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Abstract

We introduce a relevant yet challenging problem named Personalized Dictionary
Learning (PerDL), where the goal is to learn sparse linear representations from
heterogeneous datasets that share some commonality. In PerDL, we model each
dataset’s shared and unique features as global and local dictionaries. Challenges
for PerDL not only are inherited from classical dictionary learning (DL), but also
arise due to the unknown nature of the shared and unique features. In this paper, we
rigorously formulate this problem and provide conditions under which the global
and local dictionaries can be provably disentangled. Under these conditions, we
provide a meta-algorithm called Personalized Matching and Averaging (PerMA)
that can recover both global and local dictionaries from heterogeneous datasets.
PerMA is highly efficient; it converges to the ground truth at a linear rate under
suitable conditions. Moreover, it automatically borrows strength from strong
learners to improve the prediction of weak learners. As a general framework
for extracting global and local dictionaries, we show the application of PerDL
in different learning tasks, such as training with imbalanced datasets and video
surveillance.

1 Introduction

Given a set of n signals Y = [y1, . . . ,yn] ∈ Rd×n, dictionary learning (DL) aims to find a dictionary
D ∈ Rd×r and a corresponding code X = [x1, . . . ,xn] ∈ Rr×n such that: (1) each data sample
yi can be written as yi = Dxi for 1 ≤ i ≤ n, and (2) the code X has as few nonzero elements as
possible. The columns of the dictionary D, also known as atoms, encode the “common features”
whose linear combinations form the data samples. A typical approach to solve DL is via the following
optimization problem:

min
X,D

∥Y −DX∥2F + λ∥X∥ℓq , (DL)

Here ∥ · ∥ℓq is often modeled as a ℓ1-norm (Arora et al., 2015; Agarwal et al., 2016) or ℓ0-(pseudo-
)norm (Spielman et al., 2012; Liang et al., 2022) and has the role of promoting sparsity in the
estimated sparse code. Due to its effective feature extraction and representation, DL has found
immense applications in data analytics, with applications ranging from clustering and classification
(Ramirez et al. (2010); Tošić and Frossard (2011)), to image denoising (Li et al. (2011)), to document
detection(Kasiviswanathan et al. (2012)), to medical imaging (Zhao et al. (2021)), and to many others.
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However, the existing formulations of DL hinge on a critical assumption: the homogeneity of the data.
It is assumed that the samples share the same set of features (atoms) collected in a single dictionary D.
This assumption, however, is challenged in practice as the data is typically collected and processed in
heterogeneous edge devices (clients). These clients (for instance, smartphones and wearable devices)
operate in different conditions (Kontar et al., 2017) while sharing some congruity. Accordingly,
the collected datasets are naturally endowed with heterogeneous features while potentially sharing
common ones. In such a setting, the classical formulation of DL faces a major dilemma: on the one
hand, a reasonably-sized dictionary (with a moderate number of atoms r) may overlook the unique
features specific to different clients. On the other hand, collecting both shared and unique features in
a single enlarged dictionary (with a large number of atoms r) may lead to computational, privacy, and
identifiability issues. In addition, both approaches fail to provide information about “what is shared
and unique” which may offer standalone intrinsic value and can potentially be exploited for improved
clustering, classification and anomaly detection, amongst others.

With the goal of addressing data heterogeneity in dictionary learning, in this paper, we propose
personalized dictionary learning (PerDL); a framework that can untangle and recover global and
local (unique) dictionaries from heterogeneous datasets. The global dictionary, which collects atoms
that are shared among all clients, represents the common patterns among datasets and serves as a
conduit of collaboration in our framework. The local dictionaries, on the other hand, provide the
necessary flexibility for our model to accommodate data heterogeneity.

We summarize our contributions below:

- Identifiability of local and global atoms: We provide conditions under which the local
and global dictionaries can be provably identified and separated by solving a nonconvex
optimization problem. At a high level, our identifiability conditions entail that the true
dictionaries are column-wise incoherent, and the local atoms do not have a significant
alignment along any nonzero vector.

- Federated meta-algorithm: We present a fully federated meta-algorithm, called PerMA
(Algorithm 1), for solving PerDL. PerMA only requires communicating the estimated
dictionaries among the clients, thereby circumventing the need for sharing any raw data. A
key property of PerMA is its ability to untangle global and local dictionaries by casting it as
a series of shortest path problems over a directed acyclic graph (DAG).

- Theoretical guarantees: We prove that, under moderate conditions on the generative model
and the clients, PerMA enjoys a linear convergence to the ground truth up to a statistical
error. Additionally, PerMA borrows strength from strong clients to improve the performance
of the weak ones. More concretely, through collaboration, our framework provides weak
clients with the extra benefits of averaged initial condition, convergence rate, and final
statistical error.

- Practical performance: We showcase the performance of PerMA on a synthetic dataset,
as well as different realistic learning tasks, such as training with imbalanced datasets and
video surveillance. These experiments highlight that our method can effectively extract
shared global features while preserving unique local ones, ultimately improving performance
through collaboration.

1.1 Related Works

Dictionary Learning Spielman et al. (2012); Liang et al. (2022) provide conditions under which DL
can be provably solved, provided that the dictionary is a square matrix (also known as complete DL).
For the more complex case of overcomplete DL with r > d, Arora et al. (2014, 2015); Agarwal et al.
(2016) show that alternating minimization achieves desirable statistical and convergence guarantees.
Inspired by recent results on the benign landscape of matrix factorization (Ge et al., 2017; Fattahi
and Sojoudi, 2020), Sun et al. (2016) show that a smoothed variant of DL is devoid of spurious local
solutions. In contrast, distributed or federated variants of DL are far less explored. Huang et al.
(2022); Gkillas et al. (2022) study DL in the federated setting. However, they do not provide any
provable guarantees on their proposed method.

Federated Learning & Personalization Recent years have seen explosive interest in federated
learning (FL) following the seminal paper on federated averaging (McMahan et al., 2017). Literature
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along this line has primarily focused on predictive modeling using deep neural networks (DNN), be
it through enabling faster convergence (Karimireddy et al., 2020), improving aggregation schemes
at a central server (Wang et al., 2020), promoting fairness across all clients (Yue et al., 2022) or
protecting against potential adversaries (Bhagoji et al., 2019). A comprehensive survey of existing
methodology can be found in (Kontar et al., 2021). More recently, the focus has been placed on
tackling heterogeneity across client datasets through personalization. The key idea is to allow each
client to retain their own tailored model instead of learning one model that fits everyone. Approaches
along this line either split weights of a DNN into shared and unique ones and collaborate to learn the
shared weights (Liang et al., 2020; T Dinh et al., 2020), or follow a train-then-personalize approach
where a global model is learned and fine-tuned locally, often iteratively (Li et al., 2021). Again such
models have mainly focused on predictive models. Whilst this literature abounds, personalization that
aims to identify what is shared and unique across datasets is very limited. Very recently, personalized
PCA (Shi and Kontar, 2022) was proposed to address this challenge through identifiably extracting
shared and unique principal components using distributed Riemannian gradient descent. However,
PCA cannot accommodate sparsity in representation and requires orthogonality constraints that may
limit its application. In contrast, our work considers a broader setting via sparse dictionary learning.

Notation. For a matrix A, we use ∥A∥2, ∥A∥F , ∥A∥1,2, and ∥A∥1 to denote its spectral norm,
Frobenius norm, the maximum of its column-wise 2-norm, and the element-wise 1-norm of A,
respectively. We use Ai to indicate that it belongs to client i. Moreover, we use A(i) to denote the
i-th column of A. We use P(n) to denote the set of n× n signed permutation matrices. We define
[n] = {1, 2, . . . , n}.

2 PerDL: Personalized Dictionary Learning

In PerDL, we are given N clients, each with ni samples collected in Yi ∈ Rd×ni and generated as a
sparse linear combination of rg global atoms and rli local atoms:

Yi = D∗
iX

∗
i , where D∗

i =
[
Dg∗ Dl∗

i

]
, for 1 = 1, . . . , N. (1)

Here Dg∗ ∈ Rd×rg denotes a global dictionary that captures the common features shared among all
clients, whereas Dl∗

i ∈ Rd×rli denotes the local dictionary specific to each client. Let ri = rg + rli
denote the total number of atoms in D∗

i . Without loss of generality, we assume the columns of
D∗

i have unit ℓ2-norm.1 The goal in PerDL is to recover Dg∗ and {Dl∗
i }Ni=1, as well as the sparse

codes {X∗
i }Ni=1, given the datasets {Yi}Ni=1. Before presenting our approach for solving PerDL,

we first consider the following fundamental question: under what conditions is the recovery of the
dictionaries Dg∗, {Dl∗

i }Ni=1 and sparse codes {X∗
i }Ni=1 well-posed?

To answer this question, we first note that it is only possible to recover the dictionaries and sparse
codes up to a signed permutation: given any signed permutation matrix Π ∈ P(ri), the dictionary-
code pairs (Di,Xi) and (DiΠi,Π

⊤
i Xi) are equivalent. This invariance with respect to signed

permutation gives rise to an equivalent class of true solutions with a size that grows exponentially
with the dimension. To guarantee the recovery of a solution from this equivalent class, we need the
µ-incoherency of the true dictionaries.
Assumption 1 (µ-incoherency). For each client 1 ≤ i ≤ N , the dictionary D∗

i is µ-incoherent for
some constant µ > 0, that is,

max
j,k

∣∣∣〈(D∗
i )(j) , (D

∗
i )(k)

〉∣∣∣ ≤ µ√
d
. (2)

Assumption 1 is standard in dictionary learning (Agarwal et al. (2016); Arora et al. (2015); Chatterji
and Bartlett (2017)) and was independently introduced by Fuchs (2005); Tropp (2006) in signal
processing and Zhao and Yu (2006); Meinshausen and Bühlmann (2006) in statistics. Intuitively, it
requires the atoms in each dictionary to be approximately orthogonal. To see the necessity of this
assumption, consider a scenario where two atoms of D∗

i are perfectly aligned (i.e., µ =
√
d). In this

case, using either of these two atoms achieve a similar effect in reconstructing Yi, contributing to the
ill-posedness of the problem.

1This assumption is without loss of generality since, for any dictionary-code pair (Di,Xi), the columns of
Di can be normalized to have unit norm by re-weighting the corresponding rows of Xi.
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Our next assumption guarantees the separation of local dictionaries from the global one in PerDL.
First, we introduce several signed permutation-invariant distance metrics for dictionaries, which will
be useful for later analysis.

Definition 1. For two dictionaries D1,D2 ∈ Rd×r, we define their signed permutation-invariant
ℓ1,2-distance and ℓ2-distance as follows:

d1,2(D1,D2) := min
Π∈P(r)

∥D1Π−D2∥1,2, (3)

d2(D1,D2) := min
Π∈P(r)

∥D1Π−D2∥2. (4)

Furthermore, suppose Π∗ = argminΠ∈P(r) ∥D1Π−D2∥1,2. For any 1 ≤ j ≤ r, we define

d2,(j)(D1,D2) :=
∥∥∥(D1Π

∗ −D2)(j)

∥∥∥
2
. (5)

Assumption 2 (β-identifiablity). The local dictionaries
{
Dl∗

i

}N
i=1

are β-identifiable for some con-
stant 0 < β < 1, that is, there exists no vector v ∈ Rd with ∥v∥2 = 1 such that

max
1≤i≤N

min
1≤j≤rl

d2

((
Dl∗

i

)
(j)
,v
)
≤ β. (6)

Suppose there exists a unit-norm v satisfying (6) for some small β > 0. This implies that v is
sufficiently close to at least one atom from each local dictionary. Indeed, one may treat this atom
as part of the global dictionary, thereby violating the identifiability of local and global dictionaries.
On the other hand, the infeasibility of (6) for large β > 0 implies that the local dictionaries are
sufficiently dispersed, which in turn facilitates their identification.

With the above assumptions in place, we are ready to present our proposed optimization problem for
solving PerDL:

min
Dg,{Di},{Xi}

N∑
i=1

∥Yi −DiXi∥2F + λ

N∑
i=1

∥Xi∥ℓq , s.t. (Di)(1:rg) = Dg for 1 ≤ i ≤ N.

(PerDL-NCVX)
For each client i, PerDL-NCVX aims to recover a dictionary-code pair (Di,Xi) that match Yi under
the constraint that dictionaries for individual clients share the same global components.

3 Meta-algorithm of Solving PerDL

In this section, we introduce our meta-algorithm (Algorithm 1) for solving PerDL-NCVX, which we
call Personalized Matching and Averaging (PerMA). In what follows, we explain the steps of PerMA:

Local initialization (Step 3): PerMA starts with a warm-start step where each client runs their own
initialization scheme to obtain D

(0)
i . This step is necessary even for the classical DL to put the initial

point inside a basin of attraction of the ground truth. Several spectral methods were proposed to
provide a theoretically good initialization(Arora et al., 2015; Agarwal et al., 2016), while in practice,
it is reported that random initialization followed by a few iterations of alternating minimization
approach will suffice (Ravishankar et al., 2020; Liang et al., 2022).

Global matching scheme (Step 6) Given the clients’ initial dictionaries, our global matching
scheme separates the global and local parts of each dictionary by solving a series of shortest path
problems on an auxiliary graph. Then, it obtains a refined estimate of the global dictionary via simple
averaging. A detailed explanation of this step is provided in the next section.

Dictionary update at each client (Step 10) During each communication round, the clients refine
their own dictionary based on the available data, the aggregated global dictionary, and the previous
estimate of their local dictionary. A detailed explanation of this step is provided in the next section.
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Algorithm 1 PerMA: Federated Matching and Averaging

1: Input: {Yi}Ni=1.
2: for client i = 1, ..., N do
3: Client: Obtain D

(0)
i based on Yi. // Initialization step

4: Client: Send D
(0)
i to the server.

5: end for
6: Server:

(
Dg,(0), {Dl,(0)

i }Ni=1

)
= global_matching

(
{D(0)

i }Ni=1

)
// Separating local from global dictionaries

7: Server: Broadcast
(
Dg,(0), {Dl,(0)

i }Ni=1

)
8: for t = 0, 1, . . . , T do
9: for client i = 1, ..., N do

10: Client:
(
D

g,(t+1)
i ,D

l,(t+1)
i

)
= local_update

(
Yi,D

g,(t),D
l,(t)
i

)
// Updating the local and global dictionaries for each client

11: Client: Send D
g,(t+1)
i to the server.

12: end for
13: Server: Calculate Dg,(t+1) = 1

N

∑N
i=1 D

g,(t+1)
i . // Averaging global dictionaries

14: Server: Broadcast Dg,(t+1).
15: end for
16: return

(
Dg,(T ), {Dl,(T )

i }Ni=1

)
.

Global aggregation (Step 13) At the end of each round, the server updates the clients’ estimate of
the global dictionary by computing their average.

A distinguishing property of PerMA is that it only requires the clients to communicate their dictionar-
ies and not their sparse codes. In fact, after the global matching step on the initial dictionaries, the
clients only need to communicate their global dictionaries, keeping their local dictionaries private.

3.1 Global Matching and Local Updates

In this section, we provide detailed implementations of global_matching and local_update
subroutines in PerMA (Algorithm 1).

Given the initial approximations of the clients’ dictionaries {D(0)
i }Ni=1, global_matching seeks to

identify and aggregate the global dictionary by extracting the similarities among the atoms of {D(0)
i }.

To identify the global components, one approach is to solve the following optimization problem

min
Πi

N−1∑
i=1

∥∥∥∥(D(0)
i Πi

)
(1:rg)

−
(
D

(0)
i+1Πi+1

)
(1:rg)

∥∥∥∥
2

s.t. Πi ∈ P(ri) for 1 ≤ i ≤ N.

(7)

Figure 1: A schematic diagram for global_matching (Al-
gorithm 2). At each iteration, we find the shortest path from s
to t (highlighted with red), estimate one atom of Dg∗ using all
passed vertices and remove the path (including the vertices)
from G.

The above optimization aims to ob-
tain the appropriate signed permu-
tation matrices {Πi}Ni=1 that align
the first rg atoms of the permuted
dictionaries. In the ideal regime
where D

(0)
i = D∗

i , 1 ≤ i ≤ N ,
the optimal solution {Π∗

i }Ni=1 yields
a zero objective value and satisfies(
D

(0)
i Π∗

i

)
(1:rg)

= Dg∗. However,

there are two main challenges with
the above optimization. First, it is
a nonconvex, combinatorial problem
over the discrete sets {P(ri)}. Sec-
ond, the initial dictionaries may not
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coincide with their true counterparts. To address the first challenge, we show that the optimal solution
to the optimization (7) can be efficiently obtained by solving a series of shortest path problems defined
over an auxiliary graph. To alleviate the second challenge, we show that our proposed algorithm is
robust against possible errors in the initial dictionaries.

Consider a weighted N -layered directed acyclic graph (DAG) G with ri nodes in layer i representing
the ri atoms in Di. We connect any node a from layer i to any node b from layer i+1 with a directed
edge with weight w(a, b) = d2 ((Di)a , (Di+1)b). We add a source node s and connect it to all
nodes in layer 1 with weight 0. Similarly, we include a terminal node t and connect all nodes in layer
N to t with weight 0. A schematic construction of this graph is presented in Figure 1. Given the
constructed graph, Algorithm 2 aims to solve (7) by running rg rounds of the shortest path problem:
at each round, the algorithm identifies the most aligned atoms in the initial dictionaries by obtaining
the shortest path from s to t. Then it removes the used nodes in the path for the next round. The
correctness and robustness of the proposed algorithm are established in the next theorem.

Algorithm 2 global_matching

1: Input:
{
D

(0)
i

}N

i=1
and rg .

2: Construct the weighted N -layer DAG G described in Section 3.1.
3: Initialize {indexi}Ni=1 as empty sets and Dg,(0) as an empty matrix.
4: for j = 1, . . . , rg do
5: Find the shortest path P =

(
s, (D

(0)
1 )(α1), (D

(0)
1 )(α2), · · · , (D

(0)
N )(αN ), t

)
.

6: Add 1
N

∑N
i=1 sign

(〈
(D

(0)
i )(αi), (D

(0)
1 )(α1)

〉)
(D

(0)
i )(αi) as a new column of Dg,(0).

7: Add αi to indexi for every i = 1, . . . , N .
8: Remove P from G.
9: end for

10: Set Dl,(0)
i = (D

(0)
i )([ri]\indexi) for every i = 1, . . . , N .

11: return
(
Dg,(0),

{
D

l,(0)
i

}N

i=1

)
.

Theorem 1 (Correctness and robustness of global_matching). Suppose {D∗
i }Ni=1 are µ-incoherent

(Assumption 1) and β-identifiable (Assumption 2). Suppose the initial dictionaries
{
D

(0)
i

}N

i=1
satisfy

d1,2

(
D

(0)
i ,D∗

i

)
≤ ϵi with 4

∑N
i=1 ϵi ≤ min

{√
2− 2 µ√

d
, β

}
. Then, the output of Algorithm 2

satisfies:

d1,2

(
Dg,(0),Dg∗

)
≤ 1

N

N∑
i=1

ϵi, and d1,2

(
D

l,(0)
i ,Dl∗

i

)
≤ ϵi, for 1 ≤ i ≤ N. (8)

According to the above theorem, global_matching can robustly separate the clients’ initial dic-
tionaries into global and local parts, provided that the aggregated error in the initial dictionaries is
below a threshold. Specific initialization schemes that can satisfy the condition of Theorem 1 include
Algorithm 1 from Agarwal et al. (2013) and Algorithm 3 from Arora et al. (2015). We also remark
that since the constructed graph is a DAG, the shortest path problem can be solved in time linear in
the number of edges, which is O

(
r1 + rN +

∑N−1
i=1 riri+1

)
, via a simple labeling algorithm (see,

e.g., (Ahuja et al., 1988, Chapter 4.4)). Since we need to solve the shortest path problem rg times,
this brings the computational complexity of Algorithm 2 to O(rgNr2max), where rmax = maxi ri.

Given the initial local and global dictionaries, the clients progressively refine their estimates by
applying T rounds of local_update (Algorithm 3). At a high level, each client runs a single
iteration of a linearly convergent algorithm Ai (see Definition 2), followed by an alignment step that
determines the global atoms of the updated dictionary using Dg,(t) as a "reference point". Notably,
our implementation of local_update is adaptive to different DL algorithms. This flexibility is
indeed intentional to provide a versatile meta-algorithm for clients with different DL algorithms.
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Algorithm 3 local_update

1: Input: D(t)
i =

[
Dg,(t) D

l,(t)
i

]
,Yi

2: D
(t+1)
i = Ai

(
Yi,D

(t)
i

)
// One iteration of a linearly-convergent algorithm.

3: Initialize S as an empty set and P ∈ Rrg×rg as an all-zero matrix.
4: for j = 1, ..., rg do

5: Find k∗ = argmink d2

((
Dg,(t)

)
(j)
,
(
D

(t+1)
i

)
(k)

)
.

6: Append k∗ to S.

7: Set (i, i)-th entry of P to sign

(〈(
Dg,(t)

)
(j)
,
(
D

(t+1)
i

)
(k∗)

〉)
.

8: end for
9: Output: Dg,(t+1)

i =
(
D

(t+1)
i

)
(S)

P and D
l,(t+1)
i =

(
D

(t+1)
i

)
([ri]\S)

.

4 Theoretical Guarantees

In this section, we show that our proposed meta-algorithm provably solves PerDL under suitable
initialization, identifiability, and algorithmic conditions. To achieve this goal, we first present the
definition of a linearly-convergent DL algorithm.
Definition 2. Given a generative model Y = D∗X∗, a DL algorithm A is called (δ, ρ, ψ)-linearly
convergent for some parameters δ, ψ > 0 and 0 < ρ < 1 if, for any D ∈ Rd×r such that
d1,2(D,D

∗) ≤ δ, the output of one iteration D+ = A(D,Y), satisfies

d2,(j)
(
D+,D∗) ≤ ρd2,(j) (D,D

∗) + ψ, ∀1 ≤ j ≤ r. (9)

One notable linearly convergent algorithm is introduced by (Arora et al., 2015, Algorithm 5); we will
discuss this algorithm in more detail in the appendix. Assuming all clients are equipped with linearly
convergent algorithms, our next theorem establishes the convergence of PerMA.
Theorem 2 (Convergence of PerMA). Suppose {D∗

i }Ni=1 are µ-incoherent (Assumption 1) and β-
identifiable (Assumption 2). Suppose, for every client i, the DL algorithm Ai used in local_update

(Algorithm 3) is (δi, ρi, ψi)-linearly convergent with 4
∑N

i=1 δi ≤ min

{√
2− 2 µ√

d
, β

}
. Assume

the initial dictionaries {D(0)
i }Ni=1 satisfy:

d1,2

(
1

N

N∑
i=1

D
g,(0)
i ,Dg∗

)
≤ min

1≤i≤N
δi, d1,2

(
D

l,(0)
i ,Dl∗

i

)
≤ δi, for i = 1, . . . , N. (10)

Then, for every t ≥ 0, PerMA (Algorithm 1) satisfies

d1,2

(
Dg,(t),Dg∗

)
≤

(
1

N

N∑
i=1

ρi

)
d1,2

(
Dg,(0),Dg∗

)
+

1

N

N∑
i=1

ψi, (11)

d1,2

(
D

l,(t)
i ,Dl∗

i

)
≤ ρid1,2

(
Dl,(0),Dl∗

i

)
+ ψi, for 1 ≤ i ≤ N. (12)

The above theorem sheds light on a number of key benefits of PerMA:

Relaxed initial condition for weak clients. Our algorithm relaxes the initial condition on the
global dictionaries. In particular, it only requires the average of the initial global dictionaries to be
close to the true global dictionary. Consequently, it enjoys a provable convergence guarantee even if
some of the clients do not provide a high-quality initial dictionary to the server.

Improved convergence rate for slow clients. During the course of the algorithm, the global
dictionary error decreases at an average rate of 1

N

∑N
i=1 ρi, improving upon the convergence rate of

the slow clients.
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Improved statistical error for weak clients. A linearly convergent DL algorithm Ai stops making
progress upon reaching a neighborhood around the true dictionary D∗

i with radius O(ψi). This type
of guarantee is common among DL algorithms (Arora et al., 2015; Liang et al., 2022) and often
corresponds to their statistical error. In light of this, PerMA improves the performance of weak clients
(i.e., clients with weak statistical guarantees) by borrowing strength from strong ones.

5 Numerical Experiments

In this section, we showcase the effectiveness of Algorithm 1 using synthetic and real data. All
experiments are performed on a MacBook Pro 2021 with the Apple M1 Pro chip and 16GB unified
memory for a serial implementation in MATLAB 2022a. Due to limited space, we will only provide
the high-level motivation and implication of our experiments. We defer implementation details and
comparisons with the existing methods to the appendix.

5.1 Synthetic Dataset

Figure 2: PerMA improves the accuracy
of the recovered global dictionary for all
clients, even if some (three out of ten) are
weak learners.

In this section, we validate our theoretical results on a
synthetic dataset. We consider ten clients, each with
a dataset generated according to the model 1. The
details of our construction are presented in the ap-
pendix. Specifically, we compare the performances
of two strategies: (1) independent strategy, where each
client solves DL without any collaboration, and (2) col-
laborative strategy, where clients collaboratively learn
the ground truth dictionaries by solving PerDL via the
proposed meta-algorithm PerMA. We initialize both
strategies using the same {D(0)

i }Ni=1. The initial dic-
tionaries are obtained via a warm-up method proposed
in (Liang et al., 2022, Algorithm 4). For a fair compar-
ison between independent and collaborative strategies,
we use the same DL algorithm ((Liang et al., 2022,
Algorithm 1)) for different clients. Note that in the
independent strategy, the clients cannot separate global
from local dictionaries. Nonetheless, to evaluate their performance, we collect the atoms that best
align with the true global dictionary Dg∗ and treat them as the estimated global dictionaries. As can
be seen in Figure 2, three out of ten clients are weak learners and fail to recover the global dictionary
with desirable accuracy. On the contrary, in the collaborative strategy, all clients recover the same
global dictionary almost exactly.

5.2 Training with Imbalanced Data

In this section, we showcase the application of PerDL in training with imbalanced datasets. We
consider an image reconstruction task on MNIST dataset. This dataset corresponds to a set of
handwritten digits (see the first row of Figure 3). The goal is to recover a single concise global
dictionary that can be used to reconstruct the original handwritten digits as accurately as possible.
In particular, we study a setting where the clients have imbalanced label distributions. Indeed, data
imbalance can drastically bias the performance of the trained model in favor of the majority groups,
while hurting its performance on the minority groups (Leevy et al., 2018; Thabtah et al., 2020). Here,
we consider a setting where the clients have highly imbalanced datasets, where 90% of their samples
have the same label. More specifically, for client i, we assume that 90% of the samples correspond
to the handwritten digit “i”, with the remaining 10% corresponding to other digits. The second row
of Figure 3 shows the effect of data imbalance on the performance of the recovered dictionary on
a single client, when the clients do not collaborate. The last row of Figure 3 shows the improved
performance of the recovered dictionary via PerDL on the same client. Our experiment clearly shows
the ability of PerDL to effectively address the data imbalance issue by combining the strengths of
different clients.
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Figure 3: PerMA improves training with imbalanced datasets. We consider the image reconstruction
task on the imbalanced MNIST dataset using only five atoms from a learned global dictionary. The
first row corresponds to the original images. The second row is based on the dictionary learned on
a single client with an imbalanced dataset. The third row shows the improved performance of the
learned dictionary using our proposed method on the same client.

Figure 4: PerMA effectively separates the background from moving objects in video frames. Here
we reconstruct the surveillance video frames using global and local dictionaries learned by PerMA.
We reconstruct the frames using only 50 atoms from the combined dictionaries.

5.3 Surveillance Video Dataset

As a proof of concept, we consider a video surveillance task, where the goal is to separate the
background from moving objects. Our data is collected from Vacavant et al. (2013) (see the first
column of Figure 4). As these frames are taken from one surveillance camera, they share the
same background corresponding to the global features we aim to extract. The frames also exhibit
heterogeneity as moving objects therein are different from the background. This problem can indeed
be modeled as an instance of PerDL, where each video frame can be assigned to a “client”, with the
global dictionary capturing the background and local dictionaries modeling the moving objects. We
solve PerDL by applying PerMA to obtain a global dictionary and several local dictionaries for this
dataset. Figure 4 shows the reconstructed background and moving objects via the recovered global
and local dictionaries. Our results clearly show the ability of our proposed framework to separate
global and local features. 2

2We note that moving object detection in video frames has been extensively studied in the literature and
typically solved very accurately via different representation learning methods (such as robust PCA and neural
network modeling); see (Yazdi and Bouwmans, 2018) for a recent survey. Here, we use this case study as a proof
of concept to illustrate the versatility of PerMA in handling heterogeneity, even in settings where the data is not
physically distributed among clients.

9



6 Social Impact, Limitations and Future Directions

Our novel approach for personalized dictionary learning presents a versatile solution with immediate
applications across various domains, such as video surveillance and object detection. While these
applications offer valuable benefits, they also bring to the forefront ethical and societal concerns,
particularly concerning privacy, bias, and potential misuse. In the context of video surveillance,
deploying object detection algorithms may inadvertently capture private information, leading to
concerns about violating individuals’ right to privacy. However, it is important to emphasize that
our proposed algorithm is specifically designed to focus on separating unique and common features
within the data, without delving into the realm of personal information. Thus, it adheres to ethical
principles by ensuring that private data is not processed or used without explicit consent. Bias is
another critical aspect that necessitates careful consideration in the deployment of object detection
algorithms. Biases can manifest in various forms, such as underrepresentation or misclassification of
certain groups, leading to discriminatory outcomes. Our approach acknowledges the importance of
mitigating biases by solely focusing on the distinction between common and unique features, rather
than introducing any inherent bias into the learning process. Furthermore, the potential misuse of
object detection algorithms in unauthorized surveillance or invasive tracking scenarios raises valid
concerns. As responsible researchers, we are cognizant of such risks and stress that our proposed
algorithm is meant to be deployed in a controlled and legitimate manner, adhering to appropriate
regulations and ethical guidelines.

Even though our meta-algorithm PerMA enjoys strong theoretical guarantees and practical perfor-
mance, there are still several avenues for improvement. For instance, the theoretical success of
PerMA, especially the Global Matching step, relies on an individual initial error of O(1/N). In
other words, the initial error should decrease as the number of clients grows. As a future work, we
plan to relax such dependency via a more delicate analysis. We also note that imposing an upper
bound on the initial error is not unique to our setting, as virtually all existing algorithms for classical
(non-personalized) dictionary learning require certain conditions on the initial error. On the other
hand, once the assumption on the initial error is satisfied, our meta-algorithm achieves a final error
with the same dependency on d (the dimensionality of the data) and n (the number of samples) as
the state-of-the-art algorithms for classical dictionary learning (Agarwal et al. (2016), Arora et al.
(2015)). Remarkably, this implies that personalization is achieved without incurring any additional
cost on d or n, making PerMA highly efficient and competitive in its performance.
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A Further Details on the Experiments

In this section, we provide further details on the numerical experiments reported in Section 5.

A.1 Details of Section 5.1

In Section 5.1, we generate the synthetic datasets according to Model 1 with N = 10, d = 6, ri = 6,
and ni = 200 for each 1 ≤ i ≤ 10. Each D∗

i is an orthogonal matrix with the first rg = 3 columns
shared with every other client and the last rli = 3 columns unique to themselves. Each X∗

i is first
generated from a Gaussian-Bernoulli distribution where each entry is non-zero with a probability 0.2.
Then, X∗

i is further truncated, where all the entries (X∗
i )(j,k) with | (X∗

i )(j,k) | < 0.3 are replaced by
(X∗

i )(j,k) = 0.3× sign((X∗
i )(j,k)).

We use the orthogonal DL algorithm (Algorithm 4) introduced in (Liang et al., 2022, Algorithm 1) as
the local DL algorithm for each client. This algorithm is simple to implement and comes equipped
with a strong convergence guarantee (see (Liang et al., 2022, Theorem 1)). Here HTζ(·) denotes the
hard-thresholding operator at level ζ, which is defined as:

(HTζ(A))(i,j) =

{
A(i,j) if |A(i,j)| ≥ ζ,

0 if |A(i,j)| < ζ.

Specifically, we use ζ = 0.15 for the experiments in Section 5.1. Polar(·) denotes the polar
decomposition operater, which is defined as Polar(A) = UAV⊤

A, where UAΣAV⊤
A is the Singular

Value Decomposition (SVD) of A.

Algorithm 4 Alternating minimization for orthogonal dictionary learning (Liang et al. (2022))

1: Input: Yi, D
(t)
i

2: Set X(t)
i = HTζ

(
D(t)i⊤Yi

)
3: Set D(t+1)

i = Polar
(
YiX

(t)⊤
i

)
4: return D

(t+1)
i

For a fair comparison, we initialize both strategies using the same {D(0)
i }Ni=1, which is obtained by

iteratively calling Algorithm 4 with a random initial dictionary and shrinking thresholds ζ. For a
detailed discussion on such an initialization scheme we refer the reader to Liang et al. (2022).

A.2 Details of Section 5.2

In section 5.2, we aim to learn a dictionary with imbalanced data collected from MNIST dataset
(LeCun et al., 2010). Specifically, we consider N = 10 clients, each with 500 handwritten images.
Each image is comprised of 28 × 28 pixels. Instead of randomly assigning images, we construct
dataset i such that it contains 450 images of digit i and 50 images of other digits. Here client 10
corresponds to digit 0. After vectorizing each image into a 784 × 1 one-dimension signal, our
imbalanced dataset contains 10 matrices Yi ∈ R784×500, i = 1, . . . , 10.

We first use Algorithm 4 to learn an orthogonal dictionary for each client, using their own imbalanced
dataset. For client i, given the output of Algorithm 4 after T iterations D

(T )
i , we reconstruct a

new signal y using the top k atoms according to the following steps: first, we solve a sparse
coding problem to find the sparse code x such that y ≈ D

(T )
i x. This can be achieved by Step 2

in Algorithm 4. Second, we find the top k entries in x that have the largest magnitude: x(α1,1),
x(α2,1), · · · ,x(αk,1). Finally, we calculate the reconstructed signal ỹ as

ỹ =

k∑
j=1

x(αh,1)

(
D

(T )
i

)
αh

.

The second row of Figure 3 is generated by the above procedure with k = 5 using the dictionary
learned by Client 1. The third row of Figure 3 corresponds to the reconstructed images using the
output of PerMA.
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A.3 Details of Section 5.3

Our considered dataset in section 5.3 contains 62 frames, each of which is a 480 × 640 × 3 RGB
image. We consider each frame as one client (N = 62). After dividing each frame into 40 × 40
patches, we obtain each data matrix Yi ∈ R576×1600. Then we apply PerMA to {Yi}62i=1 with

ri = 576 for all i and rg = 30. Consider D(T )
i =

[
Dg,(T ) D

l,(T )
i

]
, which is the output of PerMA

for client i. We reconstruct each Yi using the procedure described in the previous section with
k = 50. Specifically, we separate the contribution of Dg,(T ) from D

l,(T )
i . Consider the reconstructed

matrix Ỹi as

Ỹi =
[
Dg,(T ) D

l,(T )
i

] [Xg
i

Xl
i

]
= Dg,(T )Xg

i︸ ︷︷ ︸
Ỹg

i

+D
l,(T )
i Xl

i︸ ︷︷ ︸
Ỹl

i

The second column and the third column of Figure 4 correspond to reconstructed results of Ỹg
i and

Ỹl
i respectively. We can see clear separation of the background (which is shared among all frames)

from the moving objects (which is unique to each frame).

One notable difference between this experiment and the previous one is in the choice of the DL
algorithm Ai. To provide more flexibility, we relax the orthogonality condition for the dictionary.
Therefore, we use the alternating minimization algorithm introduced in Arora et al. (2015) for each
client (see Algorithm 5). The main difference between this algorithm and Algorithm 4 is that the
polar decomposition step in Algorithm 4 is replaced by a single iteration of the gradient descent
applied to the loss function L(D,X) = ∥DX−Y∥2F .

Algorithm 5 Alternating minimization for general dictionary learning (Arora et al. (2015))

1: Input: Yi, D
(t)
i

2: Set X(t)
i = HTζ

(
D

(t)⊤
i Yi

)
3: Set D(t+1)

i = D
(t)
i − 2η

(
D

(t)
i X

(t)
i −Yi

)
X

(t)⊤
i

4: return D
(t+1)
i

Even with the computational saving brought up by Algorithm 5, the runtime significantly slows down
for PerMA due to large N , d, and p. Here we report a practical trick to speed up PerMA, which is
a local refinement procedure (Algorithm 6) added immediately before local_update (Step 10 of
Algorithm 1). At a high level, local_dictionary_refinement first finds the local residual data
matrix Yl

i by removing the contribution of the global dictionary. Then it iteratively refines the local
dictionary with respect to Yl

i. We observed that local_dictionary_refinement significantly
improves the local reconstruction quality. We leave its theoretical analysis as a possible direction for
future work.

Algorithm 6 local_dictionary_refinement

1: Input: D(t)
i =

[
Dg,(t) D

l,(t)
i

]
,Yi

2: Find
[
Xg

i

Xl
i

]
such that Yi ≈

[
Dg,(t) D

l,(t)
i

] [Xg
i

Xl
i

]
// Solving a sparse coding problem

3: Set Yl
i = Yi −Dg,(t)Xg

i

4: Set Drefine,(0)
i = D

l,(t)
i .

5: for τ = 0, 1, ..., T refine − 1 do
6: Set Drefine,(τ+1)

i = Ai

(
Yl

i,D
refine,(τ)
i

)
// Improving local dictionary

7: end for
8: return D

refine,(T refine)
i as refined D

l,(t)
i
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B Additional Experiments

In this section, we present the results of some additional experiments to better showcase the efficiency
of PerMA compared with the existing methods and its potential to adapt to a parameter-free algorithm.

B.1 Comparison with Existing Methods

To the best of our knowledge, the problem of personalized dictionary learning (PerDL) has not been
previously explored and formally defined. While existing methods in federated learning bear some
resemblance to PerDL, they lack provable guarantees in recovering the global and local dictionaries.
To clarify these distinctions, we present a detailed comparison between our work and the most closely
related papers by Huang et al. (2022) and Gkillas et al. (2022). We compare our method with these
methods under the same setting as in Section 5.1. The results can be seen in Figure 5, which shows
that PerMA consistently outperforms methods proposed by Gkillas et al. (2022) and Huang et al.
(2022).

Figure 5: Comparisons of different methods on synthetic datasets. In the first row, clients are provided
with heterogeneous datasets with similar sizes; in the second row, we consider the special cases in
which one of the clients has an insufficient sample size and evaluate the performance of the dictionary
learned by that specific client. The first column corresponds to final errors with varying d; the second
column corresponds to total running times with varying d; the third column corresponds to final
errors with varying N ; and the forth column corresponds to final errors with varying sparsity level.
All the results are averaged over 3 independent trials.

Next, in the context of Section 5.2, we compare the quality of the reconstructed images using
dictionaries learned from different methods under three metrics: MSE, PSNR and SSIM. A smaller
MSE, a larger PSNR, and an SSIM closer to 1 indicate better image reconstruction quality. In Table 1,
k denotes the number of atoms used to reconstruct the image. As can be seen in the table, PerMA
achieves the best result in all sections except for the training time.

Finally, in this paper we use PerMA on the surveillance video datasets, with the goal of separating
common elements shared by all clients (the background) and unique elements (different cars). Such
a task cannot be accomplished by Gkillas et al. (2022) and Huang et al. (2022) due to their lack of
personalization. On the other hand, a recently proposed method based on personalized PCA (PerPCA)
has been shown to be effective in separating common and unique elements (Shi and Kontar, 2022). As
a result, we run PerPCA on the same dataset to compare its performance with our method. According
to Figure 6, PerDL outperforms PerPCA by achieving better separation and higher resolution.

B.2 Auto-tuning of rg

One can easily see from Section 3 that rg is an important hyper-parameter of our algorithm. A larger
rg means more global atoms are sent between central servers and clients, which leads to a stronger
collaboration between them. In the synthetic experiment, we assume to know the value of rg , while in
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Figure 6: Objects and background separation by PerPCA.

real-life applications, one needs to fine-tune this parameter. An interesting observation we made is that
the proposed PerMA algorithm can be augmented by a simple detection mechanism for identifying
the correct choice of rg . Specifically, during the Global Matching step, where we iteratively remove
shortest paths, we can monitor the length of the obtained shortest path. By terminating the removal of
paths (i.e., adding global atoms) when the length of the path experiences a significant increase beyond
a predefined threshold, we can effectively identify the appropriate value of rg without requiring prior
knowledge. This detection mechanism alleviates the burden of fine-tuning rg and allows for a more
practical and robust implementation of the algorithm.

To validate the efficacy of this approach, we conducted a series of experiments, the results of which
are presented in Figure 7. We use different rg = 4, 6, 8 with r = 10 and monitor the lengths of paths.
As evident from the outcomes, a clear and drastic increase in the length of the rg + 1-th shortest path
is observed, signifying the correct value of rg .

Figure 7: Increase of path length for different rg. Here the x-axis denotes the number of iterations
for Algorithm 2 and the x-axis denotes the distance of the P for each iteration.
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Methods MSE PSNR SSIM Running Time
k = 10 k = 20 k = 10 k = 20 k = 10 k = 20 (seconds)

PerMA 0.0319 0.0207 15.3795 17.3771 0.6286 0.7074 40.8
Local DL 0.0448 0.0330 14.1936 15.7203 0.5538 0.6162 4.9

Gkillas et al. 0.1069 0.1084 9.8930 9.8360 0.2736 0.2659 3600+
Huang et al. 0.1062 0.1062 9.9203 9.9212 0.2737 0.2628 3600+

PerPCA 0.0837 0.0734 11.0118 11.6426 0.3520 0.3959 59.3
Table 1: Comparisons of different methods on MNIST datasets. A smaller MSE, a larger PSNR, and
an SSIM closer to 1 indicate better image reconstruction quality. Here k denotes the number of atoms
used to reconstruct the image.

C Further Discussion on Linearly Convergent Algorithms

In this section, we discuss a linearly convergent DL algorithm that satisfies the conditions of our
Theorem 2. In particular, the next theorem is adapted from (Arora et al., 2015, Theorem 12) and
shows that a modified variant of Algorithm 5 introduced in (Arora et al., 2015, Algorithm 5) is indeed
linearly-convergent.

Theorem 3 (Linear convergence of Algorithm 5 in Arora et al. (2015)). Suppose that the data matrix
satisfies Y = D∗X∗, where D∗ is an µ-incoherent dictionary and the sparse code X∗ satisfies the
generative model introduced in Section 1.2 and Section 4.1 of Arora et al. (2015). For any initial
dictionary ∥D(0)∥2 ≤ 1, Algorithm 5 in Arora et al. (2015) is (δ, ρ, ψ)-linearly convergent with
δ = O(1/ log d), ρ ∈ (1/2, 1), and ψ = O(d−ω(1)).

Algorithm 5 in Arora et al. (2015) is a refinement of Algorithm 5, where the error is further reduced
by projecting out the components along the column currently being updated. For brevity, we do
not discuss the exact implementation of the algorithm; an interested reader may refer to Arora et al.
(2015) for more details. Indeed, we have observed in our experiments that the additional projection
step does not provide a significant benefit over Algorithm 5.

D Proof of Theorems

D.1 Proof of Theorem 1

To begin with, we establish a triangular inequality for d1,2(·, ·), which will be important in our
subsequent arguments:

Lemma 1 (Triangular inequality for d1,2(·, ·)). For any dictionary D1, D2, D3 ∈ Rd×r, we have

d1,2 (D1,D2) ≤ d1,2 (D1,D3) + d1,2 (D3,D2) (13)

Proof. Suppose Π1,3 and Π3,2 satisfy d1,2 (D1,D3) = ∥D1Π1,3 −D3∥1,2 and d1,2 (D3,D2) =
∥D3 −D2Π3,2∥1,2. Then we have

d1,2 (D1,D3) + d1,2 (D3,D2) = ∥D1Π1,3 −D3∥1,2 + ∥D3 −D2Π3,2∥1,2
≥ ∥D1Π1,3 −D2Π3,2∥1,2
≥ d1,2 (D1,D2) .

(14)

Given how the directed graph G is constructed and modified, any directed path from s to t will be
of the form P = s→ (D

(0)
1 )α(1) → (D

(0)
2 )α(2) → · · · → (D

(0)
N )α(N) → t. Specifically, each layer

(or client) contributes exactly one node (or atom), and the path is determined by α(·) : [N ] → [r].
Recall that D∗

i =
[
Dg∗ Dl∗

i

]
for every 1 ≤ i ≤ N . Assume, without loss of generality, that for

every client 1 ≤ i ≤ N ,

Iri×ri = arg min
Π∈P(ri)

∥∥∥D∗
iΠ−D

(0)
i

∥∥∥
1,2
. (15)
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In other words, the first rg atoms in the initial dictionaries {D(0)
i }Ni=1 are aligned with the global

dictionary. Now consider the special path P∗
j for 1 ≤ j ≤ rg defined as

P∗
j = s→ (D

(0)
1 )j → (D

(0)
2 )j → · · · → (D

(0)
N )j → t. (16)

To prove that Algorithm 2 correctly selects and aligns global atoms from clients, it suffices to show
that {P∗

j }r
g

j=1 are the top-rg shortest paths from s to t in G. The length of the path P∗
j can be bounded

as

L
(
P∗
j

)
=

N−1∑
i=1

d2

(
(D

(0)
i )j , (D

(0)
i+1)j

)
=

N−1∑
i=1

min
{
∥(D(0)

i )j − (D
(0)
i+1)j∥2, ∥(D

(0)
i )j + (D

(0)
i+1)j∥2

}
≤

N−1∑
i=1

∥(D(0)
i )j − (D

(0)
i+1)j∥2

≤
N−1∑
i=1

∥(D(0)
i )j − (Dg∗)j∥2 + ∥(D(0)

i+1)j − (Dg∗)j∥2

≤
N−1∑
i=1

(ϵi + ϵi+1)

≤ 2

N∑
i=1

ϵi.

(17)

We move on to prove that all the other paths from s to t will have a distance longer than 2
∑N

i=1 ϵi.
Consider a general directed path P = s→ (D

(0)
1 )α(1) → (D

(0)
2 )α(2) → · · · → (D

(0)
N )α(N) → t that

is not in {P∗
j }r

g

j=1. Based on whether or not P contains atoms that align with the true global ground
atoms, there are two situations:

Case 1: Suppose there exists 1 ≤ i ≤ N such that α(i) ≤ rg. Given Model 1 and the assumed
equality (15), we know that for layer i, P contains a global atom. Since P is not in {P∗

j }r
g

j=1, there
must exist k ̸= i such that α(k) ̸= α(i). As a result, we have

L(P)
(a)

≥ d1,2

(
(D

(0)
i )α(i), (D

(0)
k )α(k)

)
(b)

≥ min
{
∥(D∗

i )α(i) − (D∗
k)α(k)∥2, (D∗

i )α(i) + (D∗
k)α(k)∥2

}
− ∥(D∗

i )α(i) − (D
(0)
i )α(i)∥2 − ∥(D∗

k)α(k) − (D
(0)
k )α(k)∥2

(c)

≥
√
2− 2

∣∣〈(D∗
k)α(i), (D

∗
k)α(k)

〉∣∣− 2 max
1≤i≤N

ϵi

(d)

≥
√

2− 2
µ√
d
− 2 max

1≤i≤N
ϵi

(e)

≥ 2

N∑
i=1

ϵgi

(18)

Here (a) and (b) are due to Lemma 1, (c) is due to assumed equality (15), (d) is due to the µ-
incoherency of D∗

k, and finally (e) is given by the assumption of Theorem 1.

Case 2: Suppose α(i) > rg for all 1 ≤ i ≤ N , which means that the path P
only uses approximations to local atoms. Consider the ground truth of these approxi-
mations, (D∗

1)α(1), (D
∗
2)α(2), ..., (D

∗
N )α(N). There must exist 1 ≤ i, j ≤ N such that

d1,2
(
(D∗

i )α(i), (D
∗
j )α(j)

)
≥ β. Otherwise, it is easy to see that {Dl∗

i }Ni=1 would not be β-identifiable

18



because any (D∗
i )α(i) will satisfy (6). As a result, we have the following:

L(P) ≥ d1,2

(
(D

(0)
i )α(i), (D

(0)
j )α(j)

)
≥ d1,2

(
(D∗

i )α(i), (D
∗
j )α(j)

)
− ∥(D∗

i )α(i) − (D
(0)
i )α(i)∥2 − ∥(D∗

j )α(j) − (D
(0)
j )α(j)∥2

≥ β − 2max
i
ϵi

≥ 2

N∑
i=1

ϵi

(19)
So we have shown that {P∗

j }r
g

j=1 are the top-rg shortest paths from s to t in G. Moreover, it is easy

to show that sign
(〈

(D
(0)
1 )j , (D

(0)
i )j

〉)
= 1 for small enough {ϵi}Ni=1. Therefore, the proposed

algorithm correctly recovers the global dictionaries (with the correct identity permutation). Finally,
we have Dg,(0) = 1

N

∑N
i=1(D

(0)
i )1:rg , which leads to:

d1,2

(
Dg,(0),Dg∗

)
≤ max

1≤j≤rg

∥∥∥∥∥ 1

N

N∑
i=1

(D
(0)
i )j − (Dg∗)j

∥∥∥∥∥
2

≤ max
1≤j≤rg

1

N

N∑
i=1

∥∥∥(D(0)
i )j − (Dg∗)j

∥∥∥
2

≤ max
1≤j≤rg

1

N

N∑
i=1

ϵi

=
1

N

N∑
i=1

ϵi.

(20)

This completes the proof of Theorem 1. □

D.2 Proof of Theorem 2

Throughout this section, we define:

ρ̄ :=
1

N

N∑
i=1

ρi, ψ̄ :=
1

N

N∑
i=1

ψi. (21)

We will prove the convergence of the global dictionary in Theorem 2 by proving the following
induction: at each t ≥ 1, we have

d1,2

(
Dg,(t+1),Dg∗

)
≤ ρ̄d1,2

(
Dg,(t),Dg∗

)
+ ψ̄. (22)

At the beginning of communication round t, each client i performs local_update to get D(t+1)
i

given
[
Dg,(t) D

l,(t)
i

]
. Without loss of generality, we assume

Iri×ri = arg min
Π∈P(ri)

∥∥∥D∗
iΠ−

[
Dg,(t) D

l,(t)
i

]∥∥∥
1,2
, (23)

Iri×ri = arg min
Π∈P(ri)

∥∥∥D∗
iΠ−D

(t+1)
i

∥∥∥
1,2
. (24)

Assumed equalities (23) and (24) imply that the permutation matrix that aligns the input and the
output of Ai is also Iri×ri . Specifically, the linear convergence property of Ai and Theorem 1 thus
suggest:∥∥∥∥(D(t+1)

i

)
j
− (D∗

i )j

∥∥∥∥
2

≤ ρi

∥∥∥∥(Dg,(t)
)
j
− (D∗

i )j

∥∥∥∥
2

+ ψi ∀1 ≤ j ≤ rg, 1 ≤ i ≤ N. (25)
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However, our algorithm is unaware of this trivial alignment. We will next show the remaining steps
in local_update correctly recovers the identity permutation. The proof is very similar to the proof
of Theorem 1 since we are essentially running Algorithm 2 on a two-layer G. For every 1 ≤ i ≤ N ,
1 ≤ j ≤ rg , we have

d1,2

((
D

(t+1)
i

)
j
,
(
Dg,(t)

)
j

)
≤ d1,2

((
D

(t+1)
i

)
j
, (D∗

i )j

)
+ d1,2

(
(D∗

i )j ,
(
Dg,(t)

)
j

)
≤ 2δi.

(26)

Meanwhile for k ̸= j,

d1,2

((
D

(t+1)
i

)
k
,
(
Dg,(t)

)
j

)
≥ d1,2

(
(D∗

i )k , (D
∗
i )j

)
− d1,2

((
D

(t+1)
i

)
k
, (D∗

i )k

)
− d1,2

(
(D∗

i )j ,
(
Dg,(t)

)
j

)
≥

√
2− 2µ√

d
− 2δi.

≥ 2δi.

(27)

As a result, we successfully recover the identity permutation, which implies∥∥∥∥(Dg,(t+1)
i

)
j
−
(
Dg∗

i

)
j

∥∥∥∥
2

≤ ρi

∥∥∥∥(Dg,(t)
)
j
−
(
Dg∗

i

)
j

∥∥∥∥
2

+ ψi ∀1 ≤ j ≤ rg, 1 ≤ i ≤ N. (28)

Finally, the aggregation step (Step 13 in Algorithm 1) gives:

d1,2

(
Dg,(t+1),Dg∗

)
≤

∥∥∥∥∥ 1

N

N∑
i=1

D
g,(t+1)
i −Dg∗

∥∥∥∥∥
1,2

= max
1≤j≤rg

∥∥∥∥∥∥
(

1

N

N∑
i=1

D
g,(t+1)
i

)
j

− (Dg∗)j

∥∥∥∥∥∥
≤ max

1≤j≤rg

1

N

N∑
i=1

∥∥∥∥(Dg,(t+1)
i

)
j
−
(
Dg∗

i

)
j

∥∥∥∥
2

≤ max
1≤j≤rg

1

N

N∑
i=1

(
ρi

∥∥∥∥(Dg,(t)
)
j
−
(
Dg∗

i

)
j

∥∥∥∥
2

+ ψi

)

≤ 1

N

N∑
i=1

(
ρid1,2

(
Dg,(t),Dg∗

)
+ ψi

)
= ρ̄d1,2

(
Dg,(t),Dg∗

)
+ ψ̄.

(29)

As a result, we prove the induction (22) for all 0 ≤ t ≤ T − 1. Inequality (12) is a by-product of the
accurate separation of global and local atoms and can be proved by similar arguments. The proof is
hence complete. □

20


	Introduction
	Related Works

	PerDL: Personalized Dictionary Learning
	Meta-algorithm of Solving PerDL
	Global Matching and Local Updates

	Theoretical Guarantees
	Numerical Experiments
	Synthetic Dataset
	Training with Imbalanced Data
	Surveillance Video Dataset

	Social Impact, Limitations and Future Directions
	Further Details on the Experiments
	Details of Section 5.1
	Details of Section 5.2
	Details of Section 5.3

	Additional Experiments
	Comparison with Existing Methods
	Auto-tuning of rg

	Further Discussion on Linearly Convergent Algorithms
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2


