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Abstract

Coreset is a small set that provides a data summary for a large dataset, such that
training solely on the small set achieves competitive performance compared with
a large dataset. In rehearsal-based continual learning, the coreset is typically
used in the memory replay buffer to stand for representative samples in previ-
ous tasks, and the coreset selection procedure is typically formulated as a bilevel
problem. However, the typical bilevel formulation for coreset selection explic-
itly performs optimization over discrete decision variables with greedy search,
which is computationally expensive. Several works consider other formulations
to address this issue, but they ignore the nested nature of bilevel optimization
problems and may not solve the bilevel coreset selection problem accurately. To
address these issues, we propose a new bilevel formulation, where the inner prob-
lem tries to find a model which minimizes the expected training error sampled
from a given probability distribution, and the outer problem aims to learn the
probability distribution with approximately K (coreset size) nonzero entries such
that learned model in the inner problem minimizes the training error over the
whole data. To ensure the learned probability has approximately K nonzero en-
tries, we introduce a novel regularizer based on the smoothed top-K loss in the
upper problem. We design a new optimization algorithm that provably converges
to the ϵ-stationary point with O(1/ϵ4) computational complexity. We conduct
extensive experiments in various settings in continual learning, including balanced
data, imbalanced data, and label noise, to show that our proposed formulation
and new algorithm significantly outperform competitive baselines. From bilevel
optimization point of view, our algorithm significantly improves the vanilla greedy
coreset selection method in terms of running time on continual learning benchmark
datasets. The code is available at https://github.com/MingruiLiu-ML-Lab/
Bilevel-Coreset-Selection-via-Regularization.

1 Introduction

Deep Neural Networks (DNNs) have achieved tremendous successes in various domains, includ-
ing computer vision [41, 30], natural language processing [72, 15], generative modeling [26] and
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Figure 1: Illustration of our algorithm. There are two neural network models, one is Mtr for model
training, and the other is Mcs for coreset selection. A coreset is selected from the current data stream
Bt by conducting six steps. 1⃝ Feed a stream mini-batch Bt and sampled buffer data to Mtr. 2⃝
Copy model parameters from Mtr to Mcs: θcs ← θtr. 3⃝ Feed a mini-batch Bt into model Mcs.
4⃝ Conduct bilevel optimization to update the model parameter θcs in Mcs and output a probability

distribution w. 5⃝ Sample a coreset from Bt based on the distribution of w and add the sampled data
into buffer. 6⃝ Calculate stochastic gradient based on Bt and sampled data in the buffer in Step 1,
and update θtr based on gradient information. Repeat the above steps for each stream mini-batch.

games [68]. However, in continual learning, where DNNs are trained on a sequence of tasks with
possibly non-i.i.d. data, the performance will be degraded on the previously trained tasks. This is
referred to as catastrophic forgetting [53, 52, 60]. To alleviate catastrophic forgetting, one of the
effective ways is rehearsal-based continual learning, where a small replay buffer is maintained and
revisited during the continuous learning process. There is a line of works studying how to efficiently
maintain the replay buffer using the coreset selection approach [6, 78, 83], in which a small set of
data is selected as representative samples to be used in continual learning.

The coreset selection in continual learning is formulated as a cardinality-constrained bilevel opti-
mization problem which is solved by incremental subset selection [6]. This greedy approach is
computationally expensive and hence is not scalable when the coreset size is large. To address this
issue, Zhou et al. [83] propose a relaxation of the bilevel formulation in [6], which drops the nested
nature of bilevel formulation and actually becomes two sequential optimization problems. Tiwari et
al.proposed a gradient approximation method in [71], which selects a coreset that approximates the
gradient of model parameters over the entirety of the data seen so far. Yoon et al. [78] proposes an
online coreset selection method by maximizing several similarity metrics based on data pairs within
each minibatch, and sample pairs between each minibatch and coreset. These approaches do not
directly address the algorithmic challenges caused by the nested nature of the bilevel optimization
problem, and may not solve the original bilevel coreset selection problem efficiently.

The key challenges in the bilevel coreset selection problems are two folds. First, the bilevel formula-
tion in [6] needs to directly perform optimization over cardinality constraint, which is a nonconvex set
and greedy approaches are expensive when the coreset size is large. Second, the bilevel formulation
in [6] has a nested structure: one problem is embedded within another, and the outer and inner
functions both have dependencies over the same set of decision variables. It remains unclear how
to design efficient algorithms to solve constrained bilevel optimization algorithms for the coreset
selection problem with provable theoretical guarantees.

Our proposed solution addresses these challenges with a novel bilevel formulation and provably
efficient optimization algorithms. The proposed new bilevel formulation is referred to as Bilevel
Coreset Selection via Regularization (BCSR). The main differences between our approach and the
standard bilevel approach in [6] are: (i) unlike the standard bilevel formulation which requires
performing optimization based on a cardinality constraint, we propose to solve a bilevel optimization
on a probability simplex over training examples; (ii) to make sure the probability distribution lies
in a low dimensional manifold, we propose to add a smoothed top-K loss as a regularizer to the
upper-level problem; (iii) due to our new formulation, we are able to design a simple and effective
first-order method to solve this new bilevel problem with provable non-asymptotic convergence
guarantees. The first-order method is easy to implement and much faster than the greedy approach as
in [6]. Our main contribution is listed as follows.
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Algorithm 1 PyTorch-style pseudocode for BCSR
1 # tasks: the task sequences; T: the number of tasks
2 # L(): loss function; x: image batch , y: label batch
3 # model , model_proxy: for training and coreset selection
4 # update_w: a function updating outer variable w
5 M = [[] * T] # memory buffer
6 for ind , task in tasks:
7 for (x, y) in dataloader:
8 model_proxy.load_state_dict(model.parameters ())
9 (x_m , y_m) = next_batch(M)

10 out1 = model(x)
11 out2 = model(x_m)
12 loss = L (out1 , y)+ L (out2 , y_m)
13 loss.backward ()
14 (x_core , y_core) = find_coreset(x, y, K, model_proxy)
15 M[ind]. append ((x_core , y_core))
16 update(model.params)
17 def find_coreset(x, y, K, model_proxy):
18 coreset_w = 1.0/y.size()
19 for j in range(outer_loops):
20 for i in range(inner_loops):
21 lower_loss = L (coreset_w * model (x, y) )
22 lower_loss.backward ()
23 update(model_proxy.params)
24 coreset_w = update_w(coreset_w)
25 return torch.multinomial(coreset_w , K)

• We propose a new bilevel formulation, namely BCSR, for the coreset selection in rehearsal-
based continual learning. Instead of directly learning the binary masks for each sample, the new
formulation tries to learn a probability distribution in a low-dimensional manifold by adding
a smoothed top-K loss as a regularizer in the upper problem. This formulation is designed to
satisfy two important features in continual learning with DNNs: (i) keeping the nested structure
in the coreset selection; (ii) being amenable to first-order algorithms, which makes it easy to
implement in modern deep learning frameworks such as PyTorch and TensorFlow. Based on the
new formulation, we propose an efficient first-order algorithm for solving it. The main workflow
of our algorithm is illustrated in Figure 1, and the corresponding Pytorch-style pseudocode is
presented in Algorithm 1.

• We have conducted extensive experiments among various scenarios to verify the effectiveness of
our proposed algorithm, including balanced, imbalanced, and label-noise data. Our algorithm
outperforms all baselines for all settings in terms of average accuracy, and it is much better than
all other coreset selection algorithms. For example, on imbalanced data of Multiple Datasets,
BCSR is better than the best coreset selection algorithm by 4.65% in average accuracy. From
bilevel optimization point of view, our algorithm significantly improves the vanilla greedy coreset
selection method [6] in terms of running time on continual learning benchmark datasets.

• Under the standard smoothness assumptions of the loss function, we show that our algorithm
requires at most O(1/ϵ4) complexity for finding an ϵ-stationary point in the constrained case2.
Notably, the O(1/ϵ4) complexity consists of O(1/ϵ2) backpropagations and O(1/ϵ4) samplings
from Gaussian distribution, where the latter cost is computationally cheap.

2 Related Work

Continual Learning There are different classes of continual learning methods, including
regularization-based approaches [39, 81, 10, 1, 59, 64, 17], dynamic architecture methods [61,

2In the constrained setting, the definition of ϵ-stationary point is defined with gradient mapping, i.e., w is
a ϵ-stationary point of the function ϕ if 1

β
∥w − P∆(w − β∇ϕ(w))∥ ≤ ϵ, where β is the stepsize, P is the

projection operator, ∆ is the probability simplex. This matches the best iteration complexity as in the single
level optimization problem [24].
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79, 62, 51, 76, 44, 77], and rehearsal-based methods [48, 57, 11, 58, 31, 3, 18, 28, 80, 6, 83, 78, 84].
In the rehearsal-based continual learning, the memory is either reproduced experience replay [48] or
generative replay [67]. Our work focuses on the aspect of the coreset selection on the replay memory
and can be flexibly integrated into rehearsal-based methods in continual learning.

Coreset Selection The coreset selection methods were used frequently in supervised and unsu-
pervised learning, such as k-means [19], Gaussian mixture model [49], logistic regression [33] and
bayesian inference [9]. They were also used frequently in the active learning literature [74, 63]. The
coreset selection in continual learning is related to the sample selection [34, 2, 3]. Nguyen et al. [55]
introduce variational continual learning which is combined with coreset summarization [5]. Borsos
et al. [6] proposed the first bilevel formulation for the coreset selection in continual learning, which
is later improved by [83, 78]. Compared with these works, our work focuses on improved bilevel
coreset selection: we provide a better bilevel formulation than [6] and design a provably efficient
optimization algorithm.

Bilevel optimization Bilevel optimization is used to model nested structure in the decision-making
process [73]. Recently, gradient-based bilevel optimization methods have broad applications in
machine learning, including meta-learning [20], hyperparameter optimization [56, 22], neural archi-
tecture search [46], and reinforcement learning [40, 32]. These methods can be generally categorized
into implicit differentiation [16, 56, 45, 4] and iterative differentiation [50, 21, 20, 65, 27] based
approaches. Recently, various stochastic bilevel algorithms have been also proposed and analyzed
by [12, 37, 25, 32, 29, 4, 14]. A comprehensive introduction can be found in the survey [47]. In this
work, we propose a novel stochastic bilevel optimizer with very flexible parameter selection, which
shows great promise in the coreset selection for continual learning.

3 New Bilevel Formulation for Coreset Selection in Continual Learning

In this section, we first introduce our new bilevel formulation, namely Bilevel Coreset Selection via
Regularization (BCSR). The key idea of this approach is to learn a probability distribution over the
whole dataset such that the best model parameter obtained by minimizing the loss on the sampled
dataset (i.e., the minimizer for the lower-level problem) is also the best for the whole dataset (i.e.,
the minimizer for the upper-level problem), and then a coreset can be sampled based on the learned
probability distribution. In addition, the learned probability distribution is expected to lie in a low
dimensional manifold (i.e., with K nonzero entries where K is the coreset size). To achieve this, we
added a smooth top-K loss as a regularizer to promote the probability distribution to have K nonzero
entries. Specifically, the objective function of BCSR is:

min
0≤w(i)≤1

||w||1=1

[
ϕ(w) =

n∑
i=1

ℓi(θ
∗(w))− λ

K∑
i=1

Ez(w + δz)[i]

]

s.t., θ∗(w) = argmin
θ

[
L(θ, w) =

n∑
i=1

w(i)ℓi(θ)
]

(1)

where n is the sample size, θ is the model parameter, w is the sample weights, ℓi(θ) denote the loss
function calculated based on i-th sample with model parameter θ, w(i) is the i-th coordinate of w, w[i]

is the i-th largest component of w, λ > 0 is the regularization parameter, w+ δz denote to adding δz

on each coordinate of w where z ∼ N (0, 1). Note that R(w, δ) := −λ
∑K

i=1 Ez(w + δz)[i] denote
the smoothed top-K regularization. We add this regularization to make sure the summation of the
top-K entries of the learned probability vector is large, such that we can confidently choose a coreset
with size K. The goal of employing Gaussian noise to the regularizer is for the ease of algorithm
design: this Gaussian smoothing technique can make the regularizer to be smooth such that it is easier
to design efficient first-order bilevel optimization solvers. Otherwise, the upper-level problem would
become nonconvex and nonsmooth, and it would be difficult for algorithm design under this case.

Discussion and Comparison with Prior Works In this part, we illustrate how this new formulation
addresses the drawbacks of the previous approaches. The work of [6] does not use any regularizer and
regards the weight of each sample as a binary mask. This formulation needs to solve a combinatorial
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Algorithm 2 Bilevel Coreset Selection via Regularization (BCSR)
Input: Dataset D
Initialize: model parameter θ0, memoryM = {}

1: for batch Bt ∼ D do
2: Compute coreset St = Find-coreset(θt−1, Bt)
3: M =M∪St
4: end for

Algorithm 3 Find-coreset(θ,B)
Input: the current model parameter θ, the current batch B, the iteration parameters J ,N , Q
Initialize: coreset size K, n = |B|, and v0

1: w0 = [ 1n , . . . ,
1
n ] (uniform probability initialization)

2: θ01 = θ
3: for j = 0, 2, . . . , J − 1 do
4: Set initialization θ0j = θNj−1 if j > 0 and θ01 otherwise
5: for k = 1, . . . , N do
6: update θkj according to eq. (2).
7: end for
8: Set initialization v0j = vQj−1 if j > 0 and v0 otherwise
9: Compute estimate vQj by solving QP in (4) by GD with stepsize η and inital v0j = vQj−1.

10: Compute hypergradient estimate in (3)
11: Update wj+1 and project it onto simplex by (5)
12: end for
13: S ← a set of K data points sampled from B according to the probability distribution wJ

14: Return S

optimization problem and their approach of incremental subset selection is computationally expensive.
The work of [83] relaxes the bilevel formulation in [6] to minimize the expected loss function over
the Bernoulli distribution s, i.e., mins∈C Φ(s), and develops a policy gradient solver to optimize the
Bernoulli variable. Their gradient ∇sΦ(s) = Ep(m|s)L(θ

∗(m))∇s ln p(m|s) does not include the
implicit gradient of L(θ∗(m)) in terms of s. However, θ∗(m) actually depends on the mask m, and m
depends on the Bernoulli variable s. In contrast, our bilevel optimization computes the hypergradients
for the coreset weights w (0 ≤ w ≤ 1 and ∥w∥1 = 1 ), which considers the dependence between
θ(w) and w 3. In addition, Zhou et al. [83] assume that the inner loop can obtain the exact minimizer
θ∗(m), which may not hold in practice. In contrast, we carefully analyze the gap between the
estimated θ∗(w) and itself by our algorithm and analysis.

4 Algorithm Design

Equipped with the new formulation, the entire algorithm is presented in Algorithm 2, which calls
Algorithm 3 as a subroutine. Each time the algorithm encounters a minibatch B, a coreset is selected
within this minibatch by invoking Algorithm 3. Algorithm 3 is a first-order algorithm for solving
the bilevel formulation (1). In Algorithm 3, the model parameter θ and the weight distribution w are
updated alternatively. We first perform N steps of gradient descent steps to find a sufficiently good θ
for the lower-level problem (lines 5-7) by the update rule:

θkj = θk−1
j − α∇θL(θ

k−1
j , wj), (2)

where θkj denotes the model parameters at the j-th outer loop and the k-th inner loop. To update the
outer variable w, BCSR approximates the true gradient∇ϕ(w) of the outer function w.r.t w, which is
called hypergradient [56]. BCSR constructs a hypergradient estimator:

φj =
1

|B|
∑
z̃∈B

∇wR(w, δ; z̃)−∇w∇θL(θ
N
j , wj)

[
(∇2

θL(θ
N
j , wj))

−1(

n∑
i=1

∇θℓi(θ
N
j ))

]
, (3)

3The coreset weight w in our formulation is equivalent to sample mask s in [83]
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Table 1: Experiment results on Split CIFAR-100

Methods
Balanced Imbalanced Label Noise

AT FGTT AT FGTT AT FGTT

K-means Features 57.82±0.69 0.070±0.003 45.44±0.76 0.037±0.002 57.38±1.26 0.098±0.003
K-means Embedding 59.77±0.24 0.061±0.001 43.91±0.15 0.044±0.001 57.92±1.25 0.091±0.016
Uniform 58.99±0.54 0.074±0.004 44.73±0.11 0.033±0.007 58.76±1.07 0.087±0.006
iCaRL 60.74±0.09 0.044±0.026 44.25±2.04 0.042±0.019 59.70±0.70 0.071±0.010
Grad Matching 59.17±0.38 0.067±0.003 45.44±0.64 0.038±0.001 59.58±0.28 0.073±0.008
SPR 59.56±0.73 0.143±0.064 44.45±0.55 0.086±0.023 58.74±0.63 0.073±0.010
MetaSP 60.14±0.25 0.056±0.230 43.74±0.36 0.079±0.014 57.43±0.54 0.086±0.007
Greedy Coreset 59.39±0.16 0.066±0.017 43.80±0.01 0.039±0.007 58.22±0.16 0.066±0.001
GCR 58.73±0.43 0.073±0.013 44.48±0.05 0.035±0.005 58.72±0.63 0.081±0.005
PBCS 55.64±2.26 0.062±0.001 39.87±1.12 0.076±0.011 56.93±0.14 0.100±0.003
OCS 52.57±0.37 0.088±0.001 46.54±0.34 0.022±0.003 51.77±0.81 0.103±0.007
BCSR 61.60±0.14 0.051±0.015 47.30±0.57 0.022±0.005 60.70±0.08 0.059±0.013

where R(w, δ; z̃) := −λ
∑K

i=1(w+δz̃)[i] and z̃ ∼ N (0, 1). Solving the Hessian-inverse-vector prod-
uct in eq. (3) is computationally intractable. We denote v∗ := (∇2

θL(θ
N
j , wj))

−1(
∑n

i=1∇θℓi(θ
N
j ))

in eq. (3), where v∗ can be approximated by solving the following quadratic programming problem
efficiently by Q steps of gradient descent (line 9):

min
v

1

2
vT∇2

θL(θ
N
j , wj)v − vT

n∑
i=1

∇θℓi(θ
N
j ). (4)

Next, the hypergradient estimate (line 10) is computed based on the output of approximated quadratic
programming. Note both model parameters and sample weights need to use warm start initialization
(line 4 and line 8). Then the weight is updated and projected onto simplex (line 11):

ŵj+1 = wj − βφj , wj+1 = P∆n(ŵj+1), (5)

where ∆n := {w ∈ Rn : 0 ≤ w(i) ≤ 1, ||w||1 = 1}. In terms of other experimental hyperparameters,
we allow very flexible choices of hyperparameters (e.g., N , Q) as shown in our theory to achieve
polynomial time complexity for finding a ϵ-stationary point.

The selected coresets for each task are stored in a memory buffer with a fixed size m. There is a
separated memory slot for each task with size [m/i] when the task i comes. After each task i, the
memory slots before i will randomly remove some samples to adjust all the memory slots to [m/i].
That means the memory size for each task decreases as the task ID increase to maintain the total
buffer size m unchanged. The same memory strategy is also used in the greedy coreset approach [6].

5 Experiments

We conduct extensive experiments under various settings, including balanced data, imbalanced
data, and label-noise data. The empirical results demonstrate the effectiveness of our method in
rehearsal-based continual learning.

5.1 Experimental Setup

Datasets We use commonly-used datasets in the field of continual learning, including Split CIFAR-
100, Permuted MNIST, Multiple Datasets, Tiny-ImageNet, and Split Food-101. We follow the
experimental settings as that in prior work [78] and [83]. Each dataset is processed with three
approaches: balanced, imbalanced, and label-noise. Please refer to Appendix L for more details about
data processing and settings.

Baselines We compare our algorithm BCSR with other continual learning methods based on coreset
strategy, including k-means features [55], k-means embedding [63], Uniform Sampling, iCaRL [57],
Grad Matching [9], Greedy Coreset [6], PBCS [83], GCR [71], and OCS [78]. We also compare with
non-coreset reply method, SPR [38], MetaSP [70]. All algorithms are built upon episodic memory,
which stores coreset selected from stream data. Then a model, such as ResNet-18 [30], is trained
over the data from the current stream and the episodic memory.

Metrics Average accuracy and forgetting measure [10] are two primary evaluation metrics that are
used in continual learning literature. AVG ACC (AT ) is the average accuracy tested on all tasks
after finishing the task T : AT = 1

T

∑T
i=1 aT,i, where aT,i is the test accuracy of task i after training
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Table 2: Experiment results on Multiple Datasets

Methods
Balanced Imbalanced Label Noise

AT FGTT AT FGTT AT FGTT

K-means Features 54.63±0.88 0.138±0.007 33.63±2.66 0.136±0.063 45.46±3.50 0.120±0.049
K-means Embedding 56.83±1.65 0.106±0.019 35.93±1.60 0.106±0.031 46.32±3.19 0.084±0.030
Uniform 55.93±0.03 0.101±0.032 35.48±2.96 0.104±0.025 48.68±0.44 0.079±0.002
iCaRL 56.19±0.32 0.130±0.012 42.18±1.59 0.057±0.022 49.22±0.54 0.067±0.010
Grad Matching 53.41±0.46 0.119±0.020 38.16±3.90 0.082±0.003 46.96±1.05 0.091±0.029
SPR 56.20±1.91 0.124±0.036 40.79±1.73 0.143±0.051 49.77±1.58 0.062±0.024
MetaSP 57.14±1.10 0.113±0.042 41.32±1.50 0.103±0.053 47.14±1.66 0.081±0.027
Greedy Coreset 53.56±0.06 0.099±0.005 22.57±1.10 0.265±0.022 41.32±1.51 0.137±0.009
GCR 54.35±0.31 0.125±0.014 35.13±2.79 0.105±0.043 47.58±1.30 0.078±0.016
PBCS 52.93±0.28 0.152±0.016 37.25±2.93 0.115±0.033 47.51±1.56 0.101±0.021
OCS 55.65±2.26 0.062±0.001 40.48±1.39 0.051±0.003 45.03±4.16 0.049±0.012
BCSR 59.89±0.95 0.096±0.005 45.13±0.54 0.046±0.008 49.97±1.14 0.064±0.031

Table 3: Experiment results on Tiny-ImageNet

Methods
Balanced Imbalanced Label Noise

AVG ACC FGT AVG ACC FGT AVG ACC FGT

K-means Features 41.20±0.75 0.131±0.004 36.27±0.30 0.079±0.014 36.68±1.35 0.095±0.004
K-means Embedding 41.48±1.21 0.129±0.007 36.29±0.23 0.085±0.003 36.01±1.51 0.083±0.005
Uniform 42.11±0.52 0.129±0.002 37.07±0.53 0.083±0.009 37.14±1.05 0.099±0.003
iCaRL 43.84±0.09 0.114±0.004 37.65±0.84 0.058±0.003 38.52±0.25 0.063±0.006
Grad Matching 43.45±0.32 0.105±0.007 37.58±0.39 0.066±0.004 38.84±0.42 0.064±0.006
SPR 42.79±0.50 0.102±0.009 36.55±0.74 0.070±0.026 39.89±0.53 0.065±0.021
MetaSP 43.33±0.32 0.127±0.002 36.75±0.57 0.086±0.006 37.18±0.76 0.068±0.007
Greedy Coreset 41.02±0.33 0.119±0.017 33.43±0.86 0.103±0.002 36.37±0.16 0.079±0.006
GCR 41.45±0.35 0.125±0.008 36.08±0.62 0.072±0.017 37.46±0.40 0.115±0.011
PBCS 36.99±0.15 0.177±0.002 35.88±0.16 0.071±0.080 37.02±0.16 0.133±0.029
OCS 41.29±0.09 0.112±0.001 35.09±0.60 0.036±0.011 35.36±0.94 0.061±0.005
BCSR 44.13±0.33 0.106±0.001 38.59±0.11 0.070±0.004 40.72±0.56 0.055±0.006

the task T . FGTT evaluates the performance drop on the past tasks after training on the task T :
FGTT = 1

T

∑T
j=1 [maxj∈1,...T−1 (aj,i − aT,i)].

Implementation Details Following the implementation of the coreset-based algorithm [6], we use
two models for the purposes of model training and coreset selection respectively, where the first
model is denoted as Mtr for model training, and the second model (also known as a proxy model) is
denoted as Mcs for coreset selection. In the section of the model training, we adopt a single-head
MLP with two hidden layers for Permuted MNIST, and a ResNet-18 for Split CIFAR-100 and other
datasets. In the section of the coreset selection, Mcs adopts the same architecture as Mtr. This is
the key difference between our work and the Greedy Coreset [6]: they use Neural Tangent Kernels
(NTK) [35] while we use a specific deep neural network. Note that NTK performs learning based
on fixed features, which is shown to be limited [66]. In contrast, our algorithm allows hierarchical
feature learning during the training process. In addition, our algorithm does not rely on discrete
decision variables as in [6]: we use first-order methods with gradient and Hessian-inverse-vector
product information with convergence guarantee and hence is more efficient in practice. For non-
coreset reply methods SPR and MetaSP, we set the size of the method buffer as that in coreset-based
methods. Especially for SPR, there are two memory buffers: the delayed buffer D temporarily stocks
the incoming data stream, and the purified buffer P maintains the cleansed data. To satisfy the

Table 4: Experiment results on Food-101

Methods
Balanced Imbalanced Label Noise

AVG ACC FGT AVG ACC FGT AVG ACC FGT

K-means Features 46.35±1.41 0.057±0.004 33.35±0.93 0.064±0.008 34.88±0.64 0.127±0.011
K-means Embedding 49.47±0.46 0.040±0.004 34.07±0.89 0.057±0.014 35.54±0.57 0.141±0.008
Uniform 46.50±0.13 0.048±0.001 34.61±0.16 0.060±0.007 36.69±1.13 0.123±0.007
iCaRL 48.12±0.78 0.035±0.001 36.83±1.06 0.032±0.001 39.22±0.30 0.084±0.010
Grad Matching 49.13±0.44 0.026±0.002 36.51±0.04 0.043±0.003 38.86±0.31 0.086±0.019
SPR 48.34±0.54 0.042±0.003 37.41±0.68 0.037±0.006 38.63±0.34 0.069±0.016
MetaSP 48.84±0.38 0.053±0.006 38.41±0.78 0.053±0.011 38.78±0.41 0.063±0.013
Greedy Coreset 49.19±0.91 0.030±0.008 38.78±0.01 0.038±0.001 38.61±0.18 0.096±0.004
GCR 47.03±1.17 0.048±0.004 36.99±0.30 0.042±0.005 35.78±1.08 0.126±0.013
PBCS 47.98±0.42 0.098±0.006 38.00±0.16 0.046±0.001 37.77±0.40 0.123±0.013
OCS 46.80±1.05 0.103±0.013 34.44±0.29 0.067±0.001 35.50±0.04 0.135±0.004
BCSR 51.30±0.62 0.039±0.008 39.05±0.99 0.044±0.001 39.63±0.22 0.060±0.071
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Figure 2: The average accuracy during the continual learning. After each task, the training model is
tested on all encountered tasks. Due to the nature of forgetting, the average test performance of all
the methods tends to decrease.

Table 5: Random initialization with (W) and without (WO) bilevel optimizers (BO)

BO
Split CIFAR-100 Permuted MNIST Multiple Datasets

AT FGTT AT FGTT AT FGTT

WO 58.37±0.37 0.073±0.004 53.34±0.74 0.074±0.009 55.50±0.80 0.128±0.027
W 61.60±0.14 0.051±0.015 56.23±0.29 0.058±0.002 59.89±0.95 0.096±0.005

requirement of coreset experiments, we keep the size of P and D buffers the same. The detailed
hyperparameter settings can be found in Appendix C.

5.2 Results

We report the results of average accuracy (AVG ACC) and forgetting (FGT) for all the algorithms
on the balanced, imbalanced, and label-noise benchmarks, and the results are presented in Table 1,
Table 2, Table 3, Table 4, and Table 9 (Appendix E) respectively. We have the following observations.
(i) In the balanced setting, our method outperforms other baselines significantly in terms of AVG ACC.
For example, compared with the best coreset selection methods, our BCSR shows 2.21%, 4.24%,
2.68%, 2.11%, and 1.7% improvements in AVG ACC on five benchmarks, respectively. (ii) In the
imbalanced and label-noise setting, our method also demonstrates relatively higher performance. For
example, on imbalanced data of Multiple Datasets, BCSR is better than the best coreset selection
algorithm by 4.65% in average accuracy. An interesting observation is that Greedy Coreset [6] does
not perform very well, especially in imbalanced and label-noise settings. The reason is that the inner
optimization in Greedy Coreset is conducted by an NTK, where only a fixed feature is used but not
the learned feature. (iii) From bilevel optimization point of view, our algorithm significantly reduces
the running time of the vanilla greedy coreset selection method [6] by at least 58% on continual
learning benchmark datasets. For detailed comparison, please check Table 8 in Appendix D. (iv) In
addition, the test AVG ACC (Figure 2 and Figure 4 in Appendix F) of the BCSR during the training
process shows that our algorithm alleviates catastrophic forgetting and it is comparable to other
best baselines. For example, BCSR enjoys the lowest forgetting for almost all datasets under the
label-noise setting (except for Multiple Datasets in Table 2). For most experiments on other settings,
BCSR achieves a forgetting performance that is comparable to the best methods with at most 1% gap.

5.3 Ablation Studies

We conduct ablation studies to inspect the effectiveness of individual components in our proposed
approach, including the effect of the bilevel optimizer, the smoothed top-K regularizer, and the
coreset size K (Appendix J) respectively.

Random initialization with and without bilevel optimizers. Our new bilevel optimization algorithm
(Algorithm 3) is of vital importance for finding a good distribution w for selecting the coreset. To
demonstrate this, we design comparative experiments: one experiment initializes w randomly without
updating it, and the other one adopts the same initialization strategy but updates w by the proposed
bilevel optimizer. Then we sample coresets based on w from two methods respectively. As you can
see, the random initialization method is equivalent to Uniform Sampling. We report the experimental
results of average accuracy and forgetting on three balanced datasets in Table 5. It can be observed
that the sampling strategy based on bilevel optimization significantly outperforms random sampling.
In particular, the strategy with bilevel optimization shows 3.23%, 2.89%, and 4.39% AVG ACC
improvement on three benchmarks. Meanwhile, it also obtains 2.20%, 1.60%, and 3.20% FGT
reduction on three benchmarks.
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Table 6: The impact of different values of λ

λ
Split CIFAR-100 Permuted MNIST Multiple Datasets

AT FGTT AT FGTT AT FGTT

0.00 60.43±0.15 0.064±0.005 54.20±1.53 0.116±0.030 55.71±0.32 0.055±0.003
0.01 60.56±2.05 0.074±0.016 55.09±2.94 0.097±0.020 55.39±0.95 0.065±0.012
0.10 61.04±0.53 0.063±0.007 57.20±0.58 0.064±0.010 55.69±0.40 0.057±0.002
1.00 59.43±1.20 0.072±0.008 55.43±1.53 0.108±0.019 58.18±0.77 0.046±0.006
5.00 58.80±1.58 0.084±0.017 53.13±2.74 0.120±0.021 56.67±0.78 0.051±0.007

10.00 59.53±0.42 0.075±0.012 53.54±2.02 0.118±0.029 55.57±1.05 0.060±0.010
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Figure 3: The upper loss of bilevel optimization. Each distinct spike means the arrival of a new task.

To verify the effectiveness of our bilevel optimizer, we compare the loss curve with Greedy Coreset
that uses NTK. The result is presented in Figure 3. There are a number of stream mini-batches in
each task. The bilevel optimizer trains over each mini-batch, where the upper loss is plotted in the
figure. In the experiment, we plot the loss value for every 5 mini-batches. Within each task, the loss
from BCSR gradually decreases with slight fluctuations, and it increases only when encountering a
new task. In contrast, the loss value of the Greedy Coreset approach always stays large. It indicates
that our bilevel optimizer is more effective than the Greedy Coreset approach.

Effectiveness of the regularizer. In our algorithm, the bilevel formulation has a smooth top-K loss
as a regularizer in the objective function to promote the probability distribution to have K nonzero
entries. The goal is to make sure that the summation of top-K entries of the learned probability vector
is large, which increases confidence in the coreset selection. The hyperparameter λ is used to balance
the cross-entropy loss and the regularization term. We explore the effects on the performance with
different λ, and list the results in Table 6.

This ablation experiment is performed on our framework BCSR, and average accuracy and forgetting
on three balanced benchmarks are reported. When λ = 0.10, BCSR can reach the best performance
(The highest AVG ACC and lowest FGT) on Split CIFAR-100 and Permuted MNIST. While on
Multiple Datasets, BCSR performs the best when λ = 1.0. This dataset contains more categories,
and hence it is more challenging to select the appropriate representative samples. In this case, larger
λ would emphasize more on maximizing the top-K probability and help select better representative
samples. In addition, we observe that λ set as a too large or too small value will damage the
performance, which is in line with the observations in standard regularized empirical risk minimization
problems such as overfitting and underfitting. Please refer to Appendix H for further analysis.

6 Theoretical Analysis

In this section, we provide a theoretical analysis for our proposed method. In particular, we establish
convergence rate for our algorithm BCSR.

Theorem 1. Suppose standard assumptions hold in bilevel optimization (see Assumptions 1, 2 and 3
in Appendix M) . Choose parameters λ, α, η and N such that (1+λ)(1−αµ)N (1+ 8rL2

ηµ ) ≤ 1−ηµ,

where r =
C2

Q

( ρM
µ +L)2

and CQ = QρMη
µ + η2Q2ρM + ηQL. Furthermore, choose the stepsize β such

that 6ωβ2L2 < 1
9ηµ and β ≤ 1

4Lϕ
, where the constant ω is given by Equation (16) in Appendix A.
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Then, we have the following convergence result.

1

J

J−1∑
j=0

E∥Gj∥2 ≤ O
(Dϕ

βJ
+

1

|B|
+

D0

ηµJ

)
.

where Gj := 1
β (wj − P∆n(wj − β∇ϕ(wj))) denote the generalized projected gradient, Dϕ :=

ϕ(w0)−minw ϕ(w) > 0, D0 = ∥θ00 − θ∗0∥2 + ∥v00 − v∗0∥2, Lϕ is the smoothness parameter of the
total objective ϕ(w) whose form is proved in Appendix A.

Theorem 1 provides a general convergence result for the proposed bilevel algorithm, which allows for
a very flexible selection of subloop lengths N and Q as long as the inequality (1 + λ)(1− αµ)N (1 +
8rL2

ηµ ) ≤ 1− ηµ holds given proper stepsizes λ, η, α. For example, in most of our experiments, the
choice of N = 1 and Q = 3 works the best. Then, in this case, we further specify the parameters in
Theorem 1, and provide the following corollary.

Corollary 1. Under the same setting as in Theorem 1, choose N = 1, Q = 3 and set λ = αµ
2 , η ≤

µ2α
4608L2 and α ≤ 1

L . Then, to make sure an ϵ-accurate stationary point, i.e., 1
J

∑J−1
j=0 E∥Gj∥2 ≤ ϵ2,

the number of iterations is O(ϵ−2), each using |B| = O(ϵ−2) of samples from the standard Gaussian
distribution N (0, 1).

Corollary 1 shows that the proposed bilevel algorithm converges to an ϵ-accurate stationary point
using only O(ϵ−2) iterations and O(ϵ−2) samples drawn from N (0, 1) per iteration. Note the the
large batch size |B| = O(ϵ−2) is necessary here to guarantee a convergence rate of O(1/T ), which
matches the results in solving single-level constrained nonconvex problems [24]. In addition, it is
computationally tractable because sampling from a known Gaussian distribution is easy and cheap.

7 Conclusion

In this paper, we advance the state-of-the-art bilevel coreset selection in continual learning. We first
introduce a new bilevel formulation with smoothed top-K regularization and then design an efficient
bilevel optimizer as a solver. We conduct extensive experiments in continual learning benchmark
datasets to demonstrate the effectiveness of our proposed approach. We also show that the bilevel
optimizer can efficiently find ϵ-stationary point with O(1/ϵ4) computational complexity, which
matches the best complexity of projected SGD for a single-level problem.
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A Proof of Theorem 1

Let ∆(n) := {w : 0 ≤ w(i) ≤ 1, ||w||1 = 1} denote the constraint set of the upper-level problem.
We first provide some important inequalities.

Recall that vqj be the qth GD iterate in solving the linear system∇2
θL(θ

N
j , wj)v =

∑n
i=1∇ℓi(θNj ) at

iteration j via the following process:

vq+1
j = (I − η∇2

θL(θ
N
j , wj))v

q
j + η

n∑
i=1

∇ℓi(θNj ). (6)

which, by telescoping Equation (6) over q from 0 to Q− 1, yields

vQj = (I − η∇2
θL(θ

N
j , wj))

Qv0k + η

Q−1∑
q=0

(I − η∇2
θL(θ

N
j , wj))

q
n∑

i=1

∇ℓi(θNj ). (7)

Let v∗j be the solution of the linear system∇2
θL(θ

∗
j , wj)v =

∑n
i=1∇ℓi(θ∗j ), and then we have

v∗j = (I − η∇2
θL(θ

∗
j , wj))

Qv∗j + η

Q−1∑
q=0

(I − η∇2
θL(θ

∗
j , wj))

q
n∑

i=1

∇ℓi(θ∗j ). (8)

Combining Equation (6) and Equation (7), noting that v0j = vQj−1 and using Assumption 2 that
∥v∗j ∥ ≤ ∥(∇2

θL(θ
∗
j , wj))

−1∥∥
∑n

i=1∇ℓi(θ∗j )∥ ≤
M
µ , the difference between vQj and v∗j can be

bounded as

∥vQj − v∗j ∥ ≤
∥∥(I − η∇2

θL(θ
N
j , wj))

Q − (I − η∇2
θL(θ

∗
j , wj))

Q
∥∥M
µ

+ (1− ηµ)Q∥vQj−1 − v∗j ∥

+ ηM
∥∥∥Q−1∑

q=0

(I − η∇2
θL(θ

N
j , wj))

q −
Q−1∑
q=0

(I − η∇2
θL(θ

∗
j , wj))

q
∥∥∥

+ (1− (1− ηµ)Q)
L

µ
∥θ∗j − θNj ∥. (9)

We next bound ∆q := ∥(I − η∇2
θL(θ

N
j , wj))

q − (I − η∇2
θL(θ

∗
j , wj))

q∥ in Equation (9) as:

∆q

(i)

≤ (1− ηµ)∆q−1 + (1− ηµ)q−1ηρ∥θNj − θ∗j ∥. (10)

which, by telescoping Equation (10) and in conjunction with Equation (9), yields

∥vQj − v∗j ∥ ≤Q(1− ηµ)Q−1ηρ
M

µ
∥θNj − θ∗j ∥+ (1− ηµ)Q∥vQj−1 − v∗j ∥

+ ηM

Q−1∑
q=0

q(1− ηµ)q−1ηρ∥θNj − θ∗j ∥+ (1− (1− ηµ)Q)
L

µ
∥θ∗j − θNj ∥ (11)

≤Q(1− ηµ)Q−1ρMη

µ
∥θNj − θ∗j ∥+ (1− ηµ)Q∥vQj−1 − v∗j−1∥

+ (1− ηµ)Q∥v∗j−1 − v∗j ∥+
1− (1− ηµ)Q(1 + ηQµ)

µ2
ρM∥θNj − θ∗j ∥

+ (1− (1− ηµ)Q)
L

µ
∥θ∗j − θNj ∥

which, combined with ∥v∗j − v∗j−1∥ ≤
(
L
µ + Mρ

µ2

)(
L
µ + 1

)
∥wj − wj−1∥ and using the fact that

(1− x)Q ≥ 1− xQ for 0 ≤ x ≤ 1, yields

E∥vQj − v∗j ∥2 ≤(1− ηµ)E∥vQj−1 − v∗j−1∥2 +
4

ηµ
C2

Q∥θ∗j − θNj ∥2

+
4

ηµ

(L
µ
+

Mρ

µ2

)2(L
µ
+ 1

)
∥wj − wj−1∥2 (12)
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where the constant CQ := QρMη
µ + η2Q2ρM + ηQL.

The next step is to characterize the error induced by the lower-level updates on θ.

Note that θ∗j = argminθ L(θ, wj). Using Assumptions 1 and 2, we have

∥θNj − θ∗j ∥2 ≤ (1− αµ)N∥θ0j − θ∗j ∥2, (13)

which, in conjunction with θ0j = θNj−1 and Lemma 2.2 in [25], yields

E∥θNj − θ∗j ∥2 ≤(1− αµ)N (1 + λ)E∥θNj−1 − θ∗j−1∥2

+ (1− αµ)N (1 +
1

λ
)
L2

µ2
E∥wj − wj−1∥2. (14)

Recall the definition that r =
C2

Q

( ρM
µ +L)2

. Then, combining Equation (12) and Equation (14) yields we

can obtain(
1 +

ρ2M2

L2µ2

)
E∥θNj − θ∗j ∥2 + E∥vQj − v∗j ∥2

≤(1 + λ)(1− αµ)N
(
1 +

ρ2M2

L2µ2

)(
1 +

8rL2

ηµ

)
E∥θNj−1 − θ∗j−1∥2

+ (1− ηµ)E∥vQj−1 − v∗j−1∥2 + ωE∥wj − wj−1∥2, (15)

where the constant ω is given by

ω :=
(
1 +

1

λ

)
(1− αµ)N

(
1 +

ρ2M2

L2µ2

)L2

µ2

+
8

ηµ

L4

µ2

(
1 +

ρ2M2

L2µ2

)( 4

µ2
+ r(1− αµ)N

(
1 +

1

λ

))
. (16)

Recall that we choose (1 + λ)(1− αµ)N (1 + 8rL2

ηµ ) ≤ 1− ηµ. Then, we obtain from Equation (15)
that (

1 +
ρ2M2

L2µ2

)
E∥θNj − θ∗j ∥2 + E∥vQj − v∗j ∥2

≤(1− ηµ)
(
1 +

ρ2M2

L2µ2

)
E∥θNj−1 − θ∗j−1∥2

+ (1− ηµ)E∥vQj−1 − v∗j−1∥2 + ωE∥wj − wj−1∥2. (17)

Let δj :=
(
1 + ρ2M2

L2µ2

)
E∥θNj − θ∗j ∥2 + E∥vQj − v∗j ∥2. Then, incorporating the update that wj =

P∆n(wj−1 − βφj−1) into Equation (17) yields

δj ≤(1− ηµ)δj−1 + 2ωβ2E
∥∥∥ 1

β
(wj−1 − P∆n(wj−1 − β∇ϕ(wj−1)))︸ ︷︷ ︸

Gj−1

∥∥∥2
+ 2ωβ2∥φj−1 −∇ϕ(wj−1)∥2. (18)

We next bound the last term in the above Equation (18). Based on the definition of the hypergradient
estimate φj = ∇wR(w, δ;B)−∇w∇θL(θ

N
j , wj)v

Q
j , we have

E∥φj −∇ϕ(wj)∥2

≤3E∥∇R(wj , δ;B)−∇R(wj , δ)∥2 +
3ρ2M2

µ2
E∥θ∗j − θNj ∥2 + 3L2E∥v∗j − vQj ∥

2

(i)
=

3

|B|2
∑
z̃∈B

∥∇R(wj , δ; z̃)−∇R(w, δ)∥2 + 3L2
(
1 +

ρ2M2

µ2L2

)
E∥θ∗j − θNj ∥2 + 3L2E∥v∗j − vQj ∥

2

(ii)

≤ 6K

|B|
+ 3L2

(
1 +

ρ2M2

µ2L2

)
E∥θ∗j − θNj ∥2 + 3L2E∥v∗j − vQj ∥

2 =
6K

|B|
+ 3L2δj , (19)
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where (i) follows because ∇R(wj , δ; z̃) is an unbiased estimate of∇R(w, δ) and (ii) follows from
Proposition 1. Substituting Equation (19) into Equation (18) yields

δj ≤ (1− ηµ+ 6ωβ2L2)δj−1 +
12ωKβ2

|B|
+ 2ωβ2E∥Gj−1∥2. (20)

Let τ := 1− ηµ+ 6ωβ2L2. Then, telescoping Equation (20) yields

δj ≤ τ jδ0 +
12ωKβ2

(1− τ)|B|
+ 2ωβ2

j−1∑
t=0

τ tE∥Gj−1−t∥2. (21)

Based on Equation (21), we are ready to provide the final convergence result. First, based on the
Lipschitz continuity in Assumption 1, Assumption 2 and Assumption 3, we have

∥∇ϕ(w1)−∇ϕ(w2)∥ ≤ Lϕ∥w1 − w2∥,

where the constant Lϕ =
√
Kn
δ + L2+ρM2

µ + 2ρLM+L3

µ2 + ρL2M
µ3 is the smoothness parameter. Then,

this inequality further implies

ϕ(wj+1) ≤ϕ(wj) + ⟨∇ϕ(wj), wj+1 − wj⟩+
Lϕ

2
∥wj+1 − wj∥2

≤ϕ(wj) +
1

β
⟨βφj ,P∆n(wj − βφj)− wj⟩+ ⟨∇ϕ(wj)− φj ,P∆n(wj − βφj)− wj⟩

+
Lϕ

2
∥wj+1 − wj∥2. (22)

To analyze the second term at the right hand side of the above Equation (22), we note that
−⟨βφj ,P∆n(wj − βφj)− wj⟩

=⟨wj − βφj − P∆n(wj − βφj),P∆n(wj − βφj)− wj⟩+ ∥P∆n(wj − βφj)− wj∥2,
which, in conjunction with the property of projection on convex set that ⟨x−P∆n(x), y−P∆n(x) ≤ 0
for any y ∈ S and the fact that wj = P∆n(wj−1 − βφj−1) ∈ S, yields

−⟨βφj ,P∆n(wj − βφj)− wj⟩ ≥ ∥P∆n(wj − βφj)− wj∥2 ≥ 0. (23)
Then, substituting Equation (23) into Equation (22) yields

ϕ(wj+1) ≤ϕ(wj) + ⟨∇ϕ(wj)− φj ,P∆n(wj − βφj)− wj⟩+
Lϕ

2
∥wj+1 − wj∥2

≤ϕ(wj)−
β

2
∥Ĝj∥2 +

β

2
∥φj −∇ϕ(wj)∥2 +

Lϕβ
2

2
∥Ĝj∥2

≤ϕ(wj)−
(β
4
− Lϕβ

2

4

)
∥Gj∥2 +

(
β − Lϕβ

2

2

)
∥φj −∇ϕ(wj)∥2, (24)

where we use the notation that Ĝj =
1
β

(
wj − P∆n(wj − βφj)

)
, and the non-expansive property of

projection. Then, taking the expectation and incorporating Equation (19) into Equation (24), we have

Eϕ(wj+1) ≤Eϕ(wj)−
(β
4
− Lϕβ

2

4

)
E∥Gj∥2 +

(
β − Lϕβ

2

2

)
E∥φj −∇ϕ(wj)∥2

≤Eϕ(wj)−
(β
4
− Lϕβ

2

4

)
E∥Gj∥2 +

(
β − Lϕβ

2

2

)(6K
|B|

+ 3L2δj

)
. (25)

Then, substituting Equation (21) into the above Equation (25) yields

Eϕ(wj+1) ≤Eϕ(wj)−
(β
4
− Lϕβ

2

4

)
E∥Gj∥2 +

(
β − Lϕβ

2

2

)6K
|B|

+ 3L2
(
β − Lϕβ

2

2

)(
τ jδ0 +

12ωKβ2

(1− τ)|B|
+ 2ωβ2

j−1∑
t=0

τ tE∥Gj−1−t∥2
)

≤Eϕ(wj)−
(β
4
− Lϕβ

2

4

)
E∥Gj∥2 +

(
1 +

6ωβ2L2

1− τ

)(
β − Lϕβ

2

2

)6K
|B|

+ 3L2
(
β − Lϕβ

2

2

)
τ jδ0 + 6ωβ2L2

(
β − Lϕβ

2

2

) j−1∑
t=0

τ tE∥Gj−1−t∥2,
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which, by taking the telescoping over j from 0 to J − 1, yields

1

J

J−1∑
j=0

(1
4
− Lϕβ

4

)
E∥Gj∥2

≤ϕ(w0)−minw ϕ(w)

βJ
+

(
1 +

6ωβ2L2

1− τ

)(
1− Lϕβ

2

)6K
|B|

+
3L2

(
1− Lϕβ

2

)
δ0

(1− τ)J
+ 6ωβ2L2

(
1− Lϕβ

2

) 1

J

J−1∑
j=0

j−1∑
t=0

τ tE∥Gj−1−t∥2

≤ϕ(w0)−minw ϕ(w)

βJ
+

(
1 +

6ωβ2L2

1− τ

)(
1− Lϕβ

2

)6K
|B|

+
3L2

(
1− Lϕβ

2

)
δ0

(1− τ)J
+ 6ωβ2L2

(
1− Lϕβ

2

) 1

(1− τ)J

J−1∑
j=0

E∥Gj∥2.

Rearranging the above inequality, we have

1

J

J−1∑
j=0

(1
4
− Lϕβ

4
− 6ωβ2L2

1− τ

(
1− Lϕβ

2

))
E∥Gj∥2

≤ϕ(w0)−minw ϕ(w)

βJ
+
(
1 +

6ωβ2L2

1− τ

)(
1− Lϕβ

2

)6K
|B|

+
3L2

(
1− Lϕβ

2

)
δ0

(1− τ)J
. (26)

Recalling the definition that τ = 1− ηµ+ 6ωβ2L2, and noting that we choose the stepsize β such
that 6ωβ2L2 < 1

9ηµ and β ≤ 1
4Lϕ

, we can simplify Equation (26) as

1

16J

J−1∑
j=0

E∥Gj∥2 ≤
ϕ(w0)−minw ϕ(w)

βJ
+

27K

4|B|
+

27L2δ0
8ηµJ

.

From the gradient descent based updates, we have δ0 =
(
1+ ρ2M2

L2µ2

)
E∥θN0 − θ∗0∥2+E∥vQ0 − v∗0∥2 ≤(

1 + ρ2M2

L2µ2

)
∥θ00 − θ∗0∥2 + ∥v00 − v∗0∥2 < +∞. Then, the proof is complete.

B Proof of Corollary 1

Based on the definition of CQ = QρMη
µ + η2Q2ρM + ηQL and noting that η ≤ 1

L ≤
1
µ and

Q = 3, we have CQ ≤ 12η(ρMµ +L), which, combined with the definition that r =
C2

Q

( ρM
µ +L)2

, yields

r ≤ 144η2. Then, based on the choice of N = 1 and λ = αµ
2 , we have

(1 + λ)(1− αµ)N
(
1 +

8rL2

ηµ

)
≤

(
1− αµ

2

)(
1 +

1152ηL2

µ

)
≤ 1− αµ

2
+

1152ηL2

µ
,

which, in conjunction with η ≤ µ2

4608L2α and α ≤ 1
L , yields

(1 + λ)(1− αµ)N
(
1 +

8rL2

ηµ

)
≤ 1− 1

4
αµ ≤ 1− ηµ. (27)

This implies that the inequality (1 + λ)(1− αµ)N (1 + 8rL2

ηµ ) ≤ 1− ηµ required by Theorem 1 is
satisfied. Then, treating µ, η, L, ρ,M, α, β,K, ∥θ00 − θ∗0∥2 and ∥v00 − v∗0∥2 as constants independent
of the total number J of iterations, we have

1

J

J−1∑
j=0

E∥Gj∥2 ≤ O
( 1

J
+

1

|B|

)
. (28)

Then, to ensure an ϵ-accurate stationary point, the number of iterations is ϵ−2 with a batch size
|B| = O(ϵ−2).
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C Experiment Hyperparameters

The experimemtal hyperparameters are list in Table 7, including the memory size: |M|, coreset size:
|S|, stream batch size: |Bt|, learning rate for Mtr: lrt, learning rate for Mcs: lrp, learning rate for
sample weights: lrw, regularization efficient: λ, epochs for training model: E, outer loops in bilevel
optimization: J , inner loops in bilevel optimization: N , loops for estimating the Hessian-inverse-
vector product: Q, a factor of Gaussian noise: δ.

Table 7: Hyperparameters settings in experiments.

Hyperparameters
Permuted Split Split Multiple Split
MNIST CIFAR-100 Tiny-Imagenet Datasets Food-101

|M| 200 100 200 83 100
|S| 10 10 20 10 10
|Bt| 50 50 100 50 50
lrt 0.005 0.15 0.20 0.1 0.15
lrp 5.0 5.0 10 5.0 10
lrw 5.0 5.0 10 5.0 10
λ 0.1 0.1 0.1 0.1 0.1
E 1 1 1 1 1
J 5 10 5 5 5
N 1 1 1 1 1
Q 3 3 3 3 3
δ 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3

D Running Time Comparison

We evaluate the running time (wall-clock time) of baseline methods on Split Tiny-ImageNet and Split
Food-101 in Table 8. All the training sections keep the same among these algorithms. Since there
is no advanced coreset selection procedures in K-means Features, K-means Embedding, Uniform
sampling, iCaRL, and Grad Matching, their running costs are pretty low but with worse performance
(i.e., accuracy and forgetting) compared with our approach BCSR. PBCS and GCR, SPR and MetaSP
don’t involve bilevel formulations, they cannot guarantee accurate coreset sampling though with lower
time cost against BCSR. Compared with OCS, BCSR takes 23% and 35% running time reduction on
Tiny-ImageNet and Split Food-101, respectively. Because similarity computing based on data pairs is
computationally expensive for OCS. Greedy Coreset takes much more time than BCSR due to the
usage of NTK.

Table 8: Running time.

Methods
Time (hours)

Tiny-ImageNet Split Food-101

K-means Features 0.15 0.02
K-means Embedding 0.41 0.04
Uniform 0.13 0.03
iCaRL 0.41 0.04
Grad Matching 0.57 0.06
SPR 0.77 0.11
MetaSP 0.86 0.13
PBCS 1.13 0.15
GCR 0.91 0.13
Greedy Coreset 6.26 0.83
OCS 3.45 0.40
BCSR 2.65 0.26

E Experiments on Permuted-MNIST

The experiment results on Permuted-MNIST is presented in this section. BCSR outperforms other
baselines significantly in AVG ACC on all the data settings, while showing relatively low forgetting.
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Table 9: Experiment results on Permuted MNIST

Methods
Balanced Imbalanced Label Noise

AT FGTT AT FGTT AT FGTT

K-means Features 54.30±0.93 0.064±0.012 39.46±0.11 0.023±0.003 46.71±0.64 0.094±0.011
K-means Embedding 54.78±1.83 0.056±0.009 41.97±2.02 0.013±0.005 47.36±1.58 0.082±0.015
Uniform 53.74±0.35 0.073±0.006 38.49±1.89 0.025±0.008 46.35±1.72 0.091±0.014
iCaRL 52.62±0.01 0.076±0.001 48.64±0.58 0.022±0.001 48.14±0.83 0.082±0.007
Grad Matching 54.76±1.61 0.065±0.011 33.67±1.24 0.028±0.003 48.24±0.42 0.089±0.009
SPR 54.24±0.45 0.068±0.019 40.79±0.83 0.031±0.003 48.23±0.75 0.067±0.004
MetaSP 54.63±0.31 0.059±0.006 41.32±0.94 0.025±0.006 48.84±0.77 0.061±0.007
Greedy Coreset 54.10±0.81 0.051±0.007 26.68±13.39 0.033±0.014 49.45±1.73 0.078±0.009
GCR 54.53±0.64 0.067±0.021 40.63±0.50 0.032±0.005 48.64±0.75 0.074±0.014
PBCS 51.61±1.14 0.144±0.021 41.14±0.23 0.119±0.007 39.74±1.98 0.178±0.001
OCS 54.37±0.34 0.026±0.001 50.19±0.47 0.020±0.005 48.08±1.44 0.046±0.003
BCSR 56.23±0.29 0.058±0.002 52.52±0.43 0.010±0.002 50.82±3.03 0.056±0.017

F Evolution of Average Accuracy

We present the learning process of different methods on Multiple Datasets in Figure 4. There are five
tasks, where the average accuracy is tested after training each task. BCSR shows better performance
than other baselines in different settings, including Balanced, Imbalanced, and label-noise.
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Figure 4: Evolution of average accuracy during the continual learning process for Multiple Datasets.

G Possibility Distribution of Candidate Coreset

To explore the effect of top-K regularizer, we observe the possibility distribution of sample weights
after each bilevel optimization, where sample weights of candidate coresets are initialized uniformly.
The novel top-K regularizer makes sure that the summation of the top-K entries of the learned
probability vector is large, such that we can confidently choose a coreset with size K . We show
the weight distribution after optimization in Figure. 5, where you can find that top-K weights are
much higher than others (with a margin 2%), which easily distinguishes the top-K core samples from
candidates.
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H The Effect of Top-K Regularizer

To further analyze the effects of top-K regularizer, we conduct the ablation study with different values
of regularizer coefficient λ on balanced Split CIFAR-100. The performance results with different
λ are shown in Table 10 and the corresponding average top-K summations of coreset weights are
in Table 11. In our experiment, there are 50 candidate samples in each mini-batch data, and the
summation of 50 coreset weights is equal to 1.00. Top-K summation of weights increases as λ
increases, which imposes higher probabilities on top-K entries and lower probabilities on the rest
candidates. The best performance is achieved when λ = 0.1, which means λ balances the trade-off
between the loss function and regularizer strength: if λ is too large, the algorithm primarily focuses
on choosing the important samples instead of updating the model parameter, and vice versa.

Table 10: Ablation study for the regularize coefficient λ.

Measure λ=0.01 λ=0.05 λ=0.10 λ=0.50 λ=1.00

AT 59.37±0.35 60.23±0.43 61.60±0.14 59.42±1.45 58.89±1.64
FGTT 0.095±0.098 0.074±0.054 0.051±0.015 0.138±0.075 0.128±0.076

Table 11: Top-K summation/Total summation of coreset weights (K = 10).

Measure λ=0.01 λ=0.05 λ=0.10 λ=0.50 λ=1.00

Top-K Sum/Total Sum 0.41/1.00 0.56/1.00 0.63/1.00 0.73/1.00 0.84/1.00

I Hypergradient Evolution

To demonstrate the efficiency of bilevel optimization, we illustrate the evolution of hypergradients for
a bilevel optimization on Split CIFAR-100 in Figure. 6. We observe the average norm of hypergradient
reduces from 10−1 to less than 10−2 in each round of coreset selection with loops equal to 10. The
hypergradient curves show that our designed bilevel optimization provides both theoretical and
practical convergence guarantees.

Table 12: The effect of coreset size

Methods
K=10 K=20 K=40
AT AT AT

Uniform 58.99±0.54 53.57±2.93 53.03±1.97
Greedy Coreset 59.39±0.16 56.81±3.32 56.09±0.42

PBCS 55.64±2.26 49.84±1.76 40.95±0.32
OCS 52.57±0.37 54.87±0.58 56.46±0.07

BCSR 61.60±0.14 59.06±1.15 56.58±0.21

J The Effect of Coreset Size K

Coreset size K also plays an important role in the experiment. We compare our BCSR with other
coreset-based algorithms on different K. Note that coreset is selected from the current stream
mini-batch Bt, so the coreset size K satisfies K ≤ |Bt|. In the main experiment results, K = 10 is
fixed in all the algorithms for a fair comparison. Here, we set K = 10, 20, 40 to conduct the continual
learning experiments, respectively. The result is represented in Table 12. Note that all the results
presented here are based on balanced Split CIFAR-100.

We mainly compare with the other four methods, including Uniform Sampling and three coreset-
based methods, Greedy Coreset, PBCS, and OCS. We can observe that the performance of almost
all methods becomes worse when coreset size is large. The reason is that if coreset size is larger
and closer to Bt, more redundant or noisy data are selected from the current stream mini-batch, and
the coreset would not be representative anymore. In contrast, the smaller coreset could reduce the
probability that redundant data are selected. Compared with other methods, BCSR shows the best
performance (both accuracy and forgetting) and better robustness on different K.
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K The Effect of Inner Loops N and Hessian-inverse-vector Product Loops Q

We conduct ablation studies to explore the sensitivity of hyperparameters (N and Q) on Split CIFAR-
100. The results are presented in Tables 13 (N ) and Table 14 (Q). The model performance remains
relatively stable when increasing inner loops (N ) while fixing Q. But too large N (N ≥ 15) leads
to performance degradation due to overfitting. The Q loops show similar properties that a few Q
loops (e.g., Q = 3) are enough to approximate the Hessian-inverse-vector product. Too small Q and
too large Q will hurt the performance due to possible underfitting (e.g., Q = 1) and overfitting (e.g.,
Q = 20).

Table 13: Ablation study for the inner loops (N) with fixed Q = 3.

Measure N=1 N=5 N=10 N=15 N=20

AT 61.60±0.14 61.75±0.11 61.64±0.15 60.77±0.32 59.20±0.41
FGTT 0.051±0.015 0.047±0.013 0.063±0.017 0.074±0.021 0.079±0.035

Table 14: Ablation study for the loops Q with fixed N = 1.

Measure Q=1 Q=3 Q=5 Q=10 Q=20

AT 52.14±1.53 61.60±0.14 61.57±0.15 58.42±0.53 57.80±1.31
FGTT 0.123±0.038 0.051±0.015 0.064±0.012 0.173±0.045 0.162±0.041

L Datasets

• Spit CIFAR-100. Balanced split CIFAR-100 is based on the original CIFAR-100 and is split
into 20 tasks, each consisting of 5 disjoint classes. The imbalanced setting and label noise are
also applied to this dataset to make the task more challenging. We follow [13] to transform the
original dataset to imbalanced long-tailed CIFAR-100. In the label-noise setting, we randomly
select 20% data in each task and randomly change their labels to an arbitrary label of 10 classes.

• Permuted MNIST. Balanced MNIST is a handwritten digits dataset [43] containing 20 tasks,
where each task applies a fixed random permutation to the image pixels. For the imbalanced
setting, we randomly select 8 classes over 10 and sample 10% of the selected classes for training.
We also conduct the experiments on the label noise scenario, where symmetric label noise with
20% noise rate is imposed on the data. In particular, to make the problem setting more challenging,
each task only retains 3000 training data randomly sampled from the original data.

• Multiple Datasets. This dataset [78] contains a couple of totally different datasets, including
MNIST [43], fashion-MNIST [75], NotMNIST [8], Traffic Sign [69] and SVHN [54]. There are
5 tasks, and each task is constructed by randomly selecting 1000 training samples from a different
dataset. The procedure of creating the dataset in the imbalanced and label-noise settings is the
same as that in Split CIFAR-100.

• Split Tiny-ImageNet. This dataset [42] contains 100000 images of 200 classes (500 for each
class) downsized to 64× 64 colored images. Each class has 500 training images, 50 validation
images, and 50 test images. We construct the task sequences by splitting data into 20 tasks, where
each task consists of 10 disjoint classes.

• Split Food-101. This dataset [7] is a challenging data set of 101 food categories, with 101’000
images. All the images are resized to 64× 64 pixels to be fed into models. To build continual
learning tasks easily, We discard the last category and split data into 20 tasks, with 5 categories
within each task. Other data settings, including imbalanced and lable-noise, are the same as Split
CIFAR-100.

M Assumptions and Properties

We first provide standard definitions and assumptions for the convergence rate analysis of bilevel
optimization [25, 36]. For notational convenience, we define ℓ(θ) :=

∑n
i=1 ℓi(θ).
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Definition 1. A mapping f is Lf -Lipschitz continuous if for ∀ z, z′, ∥f(z)− f(z′)∥ ≤ Lf∥z − z′∥.
Assumption 1. The lower-level function L(θ, w) is µ-strongly-convex w.r.t. θ.

Assumption 1 is a necessary geometric assumption in analyzing the convergence rate of bilevel
optimization algorithms, as also widely adopted existing theories in [25, 37, 32]. We also note that
this condition is satisfied for overparameterized neural networks [82]. The following assumption
imposes some Lipschitz continuity conditions on the upper- and lower-level objective functions.
Assumption 2. The gradients ∇θL(θ, w), ∇wL(θ, w) and ℓ(θ) are L-Lipschitz continuous w.r.t. θ
and w. In addition, the gradient norm ∥∇ℓ(θ∗(w))∥ ≤M .

Note that we do not impose any conditions on the regularization function R(w, δ). The following
assumption imposes the Lipschitz continuity on the second-order derivatives of the lower-level
functions.
Assumption 3. The second-order derivatives ∇w∇θL(θ, w) and ∇2

θL(w, θ) are ρ-Lipschitz continu-
ous.

Then, we use the following proposition to characterize the properties of the smoothed top-K regular-
izer R(w, δ), based on the results in [23].
Proposition 1. The smoothed regularizer R(w, δ) and its sampled version R(w, δ; z̃) satisfy the fol-
lowing two important properties: (i) The gradient∇R(w, δ) exists and is

√
Kn
δ -Lipschitz continuous;

(ii) The gradient norm ∥R(w, δ; z̃)∥ is bounded by
√
K for any sample z̃.

Proposition 1 shows that the regularizer R(w, δ) is smooth and its stochastic version R(w, δ; z̃) is
bounded. These two properties are important to guarantee the non-asymptotic convergence of our
proposed bilevel method.
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