case. By following791

8We assume that each distribution p✓ has a density with respect to a common measure ⌫, and, with a slight
abuse of notation, denote the density of p✓ also by p✓(X).
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the proof of Lemma 1 below, given an (n, �)-estimator ✓̂ = ✓̂(Y n, U) of P⇥ using Wn under `2 loss,792

we can find an estimator Ẑ = Ẑ(Y n, U) such that793

�2
kX

i=1

Pr
h
Ẑi 6= Zi

i
= E

h��✓
Z
� ✓

Ẑ

��2
2

i
 4�2,

whereby794

1

k

kX

i=1

d
TV

⇣
pY

n

+i
,pY

n

�i

⌘
� 1� 2

k

kX

i=1

Pr
h
Ẑi 6= Zi

i
� 1� 8�2

k�2
.

Upon setting � := 4�/
p
k, we get that the left-side of Eq. (3) is bounded below by 1/4. For the same795

� and under Eq. (27), the right-side evaluates to796

4�2n

k
max
z2Z

max
W2W

kX

i=1

Z

Y

Epz

⇥
(⇠�

z,i
(X) + � �

z,i
(X))W (y | X)

⇤2

Epz [W (y | X)]
dµ

 8�2n
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Z

Y

Epz
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z,i
(X)W (y | X)

⇤2
+ �2Epz

⇥
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z,i
(X)W (y | X)

⇤2

Epz [W (y | X)]
dµ

 128�2n
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z2Z

max
W2W

kX

i=1

Z

Y

Epz

⇥
⇠�
z,i
(X)W (y | X)

⇤2

Epz [W (y | X)]
dµ+ c2�2

!
,

where we used (a+ b)2  2(a2 + b2) and797

Z

Y

Epz

⇥
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z,i
(X)W (y | X)

⇤2

Epz [W (y | X)]
dµ 

Z

Y
Epz

⇥
 �
z,i
(X)2W (y | X)

⇤
dµ = Epz

⇥
 �
z,i
(X)2

⇤
 c2.

Therefore, Eq. (3) yields798

�2 � k2

256 · n
✓
maxz2Z maxW2W

P
k

i=1

R
Y

Epz [⇠
�
z,i(X)W (y|X)]2

Epz [W (y|X)]
dµ+ c2

◆ .

This bound is, in effect, the same as the van Trees inequality with Tr
�
JW (✓)

�
replaced by799

g(�) :=
kX

i=1

Z

Y

Epz [�z,i(X)W (y | X)]2

Epz [W (y | X)]
dµ .

In fact, in view of Eq. (28), Tr
�
JW (✓)

�
= lim�!0 g(�) =: g(0). Thus, our general lower800

bound will recover van Trees inequality-based bounds when Eq. (27) holds and g(�) ⇡ g(0).801

We note that Eq. (27) holds for all the families considered in this paper (see Eq. (37) for product802

Bernoulli, Eq. (42) for Gaussian, and Eq. (50) for discrete distributions). We close this discussion by803

noting that results in Section 3 are obtained by deriving bounds for g(�) which apply for all � and,804

therefore, also for g(0) = Tr
�
JW (✓)

�
.805

E Missing proofs in Section 3806

E.1 Proof of Theorem 1807

Consider Z = (Z1, . . . , Zk) 2 {�1, 1}k where Z1, . . . , Zk are i.i.d. with Pr[Zi = 1 ] = ⌧ . For a808

fixed i 2 [k], let809

pY
n

+i
:= EZ

h
pY

n

Z
| Zi = +1

i
=

X

z:zi=+1

⇣Y

j 6=i

⌧
1+zj
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2
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n
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pY
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⌘
pY
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z
,
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the partial mixtures of message distributions conditioned on Zi. We will rely on the following810

lemma, which relates the desired average discrepancy between the pY
n

+i
and pY

n

�i ’s to the sum of n811

“local” discrepancy measures (in the form of Hellinger distances between local messages). Each local812

measure can then be easily bounded in terms of the density pz and the channel W to get the desired813

bound.814

Lemma 7. With the notation of Theorem 1, we have815
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kX
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d
TV
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,pY
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W2Wt

kX

i=1

dH
�
pW

z
,pW

z�i

�2
, (29)

where pW

z
denotes the distribution of Y ⇠ W (· | X) when X ⇠ pz .816

The proof of the lemma is rather involved and constitutes the core of the argument. We defer it to the817

end of the section and show first how it implies Theorem 1. For all z and W , we have818
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A
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dµ

 1

2
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Y

(Epz [W (y | X)]� Epz�i [W (y | X)])2

Epz [W (y | X)]
dµ . (30)

Moreover, under Assumption 1; for any W 2 Wt and y 2 Y ,819

Epz�i [W (y | X)] = Epz


dpz�i

dpz

·W (y | X)

�
= Epz [(1 + �z,i(X)) ·W (y | X)] .

Plugging this back into (30), we get820
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�2  1

2
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Y

Epz [�z,i(X)W (y | X)]2

Epz [W (y | X)]
dµ .

Combining this with Lemma 7 concludes the proof of Theorem 1.821

Proof of Lemma 7. Our first step is to use the Cauchy–Schwarz inequality, followed by an inequality822

relating total variation and Hellinger distances:823
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, (31)

where the last inequality uses joint convexity of squared Hellinger distance, and the final824

identity is due to independence of each coordinate of Z and symmetry of Hellinger whereby825

EZ

h
dH
�
pY

n

Z
,pY

n

Z�i

�2 | Zi = +1
i
= EZ

h
dH
�
pY

n

Z
,pY

n

Z�i

�2 | Zi = �1
i
.826

In order to bound the resulting terms of the sum, we will rely on the so-called cut-paste property of827

Hellinger distance [6]. Before doing so, we will require an additional piece of notation: for fixed828

z 2 Z , i 2 [k], t 2 [n], let pY
n

t z�i denote the message distribution where player t gets a sample from829
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pz�i and all other players get samples from pz . That is, for all yn 2 Yn, the density of pY
n

t z�i with830

respect to the underlying product measure µ⌦n is given by831

dpY
n

t z�i

dµ⌦n
(yn) = EXt⇠pz�i

h
W y

t�1

(yt | Xt)
i
·
Y

j 6=t

EXj⇠pz

h
W y

j�1

(yj | Xj)
i
. (32)

The following lemma, due to [22], allows us to relate dH
�
pY

n

z
,pY

n

z�i

�
, the distance between mes-832

sage distributions when all players get observations from pz , or all from pz�i , to the distances833

dH
�
pY

n

z
,pY

n

t z�i

�
where only one of the n players gets a sample from pz�i .834

Lemma 8 ([22, Theorem 7]). There exists cH > 0 such that for all z 2 Z and i 2 [k],835
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Moreover, one can take cH = 2
Q1

t=1

1

1�2�t < 7.836

Combining Eq. (31) and Lemma 8, we get837
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In view of bounding the RHS of (33) term by term, fix j 2 [n] and z 2 Z . Recalling the expression838

of pY
n

t z�i from (32), unrolling the definition of Hellinger distance, and recalling (32), we have839
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where the second-to-last identity uses the observation that, for any fixed yt 2 Yt,840
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which in turn follows upon taking marginal integrals for each coordinate. We then get from the841

pointwise inequality
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the second identity follows upon taking marginal integrals, and by replacing fi,t by its definition;843

and the second inequality using that
n
W y

0
: y0 2 Yt�1

o
✓ Wt, so that we are taking a supremum844

over a larger set.845

Plugging this back into (33) and upper bounding the inner expectation by a maximum concludes the846

proof of the lemma.847

E.2 Proof of Theorem 2848

Our starting point is Eq. (3) which holds under Assumption 1. We will bound the right-hand-849

side of Eq. (3) under assumptions of orthogonality and subgaussianity to prove the two bounds850

in Theorem 2.851

First, under orthogonality (Assumption 2), we apply Bessel’s inequality to Eq. (3). For a fixed852

z 2 Z , write  z,i =
�z,iq

Epz [�2

z,i]
, and complete (1, z,1, . . . , z,k) to get an orthonormal basis B for853

L2(X ,pz). Fix any W 2 W and y 2 Y , and, for brevity, define a : X ! R as a(x) = W (y | x).854

Then, we have855
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ha� E[a], i2 = ↵2 Var[a(X)],

where for the second identity we used the assumption that hE[a], z,ii = 0 for all i 2 [k] (since 1856

and  z,i are orthogonal). This establishes Eq. (4).857

Turning to Eq. (5), suppose that Assumption 3 holds. Fix z 2 Z , and consider any W 2 W and y 2 Y .858

Upon applying Lemma 4 of the Supplement (See Supplement (Appendix B) for the precise statement859

and proof) to the �2-subgaussian random vector �z(X) and with a(x) set to W (y | x) 2 [0, 1], we860

get that861
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Integrating over y 2 Y , this gives862
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which yields the claimed bound.863

E.3 Proof of Corollary 1864

For any W 2 Wpriv,", the "-LDP condition from Eq. (2) can be seen to imply that, for every y 2 Y ,865

W (y | x1)�W (y | x2)  (e" � 1)W (y | x3), 8x1, x2, x3 2 X .

By taking expectation over x3 then again either over x1 or x2 (all distributed according to pz), this866

yields867
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Squaring and taking the expectation on both sides, we obtain868
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thus establishing (6). For the bound of e", observe that, for all y 2 Y ,870
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The bound (7) (under Assumption 3) will follow from (5), and the relation between differential privacy872

and KL divergence. Indeed, the mutual information I(pz;W ) can be rewritten as the expected (over873

X ⇠ pZ) KL divergence between the distribution pW,X := W (· | X) over Y induced by the874

channel W on input X , and the distribution pW

Z
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distribution pz and the channel W :876
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but the "-LDP condition from Eq. (2) guarantees that the log-likelihood ratio in the inner expectation877

is (almost surely) at most ", so that I(pz;W )  " for every z and W 2 Wpriv,". This yields (7).878

E.4 Proof of Corollary 2879

In view of (4), to establish (8), it suffices to show that Varpz [W (y|X)]

Epz [W (y|X)]
 1 for every y 2 Y . Since880
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The second bound (under Assumption 3) will follow from (5). Indeed, recalling that the entropy of882

the output of a channel is bounded below by the mutual information between input and the output,883

we have I(pz;W )  H(pW

z
), where pW

z
:= Epz [W (· | X)] is the distribution over Y induced by884

the input distribution pz and the channel W . Using the fact that the entropy of a distribution over Y885

is at most log |Y| in (5) gives (9).886
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F Missing proofs in Section 4887

F.1 Proof of Lemma 1888

Given an (n, �)-estimator (⇧, ✓̂), define an estimate Ẑ for Z as889

Ẑ := argmin
z2Z

���✓z � ✓̂(Y n, U)
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.

By the triangle inequality,890

��✓
Z
� ✓

Ẑ
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Since (⇧, ✓̂) is an (n, �)-estimator under `p loss for P⇥,891

EZ

h
EpZ

h��✓
Z
� ✓

Ẑ
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where Eq. (35) follows from Assumption 4 and Pr[pZ 2 P⇥ ] � 1 � ⌧/4. Next, for p 2 [1,1),892

by Assumption 4,
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Furthermore, since the Markov relation Zi � (Y n, U) � Ẑi holds for all i, we can lower bound895
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using the standard relation between total variation distance and hypothesis testing as896

follows, using that ⌧  1/2 in the second inequality:897
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Ẑi = �1

��� Zi = 1
i
+ (1� ⌧) Pr

h
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Summing over 1  i  k and combining it with the previous bound, we obtain898

3

4
� 1

⌧k

kX

i=1

Pr
h
Zi 6= Ẑi
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and reorganizing proves the result.899

G Missing statements and proofs in Section 5900

G.1 Proof of Theorem 3901

Fix p 2 [1,1). Let k = d, Z = {�1,+1}d, and ⌧ = s

2d
; and suppose that, for some � 2 (0, 1/8],902

there exists an (n, �)-estimator for Bd,s under `p loss. We fix a parameter � 2 (0, 1/2], which will be903

chosen as a function of �, d, p later. Consider the set of 2d product Bernoulli distributions {pz}z2Z ,904

where µ(pz) = µz := 1

2
�(z + 1d) (so the sparsity of the mean vector is equal to the number of905

positive coordinates of z). We have, for z 2 Z ,906

pz(x) =
1

2d
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✓
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◆
, x 2 X .
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It follows for z 2 Z and i 2 [d] that907
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where �z,i(x) := � �zixi
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2
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. We can verify that, for i 6= j,908
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so that Assumptions 1 and 2 are satisfied for ↵2 := 2�2. Moreover, using, e.g., Hoeffding’s909

lemma (cf. [9]), for � < 1, the random vector �z(X) = (�z,i(X))i2[d] is �
2

(1��2)2
-subgaussian.910

Thus, Assumption 3 holds as well, and we can invoke both parts of Theorem 2.911

Let kzk
+
:= |{i 2 [d] | zi = 1}|, so that kµzk0 =

P
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i=1

1

2
(1 + zi) = kzk

+
. The next claim, which912

follows from standard bounds for binomial random variables, states that when Z ⇠ Rad(⌧)⌦d, µZ is913

s-sparse with high probability.914

Fact 2. Let Z ⇠ Rad(⌧)⌦d, where ⌧d � 4 log d. Then Pr
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 2⌧d

⇤
� 1� ⌧/4.915

Hence the construction satisfies PrZ [pZ 2 Bd,s ]  1� ⌧/4, as required in Lemma 1.916

We now choose � = �(p) := 4�

(s/2)1/p
2 (0, 1/2], which implies that Assumption 4 holds since917

`p(µ(pz), µ(pz0)) = � dHam(z, z
0)
1/p

= 4�

✓
dHam(z, z0)
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◆1/p

.

Therefore, we can apply Lemma 1 as well. For Wpriv,", we prove the two parts of the lower bound918

separately, depending on whether "  1. First, upon combining the bounds obtained by Corollary 1919

and Lemma 1 (specifically, for the former, (6)), we get920

d  112n↵2(e" � 1)2,

whereby, upon recalling that ↵2 = 2�2, and using the value of � = �(p) above, it follows that921
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for " 2 (0, 1]. For the second part of the bound, which922

dominates for " > 1, observe that Assumption 3 holds with �2 := �
2

(1��2)2
 2�2; allowing us to923

apply the second part of Corollary 1, (7), which as before combined with Lemma 1 yields924

d  224n�2"  448n�2",

and again from the setting of � we get Ep(Bd,s,Wpriv,", n) = ⌦
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.925

Similarly, for Wcomm,`, again since Assumption 3 holds with �2  2�2, upon combining the bounds926

obtained by Corollary 2 and Lemma 1, we get927

ds
2

p

28672n`
 �2,

which gives Ep(Bd,s,Wcomm,`, n) = ⌦
�q

ds2/p

n`
^ 1
�
. Finally, note that for ` � d, the lower928

bound follows from the minimax rate in the unconstrained setting, which can be seen to be929

⌦
�p

s2/p log(2d/s)/n
�

[28, 30]. This completes the proof.930

This handles the case p 2 [1,1). For p = 1, the lower bounds immediately follow from plugging931

p = log s in the previous expressions, as discussed in Footnote 3.932
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G.2 Detailed results for Gaussian family933

Similar to the previous section, we denote the mean by µ instead of ✓, denote the estimator by µ̂, and934

consider the minimax error rate Ep(Gd,s,W, n) of mean estimation for P⇥ = Gd,s using W under `p935

loss.936

We derive a lower bound for Ep(Gd,s,W, n) under local privacy (captured by W = Wpriv,") and937

communication (captured by W = Wcomm,`) constraints.9 Recall that for product Bernoulli mean938

estimation we had optimal bounds for both privacy and communication constraints for all finite939

p. For Gaussians, we will obtain tight bounds for privacy constraints for " 2 (0, 1]. However, for940

communication constraints and privacy constraints when " � 1, our bounds for Gaussian distributions941

are tight only in specific regimes of n up to logarithmic factors. We state our general result and942

provide some remarks before providing the proofs.943

We defer the estimation schemes and their analysis (i.e., upper bounds) to the Supplement (Ap-944

pendix C.2); they follow from a simple reduction from the Gaussian estimation problem to the945

product Bernoulli one, which enables us to invoke the protocols for the latter task in both the946

communication-constrained and locally private settings.947

Theorem 5. Fix p 2 [1,1). For 4 log d  s  d, under LDP constraints, when " 2 (0, 1],948
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and when " > 1,949
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Under communication constraints,950
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For p = 1, we have the upper bounds951

E1(Gd,s,Wpriv,", n) = O

 r
d log s

n"2

!
and E1(Gd,s,Wcomm,`, n) = O

 r
d log s

n`
_ log d

n

!
,

while the lower bounds given in Eqs. (38), (39), and (40) hold for p = 1, too.10952

We emphasize that, as discussed in Sections 1.1 and 1.2, to the best of our knowledge Theorem 5953

provides the first lower bounds for interactive Gaussian mean estimation under communication and954

privacy constraints.955

Proof of Theorem 5. Let ' denote the probability density function of the standard Gaussian dis-956

tribution G(0, I). Fix p 2 [1,1). Let k = d, Z = {�1,+1}d, and ⌧ = s

2d
; and suppose that,957

for some � 2 (0, 1/8], there exists an (n, �)-estimator for Gd,s under `p loss. We fix a param-958

eter � := �(p) := 4�

(s/2)1/p
2 (0, 1/2], and consider the set of distributions {pz}z2Z of all 2d959

spherical Gaussian distributions with mean µz := �(z + 1d), where z 2 Z . Again, note that960
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, and Fact 2 applies here too. Then by the definition of Gaussian961

density, for z 2 Z ,962

pz(x) = e��
2kµzk22/2 · e�hx,z+1di · '(x). (41)

Therefore, for z 2 Z and i 2 [d], we have963

pz�i(x) = e�2�xizie2�
2
zi · pz(x) = (1 + �z,i(x)) · pz(x), (42)

9As in the Bernoulli case, we here focus for simplicity on the case where the communication (resp., privacy)
parameters are the same for all players, but our lower bounds easily extend.

10That is, the upper and lower bounds only differ by a log s factor for p = 1 in the privacy case.
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where �z,i(x) := 1� e�2�xizie2�
2
zi . By using the Gaussian moment-generating function, for i 6= j,964

Epz [�z,i(X)] = 0, Epz
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= e4�

2

� 1, and Epz [�z,i(X)�z,j(X)] = 0,

so that Assumptions 1 and 2 are satisfied for ↵2 := e4�
2 � 1. By our choice of � and the assumption965

on �, one can check that Assumption 4 holds:966

`p(µ(pz), µ(pz0)) = 4�
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⌧d

◆1/p

.

Moreover, similar to the product of Bernoulli case, using Fact 2, we can show that PrZ [pZ 2 Gd,s ] 967

1� ⌧/4. This allows us to apply Lemma 1.968

G.2.1 Privacy constraints for " 2 (0, 1)969

For Wpriv,", upon combining the bounds obtained by Corollary 1 and Lemma 1, we get970
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whereby, upon noting that ↵2 = e4�
2 � 1  8�2 holds since �  1/2, and using the value of971
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◆
. This establishes the lower bounds for Wpriv,".973

(Recall that the bound for p = 1 then follows from setting p = log d.)974

G.2.2 Communication constraints, and privacy constraints for " � 1975

For these cases, to prove a lower bound with the desired dependence on " or `, we will need to use976

the tighter bounds in Corollaries 1 and 2 which hold only under Assumption 3. This, however, leads977

to an issue: the random vector �z(X) = (�z,i(X))i2[d] is not subgaussian, due to the one-sided978

exponential growth, and therefore Assumption 3 does not hold.979

To overcome this and still obtain a linear dependence on ` (or ") (instead of the suboptimal 2` (or980

e")), we will consider instead the class of “truncated” Gaussian distributions, whose corresponding �981

functions are subgaussian; and argue that these truncated distributions are close enough to the original982

Gaussian distributions such a lower bound in the truncated case implies one in the original Gaussian983

case.984

In particular, we consider the following collection of truncated Gaussian distributions. For z 2 Z , let985

pz be the density function of a spherical Gaussian distribution with mean µz as defined in Eq. (41).986

For a truncation bound B, let pz,B be the distribution of X ⇠ pz conditioned on the event that987

kXk1  B. That is, we have, for x 2 Rd,988

pz,B(x) = Czpz(x)1{kXk1  B},
where Cz = 1/PrX⇠pz [ kXk1  B ]. Then the following bound follows from standard Gaussian989

concentration bound on each dimension and a union bound over all dimensions.990

Fact 3. Setting B := 4
p
ln(dn), we have, for every z 2 Z , d

TV
(pz,B ,pz)  1

d7n8 .991

Let pY
n

z,B
be the distribution of the messages obtained by executing the protocol when each user gets a992

sample from pz,B and let the corresponding mixtures be denoted by pY
n

+i,B
and pY
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�i,B . Then we have993
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The third inequality follows from data processing inequality and the fourth inequality follows from994

subadditivity of TV distance.995

Combining this with Lemma 1, for any protocol that correctly learns the Gaussian family, we must996

have997

1

d

dX

i=1

d
TV

⇣
pY

n

+i,B
,pY

n

�i,B

⌘
� 1

8
. (43)

Next we show that the � functions corresponding to pz,B’s are subgaussian and establish the998

corresponding upper bounds on the average information bound above. Note that999

�B
z,i
(x) :=

pB

z�i(x)

pB
z
(x)

� 1 =
Cz�i

Cz

e�2�xizie2�
2
zi1{kxk1  B}� 1 (44)

By the inequality |ab� 1|  |a| · |b� 1|+ |a� 1|, we have have, for all z 2 Z ,1000
����
Cz�i

Cz

� 1

���� 
1

Cz

|Cz�i � 1|+
����
1

Cz

� 1

���� 
����

1

PrX⇠pz�i [ kXk1  B ]
� 1

����+
���� Pr
X⇠pz

[ kXk1  B ]� 1

����

 10

d7n7
.

Moreover, for all z 2 Z , for �  1

3B
,1001

���e�2�xizie2�
2
zi1{kxk1  B}� 1

��� 
���e2�

2
+2�B � 1

��� 
��e3�B � 1

��  6�B. (45)

Hence, applying the inequality |ab � 1|  |a| · |b � 1| + |a � 1| again on Eq. (44), we have for1002

�  1

3B
,1003

|�B
z,i
(x)|  12�B +

10

d7n7
.

Thus, we get that for all z 2 Z, i 2 [d], �B
z,i

is subgaussian with proxy �B = 12�B + 10

d7n7 .1004

Under communication constraints, applying Corollary 2, we get1005
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d
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B
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To conclude, we observe that by plugging our setting of � = �(p) in the above inequality, we must1006

have1007

�2 � d(s/2)
2

p

14336 · n ·B2`
in order to satisfy Eq. (43), hence proving the desired lower bound. The lower bound for LDP with1008

" > 1 follows similarly by applying Corollary 1.1009

G.3 Detailed results for discrete family1010

We derive a lower bound for Ep(�d,W, n), the minimax rate for discrete density estimation, under1011

local privacy and communication constraints.1012

Theorem 6. Fix p 2 [1,1). For " > 0, and ` � 1, we have1013

Ep(�d,Wpriv,", n) &

s
d2/p

n((e" � 1)2 ^ e")
^
✓

1

n((e" � 1)2 ^ e")

◆ p�1

p

^ 1 (46)

and1014

Ep(�d,Wcomm,`, n) &

s
d2/p

n2`
^
✓

1

n2`

◆ p�1

p

^ 1 . (47)

In particular, for n
�
(e" � 1)2 ^ e"

�
� d2 and n(2` ^ d) � d2, the first term of the corresponding1015

lower bounds dominates. Before turning to the proof of this theorem, we note that Corollary 3 and1016

Corollary 4 are direct corollaries of the theorem.1017

We now establish Theorem 6.1018
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Proof of Theorem 6. Fix p 2 [1,1), and suppose that, for some � 2 (0, 1/16], there exists an1019

(n, �)-estimator for �d under `p loss. Set1020

D := d ^
$✓

1

16�

◆ p
p�1

%

and assume, without loss of generality, that D is even. By definition, we then have � 21021

(0, 1/(16D1�1/p)] and D  d; we can therefore restrict ourselves to the first D elements of the1022

domain, embedding �D into �d, to prove our lower bound.1023

Let k = D

2
, Z = {�1,+1}D/2, and ⌧ = 1

2
; and suppose that, for some � 2 (0, 1/(16D1�1/p)],1024

there exists an (n, �)-estimator for �D under `p loss. (We will use the fact that �  1/(16D1�1/p)1025

for Eq. (49) to be a valid distribution with positive mass, as we will need |�|  1

D
; and to bound ↵21026

later on, as we will require |�|  1

2D
.) Define � = �(p) as1027

�(p) :=
4 · 21/p�
D1/p

, (48)

which implies � 2 [0, 1/(2D)]. Consider the set of D-ary distributions P�
Discrete

= {pz}z2Z defined1028

as follows. For z 2 Z , and x 2 X = [D]1029

pz(x) =

⇢
1

D
+ �zi, if x = 2i,

1

D
� �zi, if x = 2i� 1.

(49)

For z 2 Z and i 2 [D/2], we have1030

pz�i(x) =

✓
1� 2D�zi

1 +D�zi
1{x = 2i}+ 2D�zi

1�D�zi
1{x = 2i� 1}

◆
pz(x)

= (1 + �z,i(x))pz(x), (50)
where1031

�z,i(x) := zi ·
2D�

1�D2�2
((1 +D�zi)1{x = 2i� 1}� (1�D�zi)1{x = 2i}).

Once again, we can verify that for i 6= j1032

Epz [�z,i(X)] = 0, Epz

⇥
�z,i(X)2

⇤
=

8�2D

1� �2D2
, and Epz [�z,i(X)�z,j(X)] = 0,

so that Assumptions 1 and 2 are satisfied for ↵2 := 16�2D (using that D�  1/2 to simplify the1033

bound).11 Thus, we can invoke the first part of Theorem 2. Note that Assumption 4 holds, since1034

`p(pz,pz0) = � dHam(z, z0)
1/p = 4�

✓
dHam(z,z0)

⌧D

◆1/p

. Therefore, we can apply Lemma 1 as well.1035

For Wpriv,", by combining the bounds obtained by Corollary 1 and Lemma 1, we get1036

D  56n↵2
�
(e" � 1)2 ^ e"

�
,

whereby, upon recalling the value of ↵2 and using the setting of � = �(p) from Eq. (48), it follows1037

that1038

�2 � D
2

p

7168 · 22/p · n((e" � 1)2 ^ e")
⇣ d2/p ^ ��2/(p�1)

n((e" � 1)2 ^ e")
.

Thus we obtain the bound Eq. (46) as claimed.1039

Similarly, for Wcomm,`, upon combining the bounds obtained by Corollary 2 and Lemma 1 and1040

recalling that |Y| = 2`, we get1041

�2 � D
2

p

7168 · 22/p · n2`
,

which gives Ep(�D,Wcomm,`, n) = ⌦

✓q
d2/p

n2`
^
�

1

n2`

� p�1

p

◆
,12 concluding the proof.1042

11It is worth noting that Assumption 3 will not hold for any useful choice of the subgaussianity parameter.
12Finally, note that we could replace the quantity 2` above by 2` ^ d, or even 2` ^D, as for 2` � D there is

no additional information any player can send beyond the first log2 D bits, which encode their full observation.
However, this small improvement would lead to more cumbersome expressions, and not make any difference for
the main case of interest, p = 1.
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