
MLFMF: Data Sets for Machine Learning for
Mathematical Formalization

Supplementary Material

Andrej Bauer
Faculty of Mathematics and Physics

University of Ljubljana
Institute for Mathematics, Physics and Mechanics

Ljubljana, Slovenia
andrej.bauer@fmf.uni-lj.si

Matej Petković
Faculty of Mathematics and Physics

University of Ljubljana
Department of Knowledge Technologies

Jožef Stefan Institute
Ljubljana, Slovenia

matej.petkovic@fmf.uni-lj.si

Ljupčo Todorovski
Faculty of Mathematics and Physics

University of Ljubljana
Department of Knowledge Technologies

Jožef Stefan Institute
Ljubljana, Slovenia

ljupco.todorovski@fmf.uni-lj.si

This document provides several pieces of meta-information about the MLFMF data set collection, as
well as some additional details and results from the experiments.

All the code is available at the GitHub repository https://github.com/ul-fmf/mlfmf-data.
For a detailed description of the preprocessing scripts and the script for running the model, please
refer to the README in the repository. However, due to space limitations, all the preprocessed
data can be found at https://doi.org/10.5281/zenodo.10041075, which – for self-sufficiency
reasons – contains the relevant preprocessing tools and a simple script to load the data sets.

1 Data Collection

We obtained the source code of the libraries from their publicly available GitHub repositories. At
the time of collection, we retrieved the latest versions of the libraries, which are specified in Table 1.
In the case of Agda, a fork (https://github.com/andrejbauer/agda/tree/master-sexp)
of the official Agda repository (https://github.com/agda/agda) was created to modify the
compilation procedure, so that it outputs s-expressions (see the main article, Section 3). In the case
of Lean, a standalone tool (https://github.com/andrejbauer/lean2sexp) was developed and
implemented in Lean to process entries in Lean’s olean binary format.

Table 1: The versions of the four libraries transformed to the data sets.
GitHub repository commit
agda/agda-stdlib cfa2504316d7e03e4a1a5f2353976796e07a9f1e
UniMath/agda-unimath bca22ae30b07f9ee02f82d1f4893ddc389185cb0
martinescardo/TypeTopology 8b44abc0c99775c8141709a47a52ec5827357886
leanprover-community/mathlib4 cdbd878af82f017d6a1db38e5581a348d7706002

A co-author of this paper developed both conversion procedures, and their anonymized implementa-
tions (without the links to the specific GitHub repositories) are present in the Google Drive folder

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/ul-fmf/mlfmf-data
https://doi.org/10.5281/zenodo.10041075
https://github.com/andrejbauer/agda/tree/master-sexp
https://github.com/agda/agda
https://github.com/andrejbauer/lean2sexp

mentioned above. We plan to make them publicly available upon acceptance and/ or public release of
the data set.

2 Data Description

As described in the article manuscript (see Section 3.2), every data set corresponds to a library of
formalized mathematics. The data set consists of two parts: a set of computational graphs of the
library entries (described in Section 3.3 of the article) and a directed multi-graph (see Section 3.4).
We store every computational graph in a separate .dag file (a text file whose extension dag stands
for directed acyclic graph). The second part of the data set, the directed multi-graph, or network for
short, is stored in a text file, listing its nodes and links.

In the following subsections, we describe the file format and the structure of the repository.

2.1 The Structure of the DAG Files

Every DAG file contains a tab-separated table with four columns of NODE ID, NODE TYPE, NODE
DESCRIPTION and CHILDREN IDS, described in Table 2. Excluding the header, every line in the file
represents a single DAG node. For example, the row

2923823 :name "Relation.Binary.Definitions.Transitive 70" []

describes a node with the ID 2923823, which is a:name that refers to the fully qualified name1

"Relation.Binary.Definitions.Transitive 70", and has no children (empty list []).

Table 2: The meaning of the four columns in the .dag files.

column name description
NODE ID A unique identifier (integer) of a node in the corresponding computa-

tional graph. The uniqueness is guaranteed (and meaningful) locally
within a single DAG file. The same NODE ID in different files does not
denote that the corresponding nodes are the same or related.

NODE TYPE A type of the node revealing its specific role in the computational graph,
e.g., :entry declares a start of the new entry, :name specifies the name
of the entry or its reference.

NODE DESCRIPTION Additional information about the node. This might be the name that a
:name node introduces or the value of the literal in the :literal nodes.
For most of the node types, it is empty.

CHILDREN IDS A list of unique identifiers of the children of the current node in the
computational graph.

Even though the data were prepared uniformly (as much as possible) for both proof assistants, Agda
and Lean, only 20 node types are relevant for both Agda and Lean. Additional 45 are Agda-specific
node types, while 19 are Lean-specific. Note that we included the node type for completeness and
lossless transfer of the information available in the libraries. For many machine learning applications,
the information on the node type can be ignored. In our experiments with the baseline methods
(Section 4.3 of the article), we did not use the information on the node type. However, machine
learning experts familiar with the detailed semantics of the definition types in the programming
languages Agda and Lean can use the information about the node types.

2.2 The Structure of the Network Files

The network file lists the nodes and the links of the multi-graph of references among the entries and
modules of the corresponding library. Lines starting with the word node represent nodes with two
tab-separated fields

1In Agda there might be name duplicates, so an additional (Agda-provided) id of the entry was included into
the name (70 in the example above).

2

Table 3: The four types of the links in the network.

link type property description
DEFINES none A link from module to entry nodes denoting that the cor-

responding module defines the corresponding entry.

CONTAINS none A link from a library/ module node that contains another
(sub-)module node.

REFERENCE_TYPE w A link a → b between two entry nodes a and b denoting
that the entry corresponding to a references the entry b
from the type (declaration) part of its computational graph
g(a). The property w is the count of the references from
the type part of g(a) to entry b.

REFERENCE_BODY w An analogue of REFERENCE_TYPE denoting a reference
from the body part of the computational graph g(a) to the
entry b.

node <node name> <node properties>.

The entry names are unique and include the modules (Agda) and namespaces (Lean) in the context in
which they are defined. The only property of a node is its label, whose value is either one of the nine
entry types given in Table 1 of the article, a :module or a :library. The latter two denote nodes
corresponding to the library modules (in Agda) and the current library or the referenced libraries.

The lines starting with the word link are of form

link <source node> <sink node> <link type> <link properties>.

The first two fields refer to the source’s and sink’s node names. The following field is the
link type, i.e., one of the types from Table 3, which also explains the link properties (the
last field in the line). In addition to these link types, there are four Agda-specific link types:
REFERENCE_<TYPE/BODY>_TO_<WITH/REWRITE>. These encode the references from actual user-
defined entries (either from their types or bodies) to the entries created by the Agda compiler. For
example, the definition

isEven : Nat -> Bool
isEven n with (mod2 n)
... | 0 = true
... | 1 = false

(which reads as return true if n mod 2 = 0, and false if n mod 2 = 1) contains a with block. This
block is internally represented as a separate entry, referenced from the body of the entry isEven.
These reference links have the same properties as the standard reference links from Table 3.

External entries. A given entry in a library might reference some built-in method of a proof
assistant (as a programming language), e.g., a method on lists in Lean. In that case, the s-expression
of the referenced method might not be available, but its fully qualified name is. We include the
corresponding node and the corresponding external modules in the network. The only difference
from the standard case is that we set the NODE TYPE of such modules as :external-module.

2.3 Data Size

Table 4 gives the basic size-related statistics of the datasets. We can see that Lean Mathlib4 is
approximately ten times bigger than any of Agda’s libraries. Next, most of the nodes in the network
are entry nodes. The difference between the number of nodes and entries is due to the module nodes
and the references to the nodes not being part of the library we processed. This often happens in
Mathlib4 and sometimes in stdlib. The other two libraries (Unimath and TypeTopology) are—in
that sense—self-contained.

3

Table 4: The number of entries, the total and maximal size of their compute graphs (nodes that they
contain) and the size of the network G(V,E).

library entries total entry size max entry size |V | |E|
Agda stdlib 16,483 1.3·107 8.1·103 16,855 242,484
Agda Unimath 20,163 1.9·107 9.8·105 21,493 322,446
Agda Type Topology 31,232 3.6·107 3.3·105 31,701 726,710
Lean Mathlib4 202,769 5.0·108 8.3·106 215,229 7,378,824

2.4 Additional details on the experiments

Here, we first give some additional details on the experiments in which node2vec was used. Then, we
show an extension of the Table 3 with additional quality measures.

2.4.1 The detailed node2vec experimental setup

Network preprocessing details. Our network is a weighted directed multi-graph, while node2vec
was designed for simple (possibly directed) graphs. We carry out the conversion to the undirected
weighted graph in the following steps.

1. We transform the weights w = w(u, v) on the directed edges (u, v) via the TFIDF-like
transformation. First, we create a document for every node u. The ID of every node v, such
that (u, v) is a directed edge, appears (as a single word) in the document w(u, v) times (note
that the weights are the counts of references). Second, the updated weight w′(u, v) is the
TFIDF-score of the (ID of) v in the document that corresponds to the node u.

2. There can be more than one directed edge from u to v. The weights on such edges from the
previous step are merged into a single value by summation.

3. To obtain an undirected graph, the final weight on the (undirected) edge between u and v is
the sum of the weights on the directed edges (u, v) and (v, u) (if the edges exist).

This transformation prevents walks from visiting hubs (nodes with extremely large degrees) too often
and, at the same time, still takes the weights into account.

Node2vec implementation details. For Agda libraries, we were able to use the freely available
implementation of node2vec (https://github.com/eliorc/node2vec), which precomputes the
transition probabilities, generates the walks, and then uses Gensim’s word2vec model. However,
computing the transition probabilities for a graph G(V,E) takes O(|E|2) space, which was infeasible
in the case of Lean Mathlib4. Therefore, we used our own implementation of walk generation (written
in Python and compiled just it time with numba).

2.4.2 Extended results

Here, we first extend Table 3 from the main text (the main table with results) with additional evaluation
measures. In addition to that, we show the results of an ablation study of node2vec on Agda standard
library.

Additional evaluation measures. The additional performance measures are accuracy@k where
k = 5 (Table 5), precision (Table 6), recall (Table 7), and area under the ROC curve (Table 8).
Accuracy@k is a recommender system evaluation measure that gives us the average proportion of the
correct recommendations in the top-k recommendations. The rest of the measures are well-known
evaluation measures for classification models. AU-ROC is threshold independent, whereas the
precision and recall are reported at threshold ϑ = 0.5.

Node2vec achieves the best accuracy@k for the three Agda libraries, while on the Lean Mathlib4
library, the dummy classifier (still) performs better. A similar situation can be observed with precision
values, however, most of them should be considered trivial since the corresponding recalls (and the
AU-ROC values as well) are rather low.

It turns out that the models are for most of the test edges (u, v) quite sure, whether this edge should
be present or absent, even though they are far from being perfect. For example, AU-ROC of node2vec

4

https://github.com/eliorc/node2vec

is 0.99 on Mathlib4, but its accuracy@k is (approximately) 0.00. This means that randomly sampling
negative edges did not lead to extremely hard negative examples.

Table 5: The accuracy@k of the models on the considered data sets. The best results (bold) were
achieved by Dummy and node2vec models.

acc@k Agda stdlib Agda unimath Agda TypeTopology Lean Mathlib4

Dummy 0.16 0.10 0.12 0.09
BoW 0.00 0.02 0.00 0.00
TFIDF 0.04 0.06 0.03 0.05
fastText 0.00 0.05 0.02 NA
analogies 0.04 0.03 NA NA
node2vec 0.29 0.27 0.15 0.00

Table 6: The precision (at ϑ = 0.5) of the models on the considered data sets. The best results (bold)
are obtained by various models, but only node2vec models have non-trivial recall as well.

precision Agda stdlib Agda unimath Agda TypeTopology Lean Mathlib4

Dummy 0.98 1.00 1.00 1.00
BoW 0.94 0.97 0.93 0.98
TFIDF 0.98 0.99 0.99 1.00
fastText 0.98 0.98 0.98 NA
analogies 0.99 0.99 NA NA
node2vec 0.97 0.97 0.98 0.94

Table 7: The recall (at ϑ = 0.5) of the models on the considered data sets. The best results (bold) are
obtained by node2vec models.

recall Agda stdlib Agda unimath Agda TypeTopology Lean Mathlib4

Dummy 0.01 0.07 0.06 0.02
BoW 0.00 0.01 0.00 0.00
TFIDF 0.03 0.04 0.02 0.01
fastText 0.02 0.03 0.01 NA
analogies 0.03 0.02 NA NA
node2vec 0.95 0.94 0.98 0.97

Table 8: The area under the ROC curve of the models on the considered data sets. The best results
(bold) were achieved by node2vec models.

AU-ROC Agda stdlib Agda unimath Agda TypeTopology Lean Mathlib4

Dummy 0.51 0.54 0.53 0.51
BoW 0.50 0.51 0.501 0.50
TFIDF 0.51 0.52 0.51 0.51
fastText 0.51 0.52 0.50 NA
analogies 0.51 0.51 NA NA
node2vec 0.99 0.98 1.00 0.99

Ablation study. We performed an ablation study of node2vec on the Agda standard library in the
following way. We keep the test set intact to obtain comparable results and only manipulate the
training set by keeping the proportion p ∈ {0.1, 0.2, . . . , 0.9, 1.0} of the total weight of the edges
in it. Since node2vec works in a transductive setting, all versions of the training set include all the
nodes. To better understand the (aggregated) results, we show the distribution of minimal ranks for
every training set as box plots in Figure 1. In addition to the results of node2vec on manipulated
training sets, the figure also contains the results of the Dummy model on the original training set.

We can observe a large variance in the minimal ranks produced by the Dummy model. This is
explained by the fact that the Dummy model always assigns top ranks to the most referenced entries

5

100 101 102 103 104

minimal rank

dummy
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
op

or
ti

on
of

ed
ge

s
ke

pt

Figure 1: The distributions of the minimal ranks of the correct references for the test examples when
varying the proportion of edges from the Agda stdlib library included in the training set from 0.1 and
1.0 (all edges). The box plot on the top corresponds to the Dummy recommendation system. The
orange lines and the green triangles depict median and average minimal ranks, respectively.

while the ranks of the other entries are randomly distributed. Therefore, the Dummy model performs
very well on the test entries that reference the most referenced entries, while at the same time, it
performs pretty badly on the other test entries.

Analyzing node2vec results, we can see that training the model on only p = 10% of the edges already
leads to a better performance of node2vec as compared to the Dummy model (in terms of the average
minRank). As the value of p increases from 0.1 to 1.0, the median of the minRank does not change
much, while the average minRank is getting lower since there are fewer test examples on which the
model performs extremely badly.

2.5 Repository and GDrive folder structure

The structure of the GitHub repository (preprocessing scripts and the code for learning) is described
in its README file. In this document, we only describe the structure of the GDrive folder.

In the folder, every data set (library) resides in a separate directory with a name resembling the library
name (e.g., stdlib). Each directory contains

• the file network.csv,

• a (zipped) directory entries with the .dag files.

The names of DAG files are two-part: the first part is the namespace to which a given entry belongs.
This is the actual namespace of a Lean entry and the fully qualified module name of an Agda entry.
The second part of the name is the entry number, which ranges from 0 (included) to the number
of entries in an s-expression (excluded). For example, one of the stdlib entries can be found in
stdlib/entries/Data.Fin.Properties_0147.dag.

All the data can be loaded by running main.py script. It needs two packages to run: networkx for
storing the network and tqdm for showing the progress. They can be installed by issuing the command
pip install -r requirements.txt (the requirements file is also present). The computational
graphs are stored as members of tree-like class Entry, defined in main.py. The code was tested
with Python 3.11.

For convenience, we uploaded entries.zip to the temporary Google Drive location. When running
main.py for the first time, the directory entries will be automatically created and populated with
unzipping the entries.zip file.

6

3 Intended uses

MLFMF data sets were created to support further improvement of the numerous machine learning
approaches to formalized mathematics. Primarily, the data sets can be used to evaluate the efficiency
of the recommendation systems used to support formalization of mathematics with proof assistants.
These systems help humans identify which previous entries (theorems, constructions, datatypes, and
postulates) are relevant in proving a new theorem or carrying out a new construction. Please refer to
Sections 3.5 and Section 4 of the main article for further details.

However, the data set collection can also serve as an appropriate benchmark for machine learning
from graphs. For example, the node types can be used as the target concept of node classification.

4 Hosting, Maintenance and Access

The data is available at https://doi.org/10.5281/zenodo.10041075. The link from the main
text (https://github.com/ul-fmf/mlfmf-data) points to a repository that contains the rest of
the code, as well as the README file.

After the reviewing process, the collection of the data sets will be published as is in the aforementioned
(publicly available) GitHub repository under the Creative Commons Attribution 4.0 International2

(CC BY 4.0).

Note that the data sets are based on the source code of Agda and Lean libraries that evolves through
time (entries might get added, deleted, or modified), but we will obtain a persistent dereferenceable
identifier for the current snapshot. Moreover, we plan to update each data set when the underlying
library significantly changes. This is not a rare event, given that, e.g., the size of unimath library
almost doubled in the last six months.

5 Author Statement

The authors bear all responsibility in case of violation of rights related to the source data, i.e., publicly
and freely available libraries in Agda and Lean. The authors also bear all the responsibility associated
with the eventual breach of the licenses of the data sources.

2https://creativecommons.org/licenses/by/4.0/

7

https://doi.org/10.5281/zenodo.10041075
https://github.com/ul-fmf/mlfmf-data

	Data Collection
	Data Description
	The Structure of the DAG Files
	The Structure of the Network Files
	Data Size
	Additional details on the experiments
	The detailed node2vec experimental setup
	Extended results

	Repository and GDrive folder structure

	Intended uses
	Hosting, Maintenance and Access
	Author Statement

