
Graph-Structured Gaussian Processes for
Transferable Graph Learning

Jun Wu1, Elizabeth Ainsworth1,2, Andrew Leakey1, Haixun Wang3, Jingrui He1
1University of Illinois at Urbana-Champaign

2USDA ARS Global Change and Photosynthesis Research Unit
3Instacart

{junwu3,ainswort,leakey,jingrui}@illinois.edu, {haixun}@gmail.com

Abstract

Transferable graph learning involves knowledge transferability from a source graph
to a relevant target graph. The major challenge of transferable graph learning
is the distribution shift between source and target graphs induced by individual
node attributes and complex graph structures. To solve this problem, in this paper,
we propose a generic graph-structured Gaussian process framework (GraphGP)
for adaptively transferring knowledge across graphs with either homophily or
heterophily assumptions. Specifically, GraphGP is derived from a novel graph
structure-aware neural network in the limit on the layer width. The generalization
analysis of GraphGP explicitly investigates the connection between knowledge
transferability and graph domain similarity. Extensive experiments on several
transferable graph learning benchmarks demonstrate the efficacy of GraphGP over
state-of-the-art Gaussian process baselines.

1 Introduction

So
ur

ce
Ta

rg
et

(a) (b) (c)

Figure 1: Illustration of transferable graph learn-
ing. (a) Samples are independently drawn. (b)
Samples are connected in each domain, and
both domains follow the homophily assumption.
(c) Source and target domains follow different
graph structure assumptions.

Transfer learning [40, 54] aims at studying the
transfer of knowledge or information from a source
domain to a relevant target domain under distribu-
tion shifts. The knowledge transferability across
domains has been investigated from various aspects.
For example, [3, 15, 67] proposed to empirically
estimate the data-level domain discrepancy for mea-
suring the transferability across graphs. [8, 49]
adopted adaptive Gaussian processes with trans-
fer kernels, which formulated the task relatedness
as a hyper-parameter for tuning. [22, 36, 63] in-
stead evaluated the transferability of a pre-trained
source model in the target domain. However, most
existing works followed the IID assumption that
samples are independent and identically distributed
in each domain. This might limit their capacities in understanding the knowledge transferability
across domains with non-IID data, e.g., cross-domain recommendation [55], cross-network role
identification [69], etc.

In this paper, we focus on the problem of transferable graph learning over non-IID graph data. The
challenge of transferable graph learning induced by the graph structure information can be explained
in Figure 1. It can be seen that Figure 1(a) provides source and target samples associated with
input features and output class labels (indicated by node colors). Suppose that source and target

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

distributions have been aligned (e.g., optimized by domain discrepancy minimization algorithms [15,
67]), Figure 1(a) implies that source and target domains have similar data distributions in the feature
space, thereby enabling feasible knowledge transfer across domains. Compared to Figure 1(a),
Figure 1(b)(c) introduce additional graph structure information. In Figure 1(b), source and target
graphs follow similar structures where nodes within the same class tend to be connected (i.e., the
homophily assumption [59]). In contrast, the structures of source and target graphs fundamentally
differ in Figure 1(c). That is, though the target graph follows the homophily assumption, the
source graph holds the heterophily assumption that connected nodes may have different classes and
dissimilar node attributes [68]. Therefore, compared to standard transfer learning [31, 40] with IID
data, transferable graph learning is much more challenging because knowledge transferability across
graphs can be determined by both individual node features and complex graph structures.

In recent years, transferable graph learning has been studied [55, 58, 66, 69] where both source
and target graphs follow the homophily assumption (Figure 1(b)). However, little effort has been
devoted to investigating the knowledge transferability between homophilic and heterophilic graphs
(Figure 1(c)). To bridge this gap, in this paper, we focus on studying the knowledge transferability
across graphs with either the same (e.g., homophily or heterophily) or different assumptions.

We start by introducing a universal structure-aware neural network to build the input-output rela-
tionship between structure-aware input sample (v,G) and its associated output value yv for tackling
homophilic and heterophilic graphs. This model encodes both local node representation (sample-level)
and global graph representation (domain-level) simultaneously. The crucial idea is to automatically
select relevant neighborhoods by adding learnable weights to neighborhood aggregation. Thus, it
enables knowledge transferability between homophilic and heterophilic graphs by adaptively selecting
neighborhoods for each graph. The intuition is that source and target graphs might have common
knowledge from the selected neighborhoods, e.g., nearby neighborhoods for the homophilic graph
and high-order neighborhoods for the heterophilic graph. Then, we show the equivalence between
structure-aware neural network and graph Gaussian process in the limit on the layer width. This obser-
vation sheds light on building graph-structured Gaussian processes (GraphGP) for transferable graph
learning. Moreover, the generalization analysis of GraphGP shows the connection between knowledge
transferability and graph domain similarity. Compared to previous works [45, 58, 69], GraphGP
benefits from (i) feasible knowledge transferability between homophily and heterophily graphs,
and (ii) flexible incorporation with existing graph neural networks and graph kernels. Extensive
experiments on node regression tasks demonstrate the effectiveness of GraphGP over state-of-the-art
Gaussian process baselines. The main contributions of this paper are summarized as follows.

• A generic graph-structured Gaussian process framework GraphGP is proposed for transfer-
able graph learning. It is derived from a structure-aware neural network encoding local node
representation (sample-level) and global graph representation (domain-level) simultaneously.

• We show that GraphGP tackles the knowledge transferability in homophily and heterophily
graphs using a simple neighborhood selection strategy. In addition, we theoretically analyze
the knowledge transferability across graphs from the perspective of graph domain similarity.

• Experimental results on a variety of graph learning benchmarks demonstrate the efficacy of
GraphGP over state-of-the-art Gaussian process baselines.

The rest of this paper is organized as follows. Section 2 summarizes the related work, and Section 3
provides the problem definition of transferable graph learning. In Section 4, we present the graph-
structured Gaussian process (GraphGP) for transferable graph learning. The experimental results are
provided in Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

Transfer Learning: Transfer learning [40, 54] tackles the transfer of knowledge or information from
a source domain to a relevant target domain. It is theoretically shown [3, 67] that the generalization
performance of a learning algorithm can be improved by leveraging latent knowledge from the
source domain. Specifically, the generalization error of a learning algorithm on the target domain
can be bounded in terms of the source knowledge and the distribution discrepancy across domains.
Recently, transfer learning has been explored in non-IID graph data [7, 55, 58, 64, 69]. However,
most existing works focus on either investigating the transferability of a pre-trained graph neural

2

network [27, 45, 69] or designing graph transfer learning algorithms [58, 66] with relaxed assumptions
(e.g., k-hop ego-graphs are assumed to be independent and identically distributed [69]).

Gaussian Process: Gaussian process [9, 42] provides a principled nonparametric framework for
learning stochastic functions from observations. It has been applied to transfer learning when samples
in each domain are independent and identically distributed [8, 49, 56]. The crucial idea is to infer
the task relatedness between source and target domains using available labeled source and target
examples. More recently, Gaussian processes have also been investigated in graph learning tasks,
e.g., link prediction [14, 38, 65] and node regression [6, 21, 28, 35, 37, 39]. However, little effort has
been devoted to understanding transferable graph learning from Gaussian process perspectives.

3 Preliminaries

3.1 Notation and Problem Definition

Suppose that a graph is represented as G = (V,E), where V = {v1, · · · , v|V |} is the set of n
nodes and E ⊆ V × V is the edge set in the graph. Each node v ∈ V can be associated with a
D-dimensional feature vector xv ∈ RD. In the node regression tasks, the ground-truth output of each
node is denoted by yv ∈ R. The structure of a graph G can also be represented by an adjacency matrix
A ∈ R|V |×|V |, where Aij is the edge weight between vi and vj within the graph. Following [55, 69],
we introduce a generic problem setting of transferable graph learning as follows.

Definition 3.1 (Transferable Graph Learning). Given a source graph Gs = (Vs, Es) and a target
graph Gt = (Vt, Et), transferable graph learning aims to improve the prediction performance of a
graph learning algorithm in the target graph using latent knowledge from a relevant source graph.

3.2 Message-Passing Graph Neural Networks

Weisfeiler-Lehman (WL) graph subtree kernel [46] measures the similarity of two input graphs,
inspired by the Weisfeiler-Lehman test of isomorphism [53]. The crucial component of WL subtree
kernel is to recursively represent the subtree structure rooted at each node. This has motivated a variety
of message-passing graph neural networks (GNN), which recursively learn the node presentation of
node v by aggregating the feature vectors from v’s local neighborhood [17, 18, 20, 57, 59]. Generally,
a graph convolutional layer of message-passing GNNs can be summarized as follows.

h(l+1)
v = COMBINE(l)

(
h(l)
v︸︷︷︸

Seed node representation

, AGGREGATE
(l)
1

(
{h(l)

u |u ∈ N1(v)}
)

︸ ︷︷ ︸
1-order neighborhood representation

,

· · · , AGGREGATE(l)k

(
{h(l)

u |u ∈ Nk(v)}
)

︸ ︷︷ ︸
k-order neighborhood representation

) (1)

where COMBINE(l) function compresses the representations from the node itself and its neighbors
at the lth graph convolutional layer into a single representation, and AGGREGATE

(l)
j (j = 1, · · · , k)

function aims to aggregate message from j-order neighborhood Nj(v) of node v. It indicates that
there are two major components for designing graph convolutional layers in GNNs: neighborhood
selection and aggregation. More specifically, neighborhood aggregation allows compressing the graph
structure and node attributes simultaneously, while neighborhood selection provides the flexibility of
GNNs in tackling graphs with different assumptions (e.g., homophily [20] or heterophily [68]).

Homophily graphs: Homophily graph holds the assumption that nodes within the same class tend to
be connected in the graph, e.g., citation networks [13], social networks [33], etc. This assumption
has motivated various instantiations of message-passing graph neural networks over first-order
neighborhoods, e.g., GCN [25], GraphSAGE [20], GAT [50], GIN [59].

Heterophily graphs: Heterophily graph holds that connected nodes may have different class labels
and dissimilar node attributes, e.g., different classes of amino acids are more likely to connect within
protein structures [30, 68]. Recently, by adaptively exploring the potential homophily in a high-order
local neighborhood (e.g., k > 1), message-passing graph neural networks have been proposed for
heterophily graphs, e.g., MixHop [1], H2GCN [68], GPR-GNN [11], HOG-GCN [52], GloGNN [29].

3

4 Methodology

In this section, we propose the graph-structured Gaussian processes for transferable graph learning.

4.1 Structure-Aware Neural Network

We start by showing the graph sampling process from a probability distribution space P . A graph
G = (V,E) is sampled by first sampling a graph domain distribution PG from P , and then sampling
a specific graph G from PG . More specifically, one realization from P is a graph domain distribution
PG (also denoted as PG = (PV ,PE) for node and edge sampling distribution) characterizing a two-
stage graph sampling as follows. A set of nodes V is sampled from the graph distribution PG (more
specifically, sampled from PV), and then the edge weight is sampled from PG (more specifically,
sampled from PE) over any pair of nodes in V . In addition to the graph structure (induced by the
node dependence), the output label of a node can also be sampled accordingly in the context of
node regression tasks. That is, a label-informed graph domain distribution PG,Y is sampled from P .
Next, a graph G = (V,E) is sampled from PG = (PV ,PE), and then the output labels of nodes are
sampled from PY|G . The goal of node regression task [55, 69] is to learn a prediction function f(·)
that predicts ŷv = f(v,G) for each node v ∈ V .

In this paper, we consider the covariate shift assumption [40] over graphs. That is, the source and target
graphs share conditional distribution PY|G(y|(v,G)) but different marginal distributions PG(v,G).
The aforementioned graph sampling process motivates us to learn the input-output relationship
between an input sample (G, v) and its associated output yv for transferable graph learning. To this
end, for each input graph G (e.g., source Gs or target graph Gt in transferable graph learning), we
define a structure-aware neural network f(·, ·) as follows.

f
(l)
i (v,G) =

1√
M

M∑
j=1

W
(l)
ij · µ(l)

j (v|G) · ν(l)j (G)

µ(l)(v|G) = h(l)
v and ν(l)(G) = READOUT

(
h̃(l)
v |v ∈ V

) (2)

where M is the layer width1. µ(l)(v|G) denotes the node (sample-level) representation of v given
the graph G at the lth layer, and ν(l)(G) denotes the graph (domain-level) representation of the
graph G. Here READOUT function compresses a set of node representations into a single vector
representation [59, 62]. This definition indicates that the embedding representation of the input (v,G)
(e.g., a pair of a node v and its associated graph G) is given by two crucial components: an individual
node embedding representation µ(l)(v|G) and a global graph embedding representation ν(l)(G). h(l)

v

and h̃
(l)
v represent graph neural networks to learn node and graph representations separately.

The intuition behind this definition is explained below. The graph G is a realization of a graph domain
distribution PG . Then, the embedding representation of the graph G can be explained as an empirical
estimate of the distribution PG , i.e., ν(G) ≈ ν(PG). Moreover, when the size of the graph G goes
to infinity (i.e., associated with an infinite number of nodes), G approximates the true distribution
PG and the embedding representation of the graph G will be able to recover the true embedding of
probability distribution PG [19, 48]. Besides, the embedding representation of a node v can also be
explained as an approximation of PG at the location v, i.e., µ(v|G) ≈ µ(v|PG).

Remark. The structure-aware neural network Eq. (2) is defined over message-passing graph neural
networks commonly used for various single-domain graph learning tasks [18, 20, 23, 59]. Different
from previous works, we focus on transferable graph learning scenarios across graphs. This motivates
us to consider the task relatedness between source and target graphs, which can be explicitly measured
by the domain distribution similarity [15, 56]. To this end, we design the structure-aware neural
network Eq. (2) for learning domain-aware node presentation, i.e., the integration of the node
(sample-level) representation and the entire graph (domain-level) representation. Specifically, we
can show the connection between graph domain distribution and graph representation learning in the
reproducing kernel Hilbert space for cross-graph learning tasks (see Corollary 4.4).

1Here, "layer width" indicates the number of neurons in a graph convolutional layer.

4

4.2 Graph-Structured Gaussian Process

Inspired by [11, 52, 68], we derive a universal message-passing graph neural network Eq. (1) for
both homophily and heterophily graphs. More specifically, the message-passing graph convolutional
layer of Eq. (1) for node v within an input graph G can be defined as follows.

h(l)
v =

k∑
i=0

αi

 1√
M

∑
u∈Ni(v)

W
(l)
SANNx

(l)
u + b

(l)
SANN

 and x(l)
u = ϕ

(
h(l−1)
u

)
(3)

where x
(0)
u = xu ∈ RD, N0(v) = {v} denotes the seed node, W(l)

SANN,b
(l)
SANN are the weight and

bias parameters, and αi explicitly indicates the importance of the i-order neighborhood in finding
relevant neighbors around node v. Similarly, we define the domain-level graph neural layer h̃(l)

v

parameterized by different W̃(l)
SANN, b̃

(l)
SANN and shared αi.

h̃(l)
v =

k∑
i=0

αi

 1√
M

∑
u∈Ni(v)

W̃
(l)
SANNx̃

(l)
u + b̃

(l)
SANN

 and x̃(l)
u = ϕ

(
h̃(l−1)
u

)
(4)

Generally, it is flexible to apply different model architectures to learn the node (sample-level
µ(l)(v|G)) and graph (domain-level ν(l)(G)) representations. For simplicity, we adopt the same
model architecture but different model parameters to learn node-level and graph-level representations.
It is noteworthy that the neighborhood importance αi is shared because both node and graph repre-
sentation would share the same assumption (homophily or heterophily) for a given graph. Then, the
structure-aware neural network Eq. (2) can be given by

f
(l)
i (v,G) =

1√
M

M∑
j=1

W
(l)
ij · µ(l)

j (v|G) · ν(l)j (G)

where µ(l)(v|G) = h(l)
v and ν(l)(G) =

1

|V |
∑
v∈V

h̃(l)
v

(5)

where the READOUT function of Eq. (2) is instantiated with mean pooling [62]. Different from previous
works [11, 52, 68], we would take the neighborhood importance scores αi as hyper-parameters for
building transferable graph Gaussian process model as follows.

Theorem 4.1. Assuming that all the parameters of structure-aware graph neural network f(v,G) are
independent and randomly drawn from Gaussian distributions, i.e., W(l) ∼ N (0, σ2

wI),b
(l)
SANN ∼

N (0, ς2b I),W
(l)
SANN ∼ N (0, ς2wI), b̃

(l)
SANN ∼ N (0, ς̃2b I),W̃

(l)
SANN ∼ N (0, ς̃2wI), when the layer

width M goes to infinity, the output function f
(l)
i in Eq. (5) follows a Gaussian process with

f
(l)
i ∼ GP(0,K(l)), where the covariance function K(l) is given by

K(l) ((v,G), (v′, G′)) = σ2
w ·K(l)

µ (v, v′|G,G′) ·K(l)
ν (G,G′)

where

K(l)
µ (v, v′|G,G′) =

k∑
i,j=0

αiα
′
j

ς2b + ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

C
(l−1)
uu′ (ς2w, ς

2
b)

K(l)

ν (G,G′) =

k∑
i,j=0

αiα
′
j

(
ς̃2b +

ς̃2w
|V | · |V ′|

1TP(i)C(l−1)(ς̃2w, ς̃
2
b)
(
P′(j)

)T
1

)
C(l−1)(a, b) = E

z
(l−1)
i ∼GP

(
0,K

(l−1)
ab

) [ϕ(z(l−1)
i)ϕ(z

(l−1)
i)T

]
Here P(i) (P′(j)) denotes the adjacency matrix given by the i-order neighborhood from graph G

(j-order neighborhood from graph G′). K(l−1)
ab =

∑k
i,j=0 αiα

′
j

(
b2 + a2P(i)C(l−2)(a, b)(P′(j))T

)
and C

(0)
uu′(a, b) = ⟨xu,xu′⟩ for any u ∈ V, u′ ∈ V ′.

5

4.2.1 Implications of Theorem 4.1

In the following, we show that the sample-level covariance/kernel K(l)
µ of Theorem 4.1 can be

explained as a message-passing operation in the kernel space. Following [4, 37], when using ReLU
as activation function ϕ(·) (i.e., ϕ(x) = max{0, x}), C(l−1) is the arc-cosine kernel [12] as follows.

C
(l−1)
uu′ (ς2w, ς

2
b) =

κ1 (ζ)

2

√
K

(l−1)
µ (u, u|G) ·K(l−1)

µ (u′, u′|G′)

where ζ =
K(l−1)

µ (u,u′|G,G′)√
K

(l−1)
µ (u,u|G)·K(l−1)

µ (u′,u′|G′)
and κ1 (ζ) = 1

π

(
ζ · (π − arccos(ζ)) +

√
1− ζ2

)
.

Then, the following corollary derives the feature map of K(l)
µ (u, u′|G,G′) in the kernel space.

Corollary 4.2. Let φ1 : H → H1 denote the kernel mapping from a pre-activation RKHS H to post-
activation RKHS H1, i.e., ⟨φ1(s), φ1(s

′)⟩ = 1
2 ||s|| · ||s

′|| · κ1

(
⟨s,s′⟩

||s||·||s′||

)
. Given the sample-level

kernel K(l)
µ (v, v′|G,G′) in Theorem 4.1, if the graph convolutional layer of Eq. (3) has no bias term

(ςb = 0), the feature map of this kernel is given by

Ψ(l)
v = ςw

k∑
i=0

αi

∑
u∈Ni(v)

φ1

(
Ψ(l−1)

u

)
and Ψ

(l)
v′ = ςw

k∑
i=0

α′
i

∑
u′∈Ni(v′)

φ1

(
Ψ

(l−1)
u′

)
with K

(l)
µ (v, v′|G,G′) = ⟨Ψ(l)

v ,Ψ
(l)
v′ ⟩.

Corollary 4.2 shows that the feature map Ψ
(l)
v of sample-level kernel K(l)

µ is a kernelized version
of the graph convolutional layer in Eq. (3), which recursively aggregates message from nodes’
neighborhood in the kernel space. The neighborhood can be automatically selected by optimizing the
hyper-parameters αi and α′

i.

Next, we show the implication of domain-level kernel K(l)
ν (G,G′). As discussed in Subsection 4.1, a

graph G, empirically drawn from graph domain distribution PG , can approximate the true distribution
PG when increasing the size of graph G. This motivates us to understand the connection between
empirical domain representation ν(l)(G) and the embedding of probability distribution PG [19, 48].

Definition 4.3 (Mean Embedding of Probability Distributions [19]). Given an RKHS H induced by a
kernel k(·, ·), the mean embedding of a probability distribution P is defined as τP =

∫
k(·,x)dP(x),

i.e., Ex∼P[f(x)] = ⟨f, τP⟩H for all f ∈ H. Furthermore, the empirical mean embedding of P is
given by τ̂P = 1

m

∑m
i=1 k(·,xi), where m samples are independent and identically drawn from P.

Analogously, the mean embedding of a graph domain distribution PG can also be defined as τPG =∫
kG(·, v|PG)dPG(v) given an RKHS HG induced by a kernel kG(·, ·). In the context of graph

learning, v|PG indicates the individual node attributes of v and graph structure information around
node v induced by PG . It subsumes the conventional mean embedding [19] of a probability distribution
τP with independent and identically distributed (IID) samples x ∼ P, if there are no edges in the graph
(i.e., no graph structure is involved around node v). It is observed that the additional graph structure
challenges empirical estimation of graph domain distribution PG , thereby resulting in a nontrivial
domain similarity estimator between source and target graphs in transferable graph learning. The
following corollary states that the graph representation ν(l)(G) can be considered as the empirical
mean embedding of τPG in the RKHS induced by K

(l)
ν (·, ·).

Corollary 4.4. With the same conditions in Theorem 4.1, for each l, in the limit on the layer width, the
graph representation ν(l)(G) recovers the empirical mean embedding τ̂

(l)
PG

of the domain distribution

PG in the reproducing kernel Hilbert space induced by K
(l)
ν , and τ̂

(l)
PG

is given by

τ̂PG =
1

|V |
∑
v∈V

Ψ̃(l)
v =

1

|V |
∑
v∈V

K(l)
ν (·, v|G)

where Ψ̃
(l)
v is the feature map of K(l)

ν with Ψ̃
(l)
v = ς̃w

∑k
i=0 αi

∑
u∈Ni(v)

φ1

(
Ψ̃

(l−1)
u

)
.

6

Corollary 4.4 shows that K(l)
ν (G,G′) in Theorem 4.1 can be explained as the similarity of the empir-

ical mean embeddings of domain distributions PG and PG′ in the kernel space e.g., K(l)
ν (G,G′) =

⟨τ̂ (l)PG
, τ̂

(l)
PG′ ⟩HK

(l)
ν

. A similar metric over distributions is the maximum mean discrepancy (MMD) [19]

defined over the distance of empirical mean embeddings, i.e., MMD(l)
ν = ||τ̂ (l)PG

− τ̂
(l)
PG′ ||HK

(l)
ν

,

where H
K

(l)
ν

denotes the RKHS induced by K
(l)
ν . MMD has been widely applied to transfer learn-

ing [31, 32, 61] for measuring the distribution shift across image domains, under the covariate shift
assumption [40] (i.e., source and target domains share conditional distribution p(y|x) but different
marginal distributions p(x)). In contrast, in this paper, we focus on measuring the domain distribution
similarity for transferable graph learning.

4.2.2 Homophily vs. Heterophily

As illustrated in Section 3.2, there are two assumptions in graph learning [20, 68]: homophily and
heterophily. We show the special cases of Theorem 4.1 in tackling homophily or heterophily based
transferable graph learning. Given homophily source graph G and target graph G′ where connected
nodes have similar output values, it is revealed [20, 25, 59] that each node aggregates message from
itself and its 1-order neighborhood, e.g., k = 1 and α0 = α1 = α′

0 = α′
1 = 1. Then the sample-level

kernel K(l)
µ (v, v′|G,G′) ∝

∑
u∈{v∪N1(v)}

∑
u′∈{v′∪N1(v′)} C

(l−1)
uu′ . In contrast, if source and target

graphs follow heterophily that connected nodes are not similar in the output space, nodes might
aggregate message from high-order neighborhood [1, 52, 68], e.g., k = 2 and α0 = α2 = 1, α1 =

0. Then it holds that K(l)
µ (v, v′|G,G′) ∝

∑
u∈{v∪N2(v)}

∑
u′∈{v′∪N2(v′)} C

(l−1)
uu′ . These results

indicate that by learning the neighborhood importances αi and α′
i, Gaussian process led by f(v,G)

can adaptively select the neighborhood for message aggregation from homophily or heterophily
graphs. Moreover, αi = α′

i implies that source and target graphs follow the same assumption. The
flexibility of αi, α

′
i allows us to transfer knowledge across different types of graphs. For example,

using k = 2, α0 = α1 = 1, α2 = 0, α′
0 = α′

2 = 0, α′
1 = 0, it enables the knowledge transferability

from a homophily source graph to a heterophily target graph.

4.3 Proposed Algorithms

The goal of transferable node regression is to learn the prediction function for the target graph,
by leveraging the input-output relationship from a relevant source graph. Given a source graph
Gs = (Vs, Es) with fully labeled nodes (e.g., yv ∈ R is associated with each node v ∈ Vs) and
a target graph Gt = (Vt, Et) with a limited number of labeled nodes (e.g., |V la

t | ≪ |Vs| where
V la
t ⊂ Vt is the set of labeled target nodes), we propose the adaptive graph Gaussian process

algorithm (termed as GraphGP) as follows.

For notation simplicity, we let fv = f (L)(v,G) (given by L graph convolutional layers in Eq.
(5)) be the function value at node v. Let fs = [f1, f2, · · · , f|Vs|]

T be a vector of latent function
values over labeled source nodes, and ys = [y1, y2, ·, y|Vs|]

T be the associated ground-truth output
values. Similarly, we can define ft and yt over target nodes. Then, the GP prior over function
values can be defined as f ∼ GP(0,K(L)(·, ·)) (defined in Theorem 4.1), and its instantiation at
labeled training nodes is given by p

(
f |Vs ∪ V la

t

)
= N

(
0,K(s+t)(s+t)

)
where K(s+t)(s+t) is a block

matrix, i.e., K(s+t)(s+t) =

[
Kss Kst

Kts Ktt

]
and its entry is [Kab]vavb = K(L)((va, Ga), (vb, Gb)) for

a, b ∈ {s, t}. For the likelihood, we consider the noisy scenarios where p(ya|fa) = N (fa, ϱ
2
aI) for

a ∈ {s, t} (ϱa measures the noisy magnitude). Then, following standard Gaussian process [42], the
posterior distribution of GraphGP over testing nodes V∗ ⊂ Vt has a closed-form expression, i.e.,
p(f∗|V∗, f , Vs ∪ V la

t) = N (γ,Γ) where

γ = K∗

(
K(s+t)(s+t) +

[
ϱ2sI 0
0 ϱ2t I

])−1

y Γ = K∗∗ −K∗

(
K(s+t)(s+t) +

[
ϱ2sI 0
0 ϱ2t I

])−1

KT
∗ (6)

Here, y =

[
ys

ytla

]
denotes the ground-truth output values of labeled nodes Vs ∪ V la

t from source and

target graphs. Each entry of K∗ represents the covariance between testing target node and training
node, and K∗∗ denotes the covariance matrix over testing target nodes.

7

The posterior distribution of GraphGP has the following hyper-parameters: σw, ςw, ςb, αs
i , α

t
j , and

noise variances ϱs, ϱt. The hyper-parameters of the Gaussian process can be optimized by maximizing
the marginal likelihood p(y) over all the training samples [42]. However, in the context of transferable
graph learning, the number of labeled target nodes is much smaller than the number of labeled source
nodes. By directly maximizing the marginal likelihood over all labeled source and target nodes,
GraphGP might be biased towards the source domain. Therefore, in this paper, we propose to optimize
the marginal distribution p(ytla) over labeled target nodes by considering all the nodes Vs ∪ V la

t as
the inducing points [47] (see more efficiency analysis in Appendix A.6). The objective function is
given by maximizing the following log marginal likelihood

log p(ytla) = log
[
N
(
ytla |0,Kt(s+t)K

−1
(s+t)(s+t)K

T
t(s+t) + ϱ2t I

)]
(7)

4.4 Generalization Analysis

We define the generalization error of the target graph for transferable node regression. Given the
ground-truth labeling function f∗ in the target domain and the estimator f (L) learned from observed
source and target graphs, the generalization error is given by

ϵt =

∫ ∫
L (γ(vt, Gt), f

∗(vt, Gt)) p(vt, Gt)p(f
∗)d(vt, Gt)df

∗ (8)

where γ(·) is the posterior mean of f (L)(·) in Eq. (6), L is the mean squared loss function, and
p(vt, Gt) denotes the sampling probability2 of a target input (vt, Gt). It is shown [9, 42] that if the
GP prior is correctly specified, i.e., the predictor f (L) has the same prior as f∗, the generalization
error is given by the predictive variance of the GP. That is, ϵt =

∫
Γ(vt, Gt)p(vt, Gt)d(vt, Gt) where

Γ(vt, Gt) is the posterior variance at (vt, Gt) in Eq. (6). Furthermore, the following theorem shows
that the generalization error can be upper bounded in terms of the variance that takes all inputs
(vs, Gs) of the source graph as the target samples, i.e., both (vs, Gs) and (vt, Gt) are assumed to
follow the same target distribution for single-domain graph learning.

Theorem 4.5. Let Kµ
ss be the sample-level covariance matrix over source nodes, i.e., [Kµ

ss](vs,v′
s)

=

K
(L)
µ (vs, v

′
s|Gs), νss = K

(L)
ν (Gs, Gs), νtt = K

(L)
ν (Gt, Gt) be the intra-graph kernels and νst =

K
(L)
ν (Gs, Gt) be the inter-graph kernel. Suppose ϱ̄2s

∆
=
(

νss·νtt

νst·νst
− 1
)
σ2
wνttλ̄ss +

νtt·νtt

νst·νst
ϱ2s where

λ̄ss is the maximum eigenvalue of Kµ
ss, for any (vt, Gt) the generalization error is bounded by

ϵt ≤
∫

Γt(vt, Gt; ϱ̄
2
s, ϱ

2
t)p(vt, Gt)d(vt, Gt)

where Γt(vt, Gt; ϱ̄
2
s, ϱ

2
t) is the variance assuming that all source examples are observed in the target

domain with respect to noises ϱ̄2s, ϱ
2
t .

This theorem confirms that compared to the single-domain Gaussian process (assuming all inputs are
drawn from the same distribution), GraphGP-based transferable graph learning enables the reduced
generalization error. In addition, the following corollary considers a special scenario where no labeled
nodes are available in the target graph. In this case, the generalization error is determined by the
normalized graph domain similarity K(L)

ν (Gs,Gt)√
K

(L)
ν (Gs,Gs)·K(L)

ν (Gt,Gt)
.

Corollary 4.6. When there are no labeled nodes in the target graph, i.e., V la
t = ∅, we have

lim
|Vs|→∞

ϵt =

(
1− ν2st

νttνss

)∫
K(L) ((vt, Gt), (vt, Gt)) p(vt, Gt)d(vt, Gt)

where νss = K
(L)
ν (Gs, Gs), νtt = K

(L)
ν (Gt, Gt) and νst = K

(L)
ν (Gs, Gt).

2Here, it holds p(vt, Gt) = PP(PGt)PGt(vt) as discussed in Subsection 4.1, i.e., it first samples a graph
domain distribution PGt and then sample the nodes/edges to form the graph Gt.

8

Model Airport graphs Agriculture graphs
BR → EU EU → BR BR → US MA → SG SG → MA MA → SY

RBFGP [42] 0.4849±0.0260 0.4479±0.0211 0.3682±0.0301 0.4859±0.0716 0.3359±0.0297 0.7314±0.0172
DINO [56] 0.5241±0.0147 0.4855±0.0337 0.3877±0.0263 0.6227±0.0223 0.4591±0.0445 0.7620±0.0125
GGP [35] 0.3400±0.0144 0.3990±0.0401 0.4720±0.0218 0.4515±0.0099 0.2403±0.0172 0.7420±0.0425
SAGEGP [37] 0.4581±0.0308 0.3822±0.0508 0.4928±0.0330 0.5348±0.0278 0.3633±0.0101 0.7632±0.0349
GINGP [37] 0.5216±0.0227 0.4471±0.0219 0.4901±0.0255 0.5380±0.0288 0.3559±0.0196 0.7746±0.0518
GraphGP 0.5567±0.0246 0.4983±0.0370 0.5293±0.0335 0.6586±0.0244 0.5125±0.0171 0.7921±0.0168

Table 1: Results of transferable node regression on Airport and Agriculture data sets

Model PT → RU EN → PT RU → ES RU → PT PT → EN ES → RU

RBFGP [42] 0.4324±0.0087 0.5430±0.0117 0.4241±0.0024 0.4962±0.0055 0.5507±0.0024 0.4738±0.0059
DINO [56] 0.6498±0.0059 0.7565±0.0140 0.6717±0.0114 0.7641±0.0082 0.5920±0.0195 0.5636±0.0072
GGP [35] 0.3167±0.0079 0.5689±0.0028 0.3699±0.0087 0.5173±0.0018 0.4237±0.0037 0.4237±0.0035
SAGEGP [37] 0.5655±0.0196 0.5191±0.0029 0.5958±0.0076 0.6921±0.0174 0.5720±0.0187 0.5960±0.0074
GINGP [37] 0.5782±0.0218 0.7525±0.0294 0.6803±0.0198 0.6910±0.0540 0.6349±0.0090 0.5997±0.0185
GraphGP 0.7069±0.0055 0.8013±0.0109 0.7520±0.0144 0.7909±0.0382 0.6745±0.0127 0.6789±0.0172

Table 2: Results of transferable node regression on Twitch data set

Model Wikipedia graphs WebKB graphs
SQ → CH CH → SQ CO → TX WS → TX

RBFGP -0.0383±0.0526 -0.0119±0.0288 0.3089±0.0533 0.2756±0.0204
DINO 0.2938±0.0253 0.1157±0.0145 0.3536±0.0442 0.2537±0.0232
LINKXGP 0.4100±0.0205 0.0838±0.0307 0.3836±0.0530 0.2898±0.0176
MixHopGP 0.4050±0.0456 0.3509±0.0102 0.3264±0.0569 0.3062±0.0337
H2GCNGP 0.4165±0.0559 0.2652±0.0106 0.3816±0.0430 0.3036±0.0442
GraphGP 0.4938±0.0352 0.3214±0.0080 0.4146±0.0402 0.3301±0.0585

Table 3: Results on Wikipedia and WebKB

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Graph Domain Similarity

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

R
2

Figure 2: Domain similarity

5 Experiments

Data Sets: We use the following graph learning benchmarks with node regression tasks. (1)
Twitch [44]: It has 6 different domains ("DE", "EN", "ES", "FR", "PT", and "RU"). (2) Agricul-
ture [34, 60]: It has 3 different domains ("Maize" (MA), "Sorghum" (SG), and "Soybean" (SY)).
(3) Airports [43]: It has 3 different domains ("USA" (US), "Brazil" (BR), and "Europe" (EU)). (4)
Wikipedia [44]: It has 3 different domains ("chameleon" (CH), "crocodile" (CR), and "squirrel" (SQ)).
(5) WebKB [41]: It has 3 different domains ("Cornell" (CO), "Texas" (TX), and "Wisconsin" (WS)).

Baselines: We consider the following Gaussian process baselines. (1) RBFGP [42] and DINO [56]
are feature-Only Gaussian processes without using graph structures. (2) GGP [35], SAGEGP [37],
and GINGP [37] are graph Gaussian processes by considering source and target graphs as a large
disjoint graph. (3) LINKXGP, MixHopGP, and H2GCNGP are graph Gaussian processes derived from
LINKX [30], MixHop [1], H2GCN [68] respectively. It is notable that recent work [37] shows the
equivalence between graph neural networks (e.g., GraphSAGE [20], GIN [59]) and graph Gaussian
processes. Similarly, we can derive the corresponding graph Gaussian processes for LINKX [30],
MixHop [1] and H2GCN [68] in Appendix A.5, which are termed as LINKXGP, MixHopGP, and
H2GCNGP, respectively.

Model Configuration: In the experiments, we use GPyTorch [16] to build the graph Gaussian
process models and optimize the hyperparameters with gradient descent optimizer. For the proposed
GraphGP algorithm, we adopt k = 2 and L = 2 for all the experiments. The hyperparameters are
optimized using Adam [24] with a learning rate of 0.01 and a total number of training epochs of 500.
All the experiments are performed on a Windows machine with four 3.80GHz Intel Cores, 64GB
RAM, and two NVIDIA Quadro RTX 5000 GPUs3.

5.1 Results

3Code is available at https://github.com/jwu4sml/GraphGP.

9

https://github.com/jwu4sml/GraphGP

CO BR TX BR0.1

0.0

0.1

0.2

0.3

0.4

0.5

R
2

GINGP
GINGP-T

DINO
GraphGP

(a) WebKB → Airport
BR TX EU TX

0.1

0.0

0.1

0.2

0.3

0.4

R
2

H2GCNGP
H2GCNGP-T

DINO
GraphGP

(b) Airport → WebKB
Figure 3: Knowledge transfer across graphs
with different assumptions

Table 1 and Table 2 provide the transferable node re-
gression results on Airport, Agriculture, and Twitch
graphs. Following [37], we report the coefficient
of determination R2 (mean and standard deviation
with 5 runs) on the testing target nodes for per-
formance comparison. The experimental results
verify the effectiveness of GraphGP over Gaussian
process baselines. It is notable that the graphs in
Table 1 and Table 2 follow the homophily assump-
tion. In contrast, Wikipedia and WebKB graphs
in Table 3 hold the heterophily assumption [68].
It can be seen that under heterophily assumption,
GraphGP also archives much better performance in most cases. In addition, we evaluate the knowl-
edge transferability across graphs with different assumptions in Figure 3. It is observed that compared
to GINGP (or H2GCNGP) over both labeled source and target nodes, GINGP-T (or H2GCNGP-T)
learns the Gaussian process over only target nodes, thereby enabling much better transfer performance
from WebKB to Airport in Figure 3a (or from Airport to WebKB in Figure 3b). Moreover, GraphGP
can outperform those target-only graph Gaussian processes in this scenario.

We also investigate the correlation between transfer performance and normalized graph domain simi-
larity K(L)

ν (Gs,Gt)√
K

(L)
ν (Gs,Gs)·K(L)

ν (Gt,Gt)
in Corollary 4.6. Figure 2 visualizes the estimated normalized graph

domain similarity of GraphGP and R2 over the target testing nodes for RU → PT on Twitch, where
the graph domain similarity changes when injecting noise to the target graph (see Appendix A.7.1).
It shows that the transfer performance is positively correlated with the normalized graph domain
similarity. This is consistent with our observation in Corollary 4.6.

5.2 Analysis

Methods BR → EU

GraphGP 0.5567±0.0246
GraphGP_GIN 0.5301±0.0229
GraphGP_ShortestPath 0.5377±0.0304

Table 4: Flexibility of GraphGP

Flexibility of GraphGP: As illustrated in Subsection 4.1,
it is flexible to instantiate structure-aware neural networks
of Eq. (2) with existing message-passing graph neural
networks. Table 4 provides the results of GIN [59] induced
GraphGP algorithm. Furthermore, it is feasible to simply
instantiate K

(L)
ν (G,G′) of GraphGP with existing graph

kernels, e.g., Shortest Path kernel [5]. It is observed that
the variants GraphGP_GIN and GraphGP_ShortestPath of
GraphGP achieve comparable performance. This highlights that GraphGP is flexible to incorporate
with existing GNNs and graph kernels for transferable graph learning tasks.

Methods BR → EU EU → BR BR → US

EGI [69] 0.5204±0.0357 0.4786±0.0225 0.4951±0.0176
GARDE [55] 0.5314±0.0208 0.4792±0.0296 0.4354±0.0109
GraphGP 0.5567±0.0246 0.4983±0.0370 0.5293±0.0335

Table 5: Performance comparison between GraphGP
and transferable GNNs

Comparison with Transferable GNNs:
In addition to Gaussian processes, we
also compare GraphGP with state-of-the-
art transferable graph neural networks. Ta-
ble 5 shows the competitive performance
of GraphGP over transferable GNN base-
lines. This is because GraphGP explicitly
maximizes the marginal likelihood p(ytla).
In contrast, transferable GNN baselines minimize the prediction loss over all the labeled nodes
(|Vs| ≫ |V la

t |) and domain discrepancy, and thus they are more likely to bias towards the source
graph.

6 Conclusion

This paper studies the problem of transferable graph learning involving knowledge transfer from
a source graph to a relevant target graph. To solve this problem, we propose a graph Gaussian
process (GraphGP) algorithm, which is derived from a structure-aware neural network encoding both
sample-level node representation and domain-level graph representation. The efficacy of GraphGP is
verified theoretically and empirically in various transferable node regression tasks.

10

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation under Award No. IS-1947203, IIS-2117902,
IIS-2137468, IIS-2002540, and Agriculture and Food Research Initiative (AFRI) grant no. 2020-
67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agricul-
ture. The views and conclusions are those of the authors and should not be interpreted as representing
the official policies of the funding agencies or the government.

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine
Learning, pages 21–29. PMLR, 2019.

[2] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathemati-
cal Society, pages 337–404, 1950.

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine Learning,
79:151–175, 2010.

[4] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in
Neural Information Processing Systems, 2019.

[5] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pages 8–pp. IEEE, 2005.

[6] Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc
Deisenroth, and Nicolas Durrande. Matérn gaussian processes on graphs. In International
Conference on Artificial Intelligence and Statistics, pages 2593–2601. PMLR, 2021.

[7] Bin Cao, Nathan N Liu, and Qiang Yang. Transfer learning for collective link prediction in
multiple heterogenous domains. In International Conference on Machine Learning, pages
159–166, 2010.

[8] Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. Adaptive transfer
learning. In proceedings of the AAAI Conference on Artificial Intelligence, volume 24, pages
407–412, 2010.

[9] Kian Chai. Generalization errors and learning curves for regression with multi-task gaussian
processes. Advances in Neural Information Processing Systems, 2009.

[10] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pages 1725–1735.
PMLR, 2020.

[11] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021.

[12] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in Neural
Information Processing Systems, 2009.

[13] Valerio Ciotti, Moreno Bonaventura, Vincenzo Nicosia, Pietro Panzarasa, and Vito Latora.
Homophily and missing links in citation networks. EPJ Data Science, 5:1–14, 2016.

[14] Jinyuan Fang, Shangsong Liang, Zaiqiao Meng, and Qiang Zhang. Gaussian process with
graph convolutional kernel for relational learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 353–363, 2021.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

11

[16] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon
Wilson. GPyTorch: blackbox matrix-matrix gaussian process inference with gpu acceleration.
In Advances in Neural Information Processing Systems, 2018.

[17] Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree: Comparing graph
convolutional networks in the message-passing framework. In International Conference on
Machine Learning, pages 3640–3649, 2021.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[19] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30, 2017.

[21] Jilin Hu, Jianbing Shen, Bin Yang, and Ling Shao. Infinitely wide graph convolutional networks:
semi-supervised learning via gaussian processes. arXiv preprint arXiv:2002.12168, 2020.

[22] Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei. Frustratingly easy
transferability estimation. In International Conference on Machine Learning, pages 9201–9225,
2022.

[23] Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression.
In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 588–598, 2020.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[26] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

[27] Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability
of spectral graph convolutional neural networks. The Journal of Machine Learning Research,
22(1):12462–12520, 2021.

[28] Naiqi Li, Wenjie Li, Jifeng Sun, Yinghua Gao, Yong Jiang, and Shu-Tao Xia. Stochastic
deep gaussian processes over graphs. Advances in Neural Information Processing Systems,
33:5875–5886, 2020.

[29] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pages 13242–13256. PMLR, 2022.

[30] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, pages 20887–20902,
2021.

[31] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International Conference on Machine Learning, pages
97–105. PMLR, 2015.

[32] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In International Conference on Machine Learning, pages 2208–2217.
PMLR, 2017.

12

[33] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

[34] Christopher M Montes, Carolyn Fox, Álvaro Sanz-Sáez, Shawn P Serbin, Etsushi Kumagai,
Matheus D Krause, Alencar Xavier, James E Specht, William D Beavis, Carl J Bernacchi,
et al. High-throughput characterization, correlation, and mapping of leaf photosynthetic and
functional traits in the soybean (glycine max) nested association mapping population. Genetics,
221(2), 2022.

[35] Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian semi-supervised learning with
graph gaussian processes. Advances in Neural Information Processing Systems, 31, 2018.

[36] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. LEEP: A new measure
to evaluate transferability of learned representations. In International Conference on Machine
Learning, pages 7294–7305, 2020.

[37] Zehao Niu, Mihai Anitescu, and Jie Chen. Graph neural network-inspired kernels for gaussian
processes in semi-supervised learning. In International Conference on Learning Representations,
2023.

[38] Felix Opolka and Pietro Lio. Bayesian link prediction with deep graph convolutional gaussian
processes. In International Conference on Artificial Intelligence and Statistics, pages 4835–4852.
PMLR, 2022.

[39] Felix Opolka, Yin-Cong Zhi, Pietro Lio, and Xiaowen Dong. Adaptive gaussian processes on
graphs via spectral graph wavelets. In International Conference on Artificial Intelligence and
Statistics, pages 4818–4834. PMLR, 2022.

[40] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[41] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. MIT Press, 2006.

[43] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 385–394, 2017.

[44] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2), 2021.

[45] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the trans-
ferability of graph neural networks. Advances in Neural Information Processing Systems,
33:1702–1712, 2020.

[46] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[47] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.
Advances in neural information processing systems, 2005.

[48] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert RG
Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of
Machine Learning Research, 11:1517–1561, 2010.

[49] Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix Berkenkamp, and
Julia Vinogradska. Transfer learning with gaussian processes for bayesian optimization. In
International Conference on Artificial Intelligence and Statistics, pages 6152–6181. PMLR,
2022.

13

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[51] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

[52] Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. Powerful graph convolutional
networks with adaptive propagation mechanism for homophily and heterophily. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pages 4210–4218, 2022.

[53] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

[54] Jun Wu and Jingrui He. Trustworthy transfer learning: Transferability and trustworthiness. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 5829–5830, 2023.

[55] Jun Wu, Jingrui He, and Elizabeth Ainsworth. Non-IID transfer learning on graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 10342–10350,
2023.

[56] Jun Wu, Jingrui He, Sheng Wang, Kaiyu Guan, and Elizabeth Ainsworth. Distribution-informed
neural networks for domain adaptation regression. Advances in Neural Information Processing
Systems, 35:10040–10054, 2022.

[57] Jun Wu, Jingrui He, and Jiejun Xu. DEMO-Net: Degree-specific graph neural networks for node
and graph classification. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 406–415, 2019.

[58] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, pages
1457–1467, 2020.

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[60] Craig R Yendrek, Tiago Tomaz, Christopher M Montes, Youyuan Cao, Alison M Morse,
Patrick J Brown, Lauren M McIntyre, Andrew DB Leakey, and Elizabeth A Ainsworth. High-
throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral
reflectance. Plant physiology, 173(1):614–626, 2017.

[61] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer.
In International Conference on Machine Learning, pages 5085–5094. PMLR, 2018.

[62] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in Neural
Information Processing Systems, 31, 2018.

[63] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. LogMe: Practical assessment of
pre-trained models for transfer learning. In International Conference on Machine Learning,
pages 12133–12143, 2021.

[64] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via
theory-grounded spectral regularization. In International Conference on Learning Representa-
tions, 2023.

[65] Kai Yu and Wei Chu. Gaussian process models for link analysis and transfer learning. Advances
in Neural Information Processing Systems, 2007.

[66] Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. DANE: domain adaptive
network embedding. In IJCAI International Joint Conference on Artificial Intelligence, pages
4362–4368, 2019.

14

[67] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pages 7404–7413.
PMLR, 2019.

[68] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020.

[69] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning
of graph neural networks with ego-graph information maximization. Advances in Neural
Information Processing Systems, 2021.

15

A Appendix

In the appendix, we provide more details regarding the proposed GraphGP for transferable graph
learning in the paper, including

• In Subsections A.1 and A.2, we discuss the broader impacts and limitations of this paper.

• In Subsection A.3, we prove the theorems and corollaries stated in the paper.

• In Subsection A.4, we discuss the instantiations of our GraphGP algorithm with existing
graph neural networks.

• In Subsection A.5, we derive the graph Gaussian Processes of existing Heterophilic GNNs,
including LINKX [30], MixHop [1], H2GCN [68]. These derived Gaussian Processes are
used as the baselines in our experiments (see Table 3).

• In Subsection A.6, we discuss the model efficiency of GraphGP and provide a computation-
ally efficient approximation solution for GraphGPbased on Nyström approximation.

• In Subsection A.7, we provide detailed experimental setups and additional evaluation results.

A.1 Broader Impacts

This paper focuses on the fundamental research problem of transferable graph learning. The goal is
to effectively understand a target graph by leveraging latent knowledge from a relevant source graph.
Generally, there are no negative societal impacts involved in this work.

A.2 Limitations

This paper develops a generic framework to build graph Gaussian processes for transferable graph
learning under covariate shift assumption [40] over graphs. In addition to covariate shift, label shift
(i.e., PY shifts across domains) is also commonly considered in transfer learning scenarios. It is
much more challenging to extend the developed transferable graph Gaussian processes to tackle label
shift scenarios. This is because it is difficult to accurately estimate the graph domain distribution
with limited label information from the target domain. In addition, following standard transfer
learning [40], after model training, we simply apply the learned posterior function over testing target
nodes for predicting their output values. It might be feasible to incorporate GraphGP with test-time
adaptation techniques [51] to further improve the transfer performance.

A.3 Proof of Theorems and Corollaries

A.3.1 Proof of Theorem 4.1

Theorem 4.1 states that assume all the parameters of structure-aware graph neural network f(v,G) are
independent and randomly drawn from Gaussian distributions, i.e., W(l) ∼ N (0, σ2

wI),b
(l)
SANN ∼

N (0, ς2b I),W
(l)
SANN ∼ N (0, ς2wI), b̃

(l)
SANN ∼ N (0, ς̃2b I),W̃

(l)
SANN ∼ N (0, ς̃2wI), when the layer

width M goes to infinity, the output function f
(l)
i in Eq. (5) follows a Gaussian process with

f
(l)
i ∼ GP(0,K(l)), where the covariance function K(l) is given by

K(l) ((v,G), (v′, G′)) = σ2
w ·K(l)

µ (v, v′|G,G′) ·K(l)
ν (G,G′)

where

K(l)
µ (v, v′|G,G′) =

k∑
i,j=0

αiα
′
j

ς2b + ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

C
(l−1)
uu′ (ς2w, ς

2
b)

K(l)

ν (G,G′) =

k∑
i,j=0

αiα
′
j

(
ς̃2b +

ς̃2w
|V | · |V ′|

1TP(i)C(l−1)(ς̃2w, ς̃
2
b)
(
P′(j)

)T
1

)
C(l−1)(a, b) = E

z
(l−1)
i ∼GP

(
0,K

(l−1)
ab

) [ϕ(z(l−1)
i)ϕ(z

(l−1)
i)T

]

16

Here P(i) (P′(j)) denotes the adjacent matrix given by the i-order neighborhood from graph G

(j-order neighborhood from graph G′). K(l−1)
ab =

∑k
i,j=0 αiα

′
j

(
b2 + a2P(i)C(l−2)(a, b)(P′(j))T

)
and C

(0)
uu′(a, b) = ⟨xu,xu′⟩ for any u ∈ V, u′ ∈ V ′.

Proof. Given the definition of f(v,G), we have

h(l)
v =

k∑
i=0

αi

 1√
M

∑
u∈Ni(v)

W
(l−1)
SANNx

(l)
u + b

(l−1)
SANN

 and x(l)
u = ϕ

(
h(l−1)
u

)

h̃(l)
v =

k∑
i=0

αi

 1√
M

∑
u∈Ni(v)

W̃
(l−1)
SANNx̃

(l)
u + b̃

(l−1)
SANN

 and x̃(l)
u = ϕ

(
h̃(l−1)
u

)
where x

(0)
u = x̃

(0)
u = xu denote the initial node attributes. The l-th layer of the function f(v,G) is

defined as

f
(l)
i (v,G) =

1√
M

M∑
j=1

W
(l)
ij · µ(l)

j (v|G) · ν(l)j (G)

where µ(l)(v|G) = h(l)
v and ν(l)(G) =

1

|V |
∑
v∈V

h̃(l)
v

Thus, we obtain E[f (l)
i (v,G)] = 0 and

K(l) ((v,G), (v′, G′)) ≡ E[f (l)
i (v,G)f

(l)
i (v′, G′)]

= σ2
w · E

[
µ
(l)
i (v|G) · µ(l)

i (v′|G′)
]
· E
[
ν
(l)
i (G) · ν(l)i (G′)

]
Moreover,

K(l)
µ (v, v′|G,G′) ≡ E

[
µ
(l)
i (v|G) · µ(l)

i (v′|G′)
]

= E
[
[h(l)

v]i · [h(l)
v′]i

]
=

k∑
i,j=0

αiα
′
j

ς2b + ς2w · E

 ∑
u∈Ni(v)

[x(l)
u]i

∑
u′∈Nj(v′)

[x
(l)
u′]i

=

k∑
i,j=0

αiα
′
j

ς2b + ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

E
[
[x(l)

u]i[x
(l)
u′]i

]
=

k∑
i,j=0

αiα
′
j

ς2b + ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

C
(l−1)
uu′ (ς2w, ς

2
b)

where [a]i denotes the i-th entry of vector a. Besides,

K(l)
ν (G,G′) ≡ E

[
ν
(l)
i (G) · ν(l)i (G′)

]
= E

[
1

|V |
∑
v∈V

[h̃(l)
v]i ·

1

|V ′|
∑

v′∈V ′

[h̃
(l)
v′]i

]

=
1

|V | · |V ′|
∑
v∈V

∑
v′∈V ′

E
[
[h̃(l)

v]i · [h̃(l)
v′]i

]

=
1

|V | · |V ′|
∑
v∈V

∑
v′∈V ′

 k∑
i,j=0

αiα
′
j

ς̃2b + ς̃2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

C
(l−1)
uu′ (ς̃2w, ς̃

2
b)

=

k∑
i,j=0

αiα
′
j

(
ς̃2b +

ς̃2w
|V | · |V ′|

1TP(i)C(l−1)(ς̃2w, ς̃
2
b)
(
P′(j)

)T
1

)
which completes the proof.

17

A.3.2 Proof of Positive Definiteness

With the assumptions in Theorem 4.1, the covariance kernel K(l) is positive definite.

Proof. This corollary can be proven using the Schur Product theorem that the Hadamard product
of two positive semidefinite matrices is also a positive semidefinite matrix. Based on the definition
of (v, v′|G,G′) and K

(l)
ν (G,G′), the covariance matrix of these kernels over all nodes in G,G′

are positive semidefinite. Then as explained in [37], a kernel function is positive definite (resp.
strictly positive definite) if the corresponding kernel matrix is positive semi-definite (resp. positive
definite) for any collection of distinct points. Therefore, the kernel function K(l)((v,G), (v′, G′)) is
symmetric and positive definite. Then based on Moore–Aronszajn theorem [2], K(l) defines a unique
reproducing kernel Hilbert space (RKHS).

A.3.3 Proof of Corollary 4.2

Corollary 4.2 states let φ1 : H → H1 denote the kernel mapping from a pre-activation RKHS
H to post-activation RKHS H1, i.e., ⟨φ1(s), φ1(s

′)⟩ = 1
2 ||s|| · ||s

′|| · κ1

(
⟨s,s′⟩

||s||·||s′||

)
. Given the

sample-level kernel K(l)
µ (v, v′|G,G′) in Theorem 4.1, if the graph convolutional layer of Eq. (3) has

no bias term (ςb = 0), the feature map of this kernel is given by4

Ψ(l)
v = ςw

k∑
i=0

αi

∑
u∈Ni(v)

φ1

(
Ψ(l−1)

u

)
and Ψ

(l)
v′ = ςw

k∑
i=0

α′
i

∑
u′∈Ni(v′)

φ1

(
Ψ

(l−1)
u′

)
with K

(l)
µ (v, v′|G,G′) = ⟨Ψ(l)

v ,Ψ
(l)
v′ ⟩.

Proof. Based on Theorem A.1, we have

C
(l−1)
vv′ =

κ1 (ζ)

2

√
K

(l−1)
µ (v, v|G) ·K(l−1)

µ (v′, v′|G′)

=
〈
φ1

(
Ψ(l−1)

v

)
, φ1

(
Ψ

(l−1)
v′

)〉
Then, with ςb = 0, we have

K(l)
µ (v, v′|G,G′) =

k∑
i,j=0

αiα
′
j

ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

C
(l−1)
uu′ (ς2w, ς

2
b)

=

k∑
i,j=0

αiα
′
j

ς2w ·
∑

u∈Ni(v)

∑
u′∈Nj(v′)

〈
φ1

(
Ψ(l−1)

u

)
, φ1

(
Ψ

(l−1)
u′

)〉
=

〈
ςw

k∑
i=0

αi

∑
u∈Ni(v)

φ1

(
Ψ(l−1)

u

)
, ςw

k∑
j=0

α′
j

∑
u′∈Nj(v′)

φ1

(
Ψ

(l−1)
u′

)〉

Therefore, it holds that

Ψ(l)
v = ςw

k∑
i=0

αi

∑
u∈Ni(v)

φ1

(
Ψ(l−1)

u

)

Ψ
(l)
v′ = ςw

k∑
j=0

α′
j

∑
u′∈Nj(v′)

φ1

(
Ψ

(l−1)
u′

)
This result provides the feature map for nodes from graph G and G′ separately. But we show that
it is equivalent to the following unified feature mapping on a large graph integrating G and G′.

4For simplicity, we show the results without bias term, but it can be easily generalized to Eq. (3) with bias by
absorbing the bias term in the kernel mapping.

18

More specifically, graphs G = (V,E) and G′ = (V ′, E′) can be considered as a single large graph
G′′ = (V ∪ V ′, E ∪ E′) with two disjoint components. Then, for any node v′′ ∈ V ′′ in graph G′′,
we have

Ψ
(l)
v′′ = ςw

k∑
i=0

(αi · I[v′′ ∈ V] + α′
i · I[v′′ ∈ V ′])

∑
u′′∈Nj(v′′)

φ1

(
Ψ

(l−1)
u′′

)
where v′′ can be a node from either G or G′, and I[a] = 1 if an event a is true, I[a] = 0 otherwise.

A.3.4 Proof of Corollary 4.4

Corollary 4.4 states that with the same conditions in Theorem 4.1, for each l, in the limit on the layer
width, the graph representation ν(l)(G) recovers the empirical mean embedding τ̂

(l)
PG

of the domain

distribution PG in the reproducing kernel Hilbert space induced by K
(l)
ν , given.

τ̂PG =
1

|V |
∑
v∈V

Ψ̃(l)
v

where Ψ̃
(l)
v is the feature map of K(l)

ν with Ψ̃
(l)
v = ς̃w

∑k
i=0 αi

∑
u∈Ni(v)

φ1

(
Ψ̃

(l−1)
u

)
.

Proof. We derive the feature map of domain-level kernel K(l)
ν as follows. Similarly, we consider the

case with ς̃b = 0, we have

K(l)
ν (G,G′) =

k∑
i,j=0

αiα
′
j

(
ς̃2w

|V | · |V ′|
1TP(i)C(l−1)(ς̃2w, ς̃

2
b)
(
P′(j)

)T
1

)

=

〈
ς̃w
|V |

∑
v∈V

k∑
i=0

αi

∑
u∈Ni(v)

φ1

(
Ψ̃(l−1)

u

)
,
ς̃w
|V ′|

∑
v′∈V ′

k∑
j=0

α′
j

∑
u′∈Nj(v′)

φ1

(
Ψ̃

(l−1)
u′

)〉

That is, given the node representation Ψ̃
(l)
v = ς̃w

∑k
i=0 αi

∑
u∈Ni(v)

φ1

(
Ψ̃

(l−1)
u

)
in the kernel space,

the mean pooling in the READOUT function (see Eq.(2)) results in the mean embedding of empirical
node distribution over {Ψ̃(l)

v }v∈V , i.e.,

τ̂PG =
1

|V |
∑
v∈V

Ψ̃(l)
v

Moreover, when the sample size of graph G goes to infinity, the expected mean embedding of node
distribution over {Ψ̃(l)

v }v∈V is given by

τPG = Ev

[
Ψ̃(l)

v

]
= Ev

[
K(l)

ν (·, v|G)
]
= Ev

[
K(l)

ν (·, v|PG)
]

which corresponds to expression of graph domain distribution PG in the reproducing kernel Hilbert
space induced by K

(l)
ν (given by the kernel mapping Ψ̃

(l)
v).

A.3.5 Proof of Theorem 4.5

Theorem 4.5 states that let Kµ
ss be the sample-level covariance matrix over source nodes, i.e.,

[Kµ
ss](vs,v′

s)
= K

(L)
µ (vs, v

′
s|Gs), νss = K

(L)
ν (Gs, Gs), νtt = K

(L)
ν (Gt, Gt) be the intra-graph

kernels and νst = K
(L)
ν (Gs, Gt) be the inter-graph kernel. Suppose ϱ̄2s

∆
=
(

νss·νtt

νst·νst
− 1
)
σ2
wνttλ̄ss +

νtt·νtt

νst·νst
ϱ2s where λ̄ss is the maximum eigenvalue of Kµ

ss, for any (vt, Gt) the generalization error is
bounded by

ϵt ≤
∫

Γt(vt, Gt; ϱ̄
2
s, ϱ

2
t)p(vt, Gt)d(vt, Gt)

where Γt(vt, Gt; ϱ̄
2
s, ϱ

2
t) is the variance assuming that all source examples are observed in the target

domain with respect to noises ϱ̄2s, ϱ
2
t .

19

Proof. The covariance matrix K over training samples can be rewritten as

K =

[
Kss Kst

Kts Ktt

]
=

[
σ2
wνssK

µ
ss σ2

wνstK
µ
st

σ2
wνstK

µ
ts σ2

wνttK
µ
tt

]
=

[
νst

νtt
I 0

0 I

] [
νss·νtt

νst·νst
σ2
wνttK

µ
ss σ2

wνttK
µ
st

σ2
wνttK

µ
ts σ2

wνttK
µ
tt

] [
νst

νtt
I 0

0 I

]
Then

Γ(vt, Gt) = k∗∗ − k∗
(
Kss + ϱ2sI

)−1
kT
∗

= k∗∗ − kt
∗ (Σ)

−1
(kt

∗)
T

Following [9], we have

∆(vt, Gt) = kt
∗
(
Σ−1

t − Σ−1
)
(kt

∗)
T

where

Σ =

[
νss·νtt

νst·νst
σ2
wνttK

µ
ss σ2

wνttK
µ
st

σ2
wνttK

µ
ts σ2

wνttK
µ
tt

]
+

[
νtt·νtt

νst·νst
ϱ2sI 0

0 ϱ2t I

]
Σt =

[
σ2
wνttK

µ
ss σ2

wνttK
µ
st

σ2
wνttK

µ
ts σ2

wνttK
µ
tt

]
+

[
s2I 0
0 ϱ2t I

]
Thus, it holds

∆(vt, Gt) ≤ 0

Σ−1
t − Σ−1 ⪯ 0

Σt ⪰ Σ[
σ2
wνttK

µ
ss σ2

wνttK
µ
st

σ2
wνttK

µ
ts σ2

wνttK
µ
tt

]
+

[
s2I 0
0 ϱ2t I

]
⪰
[
νss·νtt

νst·νst
σ2
wνttK

µ
ss σ2

wνttK
µ
st

σ2
wνttK

µ
ts σ2

wνttK
µ
tt

]
+

[
νtt·νtt

νst·νst
ϱ2sI 0

0 ϱ2t I

]
[(

1− νss·νtt

νst·νst

)
σ2
wνttK

µ
ss 0

0 0

]
⪰

[(
νtt·νtt

νst·νst
ϱ2s − s2

)
I 0

0 0

]
(
1− νss · νtt

νst · νst

)
σ2
wνttK

µ
ss ⪰

(
νtt · νtt
νst · νst

ϱ2s − s2
)
I

Kµ
ss ⪯

1(
νss·νtt

νst·νst
− 1
)
σ2
wνtt

(
s2 − νtt · νtt

νst · νst
ϱ2s

)
I

λ̄ss ≤
1(

νss·νtt

νst·νst
− 1
)
σ2
wνtt

(
s2 − νtt · νtt

νst · νst
ϱ2s

)

s2 ≥
(
νss · νtt
νst · νst

− 1

)
σ2
wνttλ̄ss +

νtt · νtt
νst · νst

ϱ2s

Thus, the minimum of the upper bound is given by

ϱ̄2s
∆
=

(
νss · νtt
νst · νst

− 1

)
σ2
wνttλ̄ss +

νtt · νtt
νst · νst

ϱ2s

A.3.6 Proof of Corollary 4.6

Corollary 4.6 states that when there are no labeled nodes in the target graph, i.e., V la
t = ∅, it holds

lim
|Vs|→∞

ϵt =

(
1− ν2st

νttνss

)∫
K(L) ((vt, Gt), (vt, Gt)) p(vt, Gt)d(vt, Gt)

where νss = K
(L)
ν (Gs, Gs), νtt = K

(L)
ν (Gt, Gt) are intra-graph kernels and νst = K

(L)
ν (Gs, Gt) is

inter-graph kernel.

20

Proof. It is given

K(l) ((v,G), (v′, G′)) = σ2
w ·K(l)

µ (v, v′|G,G′) ·K(l)
ν (G,G′)

For all (vt, Gt), it holds

Γ(vt, Gt) = k∗∗ − k∗
(
Kss + ϱ2sI

)−1
kT
∗

= σ2
wνttK

(l)
µ (vt, vt|Gt)

−
(
σ2
wνstk∗µ

) (
Kss + ϱ2sI

)−1 (
σ2
wνstk∗µ

)T
= σ2

w

(
νtt −

ν2st
νss

)
K(l)

µ (vt, vt|Gt)

+
ν2st
ν2ss

[
σ2
wνssK

(l)
µ (vt, vt|Gt)−

(
σ2
wνssk∗µ

) (
Kss + ϱ2sI

)−1 (
σ2
wνssk∗µ

)T]
= σ2

w

(
νtt −

ν2st
νss

)
K(l)

µ (vt, vt|Gt) +
ν2st
ν2ss

Γs(vt, Gt)

where Γs(vt, Gt) is the posterior variance by considering (vt, Gt) as a virtual source sample. Then
when the number of source samples goes to infinity, we have

lim
|Vs|→∞

Γs(vt, Gt) = 0

Thus,

Γ(vt, Gt) = σ2
w

(
νtt −

ν2st
νss

)
K(l)

µ (vt, vt|Gt)

=

(
1− ν2st

νttνss

)
σ2
wνttK

(l)
µ (vt, vt|Gt)

=

(
1− ν2st

νttνss

)
K(L) ((vt, Gt), (vt, Gt))

where νss = K
(L)
ν (Gs, Gs), νtt = K

(L)
ν (Gt, Gt) denote the intra-graph kernels and νst =

K
(L)
ν (Gs, Gt) is the inter-graph kernel.

lim
|Vs|→∞

ϵt =

∫
Γ(vt, Gt)p(vt, Gt)d(vt, Gt)

=

(
1− ν2st

νttνss

)∫
K(L) ((vt, Gt), (vt, Gt)) p(vt, Gt)d(vt, Gt)

The generalization error is determined by graph domain similarity K(L)
ν (Gs,Gt)√

K
(L)
ν (Gs,Gs)·K(L)

ν (Gt,Gt)
.

A.4 Model Discussion

In this section, we discuss several instantiations of the proposed structure-aware neural networks
in Eq. (2) and their induced graph Gaussian processes. This shows the flexibility of the proposed
algorithms in incorporating existing graph neural networks and graph kernels.

A.4.1 Intantiations of Message-Passing Graph Neural Networks

Table 6 summarizes several instantiations of message-passing graph neural networks (GNNs) [18] of
Eq. (1) with different neighborhood selection and message aggregation strategies.

It can be seen that homophily-based GNNs are more likely to aggregate messages from nearby
neighbors, while heterophily-based GNNs have to adaptively aggregate messages from distant
neighbors within the graph. These GNNs can be applied to design the proposed structure-aware
neural networks in Eq. (2).

21

Model Message-passing mechanism Neighborhood

GCN [25] h(l+1)
v = ϕ

(
ÂvvW

(l)h(l)
v +

∑
u∈N1(v) ÂuvW

(l)h(l)
u

)
k = 1

GraphSAGE [20] h(l+1)
v = ϕ

(
W (l)

[
h(l)
v ||h(l)

N1(v)

])
k = 1

GAT [50] h(l+1)
v = ϕ

(
αvvW

(l)h(l)
v +

∑
u∈N1(v) αuvW

(l)h(l)
u

)
k = 1

GIN [59] h(l+1)
v = MLP(l)

(
(1 + ϵ(l))h(l)

v +
∑

u∈N1(v) h
(l)
u

)
k = 1

GCNII* [10] h(l+1)
v = ϕ

((
(1 − βl)I + βlW

(l)
)(

(1 − λl)
∑

u∈{v}∪N1(v) Âuvh
(l)
u + λlh

(0)
v

))
k = 1

MixHop [1] h(l+1)
v = ϕ

(
W

(l)
0 hv

)
||ϕ

(∑
u∈N1(v) ÂuvW

(l)
1 hu

)
||ϕ

(∑
u∈N2(v) Â

2
uvW

(l)
2 hu

)
k = 2

H2GCN [68] h(l+1)
v =

(∑
u∈N1(v) d̂uvh

(l)
u

)
||
(∑

u∈N2(v) d̂uvh
(l)
u

)
k = 2

GPR-GNN [11] h(l)
v =

∑k
i=1 γi

∑
u∈V Âi

uvh
(l−1)
u k = 10

HOG-GCN [52] h(l+1)
v = ϕ

(
µW (l)

e h(l)
v + ξW (l)

n

∑
u∈V

[
D̂−1

(
A + A2

)
⊙ H

]
uv

h(l)
u

)
k = 2

GloGNN* [29] h(l+1)
v = (1 − γ)

∑
u∈V Z(l)∗

uv h(l)
u + γh(0)

v k = ∞

Table 6: Instantiations of message-passing graph neural networks (* initial residual connection is
adopted)

A.4.2 Instantiations of Structure-Aware Neural Networks

It can be seen that the definition of structure-aware neural network Eq. (2) is flexible to incorporate
existing graph neural networks [10, 20, 25, 59] by instantiating µ(l)(v|G) and ν(l)(G). For example,
we can use Graph Isomorphism Network (GIN) [25] to define the structure-aware neural network Eq.
(2) as follows. The graph convolutional layer of GIN is

h(l)
v =

1√
M

∑
u∈{v∪N1(v)}

auvW
(l)
GINx

(l)
u + b

(l)
GIN and x(l)

u = ϕ
(
h(l−1)
u

)
(9)

where auv = 1 for u ̸= v and auv = 1 + ϵ(l) for u = v. W(l)
GIN and b

(l)
GIN denote the weight and bias

parameters in GIN, respectively. In this case, we use GIN to instantiate both µ(l)(v|G) and ν(l)(G)

for learning h
(l)
v and h̃

(l)
v . In addition, the READOUT function of Eq. (2) can be instantiated with

mean pooling [62], i.e., h̃(l)
G = 1

|V |
∑

v∈V h̃
(l)
v . It is revealed [21, 37] that GIN is equivalent to the

Gaussian process in the limit on the layer width. Following this observation, the following theorem
shows the equivalence between structure-aware neural network and adaptive graph Gaussian process
when using GIN to instantiate Eq. (2).

Theorem A.1. Suppose the graph convolutional layers of structure-aware neural network Eq. (2) are
instantiated with GIN and the READOUT function of Eq. (2) is instantiated with mean pooling. Assume
that the layer width the network width goes to infinity, and the model parameters of all neural layers
are independently and randomly drawn from Gaussian distribution, then for each i and l, the output
function f

(l)
i in Eq. (2) follows a Gaussian process with f

(l)
i ∼ GP(0,K(l)), where the covariance

function K(l) is given by

K(l) ((v,G), (v′, G′)) = σ2
w ·K(l)

µ (v, v′|G,G′) ·K(l)
ν (G,G′) (10)

where

K(l)
µ (v, v′|G,G′) = ς2b + ς2w · [a]v,:C(l−1)[a′T]:,v′

K(l)
ν (G,G′) = ς2b +

ς2w
|V | · |V ′|

1TaC(l−1)a′T1

C(l−1) = E
z
(l−1)
i ∼GP

(
0,K

(l−1)
µ

) [ϕ(z(l−1)
i)ϕ(z

(l−1)
i)T

]
Here, a and a′T are the adjacency matrices with [a]uv = auv and [a′]uv = a′uv respectively.

Proof. The sample covariance is given by

K(l)
µ (v, v′|G,G′) = E

[
µ
(l)
j (v|G) · µ(l)

j (v′|G′)
]

22

When learning the node representation, graphs G = (V,E) and G′ = (V ′, E′) can be considered
as a single large graph G′′ = (V ∪ V ′, E ∪E′) with two disjoint components. The adjacent matrix

of G′′ is then given by a′′ =

[
a 0
0 a′

]
. In this case, learning node representation of v from G is

equivalent to learning that from G′′, due to the disconnection of two components G and G′ within the
large graph G′′. Then, using the results from [37], given a single graph G′′, the outputs of each layer
in GCN over all nodes are equivalent to the Gaussian process with zero mean and covariance matrix

K(l)
µ (V ′′, V ′′) = ς2b I+ ς2wa

′′C
(l−1)
G′′ a′′T

C
(l−1)
G′′ = E

z
(l−1)
i ∼K

(l−1)
µ (V ′′,V ′′)

[
ϕ(z

(l−1)
i)ϕ(z

(l−1)
i)T

]
Considering the block matrix form of C(l−1)

G′′ =

[
C

(l−1)
G C(l−1)(

C(l−1)
)T

C
(l−1)
G′′

]
(C(l−1)

G′′ is a symmetric

matrix), we have

K(l)
µ (V ′′, V ′′) = ς2b I+ ς2w

[
aC

(l−1)
G aT aC(l−1)a′T

a′
(
C(l−1)

)T
aT a′C

(l−1)
G′ a′T

]
where

C
(l−1)
G = E

z
(l−1)
i ∼K

(l−1)
µ (V,V)

[
ϕ(z

(l−1)
i)ϕ(z

(l−1)
i)T

]
C(l−1) = E

z
(l−1)
i ∼K

(l−1)
µ (V,V ′)

[
ϕ(z

(l−1)
i)ϕ(z

(l−1)
i)T

]
C

(l−1)
G′ = E

z
(l−1)
i ∼K

(l−1)
µ (V ′,V ′)

[
ϕ(z

(l−1)
i)ϕ(z

(l−1)
i)T

]
Therefore, it holds that

K(l)
µ (v, v′|G,G′) = ς2b + ς2w · [aC(l−1)a′T]vv′ = ς2b + ς2w · [a]v,:C(l−1)[a′T]:,v′

where [B]vv′ denotes the entry of a matrix B at the v-th row and v′-th column.

In addition, the domain covariance is given by

K(l)
ν (G,G′) = E

[
1

|V | · |V ′|
∑
v∈V

∑
v′∈V ′

µ
(l)
j (v|G) · µ(l)

j (v′|G′)

]

=
1

|V | · |V ′|
∑
v∈V

∑
v′∈V ′

E
[
µ
(l)
j (v|G) · µ(l)

j (v′|G′)
]

=
1

|V | · |V ′|
∑
v∈V

∑
v′∈V ′

(
ς2b + ς2w · [a]v,:C(l−1)[a′T]:,v′

)
= ς2b +

ς2w
|V | · |V ′|

1TaC(l−1)a′T1

which completes the proof.

Similarly, we can also design the adaptive graph Gaussian processes for other message-passing graph
neural networks. More generally, we have the following observations.
Corollary A.2. Suppose that the layer width goes to infinity, and the model parameters are inde-
pendently and randomly drawn from Gaussian distributions. If µ(l)

j (v|G) and ν
(l)
j (G) are Gaussian

processes, i.e., µ(l)
j (v|G) ∼ GP(0,K

(l)
µ) and ν

(l)
j (G) ∼ GP(0,K

(l)
ν), then, for each i and l, the

output function f
(l)
i (v,G) in Eq. (2) is a Gaussian process with f

(l)
i (v,G) ∼ GP(0,K(l)), where

the covariance matrix K(l) is given by

K(l) ((v,G), (v′, G′)) = σ2
w ·K(l)

µ (v, v′|G,G′) ·K(l)
ν (G,G′)

where v ∈ V and v′ ∈ V ′ denote nodes within the graphs G and G′, respectively.

23

Proof. Since both µ
(l)
j (v|G) and ν

(l)
j (G) are Gaussian processes and the weight and bias parame-

ters are independent and identically distributed (IID), the output f (l)
i (v,G) at the lth layer can be

considered as a sum of IID terms. Based on the Central Limit Theorem, in the limit of infinite
network width Nl → ∞, f (l)

i (v,G) is Gaussian distributed. Moreover, using the multidimensional
Central Limit Theorem, any finite collections {f (l)

i (v1, G), f
(l)
i (v2, G), · · · , f (l)

i (vm, G)} have a
joint multivariate Gaussian distribution. Therefore, we conclude that f (l)

i (v,G) forms a Gaussian
process, i.e., f (l)

i (v,G) ∼ GP(ω(l),K(l)). The mean function ω(l) is given by

ω(l)(v,G) = E
[
f
(l)
i (v,G)

]
= E

 1√
Nl

Nl∑
j=1

W
(l)
ij · µ(l)

j (v|G) · ν(l)j (G)

 = 0

and the covariance function is given by

K(l) ((v,G), (v′, G′)) = σ2
w · E

[
µ
(l)
j (v|G) · µ(l)

j (v′|G′)
]
· E
[
ν
(l)
j (G) · ν(l)j (G′)

]
= σ2

w ·K(l)
µ (v, v′|G,G′) ·K(l)

ν (G,G′)

Moreover, we see that for any i > 0, f (l)
i (v,G) can form a Gaussian process with identical mean and

covariance functions.

Remark. Corollary A.2 shows that the transferable graph Gaussian process can be derived when
both µ

(l)
j (v|G) ∼ GP(0,K

(l)
µ) and ν

(l)
j (G) ∼ GP(0,K

(l)
ν) are Gaussian processes. It is flexible to

adopt different GNNs to define µ
(l)
j and ν

(l)
j . Moreover, optimizing the selection of kernel spaces

over µ(l)
j and ν

(l)
j might lead to better transferable graph learning performance. We would like to

leave it as our future work.

A.5 Graph Gaussian Processes of Heterophilic GNNs

In Section 5, in order to tackle the knowledge transferability over heterophilic graphs, we compare the
proposed GraphGP algorithm with LINKXGP, MixHopGP, and H2GCNGP derived from LINKX [30],
MixHop [1], H2GCN [68] respectively. The graph convolutional layer of MixHop [1] is defined as

H(l+1) =
∣∣∣∣∣∣
j∈P

ϕ
(
ÂjH(lW

(l)
j + b

(l)
j

)
where || denotes column-wise concatenation. For example, Table 6 shows the MixHop with P =
{0, 1, 2}, which corresponds to the neighbors from at most 2-order neighborhoods. The graph
convolutional layer of MixHop [1] can also be rewritten as

h(l)
v =

1√
M

∣∣∣∣∣∣
j∈P

 ∑
u∈{v∪Nj

1 (v)}

Âj
uvW

(l)
j,MixHopx

(l)
u + b

(l)
j,MixHop

 and x(l)
u = ϕ

(
h(l−1)
u

)
where N j

1 (v) denotes the first-order neighborhood of node v under adjacent matrix Âj . The following
theorem shows the graph Gaussian process (termed as MixHopGP) derived from MixHop.

Corollary A.3 (Graph Gaussian Process of MixHop). Suppose that the layer width goes to infinity,
and the model parameters are independently and randomly drawn from Gaussian distributions. Let
h
(l)
v (i) be the ith entry of the output vector h(l)

v . Then for any i, h(l)
v (i) of MixHop over all nodes

{v1, · · · , v|V |} ∈ V follows Gaussian process with h
(l)
v (i) ∼ GP(0,K

(l)
MixHop) where the covariance

function K
(l)
MixHop is given by

K
(l)
MixHop (v, v

′) =
∑
j∈P

(
ς2b + ς2w · [Âj]v,:C

(l−1)

[(
Âj
)T]

:,v′

)

where v, v′ ∈ V are two nodes within graph G = (V,E).

24

Proof. It can be proven using a similar idea in [37].

Similarly, we can show the graph Gaussian processes (terms as LINKXGP and H2GCNGP) for
LINKX [30] and H2GCN [68] as follows.
Corollary A.4 (Graph Gaussian Process of LINKX). Suppose that the layer width goes to infinity,
and the model parameters are independently and randomly drawn from Gaussian distributions. Let
h
(l)
v (i) be the ith entry of the output vector h

(l)
v . Then for any i, h(l)

v (i) of LINKX over all nodes
{v1, · · · , v|V |} ∈ V follows Gaussian process with h

(l)
v (i) ∼ GP(0,K

(l)
LINKX) where the covariance

function K
(l)
LINKX is given by

K
(l)
LINKX (v, v′) = CA +CX + ς2b + ς2w · (CA +CX)

where CA,CX corresponds the NNGP kernel [26] induced by the node attributes and adjacent
matrix respectively.

Proof. Following [26], the MLPs over node attributes and adjacent matrix are equivalent to Gaussian
processes CA,CX. Then the graph Gaussian process of LINKX over CA,CX can be derived using
y = MLPf (W[hA||hX] + hA + hX) where hA,hX are adjacent and feature hidden representation
respectively.

Corollary A.5 (Graph Gaussian Process of H2GCN). Suppose that the layer width goes to infinity,
and the model parameters are independently and randomly drawn from Gaussian distributions. Let
h
(l)
v (i) be the ith entry of the output vector h(l)

v . Then for any i, the output layer h(L)
v (i) of H2GCN

over all nodes {v1, · · · , v|V |} ∈ V follows Gaussian process with h
(L)
v (i) ∼ GP(0,K

(L)
H2GCN) where

the covariance function K
(L)
H2GCN is given by

K
(L)
H2GCN (v, v′) = C(0) +

L∑
l=1

k∑
j=1

(
ς2b + ς2w · [Aj

H2GCN]v,:C
(l−1)

[(
Aj

H2GCN

)T]
:,v′

)

where C(0) is NNGP kernel [26] induced by ego-feature embedding layers. Aj
H2GCN is the adjacent

matrix of the jth neighborhood defined in H2GCN.

Proof. The jumping knowledge is leveraged in designing the H2GCN for heterophilic graphs. Thus,
we show the graph Gaussian process of H2GCN at the output layer. The output layer is given by
hfinal
v = ||j∈{0,1,··· ,L}h

(l)
v . Following Corollary A.3, the Gaussian process of each layer can be

derived and then combined in the output layer.

A.6 Efficiency Analysis

As illustrated in Subsection 4.3 and Algorithm 1, in the context of transferable graph learning, the
hyperparameters of GraphGP can be optimized by maximizing the following log marginal likelihood

log p(ytla) = log
[
N
(
ytla |0,Kt(s+t)K

−1
(s+t)(s+t)K

T
t(s+t) + ϱ2t I

)]
The crucial idea is to consider all the nodes Vs ∪ V la

t as the inducing points [47].

However, the objective function involves the inversion of the covariance matrix with time complexity
O((|Vs|+ |V la

t |)3), thereby resulting in the intractable computation of GraphGP in large graphs. To
this end, we provide a computationally efficient approximation in both model training and inference.
Following [37, 47], we choose a subset of landmarks VLM from the labeled source and target nodes.
First, all the labeled target nodes are selected. Second, another q · |V la

t | landmarks are randomly
selected from the labeled source nodes. Thus, the landmarks VLM have (q + 1) · |V la

t | nodes in total.
In practice, a small value of q leads to (q + 1) · |V la

t | ≪ |Vs|+ |V la
t |. Using the landmark nodes, the

objective function of Eq. (7) can be approximated by

log p(ytla) = log
[
N
(
ytla |0,Kt(LM)K

−1
(LM)(LM)K

T
t(LM) + ϱ2t I

)]
(11)

25

Algorithm 1 GraphGP
Input: Source graph Gs = (Vs, Es) with labeled nodes Vs, target graph Gt = (Vt, Et) with labeled
nodes V la

t ⊂ Vt, number of neighborhoods k, layers of structure-aware neural network L.
Output: Predicted output values on target test nodes V∗ ⊂ Vt.

1: Initialize the hyper-parameters of GraphGP;
2: while Stopping criterion is not satisfied do
3: Calculate the covariance matrices Kt(s+t),K(s+t)(s+t);
4: Maximize the log marginal likelihood of Eq. (7);
5: end while
6: Estimate the posterior distribution of Eq. 6;
7: Output the prediction results γ(V∗, Gt).

where K(LM)(LM) denotes the covariance matrix over landmarks, and Kt(LM) is the covariance
matrix between labeled target nodes and landmarks. Following [37], the Nyström approximation
of the posterior distribution in GraphGP can also be calculated over the selected landmarks. The
proposed approximation strategy would reduce the overall time complexity from O((|Vs|+ |V la

t |)3)
to O(|Vs||V la

t |2).

A.7 Additional Experiments

In this section, we provide more details and additional results for our experiments.

A.7.1 Setup

Data Sets: We use the following graph learning benchmarks with node regression tasks.

• Twitch [44]: It has 6 different domains ("DE", "EN", "ES", "FR", "PT", and "RU"). In
each domain, the graph represents the friendships among Twitch users, where each node
corresponds to a Twitch user and each edge represents the mutual friendship of two users.
Each node is also associated with an attribute vector encoding the game, location, and
streaming habit information. Different from previous work [44] which considers the binary
classification of whether a streamer uses explicit language, in this paper, we focus on the
node regression task. Thus, we use the number of views in the original data5 as the output
value for each node/user.

• Agriculture [34, 60]: It has 3 different domains ("Maize" (MA), "Sorghum" (SG), and
"Soybean" (SY)). The goal of agriculture analysis is to predict diverse traits (e.g., spe-
cific leaf area) of plants related to the plants’ growth using leaf hyperspectral reflectance.
The knowledge transferability across different species allows us to effectively infer the
biochemical traits in real scenarios. Each data point represents a plant associated with a
1901-dimensional feature vector (e.g., spectral wavelengths 500-2400 nm). Following [55],
we use k-NN to build the graph based on the feature similarity.

• Airports [43]: It has 3 different domains ("USA" (US), "Brazil" (BR), and "Europe" (EU)).
Those domains involve the airport networks where each node corresponds to an airport and
each edge represents the existence of commercial fights. Each node/airport is assigned a
label based on their level of activity, measured in fights or people. Following [69], we use
the degree-guided feature vector for each node.

• Wikipedia [44]: It has 3 different domains ("chameleon" (CH), "crocodile" (CR), and
"squirrel" (SQ)). As introduced in [44], those domain data are given by Wikipedia page-page
networks on different topics: chameleons, crocodiles, and squirrels. Each node corresponds
to an article and each edge represents mutual links of two articles. The node feature is given
by the presence of particular nouns in the articles and the average monthly traffic. It aims to
predict the log average monthly traffic.

• WebKB [41]: It has 3 different domains ("Cornell" (CO), "Texas" (TX), and "Wisconsin"
(WS)). It is collected from computer science departments of various universities by Carnegie

5https://github.com/benedekrozemberczki/MUSAE

26

https://github.com/benedekrozemberczki/MUSAE

Mellon University. Each node corresponds to a web page, and each edge represents the
hyperlink of two web pages. The node features are given by the bag-of-words representation
of web pages. The web pages are manually classified into five categories, student, project,
course, staff, and faculty. In contrast to previous works [41], we would like to consider the
regression task where each node is associated with an output value from [0, 4], e.g., 4.0 for
nodes from class 4.

The train/validation/test split in our experiments is given below. As discussed in Subsection 4.3,
for transferable node regression, it is given a source graph Gs = (Vs, Es) with fully labeled nodes
and a target graph Gt = (Vt, Et) with a limited number of labeled nodes (e.g., |V la

t | ≪ |Vs| where
V la
t ⊂ Vt is the set of labeled target nodes). Therefore, for Airport, Wikipedia, and WebKB data sets,

we randomly select 10% of target nodes for the training set, 10% for the validation set, and 80% for
the testing set. For Agriculture and Twitch data sets, we randomly select 1% of target nodes for the
training set, 1% for the validation set, and 98% for the testing set.

In Subsection 5.1, we verify the positive correlation between transfer performance and graph domain
similarity on Twitch (RU → PT). To this end, we gradually add some noise to the target graph such
that the graph domain similarity between the source and target graphs can change accordingly. More
specifically, given the feature vector (node attribute) xv of each node v, we simply multiply the
feature vector by a constant δ0, i.e., x̂v = δ0 · xv, where δ0 denotes the perturbation magnitude. In
the experiments, we choose δ0 from 0.1 to 1 with the interval of 0.1.

Baselines: We consider the following Gaussian process baselines. (1) RBFGP [42] and DINO [56]
are feature-Only Gaussian processes without using graph structures. (2) GGP [35], SAGEGP [37],
and GINGP [37] are graph Gaussian processes by considering source and target graphs as a large
disjoint graph. (3) LINKXGP, MixHopGP, and H2GCNGP are graph Gaussian processes derived
from LINKX [30], MixHop [1], H2GCN [68] respectively.

RBFGP [42] is a standard Gaussian process algorithm designed for IID data. DINO [56] considers
the transfer learning scenarios by designing the adaptive transfer kernel between source and target
domains. By incorporating the graph structures, GGP [35], SAGEGP [37], and GINGP [37] design
the graph convolutional kernels. For example, recent work [37] shows the equivalence between graph
neural networks (e.g., GraphSAGE [20], GIN [59]) and graph Gaussian processes. Similarly, we
can derive the corresponding Gaussian processes for LINKX [30], MixHop [1] and H2GCN [68]
in Appendix A.5, which are termed as LINKXGP, MixHopGP, and H2GCNGP, respectively. It is
notable that for a fair comparison, all the baselines are trained over both labeled source and target
nodes. For example, graph Gaussian processes can take the input source and target graphs as a large
disjoint graph. In this case, the distribution shift between source and target graphs is not considered.

A.7.2 Additional Results

Learned Weight αi: In Table 7, we report the learned weight αi of GraphGP in the target domain for
different data sets. For homophilic graphs, e.g., EU → BR of Airport, we see that the node itself and
its first-order neighborhood have higher importance weights. In contrast, for heterophilic graphs, e.g.,
CO → TX of WebKB, the first-order neighborhood is less important for transferable graph learning.
Furthermore, when source and target graphs follow different assumptions, e.g., TX (WebKB) → BR
(Airport) or EU (Airport) → TX (WebKB), the learned weights on the target graph can also capture
the homophily or heterophily properties of the target graph.

Data α0 α1 α2

EU → BR 0.9682 0.9118 0.3015
CO → TX 1.5201 0.0297 1.2054
TX → BR 1.1087 1.2848 0.1416
EU → TX 1.9503 0.0952 0.3609

Table 7: Neighborhood importance weight αi in the target domain

Impact of L: We further investigate the impact of the number of layers L in the proposed GraphGP
algorithm. As shown in Table 8, GraphGP achieves relatively better results when L ∈ {2, 3, 4}.
This observation is also consistent with the over-smoothing issues of conventional graph neural
networks [20, 59].

27

Model L = 1 L = 2 L = 3 L = 4 L = 5

GraphGP 0.7434±0.0103 0.7909±0.0382 0.8001±0.0056 0.8028±0.0075 0.7788±0.0118

Table 8: Impact of L on RU → PT of Twitch

Efficiency Analysis: We investigate the computational efficiency of GraphGP and its approximation
GraphGP-E. Table 9 shows the performance of GraphGP-E on the Twitch data set6. It can be seen
that GraphGP-E consistently outperforms GINGP on transferable graph learning. Moreover, Table 10
shows the effectiveness and efficiency of GraphGP-E with different values of q on RU → PT of
Twitch, where Full indicates the original GraphGP algorithm and the running time indicates the
seconds per epoch. It can be seen that compared to GraphGP, GraphGP-E can achieve comparable
performance and much higher computational efficiency.

Model DE → RU DE → PT DE → ES DE → EN

GINGP [37] 0.5159±0.0047 0.5201±0.0061 0.4861±0.0070 OOM
GraphGP-E 0.7012±0.0088 0.7351±0.0427 0.7356±0.0215 0.6916±0.0057

Table 9: Performance of GraphGP-E with q = 10 (OOM: Out of memory)

Model q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9 q = 10 Full

R2 0.4806 0.6064 0.6781 0.7315 0.7519 0.7495 0.7598 0.7626 0.7887 0.7960 0.7909
Time (s) 0.2169 0.2211 0.2281 0.2330 0.2406 0.2713 0.2763 0.2808 0.2871 0.2889 0.8761

Table 10: Efficiency

6The domain "FR" in Twitch is not used in the experiments, because it has some missing output values, i.e.,
the number of views.

28

	Introduction
	Related Work
	Preliminaries
	Notation and Problem Definition
	Message-Passing Graph Neural Networks

	Methodology
	Structure-Aware Neural Network
	Graph-Structured Gaussian Process
	Implications of Theorem 4.1
	Homophily vs. Heterophily

	Proposed Algorithms
	Generalization Analysis

	Experiments
	Results
	Analysis

	Conclusion
	Appendix
	Broader Impacts
	Limitations
	Proof of Theorems and Corollaries
	Proof of Theorem 4.1
	Proof of Positive Definiteness
	Proof of Corollary 4.2
	Proof of Corollary 4.4
	Proof of Theorem 4.5
	Proof of Corollary 4.6

	Model Discussion
	Intantiations of Message-Passing Graph Neural Networks
	Instantiations of Structure-Aware Neural Networks

	Graph Gaussian Processes of Heterophilic GNNs
	Efficiency Analysis
	Additional Experiments
	Setup
	Additional Results

