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A Experimental details1

A.1 Model features2

We extract penultimate layer features of four different ImageNet-models — AlexNet [7], VGG-163

[21], ResNet-18, and ResNet-50 [2] — and image encoder features of four different image/text models4

— CLIP RN50 and CLIP ViT-L/14 trained on WIT [16]; CLIP ViT-L/14 trained on Laion-400M5

[19] and Laion-2B [20] respectively. For extracting the model features, we use the Python library6

thingsvision [8].7

A.2 gLocal probing8

To optimize the gLocal transforms, we use standard SGD with momentum and perform cross-9

validation according to the procedure proposed in Muttenthaler et al. [10]. For finding the optimal10

gLocal transform, we perform an extensive grid search over four different hyperparameter values —11

the learning rate, η, the strength of the regularization term λ, the global-local trade-off parameter12

α, and the temperature parameter, τ , used in the softmax expression for the local contrastive loss13

term (see Eq. 5). Specifically, we perform an extensive grid search over the Cartesian product of the14

following sets of hyperparameters:15

• η ∈ {0.0001, 0.001, 0.01, 0.1},16

• λ ∈ {0.01, 0.1, 1.0, 10.0},17

• α ∈ {0.05, 0.1, 0.25, 0.5, 1.0},18

• τ ∈ {0.1, 0.25, 0.5, 1.0}.19

We use the same η and λ grids for global probing. We use PyTorch [11] for implementing the20

probes and PyTorch lightning to accelerate training. We choose the gLocal transform that achieves21

the lowest alignment loss (see alignment term in Eq. 6). Among the values in the above grid, we22

find that a combination of (α = 0.1, λ = 0.1, η = 0.001) yields the lowest alignment loss/highest23

probing odd-one-out accuracy for both CLIP RN50 and CLIP ViT-L/14 (WIT) (see Figure A.1).24

A combination of (α = 0.25, λ = 0.1, η = 0.001) gives the second lowest alignment loss/highest25

probing odd-one-out accuracy for CLIP RN50 and CLIP ViT-L/14 (WIT).26

For each (α, λ) combination we select that combination with the best probing odd-one-out accuracy27

on a held-out test among the set of possible learning rate, η, and temperature value, τ , combinations28

determined by the above grid. We observe that η = 0.001 generally gives the best results across29

the different (α, λ) combinations, whereas performance is fairly insensitive to the value of τ . Since30

neither (α = 0.1, λ = 0.1) nor (α = 0.25, λ = 0.1) are values at the edges of the hyperparameter31
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Figure A.1: Among all hyperparameter combinations considered in our grid search, a combination of (α =
0.1, λ = 0.1, η = 0.001) for Eq. 6 in §3 yields the best odd-one-out accuracy on a held-out test set for both
CLIP RN50 and CLIP ViT-L/14 (WIT).

grid, it is plausible to assume that both the contrastive local loss and the regularization term in Eq. 632

in §3 are necessary to obtain a transformation that leads to a best-of-both-worlds representation.33

Although our goal has been to find a transform that induces both increased representational alignment34

and improved downstream task performance, we considered α = 1.0 to examine whether downstream35

task performance can potentially be improved by excluding the alignment loss. Note that α = 1.036

causes the optimization process to ignore the alignment loss. Unsurprisingly we did not find that to be37

the case. We remark that minimizing both the local contrastive loss and the regularization preserves38

the local similarity structure of the original representation space but does not inject any additional39

information into the representations. Moreover, it is non-trivial to choose a transform that works well40

across all downstream tasks without including the alignment loss. Therefore, we exclude α = 1.0 in41

Figure A.1.42

Compute. We used a compute time of approximately 400 hours on a single Nvidia A100 GPU43

with 40GB VRAM for all linear probing experiments — including the hyperparameter sweep. The44

computations were performed on a standard, large-scale academic SLURM cluster.45

A.3 Few-shot learning46

Here, we use ns-fold cross-validation for finding the optimal ℓ2-regularization parameter, where47

ns refers to the number of shots per class. We select the parameter from the following set48

of values, {1e+6, 1, 1e+5, 1e+4, 1e+3, 1, 1e+2, 1e+1, 1, 1e−1, 1e−2, 1e−3, 1e−4}. We use the49

scikit-learn [12] implementation of (multinomial) logistic regression and refit the regression after50

selecting the optimal regularization parameter.51

Compute. We used a compute time of approximately 5600 CPU-hours of 2.90GHz Intel Xeon Gold52

6326 CPUs for all few-shot experiments. Computations were performed on a standard, large-scale53

academic SLURM cluster.54

A.4 Anomaly Detection55

In this section, we outline our anomaly detection experimental setting in more detail. In the anomaly56

detection settings that we consider in our analyses normal/anomaly classes are determined via the57

original classes in the data. Here, each of the original classes is once selected as a normal class58

with the remaining classes being anomalous and, vice versa, each class in the data is once selected59

as an anomalous class with the other classes being normal. After embedding the training images60

from either the normal or the anomalous class in a model’s representation space, at inference time a61

model must classify whether a new image belongs to the normal data or whether it deviates from62
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it and is thus considered an anomaly. For each example in the test set, a model yields an anomaly63

score where higher scores indicate more probability of an example being anomalous. Using the64

binary anomaly labels and the anomaly scores for each of the examples, we can then compute the65

area-under-the-receiver-operating-characteristic-curve (AUROC) to quantify the performance of the66

model.67

One-vs-rest. Given a dataset (e.g., CIFAR-10) with C classes, one class (e.g., “airplane”) is chosen68

to be the normal class and the remaining C − 1 classes of the dataset are considered anomalies. Each69

of the C classes is once selected as a normal class and the AUROC is averaged across the classes.70

Leave-one-out (LOO). In contrast to the “one-vs-rest” setting, in LOO we define one class of the71

dataset as an anomaly and the remaining classes as normal. Similarly to the “one-vs-rest“ setting,72

this results in C evaluations for a dataset with C classes.73

In both “one-vs-rest” and LOO AD settings, we evaluate model representations in the following way:74

First, we compute the representations Xtrain of the normal samples in the train set. Then, we compute75

the representations of all test set examples Xtest. For each test set representation, we compute the76

cosine similarity to all normal train set representations, Xtrain, and select the k nearest neighbor77

samples that have the highest cosine similarity.78

The anomaly score of a test set representation is then defined as the average cosine distance to the k79

nearest train representations. k is a hyperparameter that determines the number of nearest neighbors80

over which the anomaly score is computed. We choose k = 5 for our experiments but show that81

performance is fairly insensitive to the value of k (see Tab. D.6).82

Compute. For all AD experiments, we used a compute time of approximately 20 hours on a single83

Nvidia A100 GPU with 40GB VRAM. Computations were performed on a standard, large-scale84

academic SLURM cluster.85

B What changes in the global structure of the representations after86

alignment?87

In this section, we attempt to build some intuitions for how the global structure of the representations88

changes after alignment. To do so, we analyze the movements of the representations of items and89

superordinate categories in the THINGS dataset. Specifically, we compute cosine differences between90

the CLIP-ViT-L/14 representations of each pair of items in THINGS and then compute how these91

distances change under the transforms.92

We show the pairs of items that change the most in distance in Table B.1. Items that are semantically93

related, like “curry” and “scrambled egg”, tend to move closer together, and therefore have trans-94

formed distances that are smaller than their original distance. By contrast, items like “handcuff” and95

“stethoscope”, which are semantically unrelated but perhaps have some slight visual similarity, tend96

to move farther apart. The distance changes under the gLocal transforms are correlated with, though97

generally less varied than, those under the naively-aligned transform.98

To more broadly analyze the change in global structure, we then look at how distances between99

pairs of items change within and across superordinate categories (the top-down categories from100

THINGS). We show the results in Fig. B.1. Under the naively aligned transform, the items within101

each superordinate category tend to move slightly closer together — the diagonal is slightly blue —102

while the items from different categories tend to move substantially farther apart — the off-diagonal103

is mostly red. That is, the representations are broadly moving in a way that reflects the overall human104

semantic organization of the categories.105

There are a few notable standouts: the categories of drink, food, plant, and animal change particularly106

much, and in particularly interesting ways. These categories each move much farther relative to all107

other categories (such as tool or musical instrument) than those other categories move relative to108

each other. This perhaps reflects the particular semantic salience of food, drink, plants, and animals109

from a human perspective. Furthermore, food and drink are one of the few pairs of superordinate110

categories between which distances actually decrease after the transform, presumably reflecting the111

strong semantic ties between these categories. Similarly, animals move less far from plants than from112

any other category, perhaps reflecting the fact that the animate/inanimate distinction is one of the113

strongest features in human semantic representations [18].114
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Under the gLocal transform, the pattern of changes is strongly correlated with the naively aligned115

transform (r = 0.96, p ≤ 10−16). However, in keeping with the regularization, the magnitude of the116

changes varies less.117

Table B.1: Distances between pairs of individual items from THINGS, ranked by the relative change in cosine
distance from before to after naive alignment (normalized by original distance). The top items move much
closer together under naive alignment, while the bottom ones move much farther apart. (All results are from
CLIP-ViT-L/14.)

Item 1 Item 2 original dist. naively aligned dist. gLocal dist.

curry scrambled egg 0.303120 0.005276 0.401019
otter warthog 0.305242 0.005530 0.382150
parfait spaghetti 0.457553 0.009115 0.540346
otter rhinoceros 0.327497 0.006530 0.456641

...
stethoscope wheat 0.263908 1.284535 0.935891
grass wallet 0.277866 1.347424 1.056572
cat traffic light 0.285151 1.378671 0.981944
handcuff sugar cube 0.272936 1.308337 0.904380
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Figure B.1: How does the global structure of the representations change after alignment? Here, we analyze the
movements of the representations of pairs of items from different superordinate categories from the THINGS
dataset. The squares on the diagonal indicate the change in distance between items within a superordinate
category, while the squares off the diagonal indicate changes between pairs of items from the corresponding
pair of superordinate categories. A red color indicates the items from the categories move farther apart from
each other after alignment, blue indicates moving closer together. Generally, items within a superordinate
category move slightly closer together under naive alignment, while those in different categories move farther
apart. A similar overall pattern is reflected in both the naively-aligned transform (left) and gLocal (right) ones,
though under gLocal alignment there is a greater overall spreading of the representations. (All results are from
CLIP-ViT-L/14.)

C Visualization of neighboring images118

To provide further insight into the difference between the effects of the naive and gLocal transforms,119

in Figure C.1 we visualize the neighbors of nine anchor images. In order to show a diverse set of120

images, we pick the nearest neighbors in the CLIP ViT-L/14 (WIT) embedding space subject to the121

constraint that each neighbor comes from a different class from the original images and the nearer122

neighbors. In accordance with the results in §4.2, we find that the neighbors in the untransformed and123

gLocal spaces are generally similar, whereas neighbors in the naive representation space are frequently124
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different. The naive transform appears to discard all non-semantic properties of images, whereas the125

untransformed and gLocal representation spaces are sensitive to pose, color, and numerosity. In cases126

where the closest neighbor differs between the naive and gLocal representations (third and fourth127

row), the neighbors in the gLocal representation are arguably better matches to the anchor.128
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Figure C.1: Comparison of neighbors in the ImageNet validation set for representations with different transforms.
We visualize the 10 closest images subject to the constraint that each comes from a unique class. The anchor
images are shown in the leftmost column. The three rows corresponding to each anchor image show their nearest
neighbors in the untransformed, gLocal transformed, and naively transformed representations.
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D Additional results on downstream tasks129

In this section, we provide additional few-shot learning and anomaly detection results for all ImageNet130

and image/text models that we considered in our analyses (see §A.1). We start this section by131

demonstrating a strong relationship between the performances of the different downstream tasks.
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Figure D.1: Here, we show anomaly detection AUROC averaged across all tasks reported in Tab. {2, 3} as a
function of the average 4-shot classification performance for all ImageNet and CLIP models (see §A.1), using
either the original representations or the representations transformed via the naive or gLocal transformations.

132

Downstream task relationship. We observe a strong positive relationship (r = 0.8872, p ≤ 10−7)133

between the average few-shot learning and the average anomaly detection performance for all134

ImageNet and image/text models that we considered in our analyses (see Fig. D.1). This observation135

holds for both the original representation space and the representations transformed via the naive or136

gLocal transformations. This indicates that both downstream tasks require similar representations for137

similarly strong performance.138

D.1 Few-shot learning139

In the following section, we show additional few-shot learning results. Specifically, we report 4-shot140

performance of ImageNet models and show few-shot results as a function of the number of samples141

used during fitting.142

Results for ImageNet models. In Tab. D.1 we report additional 4-shot results for ImageNet models.143

The gLocal transforms improve few-shot accuracy on Entity-{13,30} from BREEDS but the impact on144

few-shot performance is either inconsistent or negative for CIFAR-100 coarse, CIFAR-100, SUN397,145

and DTD of which the latter three are more fine-grained datasets than the other three.146

Table D.1: 4-shot FS results using the original or transformed representations.
Entity-13 Entity-30 CIFAR100-Coarse CIFAR100 SUN397 DTD

Model \ Transform original gLocal original gLocal original gLocal original gLocal original gLocal original gLocal

AlexNet 35.03 39.59 24.78 25.85 30.51 30.17 26.26 21.1 24.19 17.45 33.39 28.66
ResNet-18 56.15 56.47 50.49 50.03 38.3 38.47 35.91 34.42 34.58 33.17 47.01 44.28
ResNet-50 47.44 51.41 47.59 50.22 48.2 47.72 45.29 45.17 44.69 44.62 51.51 51.85
VGG-16 48.34 54.76 42.17 44.04 36.74 33.99 31.77 26.03 34.55 27.71 42.35 35.36

Effect of transforms for different numbers of training samples. When varying the number of147

training samples for the few-shot experiments described in §4.3 we observe consistent improvements148

of the gLocal transforms across shots. Excluding the high-variance setting of 2-shot learning, we149

either find stable improvements in accuracy for image/text models, or a downward trend for ImageNet150

models on some tasks. This corroborates our findings from §4.3. Results appear to be robust to151

changes in the training set size, in particular for the CLIP models. Yet, we observe the most substantial152

benefits in low data regimes. See Fig. D.2 for more details.153
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Figure D.2: Change in average accuracy for different numbers of training samples per super-class (top row)
or (sub-)class (bottom row) used for few-shot learning. Error bands depict 95% Confidence Intervals (CIs),
computed over 5 different runs.

D.2 Anomaly detection154

In addition to the results of image/text models for the “one-vs-rest” anomaly detection (AD) setting155

that we presented in §4.4, here we show “one-vs-rest” AD performance of ImageNet models. While156

the gLocal transform considerably improves AD performance over the untransformed representations157

across the different datasets for image/text models (see Tab. {2, 3}, for ImageNet models we do not158

observe any improvements over the original representation space (see Tab. {D.2, D.3}).159

Furthermore, we present results for the non-standard Leave-one-out (LOO) setting and for “CIFAR10-160

vs-CIFAR100” for all image/text and Imagenet models that we considered. In the “CIFAR10-vs-161

CIFAR100” AD task, all data of CIFAR10 is considered to be the normal class, and each sample from162

the CIFAR100 dataset is considered an anomaly. Similarly to the previously reported AD results, the163

gLocal transform substantially improves AD performance compared to the original representations164

for image/text models across all datasets but does not appear to have a considerable impact on the165

performance of ImageNet models (see Tab. {D.4, D.5}.166

Table D.2: One-vs-rest nearest neighbor based AD results; with and without transformation. ImageNet30 results
for ImageNet models are omitted due to overlap with train data.

CIFAR10 CIFAR100 CIFAR100-Coarse ImageNet30 DTD
Model \ Transform original gLocal original gLocal original gLocal original gLocal original gLocal

AlexNet 89.43 85.63 92.34 88.53 87.53 82.75 _ _ 86.33 79.51
ResNet-18 92.19 86.70 95.06 90.89 92.16 86.38 _ _ 94.38 90.11
ResNet-50 94.74 94.13 96.46 96.18 94.3 94.03 _ _ 94.47 94.42
VGG-16 90.33 88.00 93.56 91.97 89.78 88.16 _ _ 91.15 85.5

Table D.3: One-vs-rest AD with a class distribution shift between train and test sets; with and without transfor-
mation.

Entity-13 Entity-30 Living-17 Nonliving-26 Cifar100-shift
Model \ Transform original gLocal original gLocal original gLocal original gLocal original gLocal

AlexNet 83.84 81.45 85.38 83.71 87.04 79.09 81.45 78.84 80.21 76.37
ResNet-18 91.84 89.45 93.18 91.6 96.82 93.1 90.97 89.87 81.83 77.44
ResNet-50 89.59 91.26 93.51 93.86 98.27 97.98 90.61 91.85 84.73 85.38
VGG-16 89.78 88.87 90.7 91.56 94.72 89.98 89.78 89.32 83.42 81.91
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Table D.4: LOO nearest neighbor based AD results and “CIFAR-10 vs. CIFAR-100” AD results; with and
without using the gLocal transform.

CIFAR10 CIFAR100 Cifar100-Coarse Cifar10 vs Cifar100
Model \ Transform original gLocal original gLocal original gLocal original gLocal

AlexNet 67.64 62.7 58.94 55.83 63.33 59.37 69.87 68.01
ResNet-18 72.35 65.86 64.86 59.9 71.38 64.52 81.42 75.55
ResNet-50 76.62 75.36 66.91 66.03 74.78 73.96 84.27 84.17
VGG-16 68.45 64.31 59.92 57.89 65.81 64.28 73.55 74.7
CLIP-RN50 70.32 72.46 59.91 61.43 65.63 68.07 72.55 76.78
CLIP-ViT-L/14 (WIT) 84.91 91.33 67.08 72.2 73.48 80.51 85.24 92.42
CLIP-ViT-L/14 (LAION-400M) 93.0 92.37 74.05 74.15 82.13 82.88 94.44 94.68
CLIP-ViT-L/14 (LAION-2B) 93.55 95.23 76.88 77.46 84.67 85.78 93.18 95.26

Table D.5: LOO nearest neighbor based AD results; with and without using the gLocal transform.
Entity-13 Entity-30 Living-17 Non-Living-26

Model \ Transform original gLocal original gLocal original gLocal original gLocal

AlexNet 62.05 59.73 58.2 56.23 61.02 56.07 56.27 54.93
ResNet-18 74.26 68.88 70.6 64.7 76.48 70.79 66.61 63.82
ResNet-50 72.46 73.67 73.37 72.49 83.5 82.45 68.16 68.29
VGG-16 70.26 68.03 66.38 63.24 73.31 65.99 64.87 62.95
CLIP-RN50 69.99 71.12 63.49 63.72 72.52 70.04 62.55 63.4
CLIP-ViT-L/14 (WIT) 71.68 74.88 68.96 70.58 82.9 82.72 63.94 67.33
CLIP-ViT-L/14 (LAION-400M) 69.98 71.44 65.68 66.26 77.35 77.4 65.19 66.27
CLIP-ViT-L/14 (LAION-2B) 70.77 72.49 66.55 67.68 80.07 80.09 65.43 67.99

The nearest neighbor hyperparameter k. From the results reported in Tab. D.6 it can be inferred that167

the nearest neighbor hyperparameter k does not have a considerable impact on AD task performance168

across the different datasets. Here, we report the impact of k on the performance of CLIP ViT-L/14169

(WIT) but the observation holds across all image/text models.170

Table D.6: Nearest Neighbor AD performance of CLIP ViT-L/14 for different k.
k 2 5 10 20

Dataset \ Transform original gLocal original gLocal original gLocal original gLocal

CIFAR-10 95.37 98.16 95.14 98.16 94.86 98.11 94.50 98.04
CIFAR-100 91.90 97.08 91.41 97.04 90.93 96.92 90.39 96.75
CIFAR-100-coarse 89.28 95.68 88.50 95.59 87.73 95.4 86.81 95.12
CIFAR-100-shift 74.48 86.18 73.69 86.17 73.00 86.02 72.29 85.82
ImageNet30 98.95 99.78 98.91 99.79 98.85 99.8 98.78 99.8
Entity-13 88.37 92.89 88.54 93.57 88.45 93.94 88.28 94.22
Entity-30 91.26 95.36 91.31 95.77 91.22 95.97 91.03 96.12

D.3 Global versus gLocal transform171

Aside from the AD performance of CLIP RN50 and CLIP ViT-L/14 (WIT), the gLocal transform172

leads to more substantial improvements on downstream tasks than the global transform. In Tab D.7,173

we report the average few-shot and anomaly detection performances using the global or gLocal174

transforms. For FS, we average performance over all results reported in Tab. 1, and for AD we175

average performance across all results reported in Tab. {2, 3, D.1}.176

E Representational alignment177

E.1 Human similarity judgments and RSMs178

Multi-arrangement task. Human similarity judgments for King et al. [5] and [1] were obtained179

by using a multi-arrangement task. In a multi-arrangement task, participants are presented with a180

computer screen showing images of a number of different objects. The participants are asked to181

arrange the images into semantically meaningful clusters, given the instruction that images of objects182

that lie close together are considered more similar. From this arrangement, one can infer pairwise183

(dis-)similarities of the objects and average those across all participants to obtain a representative184

(dis-)similarity matrix.185
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Table D.7: Comparison of the average downstream task performance global and gLocal transforms.
AD FS

Model \ Transform global gLocal global gLocal

AlexNet 81.16 81.76 26.65 27.14
ResNet-18 84.62 88.39 40.75 42.80
ResNet-50 93.19 93.23 48.29 48.50
VGG-16 87.32 88.36 35.36 36.98

CLIP-RN50 92.12 91.52 50.02 52.57
CLIP-ViT-L/14 (WIT) 95.49 95.14 65.80 67.44
CLIP-ViT-L/14 (LAION-400M) 95.72 96.08 66.82 67.34
CLIP-ViT-L/14 (LAION-2B) 96.33 96.65 69.73 69.74

Ordinal scale. In Peterson et al. [13, 14], pairwise similarity judgments were obtained by asking186

human participants to rate the similarity of pairs of objects on an ordinal scale that ranges from 0187

(“not similar at all”) to 10 (“very similar”). The pairwise similarity ratings can be averaged across the188

different participants which in turn yields a matrix of similarities between pairs of objects.189

Triplet odd-one-out choices. The triplet odd-one-out task is a commonly used task in the cognitive190

sciences to infer pairwise object similarity ratings [17, 3, 9]. The triplet odd-one-out task is a191

three-alternative-forced-choice task where participants are presented with three objects and have192

to select the one that does not fit. In contrast to the multi-arrangement task or an ordinal scale,193

the triplet odd-one-out task does not naturally yield a similarity matrix. A similarity matrix can194

be obtained, however, by learning representations for the objects being used in the task from the195

human responses. Variational Interpretable Concept Embeddings (VICE) — an approximate Bayesian196

method for inferring mental representations of object concepts from triplet odd-one-out choices — is197

a method that was specifically developed for that purpose. VICE uses variational inference to learn198

representations for the objects in the triplets by fitting the human responses via stochastic gradient199

descent. The method minimizes Lglobal with additional non-negativity and sparsity constraints on the200

representations. More details about the optimization can be found in Muttenthaler et al. [9]. From201

the VICE solution, one can easily compute a representational similarity matrix (RSM). Specifically,202

given learned object representations V ∈ Rn×d, one first computes the dot-product similarity matrix203

Sh := V V ⊤ and then exponentiate this matrix elementwise, S′
h := exp(Sh). One can then apply204

the softmax function defined in Eq. 1 to every combination of triplets in the exponentiated similarity205

matrix which yields the final RSM for triplet odd-one-out choices from Hebart et al. [4]. The last206

step is performed to guarantee that the pairwise similarities are modeled according to the triplet207

odd-one-out objective function that was used to learn the human object representations V (see Eq. 2).208

E.2 Neural network representations and RSMs209

Neural network representations. RSMs for neural network representations are obtained by first210

embedding the same set of images that were presented to the human participants in the p-dimensional211

latent space of a neural net. The latent space could be any layer of a neural network. Here we use the212

penultimate layer space for ImageNet models and the image encoder space for image/text models.213

We do this because previous work has shown that the penultimate layer space of ImageNet models214

and the image encoder space of image/text models respectively yield the highest similarity to human215

behavior [14, 15, 10]. After embedding the images into the neural net’s latent space, one obtains216

a representation matrix X ∈ Rn×p for the n images in the data. Instead of simply computing the217

dot-product similarity matrix S := XX⊤, in RSA one typically uses either a cosine similarity or a218

Pearson correlation kernel to compute the affinity matrix,219

cos(xi,xj) :=
x⊤
i xj

||xi||2||xj ||2
; ϕ(xi,xj) :=

(xi − x̄i)
⊤
(xj − x̄j)

|| (xi − x̄i) ||2|| (xj − x̄j) ||2
,

where the cosine similarity kernel function cos(xi,xj) or the Pearson correlation kernel function220

ϕ(xi,xj) is applied to every (xi,xj) vector pair of the matrix X for obtaining the final representa-221

tional similarity matrix S′ ∈ Rn×n. Here, we use the Pearson correlation kernel function ϕ(xi,xj)222

to obtain a neural net’s RSM. Pearson correlation is the centered version of cosine similarity and223

the ranking of the obtained similarities does not differ between the two kernel functions but Pearson224

correlation first centers the vectors to have zero mean and is therefore a more robust measure. For225
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obtaining RSMs with transformed representations, the transforms are first applied to X before226

computing S′.227

E.3 Representational Similarity Analysis (RSA)228

Additional RSMs. To corroborate our findings from §4.5, here we additionally show RSMs for CLIP229

RN50 and CLIP ViT-L/14 (Laion 2B). In accordance with the different RSMs obtained from the230

representation space of CLIP ViT-L/14 (WIT), there does not appear to be a qualitative difference231

in the global similarity structure between the RSMs obtained from applying either the naive or the232

gLocal transforms to CLIP RN50 or CLIP ViT-L/14 (Laion 2B) (see Fig. E.1). Hence, the gLocal233

transform improves representational alignment while preserving the local similarity structure of the234

original representation equally well for the different CLIP models, as we show in Tab. 4.
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Figure E.1: Here, we show representational similarity matrices (RSMs) for human behavior and CLIP RN50
[WIT; 16] and CLIP ViT-L/14 [Laion 2B; 20] for four different human similarity judgment datasets [3, 14, 1, 5].
We contrast RSMs obtained from the network’s original representation space (second column), the naively
transformed representation space [10] (third column), and the representation space obtained by using the gLocal
transform (rightmost column) against RSMs directly constructed from human similarity judgments (leftmost
column).

235

F Global transform derivation236

Here we derive that237

min
α

∥W − αI∥2F = ∥W − (
∑p

i=1 Wii/p) I∥
2

F
.

First, observe that238

min
α

∥W − αI∥2F = min
α

p∑
i=1

p∑
j=1

(
Wij − α1[i=j]

)2
= min

α

p∑
i=1

p∑
j=1,j ̸=i

W 2
ij +

p∑
k=1

(Wkk − α)
2

=

p∑
i=1

p∑
j=1,j ̸=i

W 2
ij +min

α

p∑
k=1

(Wkk − α)
2
.
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The minimizer of minα
∑p

k=1 (Wkk − α)
2 is attained with α =

∑p
ℓ=1 Wℓℓ/p. Substituting this239

back into the last equality and reversing the steps from before we have240

p∑
i=1

p∑
j=1,j ̸=i

W 2
ij +min

α

p∑
k=1

(Wkk − α)
2
=

p∑
i=1

p∑
j=1,j ̸=i

W 2
ij +

p∑
k=1

(
Wkk −

p∑
ℓ=1

Wℓℓ/p

)2

=

p∑
i=1

p∑
j=1

(
Wij −

(
p∑

ℓ=1

Wℓℓ/p

)
1[i=j]

)2

= ∥W − (
∑p

ℓ=1 Wℓℓ/p) I∥
2

F
,

which finishes our derivation.241

G Properties of LCKA242

Kornblith et al. [6] previously validated linear centered kernel alignment (LCKA) as a way to243

measure similarity between neural network representations. Given representations X ∈ Rn×p and244

Y ∈ Rn×p2 containing embeddings of the same n images stacked row-wise, LCKA is:245

LCKA(X,Y ) =
⟨X̃X̃⊤, Ỹ Ỹ ⊤⟩F

∥X̃X̃⊤∥F∥Ỹ Ỹ ⊤∥F
=

∥X̃⊤Ỹ ∥2F
∥X̃⊤X̃∥F∥Ỹ ⊤Ỹ ∥F

, (1)

where X̃ and Ỹ are equal to X and Y with column means subtracted. (Formally, X̃ = HX and246

Ỹ = HY and H = I − 1
n11

⊤ is the centering matrix, which is a matrix representation of the linear247

operator that subtracts column means.)248

As Kornblith et al. [6] note, linear CKA can be thought of as measuring the cosine similarity between249

all pairs of principal components (PCs) of X̃ and Ỹ , weighted by the products of the proportions of250

variance these PCs explain in each representation. Formally, let X̃ = UΣV ⊤ and Ỹ = U ′Σ′V ′⊤251

be the singular value decompositions of X̃ and Ỹ . The left-singular vectors ui = U:,i are the252

(unit-norm) PCs of X , and the squared singular values λi = Σ2
ii are the amount of variance that253

those PCs explain (up to a factor of 1/n). Given these singular value decompositions, linear CKA is:254

LCKA(X,Y ) =

∑p1

i=1

∑p2

j=1 λiλ
′
j

(
u⊤
i u

′
j

)2√∑p1

i=1 λ
2
i

√∑p2

j=1 λ
′
j
2

. (2)
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