
SmoothHess: ReLU Network Feature Interactions
via Stein’s Lemma

Max Torop,1∗ Aria Masoomi,1∗ Davin Hill,1 Kivanc Kose,2 Stratis Ioannidis,1 Jennifer Dy1
1 Northeastern University, 2 Memorial Sloan Kettering Cancer Center

{torop.m, masoomi.a}@northeastern.edu,
{dhill, ioannidis, jdy}@ece.neu.edu,

{kosek}@mskcc.org

Abstract

Several recent methods for interpretability model feature interactions by looking at
the Hessian of a neural network. This poses a challenge for ReLU networks, which
are piecewise-linear and thus have a zero Hessian almost everywhere. We propose
SmoothHess, a method of estimating second-order interactions through Stein’s
Lemma. In particular, we estimate the Hessian of the network convolved with a
Gaussian through an efficient sampling algorithm, requiring only network gradient
calls. SmoothHess is applied post-hoc, requires no modifications to the ReLU
network architecture, and the extent of smoothing can be controlled explicitly.
We provide a non-asymptotic bound on the sample complexity of our estimation
procedure. We validate the superior ability of SmoothHess to capture interactions
on benchmark datasets and a real-world medical spirometry dataset.

1 Introduction

As machine learning models are increasingly relied upon in a variety of high-stakes applications such
as credit lending [50, 42] medicine [10, 67, 15], or law [38], it is important that users are able to
interpret model predictions. To this end, many methods have been developed to assess the importance
of individual input features in effecting model output [53, 76, 81, 66, 73]. However, one may achieve
a deeper understanding of model behavior by quantifying how features interact to affect predictions.
While diverse notions of feature interaction have been proposed [53, 57, 56, 63, 25, 77, 84], in this
work, we focus on the intuitive partial-derivative definition of feature interaction [25, 4, 47, 85, 18, 39].

Given a function and point, the Interaction Effect [47] between a given set of features on the output
is the partial derivative of the function output with respect to the features; intuitively, it represents
the infinitesimal change in the function engendered by a joint infinitesimal change in each chosen
feature. The Interaction Effect derives in part from Friedman and Popescu [25], who define the
global interaction between a set of features over the data distribution as the expected square of the
partial-derivative with respect to those features. As in prior works [47, 39], we eschew the expectation
to focus on local interactions occurring around a given point x and avoid squaring partial-derivatives
to maintain the directionality of the interaction. We focus on pair-wise feature interactions, which, in
the context of the Interaction Effect, are the elements of the Hessian.

ReLU networks are a popular class of neural networks that use ReLU activation functions [28]. The
use of ReLU has desirable properties, such as the mitigation of the vanishing gradient problem [28],
and it is the sole activation function used in popular neural network families such as ResNet [32] and
VGG [72]. However, ReLU networks are piece-wise linear [58] and thus have a zero Hessian almost
everywhere (a.e.), posing a problem for quantifying interactions (see Figure 1(a)).

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

x1 x2
x1 x2

f * qΣ

(a) (b)
f(x1, x2) (f * qΣ)(x1, x2)

Figure 1: (a) An exemplar illustration of a simple 5-hidden-layer ReLU network f : R2 → R. Note that f is
piece-wise linear and thus has ∇2

xf(x) = 0 a.e. (b) The ReLU network convolved with q0.3I : R2 → R, the
density function ofN (0, 0.3I). This function is no longer piece-wise linear and admits non-zero higher order
derivatives.

A common approach for estimating the Hessian in ReLU networks is to take the Hessian of a smooth
surrogate network which approximates the original: each ReLU is replaced with SoftPlus, a smooth
approximation to ReLU [28, 22], before differentiating [39, 20]. However, this approach affords one
only coarse control over the smoothing as each internal neuron is smoothed, leading to unwieldy
asymmetric effects, as can be seen in Figure 2.

In this work, we propose SmoothHess: the Hessian of the ReLU network convolved with a Gaussian.
Such a function is a more flexible smooth surrogate than SoftPlus as smoothing is done on the network
output, and the covariance of the Gaussian allows one to mediate the contributions of points based on
their Mahalanobis distance. Unfortunately, obtaining the Hessian of the convolved ReLU network is
impossible using naïve Monte-Carlo (MC) averaging. However, by proving an extension of Stein’s
Lemma [78, 49], we show that such a quantity can be efficiently estimated using only gradient calls
on the original network. For an illustration of ReLU network smoothing, see Figure 1(b).

Our main contributions are as follows:
• We propose SmoothHess, the Hessian of the Gaussian smoothing of a neural network, as a model

of the second-order feature interactions.
• We derive a variant of Stein’s Lemma, which allows one to estimate SmoothHess for ReLU

networks using only gradient calls.
• We prove non-asymptotic sample complexity bounds for our SmoothHess estimator.
• We empirically validate the superior flexibility of SmoothHess to capture interactions on MNIST,

FMNIST, and CIFAR10. We utilize SmoothHess to derive insights into a network trained on a
real-world medical spirometry dataset. Our code is publicly available.∗

The remainder of this paper is organized as follows: In Sec. 2, we summarize the gradient-based
methods for feature importance and interactions that are most related to our work. In Sec. 3, we
provide a technical preliminary covering the definitions and techniques underlying both our method
and competing works. Next, in Sec. 4, we introduce our method, SmoothHess, explain how to
estimate it, and provide sample complexity bounds for our estimation procedure. In Sec. 5, we
experimentally demonstrate the ability of SmoothHess to model interactions. Finally, in Sec. 6, we
summarize our method and results, followed by a discussion of limitations and possible solutions.

2 Related Work

Feature Importance and First-Order Methods: Methods that quantify feature importance fall into
two categories: (i) perturbation-based methods (e.g., [53, 66, 17]), which evaluate the change in
model outputs with respect to perturbed inputs, and (ii) gradient-based methods (e.g., [72, 76, 81]),
which leverage the natural interpretation of the gradient as infinitesimally local importance for a
given sample. Most relevant to our work are gradient-based approaches. The saliency map, as
defined in [72], is simply the gradient of model output with respect to the input. Several variants
are developed to address the shortcomings of the saliency maps. SmoothGrad [76] was developed

∗https://github.com/MaxTorop/SmoothHess

2

https://github.com/MaxTorop/SmoothHess

3

(b)(a)

-3 -2 -1 0.0
-1
0
1
2

4
5
6
7
8
9

10

SH : vs ∇2
x(f * qσ)(0)1,2 log10 σ2

Smoother

-1 0 1 2 3 4

SP Hess : vs ∇2
x fβ(0)1,2 log10 β

Smoother

3

-1
0
1
2

4
5
6
7
8
9

10

∇2 x(f
*q

σ)(
0) 1

,2

∇2 x
f β(0

) 1,2

log10 σ2 log10 β

Figure 2: Estimated Hessian element between features 1 and 2 at x0 = (0, 0)T for a 6-layer ReLU Network
f : R2 → R trained to memorize the Four Quadrant toy dataset. (a) SmoothHess (SH) is estimated with isotropic
covariance Σ = σ2I using granularly sampled σ2 ∈ {1e-3, . . . , 1}. Aside from at minute σ2 < 1e-2.5, where
hyper-local noisy behavior is captured, we have∇2(f ∗qσ)(x0)1,2 ≈ (5+3+12−10)/4 = 2.5, the average of
the memorized "ground truth" off-diagonal Hessian element over the four quadrants. This indicates a symmetry
in the weighting of the contributions from points around x0 at every level of smoothing. (b) The Hessian of the
SoftPlus smoothed function fβ (SP Hess) is computed using granularly sampled β ∈ {1e-1, . . . , 1e4}. The
average value of 2.5 is not achieved at any value of β, aside from briefly between log10 β = 2 and log10 β = 3.5
indicating that SoftPlus fails to incorporate the information around x0 in a symmetric manner at every level of
smoothing.

to address noise by averaging saliency maps (see also Sec. 3), and comes with sample complexity
guarantees [3]. Sundararajan et al. [81] introduce Integrated Gradients, the path integral between
an input and an uninformative baseline. This is extended to the Shapley framework by Erion et al.
[24]. The Grad-CAM line of work [93, 70, 61] is similar in nature to the methods above, with the key
distinction that importance is modeled over internal (hidden) layers.

Feature Interactions: A variety of methods have been proposed to estimate higher-order feature
interactions, which can again be separated into perturbation-based [54, 82, 86, 57, 92] and gradient-
based approaches. Among the latter, Tsang et al. [85] propose Gradient-NID, which estimates
feature interaction strength as the corresponding Hessian element squared. Janizek et al. [39] propose
Integrated Hessian, which extends Integrated Gradients to use a path-integrated Hessian. Lerman et al.
[47] propose Taylor-CAM, a higher-order generalization of Grad-Cam [70]. Cui et al. [18] quantify
global interactions for Bayesian neural networks in terms of the expected value of the Hessian over
the data distribution. For classification ReLU networks, the CASO and CAFO explanation vectors
exploit feature interactions in the loss function using Hessian estimates [74].

Unfortunately, due to their piecewise linearity, existing Hessian-based interaction methods cannot be
readily applied to ReLU networks. Janizek et al. [39] replace each ReLU activation with SoftPlus
post-hoc, before applying Integrated Hessians. Similarly, Tsang et al. [85] apply their method to
networks with the SoftPlus activation instead of ReLU. For regression tasks, Lerman et al. [47]
replace ReLU with the smooth activation function GELU [34] before training. Although SoftMax
outputs and the cross-entropy loss admit higher order derivatives, pre- or post-hoc smoothing, as
above, is necessary for finding interactions affecting logits, internal neurons, or regression outputs.
Indeed, while Singla et al. [74] estimate interactions on the original ReLU network, they are only
with respect to the loss function.

In contrast, we propose a method for quantifying feature interactions that works with any ReLU
network post-hoc without requiring retraining or modifications to the network architecture. It also
can be directly estimated with respect to model as well as intermediate layer outputs. Furthermore,
our experiments in Sec. 5 show the superior ability of our method to model logit outputs, internal
neurons, and SoftMax probabilities as compared to a SoftPlus smoothed network.

3 Technical Preliminary

ReLU Network Background: We denote a ReLU network by F : Rd → Rc, where c = 1 in
the case of regression. We denote the function which we wish to explain as f : Rd → R, an
arbitrary neuron f

(l)
i (the ith neuron in the lth layer) in our ReLU network, or a SoftMax Probability

3

for some class k ∈ {1, . . . , c}. We denote sample space X ⊆ Rd and point x0 ∈ X for which
we wish to capture feature interactions affecting f(x0). A general L-hidden-layer ReLU Network
F = f (L+1) : Rd → Rc may be defined recursively by [33, 58]:

f (l)(x0) = W (l)g(l−1)(x0) + b(l), for l = 1 . . . L+ 1, (1a)

g(l)(x0) = max(0, f (l)(x0)), for l = 1 . . . L, (1b)

with g(0)(x0) = x0 ∈ Rd. For a given layer l the dimension (number of neurons) is defined as nl ∈ N,
i.e. f (l)(x0), g

(l)(x0) ∈ Rnl (with n0 = d) with weight and bias W (l) ∈ Rnl,nl−1 , b(l) ∈ Rnl . As
stated above, ReLU networks are piecewise linear [58]. Specifically, each neuron f

(l)
i : Rd → R, l ∈

{1, . . . , L+1}, i ∈ {1, . . . , nl}, is a piecewise linear function, corresponding to a finite set of K ∈ N
convex polytopes Q = {Qi}Ki=1, Qi ⊆ Rd which form a partition of Rd [30, 31, 58, 33, 71, 64, 7].
See Figure 1(a) for an example of a ReLU network.

SmoothGrad: SmoothGrad [76] is an extension of the saliency map ∇xf(x0) [72] developed
to reduce noise. SmoothGrad is an average over saliency maps; formally, it is Eδ[∇xf(x0 + δ)]
where δ ∼ N (0,Σ) and the covariance Σ ∈ Rd×d is a hyperparameter usually chosen to be isotropic
Σ = σ2I, σ > 0. SmoothGrad is estimated by sampling n perturbation vectors {δi}ni=1, δi ∼
N (0,Σ),∀i ∈ {1, . . . , n} and averaging via ĜSG

n (x0, f,Σ) =
1
n

∑n
i=1 ∇xf(x0+δi). Unfortunately,

the analogous Hessian average 1
n

∑n
i=1 ∇2

xf(x0+δi) ≈ Eδ[∇2
xf(x0+δ)] is not useful for quantifying

feature interactions in ReLU networks as Eδ[∇2
xf(x0 + δ)] = 0.

SoftPlus: A common approach to assessing higher-order derivatives for ReLU networks is by
differentiating a smooth surrogate fβ : Rd → R where a SoftPlus replaces every ReLU in f [28, 39,
20, 21]. The SoftPlus function sβ(x0) =

1
β log(1 + eβx0), β > 0, is a smooth approximation of

ReLU, where β is a parameter inversely proportional to the level of smoothing [28, 22]. SoftPlus
approaches ReLU and fβ and ∇fβ approximate f and ∇f with arbitrary accuracy as β → ∞ [20].
Dombrowski et al. [20] establish empirical and theoretical connections between ∇xfβ(x0) and
SmoothGrad. They observe visual similarities between ∇xfβ(x0) and SmoothGrad at appropriate β
values. Further, in the simple case of a single neuron with no bias, they prove that replacing ReLU
with SoftPlus corresponds to a Gaussian-like smoothing of the gradient. However, this theory does
not extend to networks with multiple neurons and layers.

Stein’s Lemma: Stein’s Lemma [78] is central to our analysis. We relate a variant of Stein’s
Lemma [51], which extends the results of Stein [78] to hold for multivariate normal distributions
with arbitrary covariance matrices:
Lemma 1. (Stein’s Lemma [51]) Given x0 ∈ Rd, covariance matrix Σ ∈ Rd×d, multivariate normal
random vector δ ∈ Rd distributed from δ ∼ N (0,Σ) and almost everywhere differentiable function
g : Rd → R for which Eδ[|[∇xg(x0 + δ)]i|] < ∞ for each i ∈ {1, . . . , d}, then

Eδ[Σ
−1δg(x0 + δ)] = Eδ[∇xg(x0 + δ)]. (2)

A zero-th order oracle associated with a function g : Rd → R is an oracle which, when provided with
any input x ∈ Rd, returns g(x). Likewise, a first order oracle (or gradient oracle) returns ∇xg(x). In
the context of this work, where g is a ReLU network, zero-th order and first order oracle calls amount
to network forward passes and backpropagation calls, respectively.

Given one has access to g as a zero-th order oracle, the LHS of Stein’s Lemma may be estimated by
sampling a set of perturbations {δi}ni=1; δi ∼ N (0,Σ), querying the zero-th order oracle g(x0 + δi)
for each δi, and MC-estimating, i.e:

Ĝn(x0, g,Σ) =
1

n

n∑
i=1

Σ−1δig(x0 + δi) ≈ Eδ[Σ
−1δg(x0 + δ)]

Lemma 1
= Eδ[∇xg(x0 + δ)]. (3)

Such an approach is useful for estimating Eδ[∇xg(x0 + δ)] in the RHS of Eq. (3) when the gradient
of g is impossible or expensive to obtain but g itself may be efficiently queried as a zero-th order
oracle (see e.g., [44, 48, 60]). Extending Liu [51]’s work, Lin et al. [49] present a second-order
variant of Stein’s Lemma expressing the expected Hessian in terms of the gradient:

4

Lemma 2. (First-Order Oracle Stein’s Lemma [49]) Given x0 ∈ Rd, covariance matrix Σ ∈
Rd×d, multivariate normal random vector δ ∈ Rd distributed from δ ∼ N (0,Σ) and continuously
differentiable function g(z) : Rd → R with locally Lipschitz∗ gradients ∇g : Rd → Rd, then

Eδ[Σ
−1δ[∇xg(x0 + δ)]T] = Eδ[∇2

xg(x0 + δ)]. (4)

Complexity bounds have been derived for similar identities, which express the Hessian using zero-th
order information [6, 94, 23]. However, Lemma 2 fails for ReLU networks. This is precisely because
ReLU networks are piecewise linear and, therefore, are not continuously differentiable. In the next
section, we directly address this through our method for estimating a smoothed Hessian for ReLU
networks.

4 SmoothHess

Our main contributions are: (1) We propose SmoothHess, the Hessian of the network convolved with
a Gaussian, for modeling feature interactions. (2) We use Stein’s Lemma to prove that SmoothHess
may be estimated for ReLU networks using only gradient oracle calls. (3) We prove non-asymptotic
sample complexity bounds for our SmoothHess estimator.

Gaussian Convolution as a Smooth Surrogate: An alternative smooth-surrogate to fβ is hf,Σ :
Rd → R, the convolution of f with a Gaussian:

hf,Σ(x0) = (f ∗ qΣ)(x0) =

∫
z∈Rd

f(z)qΣ(z − x0)dz, (5)

where Σ ∈ Rd×d is a covariance matrix, qΣ(z − x0) = (2π)−
d
2 |Σ|− 1

2 exp(− 1
2d(x0, z)Σ) is the

density function of the Gaussian distribution N (0,Σ), | · | is the determinant and d(x0, z)Σ =
(x0 − z)TΣ−1(x0 − z) ∈ R is the Mahalanobis distance between x0 and z.

The Gaussian-smoothed function hf,Σ is infinitely differentiable and does not suffer from the limita-
tions of surrogates obtained from internal smoothing. Here, smoothing is done on the output image of
f and thus the relationship between hf,Σ(x0), f(z), z and x0 is made explicit by Eq. (5): the relative
contribution of f(z) to hf,Σ(x0) is proportional to the exponentiated negative half Mahalanobis
distance − 1

2d(x0, z)Σ. The ability to adjust Σ gives a user fine-grained and localized control over
smoothing; the eigenvectors and eigenvalues of Σ respectively encode directions of input space and a
corresponding locality for their contribution to hf,Σ.

We define SmoothHess as the Hessian of hf,Σ:

Definition 1. (SmoothHess) Given ReLU network f : Rd → R, point to explain x0 ∈ Rd, covariance
matrix Σ ∈ Rd×d and qΣ : Rd → R, the density function of Gaussian distribution N (0,Σ), then
SmoothHess is defined to be the Hessian of f convolved with qΣ evaluated at x0:

∇2
xhf,Σ(x0) = ∇2

x(f ∗ qΣ)(x0) =

∫
z∈Rd

f(z)∇2
xqΣ(z − x0)dz. (6)

Well-known properties of the Gaussian distribution may be used to encode desiderata into the
convolved function and, accordingly, to SmoothHess through the choice of the covariance. For
instance, it is known that as d → ∞ the isotropic Gaussian distribution N (0, σ2Id×d) converges to
U(Sd−1

σ
√
d
), a uniform distribution over the radius σ

√
d sphere [88]. Thus, given large enough d, as is

commonly encountered in deep learning datasets, one may choose Σ = (r/
√
d)I to approximately

ensure that hf,Σ(x0) incorporates information from the radius r sphere around x0. We exploit and
validate this intuition in our experiments (see Table 1).

Finally, we must highlight the strong connection between SmoothHess and SmoothGrad [76], which
Wang et al. [89] prove is equivalent to the gradient of the same smooth surrogate: ∇xhf,Σ(x0). Thus,

∗In its most general form, Lemma 2 holds for functions which are continuously differentiable and have
locally ACL gradients. Locally ACL functions are functions which are absolutely continuous on almost every
straight line, a mild condition which is satisfied by both locally Lipschitz and continuously differentiable
functions [49, 46, 68]. As ReLU networks are locally Lipschitz [29], they are locally ACL.

5

SmoothGrad and SmoothHess together define a second-order Taylor expansion of hf,Σ at x0, which
can be used as a second-order model of f around x0.

SmoothHess Computation via Stein’s Lemma: We relate our method for estimating SmoothHess
for ReLU networks. As stated above, Lemma 2 does not hold for ReLU networks. However, we
extend the arguments of Wang et al. [89] and Lin et al. [49] to show that the LHS from Lemma 2 is
equivalent to SmoothHess for all Lipschitz continuous functions∗:
Proposition 1. Given x0 ∈ Rd, L-Lipschitz continuous function g : Rd → R, covariance matrix Σ ∈
Rd×d and random vector δ ∈ Rd distributed from δ ∼ N (0,Σ) with density function qΣ : Rd → R,
then

Eδ[Σ
−1δ[∇xg(x0 + δ)]T] = ∇2

x[(g ∗ qΣ)(x0)] = ∇2
xhg,Σ(x0), (7)

where ∗ denotes convolution.

In other words, even though Lemma 2 does not hold for ReLU networks, Stein’s Lemma is indeed
evaluating a Hessian: namely, SmoothHess given by Eq. (6). The proof consists of moving the
Hessian operator on the RHS of Eq. (7) into the integral defined by (g ∗ qΣ)(x0). The resulting
expression is simplified into a form for which Lin et al. [49] prove is equivalent to the LHS of Eq. (7).
The proof is provided in App. B.

Proposition 1 opens up the possibility of an MC-estimate of SmoothHess that only require access to
a first-order oracle ∇f . This is computed by sampling a set of n ∈ N perturbations {δi}ni=1, δi ∼
N (0,Σ), and for each δi querying ∇xf(x0+δi) before taking the outer product δi[∇xf(x0+δi)]

T ∈
Rd×d, Monte-Carlo averaging and finally symmetrizing:

Ĥ◦
n(x0, f,Σ) =

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T , (8a)

Ĥn(x0, f,Σ) =
1

2
(Ĥ◦

n(x0, f,Σ) + Ĥ◦T

n (x0, f,Σ)). (8b)

Each first-order oracle call has the same time complexity as one forward pass and may be computed
efficiently in batches using standard deep learning frameworks [62, 1, 13]. As n is finite, Ĥ◦

n(x0, f,Σ)
is not guaranteed to be symmetric in practice. Thus, we symmetrize our estimator in Eq. (8b). A
straightforward consequence of Proposition 1 is that limn→∞ Ĥn(x0, f,Σ) = ∇2

xhf,Σ(x0), which
we formally show in the Proof of Theorem 1 in App. C.

Estimation of SmoothGrad may be amortized with SmoothHess, obtaining ∇xhf,Σ(x0) at a signifi-
cantly reduced cost. The main computational expense when estimating SmoothGrad is the querying
of the first-order oracle. As this querying is part of SmoothHess estimation, the gradients which we
compute may be averaged at a minimal additional cost of O(nd) to obtain a SmoothGrad estimate.
Likewise, SmoothHess may be obtained at a reduced cost of O(nd2), the cost of the outer products,
during SmoothGrad estimation. For details of our algorithm, see App. D.

Last, we prove non-asymptotic bounds for our SmoothHess estimator:
Theorem 1. Let f : Rd → R be a piece-wise linear function over a finite partition of
Rd. Let x0 ∈ Rd, and denote {δi}ni=1, a set of n i.i.d random vectors in Rd distributed
from δi ∼ N (0,Σ). Given Ĥn(x0, f,Σ) as in Eq. (8), for any fixed ε, γ ∈ (0, 1], given

n ≥ 4
ε2 [max((C+

√
d+

√
1
c+ log 4

γ)
2, (C−

√
d+

√
1
c− log 4

γ)
2)] then

P
(∥∥Ĥn −H

∥∥
2
> ε

)
≤ γ, (9)

where H = ∇2
x[(f ∗ qΣ)(x0)], C+, C−c+, c− > 0 are constants depending on the function f and

covariance Σ and qΣ : Rd → R is the density function of N (0,Σ).

We elect to use the non-asymptotic bounds presented in Theorem 3.39 of Vershynin [87], which
hold for sums of outer products of a sub-gaussian random vector with itself. This poses a challenge
as Ĥn is the sum of outer products of two sub-gaussian random vectors which are not necessarily
equal. To deal with this issue, we separately prove non-asymptotic bounds for the outer products

∗All ReLU network outputs, internal neurons, and SoftMax probabilities are Lipschitz continuous [29, 26].

6

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 9.6e-7 7.8-6 6.7e-5 4.9e-8 4.0e-7 3.3e-6 6.5e-7 4.0e-6 4.3e-5 2.0e-8 1.8e-7 1.6e-6 9.8e-4 2.2e-2 1.2e-1 8.1e-7 1.4e-5 1.6e-4
SG [76] 4.5e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.0e-6 2.7e-5 2.6e-4 1.0e-7 9.0e-7 7.0e-6 1.3e-2 8.6e-2 4.9e-1 1.3e-5 1.1e-4 8.3e-4
SP (H + G) 1.2e-6 9.6e-6 8.1e-5 5.5e-8 4.4e-7 3.7e-6 9.6e-7 7.5e-6 6.5e-5 3.0e-8 2.1e-7 1.8e-6 2.1e-3 3.3e-2 2.5e-1 1.1e-5 1.0e-4 7.0e-4
SP G 4.6e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.2e-6 2.8e-5 2.6e-4 1.0e-7 8.5e-7 7.2e-6 1.3e-2 9.0e-2 5.2e-1 5.1e-5 2.9e-4 1.6e-3
G [73] 4.2e-3 1.7e-2 6.7e-2 2.0e-3 7.0e-3 2.9e-2 3.8e-3 1.5e-2 6.0e-2 1.0e-4 4.0e-4 1.8e-3 3.0e-1 1.2e-0 5.0e-0 9.0e-4 3.5e-3 1.4e-2

Table 1: Average PMSE at three radii ϵ. Results are calculated for SmoothHess + SmoothGrad (SH+SG,Us)
SmoothGrad (SG) SoftPlus Gradient (SP G) SoftPlus Hessian + SoftPlus Gradient (SP (H + G)) and the vanilla
Gradient (G). Results are provided for the predicted class logit, and the penultimate neuron maximally activated
by the "three," dress and cat classes for MNIST, FMNIST and CIFAR10 respectively. While SP (H + G) and SP
G results are reported using the best β chosen from over 100 values based on validation set performance, only 3

values were checked for SH + SG and SG based upon σ = ϵ\
√
d. SH + SG outperforms the competing methods

for all 18 permutations of dataset, function and ε.

of the positive and negative eigenvectors of the summands. This is accomplished using an identity
expressing the eigenvalues of the summands in terms of Σ−1δ and ∇xf(x0 + δ), which we state
and prove in App. C. The proof is completed by applying the triangle inequality and union bound to
combine the two bounds into Eq. (9). Our proof is included in App. C.

5 Experiments

5.1 Experimental Setup

Datasets and Models: Experiments were conducted on a real-world spirometry regression dataset,
three image datasets (MNIST [45], FMNIST [90] and CIFAR10 [43]), and one synthetic dataset
(Four Quadrant). The Four Quadrant dataset consists of points x′ ∈ R2 sampled uniformly from
the grid [−2, 2]× [2, 2] ⊆ R2, with a spacing of 0.008. The label of a point y(x′) = Kx′

1x
′
2 ∈ R is

chosen based upon its quadrant, with K = 5, 3, 12,−10 for Quadrants 1, 2, 3 and 4 respectively. We
train a 5-layer network on MNIST and FMNIST a ResNet-18 [32] on CIFAR10 and a 6-layer network
on Four Quadrant. A 10-layer 1-D convolutional neural network was trained on the spirometry
regression dataset. Additional model, hyperparameter and dataset details are outlined in App. E.

Hardware: Experiments were performed on an internal cluster using NVIDIA A100 GPUs and
AMD EPYC223 7302 16-Core processors.

Metrics: Gradient-based explainers are evaluated using a Taylor expansion-like function as a proxy.
We estimate a gradient Hessian pair G̃(x0,g) ∈ Rd, H̃(x0,g) ∈ Rd×d for some function g : Rd → R
around point x0. Here g is either a smooth-surrogate of f or f itself. We define the following Taylor
expansion-like function:

f̃x0,G̃g,H̃g
(∆) = f(x0) + G̃T

g (∆− x0) +
1

2
(∆− x0)

T H̃g(∆− x0). (10)

For readability, we remove the dependence on x0 from G̃(x0,g) and H̃(x0,g). Eq. (10) is almost
equivalent to the Taylor-expansion of g at x0, with the key difference that the zero-th order term is
f(x0) as opposed to g(x0). This is done to isolate the impact of the explainers G̃g and H̃g. Setting
H̃ = 0 yields f̃x0,G̃g,0

(∆), a first-order Taylor expansion-like function. For brevity, we refer to

f̃x0,G̃g,H̃g
simply as a Taylor expansion below. We use the following two metrics to quantify the

efficacy of SmoothHess:

Perturbation MSE: We introduce the Perturbation Mean-Squared-Error (PMSE) to assess the ability
of H̃ and/or G̃ to capture the behaviour of f over a given neighborhood. Given point x0 and radius
ε > 0, the PMSE directly measures the fidelity of f̃x0,G̃g,H̃g

to f when restricted to the ball Bε(x0):

PMSE(x0, f, f̃x0,G̃g,H̃g
, ε) =

1

Vol(Bε(x0))

∫
x′∈Bε(x0)

(f̃x0,G̃g,H̃g
(x′)− f(x′))2dx′ (11)

A low PMSE value indicates that f̃x0,G̃g,H̃g
is a good fit to f when restricted to Bε(x0), and thus

that G̃g and H̃g capture the behaviour of f over Bε(x0). PMSE may be estimated for a point

7

Dataset MNIST FMNIST CIFAR10
Attack Magnitude ϵ 0.25 0.50 0.75 1.25 1.75 0.25 0.50 0.75 1.25 1.75 0.1 0.2 0.3 0.4 1.0

SH+SG (Us) 93.0 80.3 48.0 10.5 2.0 79.5 46.8 25.0 3.5 0.0 62.5 38.5 26.5 15.0 4.5
SG [76] 93.3 81.8 48.8 11.3 2.8 79.5 49.3 26.3 4.0 0.0 65.0 42.0 27.5 17.0 0.0
SP (H + G) 93.0 81.8 51.5 15.8 7.5 79.8 51.0 27.5 5.3 0.8 64.5 42.0 31.0 23.5 7.5
SP G 93.3 82.3 53.8 16.3 5.0 79.8 51.5 29.5 7.8 1.0 66.5 47.5 36.0 29.5 8.5
G [73] 93.3 82.8 56.0 18.5 8.8 80.3 52.3 31.8 11.0 2.5 69.0 51.5 41.0 34.0 21.5
Random 99.8 99.5 99.0 99.0 98.8 99.3 98.0 97.3 95.5 93.8 100.0 99.5 99.0 98.5 96.5

Table 2: Post-hoc accuracy of adversarial attacks performed on the predicted SoftMax probability, at five attack
magnitudes ϵ. Lower is better. Results for SmoothHess + SmoothGrad (SH + SG, Ours), SmoothGrad (SG),
SoftPlus Gradient (SP G) and SoftPlus Hessian + SoftPlus Gradient (SP (H + G)) are reported using parameters
Σ = σ2I ∈ Rd×d and β > 0 chosen based upon performance on a held-out validation set. We additionally
compare with the vanilla (unsmoothed) Gradient (G). First order attack vectors are constructed by scaling the
normalized gradient by ϵ and subtracting from the input. Second order attack vectors are found by minimizing
the corresponding second-order Taylor expansions.

x0 by sampling a set of n ∈ N points {x′
i}ni=1 uniformly from Bε(x0), computing the errors and

MC-averaging: 1
n

∑n
i=1(f̃x0,G̃g,H̃g

(x′
i)− f(x′

i))
2 ≈ PMSE(x0, f, f̃x0,G̃g,H̃g

, ε).

Adversarial Attacks: Given G̃ and H̃ , one can use f̃x0,G̃,H̃ to construct adversarial attacks of any
desired magnitude ε > 0. We denote ∆∗ ∈ Rd as the perturbed input, and corresponding attack
vectors by ∆∗ − x0. Given only G̃g (i.e. H̃g = 0), the first-order Taylor expansion attack yields:
∆∗ − x0 = −εG̃g\∥G̃g∥2. Otherwise, the attack may be framed as the solution to a quadratic
optimization minimizing the second-order Taylor expansion:

min
∆∈Rd

f̃x0,G̃g,H̃g
(∆), s.t. ∥∆− x0∥2 ≤ ε. (12)

Although this optimization is non-convex (as H̃g is not guaranteed to be positive-semi-definite), it can
be solved exactly [12]. For implementation details, and a discussion of the similarities and differences
with Singla et al. [74], see App. D. We set g to be the smoothed version of the predicted class SoftMax
probability function. Given a set of test points {xi}ni=1, n ∈ N, we validate the efficacy of our attacks
using the average post-hoc accuracy metric 1

n

∑n
i=1 I[argmaxtF (xi) = argmaxtF (∆∗

i)], where I
denotes the indicator function, and ∆∗

i the output after xi is attacked.

Setup: We provide the details for our experiments below:

Four Quadrant: We train the network to memorize the Four Quadrant dataset. We measure the
interactions at x0 = (0, 0)T using both SmoothHess and SoftPlus Hessian, estimated with granularly
sampled σ2 ∈ {1e-3, . . . , 1} and β ∈ {1e-1, . . . , 4}.

PMSE : We set g to be the smoothed version of a predicted class logit or a penultimate neuron. The
penultimate neuron is chosen to be the maximally activated neuron on average over the train data
by the "three," dress and cat classes for MNIST, FMNIST and CIFAR10, respectively. We compute
PMSE for three neighborhood sizes ε ∈ {0.25, 0.50, 1.0}. While over one-hundred values of β are
checked on a validation set before selection, only three values of σ are checked for SmoothHess
and SmoothGrad, based on the common-sense criterion σ = ε/

√
d : σ ∈ {ε/2

√
d, 3ε/4

√
d, ε/

√
d}

outlined in Sec 4. The standard deviation of PMSE results is reported in App. F.

Adversarial Attacks: Adversarial attacks are performed after selecting the best β and σ from a
held-out validation set. We refrain from using the criterion σ = ε/

√
d for adversarial attacks, as

they rely upon the extremal, as opposed to average, behavior of f . We check between ≈ 10 and
≈ 30 values of σ and β on the held-out validation set before selecting the values resulting in the
most effective attacks. Attacks are performed using magnitudes ε ∈ {0.25, 0.50, 0.75, 1.25, 1.75} for
MNIST and FMNIST and ε ∈ {0.1, 0.2, 0.3, 0.4, 1.0} for CIFAR10, which is easier to successfully
attack at lower magnitudes due to it’s complexity. For more details see App. D.

Competing Methods: We compare SmoothHess with other gradient-based methods that model f
locally; i.e. those which can be associated with the Taylor expansion around a smooth surrogate of f
or f itself. Specifically, we compare with the Gradient and Hessian of SoftPlus smoothed network
fβ [20, 39], SmoothGrad [76] and the vanilla (unsmoothed) Gradient. We also compare adversarial
attacks with random vectors scaled to the attack magnitude ε as a baseline.

8

SmoothGrad SmoothHess
Sample 1: Early Cough Sample 2: Late Cough

SmoothHessSmoothGrad

Spirometry Curve SG

Interaction
Interaction

SH

Figure 3: Evaluation of network predictions for two spirometry samples (Left and Right), using SmoothGrad and
SmoothHess. Spirometry curves are plotted in blue. SmoothGrad (green) and SmoothHess (red) attributions are
grouped into 0.5s intervals and plotted as bars for each interval. The plotted SmoothHess values are interactions
with respect to the first 0.5s time interval. The red arrows point to the features that exhibit the largest interactions
(endpoint) with the initial 0.5s (source). Sample 1 exhibits coughing within the first 4 seconds, as indicated
by plateauing spirometry curve. We observe that the strongest interactions for Sample 1 occur at this initial
cough-induced plateau. In contrast, Sample 2 exhibits no coughing within the first 4 seconds; the strongest
interactions occur later near small fluctuations in the spirometry curve.

Additional experiments are provided in App. F. We compare the efficacy of SmoothHess with the
unsmoothed Hessian (for adversarial attacks on SoftMax) and Swish [65] smoothed networks, both
of which our method outperforms. We also run the PMSE experiment using a ResNet101 model,
validating the superior ability of SmoothHess to capture interactions in larger networks.

5.2 Results

Symmetric Smoothing - Four Quadrant Dataset: We investigate the ability of both SmoothHess
and the SoftPlus Hessian to capture local feature interactions symmetrically. Results are shown in
Figure 2. At each value of σ2, aside from extremely small σ2 < 1e-2.5, the off-diagonal element
of SmoothHess is approximately equal to 2.5, the average interaction over the quadrants. The off-
diagonal element of the SoftPlus Hessian is essentially never equal to 2.5. The results for SmoothHess
follow from the fact that an isotropic covariance was used, the rotation invariance of which weights
points that are equidistant from x equally. The SmoothHess off-diagonal element is not ≈ 2.5 at
small σ because, despite the network being trained to memorize the data, such a small neighborhood
will inherently reflect noise. The inability of SoftPlus to capture interactions symmetrically follows
from the fact that smoothing is done internally on each neuron, which does not guarantee symmetry.

Perturbation Mean-Squared-Error: We show SmoothHess can be used to capture interactions
occurring in a variety of neighborhoods around x. It is shown in Table 1 that SmoothHess +
SmoothGrad (SH + SG) achieves the lowest PMSE for all 18 combinations of dataset, function and
neighborhood size ε. We emphasize that this is despite the fact that only three values of σ were
validated for SG + SH and SG on a held-out set compared to over one-hundred values of β for SP
(H + G) and SP G. This indicates the superior ability of SmoothHess to model f over a diverse set
of neighborhood sizes ε. Further, it can be seen that second-order methods SH + SG and SP (H +
G) achieve significantly lower PMSE than their first-order counterparts, SG and SP G, respectively,
sometimes by an order of magnitude. This confirms the intuition that higher order Taylor expansions
of the smooth surrogate provide more accurate models of f . Interestingly, while SH + SG is clearly
superior to SP (H + G), we see that SG and SP G are tied in many cases. This could indicate that the
symmetric properties of Gaussian smoothing are comparatively more important when higher-order
derivatives are considered. However, more investigation is needed.

Adversarial Attacks: We use the interactions found by SmoothHess to generate adversarial attacks
on the classifier. We see from Table 2 that the Taylor expansion associated with SmoothHess and
SmoothGrad generates the most powerful adversarial attacks for all datasets and attack magnitudes
ε, aside from CIFAR10 at ε = 1.0 where both methods successfully change most class predictions.
The superiority of the SmoothHess attacks indicates that the Gaussian smoothing is capturing the
extremal behavior of the predicted SoftMax probability more effectively than the other methods. One
hypothesis for SmoothGrad outperforming SmoothHess in the largest neighborhood for CIFAR10
is that the network behavior is highly complex over a large area, and adding higher order terms
decreases performance.

9

Qualitative Analysis of FEV1 Prediction using Rejected Spirometry:
A spirometry test is a common procedure used to evaluate pulmonary function, and is the main
diagnostic tool for lung diseases such as Chronic Obstructive Pulmonary Disease [40]. During an
exam, the patient blows into a spirometer, which records the exhalation as a volume-time curve.
Recent works have investigated the use of deep learning on spirograms for tasks such as subtyping
[11], genetics [16, 91], and mortality prediction [36]. Additional background on spirometry is
outlined in App. E.

Kernel Width: 200 Kernel Width: 20

Figure 4: Heatmap of the SmoothHess interactions
for the spirometry sample in Fig. 3, calculated on
CNNs with varying convolution kernel width.

Traditionally, exhalations interrupted by coughing
are discarded for quality control reasons. We train a
CNN on raw spirograms from the UK Biobank [79]
to predict the patient’s "Forced Expiratory Volume
in 1 Second" (FEV1), a metric frequently used to
evaluate lung health, using efforts that were rejected
due to coughing. In Fig. 3, we apply SmoothHess
and SmoothGrad on two spirometry samples to under-
stand their FEV1 predictions. In Sample 1, coughing
occurs within the first 4 seconds of the curve, as ev-
idenced by the early plateauing of the curve which
indicates a pause in exhalation. In contrast, Sample
2 exhibits no detectable coughing within the first 4 seconds. To improve the interpretability of the
results, we group the features into 0.5 second time intervals. FEV1 is traditionally measured in
the initial 2 seconds of the non-rejected samples (see App. E), therefore we calculate SmoothHess
interactions with respect to the first 0.5 second time interval.

FEV1 is known to be strongly affected by the presence of coughing [55]. The time intervals where
coughing occurs, indicated by plateaus in the spirometry curves in Figure 3, should be an important
signal for any model trained to predict FEV1. Indeed, we observe that for Sample 1, the SmoothGrad
attribution for the first 0.5s interval is relatively low, with strong interactions occurring at the cough-
induced plateaus. In contrast, the first 0.5s interval for Sample 2 shows high importance, with lower
magnitude interactions that may be indicative of small fluctuations in the volume-time curve.

In Figure 4 we present the SmoothHess matrix for Sample 1 in Fig. 3, applied on two CNN
models with different convolution kernel width. Interestingly, the smaller kernel width constrains
the interactions to features that are spatially close together. In contrast, the features in the large
kernel model have long-ranging interactions. These results agree with the intuition that smaller kernel
widths, which constrain the receptive field of neurons up until the final layers, may correspondingly
limit feature interactions.

6 Conclusion and Future Work

We introduce SmoothHess, the Hessian of the network convolved with a Gaussian, as a method
for quantifying second-order feature interactions. SmoothHess estimation, which relies only on
gradient oracle calls, and cannot be performed with naive MC-averaging, is made possible by an
extension of Stein’s Lemma that we derive. We provide non-asymptotic complexity bounds for our
estimation procedure. In contrast to previous works, our method can be run post-hoc, does not require
architecture changes, affords the user localized flexibility over the weighting of input space, and can
be run on any network output. We experimentally validate the superior ability of SmoothHess to
capture interactions over a variety of neighborhoods compared to competing methods. Last, we use
SmoothHess to glean insight into a network trained on real-world spirometry data.

Limitations: The outer product computations in SmoothHess estimation have space and time
complexity O(d2). When d ≫ 0 this becomes expensive: for instance ImageNet [19] typically has
d2 ≈ 1010. This is a common problem for all interaction effect methods. We leave as future work to
explore computationally efficient alternatives or approximations to these outer products; a potential
remedy is to devise an appropriate power method to estimate the top eigenvectors of SmoothHess,
rather than its entirety, which fits well our estimation via sampling low-rank matrices.

10

Acknowledgements

This project was supported by NIH grants R01CA240771 and U24CA264369 from NCI, in part by
MSKCC’s Cancer Center core support NIH grant P30CA008748 from NCI, and NIH 2T32HL007427-
41.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for
large-scale machine learning. In Osdi, volume 16, pages 265–283. Savannah, GA, USA, 2016.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2274–2282, 2012.

[3] Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and
Himabindu Lakkaraju. Towards the unification and robustness of perturbation and gradi-
ent based explanations. In International Conference on Machine Learning, pages 110–119.
PMLR, 2021.

[4] Chunrong Ai and Edward C Norton. Interaction terms in logit and probit models. Economics
letters, 80(1):123–129, 2003.

[5] David Alvarez-Melis and Tommi S. Jaakkola. On the robustness of interpretability methods.
CoRR, abs/1806.08049, 2018.

[6] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic op-
timization: Handling constraints, high dimensionality, and saddle points. Foundations of
Computational Mathematics, pages 1–42, 2022.

[7] Randall Balestriero and Richard Baraniuk. Mad max: Affine spline insights into deep learning,
2018. URL https://arxiv.org/abs/1805.06576.

[8] Naman Bansal, Chirag Agarwal, and Anh Nguyen. SAM: The Sensitivity of Attribution
Methods to Hyperparameters. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8673–8683, 2020.

[9] Mahsa Bazzaz and Seth Cooper. Active learning for classifying 2d grid-based level completabil-
ity. arXiv preprint arXiv:2309.04367, 2023.

[10] Andrew Beam and Ben Kompa. Second opinion needed: Communicating uncertainty in medical
artificial intelligence. NPJ Digital Medicine, 4, 2021.

[11] Sandeep Bodduluri, Arie Nakhmani, Joseph M. Reinhardt, Carla G. Wilson, Merry-Lynn
McDonald, Ramaraju Rudraraju, Byron C. Jaeger, Nirav R. Bhakta, Peter J. Castaldi, Frank C.
Sciurba, Chengcui Zhang, Purushotham V. Bangalore, and Surya P. Bhatt. Deep neural network
analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease.
JCI Insight, 5(13), July 2020. doi: 10.1172/jci.insight.132781.

[12] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[13] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[14] Boris Chen, Amir Ziai, Rebecca Tucker, and Yuchen Xie. Match cutting: Finding cuts
with smooth visual transitions. 2023 IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 2114–2124, 2022. URL https://api.semanticscholar.org/
CorpusID:252846493.

11

https://arxiv.org/abs/1805.06576
http://github.com/google/jax
https://api.semanticscholar.org/CorpusID:252846493
https://api.semanticscholar.org/CorpusID:252846493

[15] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

[16] Justin Cosentino, Babak Behsaz, Babak Alipanahi, Zachary R. McCaw, Davin Hill, Tae-Hwi
Schwantes-An, Dongbing Lai, Andrew Carroll, Brian D. Hobbs, Michael H. Cho, Cory Y.
McLean, and Farhad Hormozdiari. Inference of chronic obstructive pulmonary disease with
deep learning on raw spirograms identifies new genetic loci and improves risk models. Nature
Genetics, April 2023. ISSN 1546-1718. doi: 10.1038/s41588-023-01372-4.

[17] Ian Covert, Scott Lundberg, and Su-In Lee. Feature removal is a unifying principle for model
explanation methods. arXiv preprint arXiv:2011.03623, 2020.

[18] Tianyu Cui, Pekka Marttinen, and Samuel Kaski. Recovering pairwise interactions using neural
networks. CoRR, abs/1901.08361, 2019. URL http://arxiv.org/abs/1901.08361.

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[20] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann,
Klaus-Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to
blame, 2019. URL https://arxiv.org/abs/1906.07983.

[21] Ann-Kathrin Dombrowski, Christopher J Anders, Klaus-Robert Müller, and Pan Kessel. Towards
robust explanations for deep neural networks. Pattern Recognition, 121:108194, 2022.

[22] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. Advances in neural
information processing systems, 13, 2000.

[23] Murat A Erdogdu. Newton-stein method: An optimization method for glms via stein’s lemma.
The Journal of Machine Learning Research, 17(1):7565–7616, 2016.

[24] Gabriel Erion, Joseph D. Janizek, Pascal Sturmfels, Scott M. Lundberg, and Su-In Lee. Im-
proving performance of deep learning models with axiomatic attribution priors and expected
gradients. Nature Machine Intelligence, 3(7):620–631, July 2021. ISSN 2522-5839. doi:
10.1038/s42256-021-00343-w.

[25] Jerome Friedman and Bogdan Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2, 12 2008. doi: 10.1214/07-AOAS148.

[26] Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game
theory and reinforcement learning. arXiv preprint arXiv:1704.00805, 2017.

[27] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of Neural Networks Is
Fragile. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688, July
2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33013681.

[28] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[29] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural
networks by enforcing lipschitz continuity. Machine Learning, 110:393–416, 2021.

[30] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[31] Boris Hanin, Ryan S Jeong, and David Rolnick. Deep relu networks preserve expected length.
In International Conference on Learning Representations, 2021.

12

http://arxiv.org/abs/1901.08361
https://arxiv.org/abs/1906.07983

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[33] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield
high-confidence predictions far away from the training data and how to mitigate the problem.
2019.

[34] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with
gaussian error linear units. 2016.

[35] Davin Hill, Aria Masoomi, Sandesh Ghimire, Max Torop, and Jennifer Dy. Explanation
uncertainty with decision boundary awareness. arXiv preprint arXiv:2210.02419, 2022.

[36] Davin Hill, Max Torop, Aria Masoomi, Peter Castaldi, Edwin K. Silverman, Sandeep Bodduluri,
Surya P Bhatt, Taedong Yun, Cory Y McLean, Farhad Hormozdiari, Jennifer Dy, Michael
Cho, and Brian D Hobbs. Deep learning utilizing suboptimal spirometry data to improve lung
function and mortality prediction in the uk biobank. medRxiv, 2023. doi: 10.1101/2023.04.
28.23289178. URL https://www.medrxiv.org/content/early/2023/04/29/2023.04.
28.23289178.

[37] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon Kim, Sanjiv
Kumar, and Cho-Jui Hsieh. Evaluations and Methods for Explanation through Robustness
Analysis. arXiv:2006.00442 [cs, stat], April 2021.

[38] Zihan Huang, Charles Low, Mengqiu Teng, Hongyi Zhang, Daniel E. Ho, Mark S. Krass, and
Matthias Grabmair. Context-aware legal citation recommendation using deep learning. CoRR,
abs/2106.10776, 2021. URL https://arxiv.org/abs/2106.10776.

[39] Joseph D Janizek, Pascal Sturmfels, and Su-In Lee. Explaining explanations: Axiomatic feature
interactions for deep networks. J. Mach. Learn. Res., 22:104–1, 2021.

[40] David P. Johns, Julia A. E. Walters, and E. Haydn Walters. Diagnosis and early detection of
COPD using spirometry. Journal of thoracic disease, 6(11):1557–1569, November 2014. ISSN
2072-1439 2077-6624. doi: 10.3978/j.issn.2072-1439.2014.08.18.

[41] Zulqarnain Khan, Aria Masoomi, Davin Hill, and Jennifer Dy. Analyzing the effects of classifier
lipschitzness on explainers. arXiv preprint arXiv:2206.12481, 2022.

[42] William Knauth. The self-simplifying machine: Exploiting the structure of piecewise linear
neural networks to create interpretable models. arXiv preprint arXiv:2012.01293, 2020.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[44] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization methods.
Acta Numerica, 28:287–404, 2019. doi: 10.1017/S0962492919000060.

[45] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

[46] G. Leoni. A First Course in Sobolev Spaces. Graduate studies in mathematics. American
Mathematical Soc., 2009. ISBN 978-0-8218-8415-7. URL https://books.google.com/
books?id=W3RLWwnY0RkC.

[47] Samuel Lerman, Charles Venuto, Henry Kautz, and Chenliang Xu. Explaining local, global,
and higher-order interactions in deep learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1224–1233, 2021.

[48] Cong Han Lim, Raquel Urtasun, and Ersin Yumer. Hierarchical verification for adversarial
robustness. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 6072–6082. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
lim20b.html.

13

https://www.medrxiv.org/content/early/2023/04/29/2023.04.28.23289178
https://www.medrxiv.org/content/early/2023/04/29/2023.04.28.23289178
https://arxiv.org/abs/2106.10776
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://books.google.com/books?id=W3RLWwnY0RkC
https://books.google.com/books?id=W3RLWwnY0RkC
https://proceedings.mlr.press/v119/lim20b.html
https://proceedings.mlr.press/v119/lim20b.html

[49] Wu Lin, Mohammad Emtiyaz Khan, and Mark Schmidt. Stein’s lemma for the reparameteri-
zation trick with exponential family mixtures, 2019. URL https://arxiv.org/abs/1910.
13398.

[50] Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

[51] Jun S Liu. Siegel’s formula via stein’s identities. Statistics & probability letters, 21(3), 1994-10.
ISSN 0167-7152.

[52] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[53] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[54] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to
global understanding with explainable ai for trees. Nature machine intelligence, 2(1):56–67,
2020.

[55] Andrew Z Luo, Eric Whitmire, James W Stout, Drew Martenson, and Shwetak Patel. Automatic
characterization of user errors in spirometry. In 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4239–4242. IEEE,
2017.

[56] Aria Masoomi, Chieh Wu, Tingting Zhao, Zifeng Wang, Peter Castaldi, and Jennifer Dy.
Instance-wise feature grouping. Advances in Neural Information Processing Systems, 33:
13374–13386, 2020.

[57] Aria Masoomi, Davin Hill, Zhonghui Xu, Craig P Hersh, Edwin K Silverman, Peter J Castaldi,
Stratis Ioannidis, and Jennifer Dy. Explanations of black-box models based on directional
feature interactions. In International Conference on Learning Representations, 2021.

[58] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. Advances in neural information processing systems, 27,
2014.

[59] V.C. Moore. Spirometry: step by step. Breathe, 8(3):232–240, 2012. ISSN 1810-6838. doi: 10.
1183/20734735.0021711. URL https://breathe.ersjournals.com/content/8/3/232.

[60] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

[61] Daniel Omeiza, Skyler Speakman, Celia Cintas, and Komminist Weldermariam. Smooth grad-
cam++: An enhanced inference level visualization technique for deep convolutional neural
network models. arXiv preprint arXiv:1908.01224, 2019.

[62] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[63] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information:
Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal.
Mach. Intell., 27(8):1226–1238, aug 2005. ISSN 0162-8828. doi: 10.1109/TPAMI.2005.159.
URL https://doi.org/10.1109/TPAMI.2005.159.

[64] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning,
pages 2847–2854. PMLR, 2017.

[65] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

14

https://arxiv.org/abs/1910.13398
https://arxiv.org/abs/1910.13398
https://breathe.ersjournals.com/content/8/3/232
https://doi.org/10.1109/TPAMI.2005.159

[66] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[67] Abhijit Guha Roy, Jie Ren, Shekoofeh Azizi, Aaron Loh, Vivek Natarajan, Basil Mustafa, Nick
Pawlowski, Jan Freyberg, Yuan Liu, Zach Beaver, et al. Does your dermatology classifier know
what it doesn’t know? detecting the long-tail of unseen conditions. Medical Image Analysis, 75:
102274, 2022.

[68] H. Royden and P. Fitzpatrick. Real Analysis. Pearson Modern Classics for Advanced Mathe-
matics Series. Pearson, 2017. ISBN 9780134689494. URL https://books.google.com/
books?id=7GP3MAAACAAJ.

[69] Patrick Schwab and Walter Karlen. CXPlain: Causal explanations for model interpretation
under uncertainty. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[70] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-cam: Why did you say that? visual explanations from deep
networks via gradient-based localization. CoRR, abs/1610.02391, 2016. URL http://arxiv.
org/abs/1610.02391.

[71] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting
linear regions of deep neural networks. In International Conference on Machine Learning,
pages 4558–4566. PMLR, 2018.

[72] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[73] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034, 2014.

[74] Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-order
loss approximations and features in deep learning interpretation. In International Conference
on Machine Learning, pages 5848–5856. PMLR, 2019.

[75] Dylan Slack, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. Reliable Post hoc
Explanations Modeling Uncertainty in Explainability. In Neural Information Processing Systems
(NeurIPS), 2021.

[76] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[77] Daria Sorokina, Rich Caruana, Mirek Riedewald, and Daniel Fink. Detecting statistical inter-
actions with additive groves of trees. In Proceedings of the 25th international conference on
Machine learning, pages 1000–1007, 2008.

[78] Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, pages 1135–1151, 1981.

[79] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill
Pell, Alan Silman, Alan Young, Tim Sprosen, Tim Peakman, and Rory Collins. Uk biobank: An
open access resource for identifying the causes of a wide range of complex diseases of middle
and old age. PLOS Medicine, 12(3):1–10, 03 2015. doi: 10.1371/journal.pmed.1001779. URL
https://doi.org/10.1371/journal.pmed.1001779.

[80] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K Hoover,
Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation via machine
learning (pcgml). IEEE Transactions on Games, 10(3):257–270, 2018.

[81] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319–3328. PMLR, 2017.

15

https://books.google.com/books?id=7GP3MAAACAAJ
https://books.google.com/books?id=7GP3MAAACAAJ
http://arxiv.org/abs/1610.02391
http://arxiv.org/abs/1610.02391
https://doi.org/10.1371/journal.pmed.1001779

[82] Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The Shapley Taylor Interaction
Index. In Proceedings of the 37th International Conference on Machine Learning, pages
9259–9268. PMLR, November 2020.

[83] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[84] Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural
network weights. In International Conference on Learning Representations, 2018.

[85] Michael Tsang, Dehua Cheng, Hanpeng Liu, Xue Feng, Eric Zhou, and Yan Liu. Feature
interaction interpretability: A case for explaining ad-recommendation systems via neural
interaction detection. In International Conference on Learning Representations, 2019.

[86] Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? inter-
pretable attribution for feature interactions. Advances in neural information processing systems,
33:6147–6159, 2020.

[87] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[88] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[89] Zifan Wang, Haofan Wang, Shakul Ramkumar, Piotr Mardziel, Matt Fredrikson, and Anupam
Datta. Smoothed geometry for robust attribution. Advances in Neural Information Processing
Systems, 33:13623–13634, 2020.

[90] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://
arxiv.org/abs/1708.07747.

[91] Taedong Yun, Justin Cosentino, Babak Behsaz, Zachary R McCaw, Davin Hill, Robert Luben,
Dongbing Lai, John Bates, Howard Yang, Tae-Hwi Schwantes-An, Anthony P Khawaja, An-
drew Carroll, Brian D Hobbs, Michael H Cho, Cory Y McLean, and Farhad Hormozdiari.
Unsupervised representation learning improves genomic discovery for lung function and
respiratory disease prediction. medRxiv, 2023. doi: 10.1101/2023.04.28.23289285. URL
https://www.medrxiv.org/content/early/2023/04/29/2023.04.28.23289285.

[92] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and Quanshi Zhang. Interpreting multi-
variate shapley interactions in dnns. In The AAAI Conference on Artificial Intelligence (AAAI),
2021.

[93] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

[94] Jingyi Zhu. Hessian estimation via stein’s identity in black-box problems. arXiv preprint
arXiv:2104.01317, 2021.

16

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://www.medrxiv.org/content/early/2023/04/29/2023.04.28.23289285

A Societal Impacts

Machine learning models have become increasingly pervasive in society, from medicine [10, 67, 15]
and law [38] to entertainment[14, 9, 80]. Therefore, it is important that users of the technology
understand the factors underlying model predictions. To this end we propose SmoothHess for
quantifying the feature interactions affecting model output. Potential applications of our method are
widespread; SmoothHess may be used to find interactions influencing a model to predict whether
a customer will default on a credit loan or if a patient has melanoma. The deeper understanding
of the model gleaned from SmoothHess may be used to improve decision making. For instance, a
doctor may notice that the SmoothHess feature interactions between the pixels in an image of a lesion
don’t "make sense", indicating that the model should not be trusted and that a more granular human
assessment is required. However, such applications are highly sensitive and the cost of inaccurate
predictions, or, in this case, misinterpreted attributions, can be high. An inaccurate interpretation
can instill unwarranted trust, or mistrust, in a user. In the most extreme cases this may lead to
sub-optimal decision making such as the confident denial of a credit loan to a trustworthy customer
or misdiagnosis of a benign lesion as malignant.

In addition, it is important to note the challenges related to ensuring robust, stable, and trustworthy
explanations. In particular, recent works have uncovered issues related to the sensitivity of the
explainer to small changes in the input [5, 41], adversarial attacks [27, 20, 37], or hyperparameter
tuning [8]. Methods have been proposed that attempt to quantify explanation uncertainty [75, 69, 35],
however further challenges remain. Thus, as with all methods for explaining machine learning model
predictions, we recommend that SmoothHess is used in tandem with the careful consideration of
domain experts, who are best equipped to interpret interactions in the context of their field.

B Proof of Proposition 1

B.1 Preliminary

We make use of a Lemma from Lin et al. [49] in our proof below, which we relate here:
Lemma 3. (Lin et al. [49]) Denote x0 ∈ Rd, locally-Lipschitz continuous function h(z) : Rd → R,
covariance matrix Σ ∈ Rd×d, random vector z ∈ Rd distributed from z ∼ N (x0,Σ). If Ez[|h(z)|] <
∞, then

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1h(z)] = Ez[Σ
−1(z − x0)[∇zh(z)]

T]. (13)

B.2 Main Result

Proposition 1. Given x0 ∈ Rd, L-Lipschitz continuous function g : Rd → R, covariance matrix Σ ∈
Rd×d and random vector δ ∈ Rd distributed from δ ∼ N (0,Σ) with density function qΣ : Rd → R,
then

Eδ[Σ
−1δ[∇xg(x0 + δ)]T] = ∇2

x[(g ∗ qΣ)(x0)] = ∇2
xhg,Σ(x0), (7)

where ∗ denotes convolution.

Proof. We define random vector z = x0 + δ ∈ Rd distributed from z ∼ N (x0,Σ), and for which
we denote the density function as pΣ. We begin by showing Ez[|g(z)|] = Eδ[|g(x0 + δ)|] < ∞. We
are given that g is L-Lipschitz, i.e. ∀a, b ∈ Rd

|g(a)− g(b)| ≤ L∥a− b∥2 (14)

for some L > 0.

Now, for any fixed δ ∈ Rd we have

|g(x0 + δ)| = |g(x0) + (g(x0 + δ)− g(x0))|
△ ineq.
≤ |g(x0)|+ |g(x0 + δ)− g(x0)|

Eq.14

≤ (15a)
|g(x0)|+ L∥x0 + δ − x0∥2 = |g(x0)|+ L∥δ∥2. (15b)

Thus, we may bound the expectation Eδ[|g(x0 + δ)|]:

Eδ[|g(x0 + δ)|] ≤ Eδ[|g(x0)|+ L∥δ∥2] = g(x0) + LEδ[∥δ∥2] < ∞. (16)

17

Here g(x0) < ∞ as it is a constant, and it may be seen that LEδ[∥δ∥2] < ∞ using a simple change
of variables. Defining β = Σ− 1

2 δ ∼ N (0, I) one may write Eδ[∥δ∥2] = Eβ [∥Σ
1
2 β∥2]. As a

straightforward consequence of Cauchy-Schwarz, for any fixed β, one may write

∥Σ 1
2 β∥2 ≤ ∥Σ 1

2 ∥F ∥β∥2 (17)

where ∥·∥F denotes the Frobenius norm. Noting that ∥β∥2 ∼ Xd we use Eq. (17) to see

Eβ [∥Σ
1
2 β∥2] ≤ Eβ [∥Σ

1
2 ∥F ∥β∥2] = ∥Σ 1

2 ∥FEβ [∥β∥2] = ∥Σ 1
2 ∥F

√
2
Γ((d+ 1)/2)

Γ(d/2)
< ∞ (18)

where Γ(·) denotes the Gamma function.

Next, we move the Hessian operator inside the integral.

∇2
x(g ∗ qΣ)(x0) = ∇2

x

∫
z∈Rd

g(z)qΣ(z − x0)dz =

∫
z∈Rd

g(z)∇2
xqΣ(z − x0)dz = (19a)∫

z∈Rd

g(z)∇x∇T
x qΣ(z − x0)dz =

∫
z∈Rd

g(z)(∇xqΣ(z − x0)(z − x0)
TΣ−1)dz = (19b)∫

z∈Rd

g(z)((∇x(z − x0)
TΣ−1)qΣ(z − x0) + (∇xqΣ(z − x0))(z − x0)

TΣ−1)dz = (19c)∫
z∈Rd

g(z)(−IΣ−1qΣ(z − x0) + (∇xqΣ(z − x0))(z − x0)
TΣ−1)dz = (19d)∫

z∈Rd

g(z)(−IΣ−1qΣ(z − x0) + qΣ(z − x0)Σ
−1(z − x0)(z − x0)

TΣ−1)dz = (19e)∫
z∈Rd

g(z)qΣ(z − x0)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)dz = (19f)∫

z∈Rd

g(z)pΣ(z)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)dz = (pΣ(z) = qΣ(z − x0)) (19g)

Ez[g(z)(−IΣ−1 +Σ−1(z − x0)(z − x0)
TΣ−1)] = (19h)

Ez[g(z)Σ
−1(−I + (z − x0)(z − x0)

TΣ−1)] = (19i)

Ez[g(z)Σ
−1(−Σ+ (z − x0)(z − x0)

T)Σ−1] = (19j)

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1g(z)] (19k)

Lemma 3 may be applied as g is Lipschitz, and thus locally-Lipschitz, and Ez[|g(z)|] < ∞, yielding

Ez[Σ
−1((z − x0)(z − x0)

T − Σ)Σ−1g(z)] = Ez[Σ
−1(z − x0)[∇zg(z)]

T] (20)

Using a change of variables from z to x0 + δ we write

Ez[Σ
−1(z − x0)[∇zg(z)]

T] = Eδ[Σ
−1δ[∇xg(x0 + δ)]T] (21)

which, when combined with Eq. (19) and Eq. (20), completes the proof

∇2
x(g ∗ qΣ)(x0) = Eδ[Σ

−1δ[∇xg(x0 + δ)]T]. (22)

C Proof of Theorem 1

We begin by establishing a result expressing the eigenvalues of the symmetrization of a rank 1 matrix
in closed form:

Lemma 4. Given x, y ∈ Rd denote A = xyT + yxT ∈ Rd×d. The following facts hold:

1. Matrix A will have the following eigenvalues

• It has d− 2 eigenvalues equal to 0

18

• The other two eigenvalues are denoted by λ+(A) and λ−(A) will have the following
form:

λ±(A) = xT y ± ∥x∥2∥y∥2 (23)

2. λ+(A) and λ−(A) are non-negative and non-positive respectively.

3. Given x and y are sampled from sub-gaussian distributions, then λ+(A) and λ−(A) are
sub-exponential random variables.

Proof. We divide the proof into three sections

1. We have rank(A) ≤ 2, A ∈ Sd. Therefore ∃Q = [e1|e2| . . . |ed] ∈ Rd×d s.t. QTQ =
QQT = I , the column vectors ei ∈ Rd are orthonormal and

A = QΛQT (24a)

QTAQ = Λ (24b)

where Λ = diag([λ1, λ2, 0, . . . , 0]) ∈ Rd×d. As eigenvalues are invariant to change of basis,
A has eigenvalues λ1 and λ2 and the other d− 2 eigenvalues are equal to 0.

It can be seen that span({x, y}) = span({e1, e2}). As span({e1, e2}) = C(A) this can be
shown by proving span({x, y}) = C(A). We know ∃zx ∈ Rd : zx ⊥ x and ∃zy ∈ Rd :
zy ⊥ y. Thus we have

Azx = (xyT + yxT)zx = xyT zx + yxT zx = x(yT zx) (25a)

Azy = (xyT + yxT)zy = xyT zy + yxT zy = y(xT zy). (25b)

From the above, we see that x, y ∈ C(A). We know rank(A) ≤ 2. If rank(A) = 2 we
have x ̸= y and thus span({x, y}) = C(A). If rank(A) = 1 we have x ̸= 0, y ̸= 0 and
still span({x, y}) = C(A). If rank(A) = 0 we have x = y = 0 and clearly span({x, y}) =
{0} = C(A).

As {ei}di=1 are orthonormal, we have that xT ej = yT ej = 0, ∀j > 2. We define

x̄ = QTx = (eT1 x, e
T
2 x, e

T
3 x, . . . , e

T
d x) = (eT1 x, e

T
2 x, 0, . . . , 0) ∈ Rd, (26a)

ȳ = QT y = (eT1 y, e
T
2 y, e

T
3 y, . . . , e

T
d y) = (eT1 y, e

T
2 y, 0, . . . , 0) ∈ Rd (26b)

We define Q2 = [e1|e2] ∈ Rd×2 and

x̃ = QT
2 x = (eT1 x, e

T
2 x) ∈ R2 (27a)

ỹ = QT
2 y = (eT1 y, e

T
2 y) ∈ R2 (27b)

We first show that ∥x̄∥2 and ∥ȳ∥2 are equal to ∥x∥2 and ∥y∥2 respectively:

∥x̄∥2 = ∥QTx∥2 =
√
(QTx)T (QTx) =

√
xTQQTx =

√
xT Ix = ∥x∥2 (28a)

∥ȳ∥2 = ∥QT y∥2 =
√

(QT y)T (QT y) =
√

yTQQT y =
√
yT Iy = ∥y∥2 (28b)

Next, we use Eq. (28) to show that ∥x̃∥2 and ∥ỹ∥2 are equal to ∥x∥2 and ∥y∥2 respectively:

∥x̃∥2 =
√

(eT1 x)
2 + (eT2 x)

2 = ∥x̄∥2 = ∥x∥2 (29a)

∥ỹ∥2 =
√

(eT1 y)
2 + (eT2 y)

2 = ∥ȳ∥2 = ∥y∥2 (29b)

We show an equality between inner products x̃T ỹ = xT y:

x̃T ỹ = (eT1 x)(e
T
1 y) + (eT2 x)(e

T
2 y) = x̄T ȳ = (QTx)TQT y = xTQQT y = (30a)

xT Iy = xT y (30b)

19

Now, one may write,

QT
2 AQ2 = diag([λ1, λ2]) (31a)

QT
2 (xy

T + yxT)Q2 = diag([λ1, λ2]) (31b)

QT
2 xy

TQ2 +QT
2 yx

TQ2 = diag([λ1, λ2]) (31c)

x̃ỹT + ỹx̃T = diag([λ1, λ2]). (31d)

The following facts hold as a result of Eq. (31d):

• λ1 = 2x̃1ỹ1
• λ2 = 2x̃2ỹ2
• x̃1ỹ2 + x̃2ỹ1 = 0

Now, we show

λ1 = x̃T ỹ + ∥x̃∥2∥ỹ∥2, λ2 = x̃T ỹ − ∥x̃∥2∥ỹ∥2 (32)

Which can be derived as such:

x̃T ỹ ± ∥x̃∥2∥ỹ∥2 = x̃1ỹ1 + x̃2ỹ2 ±
√
(x̃2

1 + x̃2
2)(ỹ

2
1 + ỹ22)

= x̃1ỹ1 + x̃2ỹ2 ±
√

(x̃1ỹ1 − x̃2ỹ2)2 = x̃1ỹ1 + x̃2ỹ2 ± |x̃1ỹ1 − x̃2ỹ2| = λ1 or λ2

(33)

where the second equality comes from the following:

(x̃1ỹ1 − x̃2ỹ2)
2 = (x̃1ỹ1)

2 − 2x̃1x̃2ỹ1ỹ2 + (x̃2ỹ2)
2

= (x̃1ỹ1)
2 − 2x̃1x̃2ỹ1ỹ2 + (x̃2ỹ2)

2 + (x̃1ỹ2 + x̃2ỹ1)
2

= (x̃1
2 + x̃2

2)(ỹ
2
1 + ỹ22).

(34)

Proving that Eq. (32) holds. Finally, we combine Eq. (29) and Eq. (30) with Eq. (32) to
express the eigenvalues of A as:

λ1 = xT y + ∥x∥2∥y∥2, λ2 = xT y − ∥x∥2∥y∥2 (35)

which we use to denote λ+(A) = λ1, λ
−(A) = λ2.

2. As |xT y| ≤ ∥x∥2∥y∥2, it follows that λ+(A) = xT y + ∥x∥2∥y∥2 ≥ 0 and λ−(A) =
xT y − ∥x∥2∥y∥2 ≤ 0.

3. We denote D = {1, . . . , d} It can be seen that xiyi is sub-exponential ∀i ∈ D , as a
sub-gaussian times a sub-gaussian is sub exponential. Thus, it follows that

xT y =

d∑
i=1

xiyi is a sub-exponential random variable, (36)

as the sum of sub-exponential random variables is sub-exponential. Further we see that
x2
i and y2i are sub-exponential as the square of a sub-gaussian is sub-exponential. As the

sum of sub-exponentials is sub-exponential we have that
∑d

i=1 x
2
i ,
∑d

i=1 y
2
i are both sub-

exponential random variables. As the square root of a sub-exponential is sub-gaussian we
have that

∥x∥2 =

√√√√ d∑
i=1

x2
i is a sub-gaussian random variable (37a)

∥y∥2 =

√√√√ d∑
i=1

y2i is a sub-gaussian random variable (37b)

As a sub-gaussian times a sub-gaussian is sub-exponential, from Eq. 37 we have that

∥x∥2∥y∥2 is a sub-exponential random variable . (38)

Now we see from Eq. and 36 Eq. 38 that both λ+(A) and λ−(A) are the sum of sub-
exponential random variables and thus are sub-exponential.

20

We now use the result of Lemma 4 to prove the sample complexity bounds for SmoothHess in
Theorem 1:

Theorem 1. Let f : Rd → R be a piece-wise linear function over a finite partition of
Rd. Let x0 ∈ Rd, and denote {δi}ni=1, a set of n i.i.d random vectors in Rd distributed
from δi ∼ N (0,Σ). Given Ĥn(x0, f,Σ) as in Eq. (8), for any fixed ε, γ ∈ (0, 1], given

n ≥ 4
ε2 [max((C+

√
d+

√
1
c+ log 4

γ)
2, (C−

√
d+

√
1
c− log 4

γ)
2)] then

P
(∥∥Ĥn −H

∥∥
2
> ε

)
≤ γ, (9)

where H = ∇2
x[(f ∗ qΣ)(x0)], C+, C−c+, c− > 0 are constants depending on the function f and

covariance Σ and qΣ : Rd → R is the density function of N (0,Σ).

Proof. As x0, f and Σ are fixed, we refer to Ĥn(f, x0,Σ) as Ĥn for brevity. We denote D =

{1, . . . , d}. We begin by explicitly expressing our estimator Ĥn in terms of δi and ∇xf(x0 + δi).
From Eq. (8) we have

H◦
n =

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T (39a)

Ĥn =
1

2
H◦

n +
1

2
H◦T

n = (39b)

1

2

1

n

n∑
i=1

(Σ−1δi[∇xf(x0 + δi)]
T) +

1

2

1

n

n∑
i=1

(∇xf(x0 + δi)δ
T
i Σ

−1) (39c)

Now, we show the convergence of our estimator Ĥn:

Lemma 5. limn→∞ Ĥn = H

Proof. From Proposition 1 it is clear to see that limn→∞ H◦
n = H:

lim
n→∞

H◦
n = lim

n→∞

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T = Eδ[Σ

−1δ[∇xf(x0 + δ)]T]
Prop 1
= H. (40)

Next, we show it is also the case that limn→∞ H◦T
n = H:

lim
n→∞

H◦T
n = lim

n→∞

1

n

n∑
i=1

∇xf(x0 + δi)δ
T
i Σ

−1 = (41a)

lim
n→∞

1

n

n∑
i=1

(Σ−1δi[∇xf(x0 + δi)]
T)T = (lim

n→∞

1

n

n∑
i=1

Σ−1δi[∇xf(x0 + δi)]
T)T = (41b)

(Eδ[Σ
−1δ[∇xf(x0 + δ)]T])T

Prop 1
= HT = H (Symmetry of Hessian) (41c)

Now, as we have limn→∞ H◦
n = limn→∞ H◦T

n = H , it follows that

lim
n→∞

Ĥn = lim
n→∞

1

2
H◦

n + lim
n→∞

1

2
H◦T

n =
1

2
H +

1

2
H = H (42)

We establish the following notation to be used below: given a fixed vector δ ∈ Rd one may construct
matrix Aδ ∈ Rd×d by:

Aδ =
1

2
(Σ−1δ[∇xf(x0 + δ)]T) +

1

2
(∇xf(x0 + δ)δTΣ−1) ∈ Rd×d (43)

21

It can be seen from Eq. 39 and Lemma 5 that H and Ĥn may be expressed in terms of matrices Aδ

and Aδi :

H = Eδ[Aδ], Ĥn =
1

n

n∑
i=1

Aδi (44)

Next, we establish that the random vectors Σ−1δ and ∇f(x0 + δ) are sub-gaussian:

Lemma 6. The random vectors Σ−1δ and ∇f(x0 + δ) are sub-gaussian.

Proof. As Σ−1δ is Gaussian it is sub-gaussian. Now, we show that ∇f(x0 + δ) is a sub-gaussian
random-vector. We have that f is piecewise-linear over a partition of Rd with finite cardinality L.
Let us denote this partition as Q = {Qi}Li=1, Qi ⊆ Rd, where, when restricted to a given Q ∈ Q we
have

f |Q(x) = VQx+AQ (45)

where VQ ∈ Rd, AQ ∈ R are the affine coefficients associated with the region Q. Then it is the
case that ∇f : Rd → R is a bounded function, where, aside from a set of measure 0, M ⊆ Rd (the
boundaries of regions Q) where ∇f is not defined, one has

∥∇f(x)∥2 ≤ max
Q∈Q

∥VQ∥2, ∀x ∈ Rd\M. (46)

Thus, ∇f(x0 + δ) is a bounded random vector and therefore is sub-gaussian.

Given the operators λ+, λ− : Rd×d → R as defined in the statement of Lemma 4 and fixed vector
δ ∈ Rd, we denote λ+

δ := λ+(Aδ), λ
−
δ := λ−(Aδ) and the corresponding unit eigenvectors as

v+δ ∈ Rd and v−δ ∈ Rd respectively. We denote random vectors w+
δ , w

−
δ ∈ Rd by

w+
δ =

√
λ+
δ v

+
δ , w−

δ =
√

−λ−
δ v

−
δ (47)

where
√
λ+
δ and v+δ are a random variable random vector pair coming from the same δ. An immediate

consequence of Lemma 6 is that w+
δ and w−

δ are sub-gaussian random vectors:

Lemma 7. w+
δ and w−

δ are sub-gaussian random-vectors

Proof. Using Lemma 4(3), Lemma 4(2) and Lemma 6 we see that that λ+
δ and −λ−

δ are non-negative

sub-exponential random variables and thus that
√

λ+
δ and

√
−λ−

δ are sub-gaussian random variables.

We may say w+
δ is a sub-gaussian random vector if ⟨w+

δ , z⟩ is a sub-gaussian random variable

∀z ∈ Rd. Let us fix arbitrary z ∈ Rd. As
√
λ+
δ is sub-gaussian we have

∃K1 > 0 s.t. P(|
√
λ+
δ | ≥ t) ≤ 2 exp(−t2/K2

1) ∀t ≥ 0 (48a)

Now, ∀t ≥ 0

P(|⟨w+
δ , z⟩| ≥ t) = P(|

√
λ+
δ ⟨v

+
δ , z⟩| ≥ t) = (49a)

P(|
√
λ+
δ | ≥ t/|⟨v+δ , z⟩|)

C-S, ∥v+
δ ∥2=1

≤ P(|
√
λ+
δ | ≥ t/∥z∥2) ≤ 2 exp(−(t2/∥z∥22K2

1)) (49b)

Thus defining K
(z)
1 := K1∥z∥2 we see that ∀t ≥ 0

P(|⟨w+
δ , z⟩| ≥ t) ≤ exp(−t2/(K

(z)
1)2). (50)

Thus ⟨w+
δ , z⟩ is sub-gaussian for arbitrary z ∈ Rd. Therefore, w+

δ is a sub-gaussian random-vector.
The same argument holds to show that w−

δ is a sub-gaussian random vector.

22

Given any fixed δ, it can be seen that

Aδ = w+
δ w

+T
δ − w−

δ w
−T
δ . (51)

Thus one may re-write H and Ĥn from Eq. 44 as:

H = Eδ[Aδ] = Eδ[w
+
δ w

+T
δ − w−

δ w
−T
δ], Ĥn =

1

n

n∑
i=1

Aδi =
1

n

n∑
i=1

w+
δi
w+T

δi
− w−

δi
w−T

δi
. (52)

Because {δi}ni=1 are i.i.d. random vectors and w+
δi
, w−

δi
are fully determined by δi, it follows that

{w+
δi
}ni=1 and {w−

δi
}ni=1 are both sets of i.i.d. random vectors.

We denote the following:

H+ = Eδ[w
+
δ w

+T
δ], H− = Eδ[w

−
δ w

−T
δ], (53a)

Ĥ+
n =

1

n

n∑
i=1

w+
δi
w+T

δi
, Ĥ−

n =
1

n

n∑
i=1

w−
δi
w−T

δi
(53b)

It can be seen from the RHS of Eq. (52) that

Ĥn = Ĥ+
n − Ĥ−

n . (54)

We now aim to decompose H in terms of H+, H−, in order to derive separate concentration bounds.
To this end, we prove the following lemma:

Lemma 8. H+ and H− exist.

Proof. Let us consider the random matrix w+
δ w

+T
δ ∈ Rd×d. As (w+

δ)k ∈ R is sub-gaussian ∀k ∈ D,
the element (w+

δ w
+T
δ)ij ∈ R is sub-exponential as the product of two sub-gaussian’s, ∀i, j ∈ D.

Thus, Eδ[(w
+
δ w

+T
δ)ij] exists ∀i, j ∈ D. The same argument can be made to show Eδ[(w

−
δ w

−T
δ)ij]

exists ∀i, j ∈ D.

In light of Lemma 8, the LHS of Eq. (52) may be decomposed as

H = Eδ[w
+
δ w

+T
δ − w−

δ w
−T
δ] = Eδ[w

+
δ w

+T
δ]− Eδ[w

−
δ w

−T
δ] = H+ −H−. (55)

Before deriving separate concentration bounds on Ĥ+
n and Ĥ−

n we note that

lim
n→∞

Ĥ+
n = Eδ[w

+
δ w

+T
δ], lim

n→∞
Ĥ−

n = Eδ[w
−
δ w

−T
δ]. (56)

Finally, we bound the deviation of Ĥ+
n and Ĥ−

n from their expectations. Let us fix ε, γ ∈ (0, 1].
From Eq. (55), and the fact that {w+

δi
}ni=1 is a set of i.i.d. sub-gaussian random vectors, Theorem

3.39, Remark 3.40 of Vershynin [87] may be applied, yielding: ∀t ≥ 0

P
(
∥Ĥ+

n −H+∥2 > max(ε+n , (ε
+
n)

2)

)
≤ 2 exp(−c+t2) (57)

where ε+n = C+
√
d√
n
+ t√

n
and C+, c+ > 0 are constants depending on the sub-gaussian norm of

w+
δi

. Let us select t =
√

log(4/γ)
c+ . Plugging into Eq. (57), we get

P
(
∥Ĥ+

n −H+∥2 > max(C+

√
d√
n
+

√
log(4/γ)

c+√
n

, (C+

√
d√
n
+

√
log(4/γ)

c+√
n

)2)

)
≤ γ

2
(58)

23

Let us consider n+ = 4
ε2 (C

+
√
d+

√
log(4/γ)

c+)2. One may see that

ε+n+ = C+

√
d√
n+

+

√
log(4/γ)

c+√
n+

= (59a)

C+ ε
√
d

2(C+
√
d+

√
log(4/γ)

c+)
+

ε
√

log(4/γ)
c+

2(C+
√
d+

√
log(4/γ)

c+)
= (59b)

ε

2

C+
√
d+

√
log(4/γ)

c+

C+
√
d+

√
log(4/γ)

c+

=
ε

2
(59c)

Thus, given n = n+ one has ε+n = max(ε2 , (
ε
2)

2) = ε
2 , because ε

2 < ε ≤ 1, and that

P
(
∥Ĥ+

n −H+∥2 >
ε

2

)
≤ γ

2
. (60)

In fact, because ε+n is monotonically decreasing in n, given n ≥ n+ Eq. (60) holds.

The same logic above may be used to show that there exists constants C−, c− > 0 depending on the

sub-gaussian norm of w−
δ such that, given n ≥ n− = 4

ε2 (C
−
√
d+

√
log(4/γ)

c−)2 one has

P
(
∥Ĥ−

n −H−∥2 >
ε

2

)
≤ γ

2
. (61)

Finally, we combine the two bounds from Eq. (61) and Eq. (60). Given n ≥ max(4
ε2 (C

+
√
d +√

log(4/γ)
c+)2, 4

ε2 (C
−
√
d+

√
log(4/γ)

c−)2) we have

P(∥Ĥn −H∥2 > ε) = P(∥Ĥ+
n − Ĥ−

n −H+ +H−∥2 > ε) = (Eq. (55)Eq. (54)) (62a)

P(∥(Ĥ+
n −H+)− (Ĥ−

n −H−)∥2 > ε) ≤ (62b)

P(∥(Ĥ+
n −H+)∥2 + ∥(Ĥ−

n −H−)∥2 > ε) ≤ (△− Ineq.) (62c)

P(∥Ĥ+
n −H+∥2 >

ε

2
∪ ∥Ĥ−

n −H−∥2 >
ε

2
) ≤ (62d)

P(∥Ĥ+
n −H+∥2 >

ε

2
) + P(∥Ĥ−

n −H−∥2 >
ε

2
) ≤ (Union bound) (62e)

γ

2
+

γ

2
= γ (Eq. (60)Eq. (61)) (62f)

D Implementation Details

D.1 Quadratic Optimization

Given a function f : Rd → R, point x0 ∈ Rd gradient Hessian pair G ∈ Rd, H ∈ Rd×d and a
magnitude constraint ε > 0, we aim to solve the following optimization:

min
∆∈Rd

f(x0) +GT (∆− x0) +
1

2
(∆− x0)

TH(∆− x0), s.t. ∥∆− x0∥2 ≤ ε, (63)

as f(x0) is constant, the problem above is equivalent to

min
δ∈Rd

GT δ +
1

2
δTHδ, s.t. ∥δ∥2 ≤ ε, (64)

where we have replaced ∆ − x0, which can be interpreted as the output after the attack with
δ = ∆− x0, the attack vector itself.

24

The optimization problem in Eq. (64) is non-convex as H is not guaranteed to be positive semi-
definite. However, as Slater’s constraint qualification is satisfied, i.e. ∃δ ∈ Rd s.t. ∥δ∥2 < ε, Eq. (64)
may be solved exactly[12]. Specifically, the solution may be obtained by solving an equivalent convex
optimization problem:

min
γ∈Rd,X∈Sd

tr(
1

2
HX) +GT γ, (65a)

s.t. tr(X)− ε2 ≤ 0, (65b)

[X, γ; γT , 1] ⪰ 0 (65c)

where Sd denotes the the set of symmetric matrices and ⪰ indicates the block matrix [X, γ; γT , 1] ∈
R(d+1)×(d+1) is constrained to be positive semi-definite.

However, the optimization in Eq. (65) is expensive to solve when d ≫ 0 as there are O(d2) variables.
For instance, MNIST and FMNIST have d2 ≈ 6.0 · 106 and CIFAR10 has d2 ≈ 108. Thus, before
converting Eq. (64) into Eq. (65), we elect to reduce the dimension of the optimization problem to
k ∈ N, k ≪ d.

Let us consider the eigendecomposition QΛQT = H . Here the columns of Q ∈ Rd×d are orthonor-
mal eigenvectors of H . Given the d eigenvalues {λ1, . . . , λd}, sorted such that i < j =⇒ |λi| ≥
|λj |, we have Λ = diag(λ1, . . . , λd). We remove the last d− k columns from Q and d− k columns
and rows from Λ to construct Q̃ ∈ Rd×k, Λ̃ ∈ Rk×k. Thus, we have a low-rank approximation of H:

H ≃ Q̃Λ̃Q̃T . (66)

Thus, Eq. (64) is approximately equivalent to another optimization which uses this low-rank approxi-
mation for H:

min
δ∈Rd

GT δ +
1

2
δT Q̃Λ̃Q̃T δ, s.t. ∥δ∥2 ≤ ε. (67)

Defining δ̃ = Q̃T δ ∈ Rk, Eq. (67) is approximately equivalent to

min
δ̃∈Rk

GT Q̃δ̃ +
1

2
δ̃T Λ̃δ̃, s.t. ∥δ̃∥2 ≤ ε, (68)

where the constraint is simplified to ∥δ̃∥2 ≤ ε from ∥Q̃δ̃∥2 ≤ ε as

∥Q̃δ̃∥2 = ((Q̃δ̃)T (Q̃δ̃))
1
2 = (δ̃T Q̃T Q̃δ̃)

1
2 = (δ̃T Q̃T Q̃δ̃)

1
2 = (δ̃T Iδ̃)

1
2 = ∥δ̃∥2. (69)

Finally, δ̃∗ ∈ Rk, the optimal solution to Eq. (68), is projected back to Rd yielding an approximate
solution to Eq. (67):

δ∗ = Q̃δ̃∗ ∈ Rd. (70)

Choosing k: The choice of k ∈ N is determined using a threshold hyperparameter T ∈ (0, 1]. Given
T , k is chosen to be the smallest number of (sorted) eigenvalues/eigenvectors which account for a
proportion of the total eigenvalue magnitude that is at least T :

k = argmin
k′

{k′ ∈ N :

k′∑
i=1

|λi| ≥ T

d∑
i=1

|λi|}. (71)

For the values of T used for each dataset see App. E

D.1.1 Similarities and Differences with CASO/CAFO

Our quadratic optimization is closely connected to the CAFO/CASO explanation vectors proposed
by Singla et al. [74]. Both methods use optimizations to minimize a value outputted by the network,
and the CASO method also uses a second-order Taylor expansion in their objective. Additionally,
the proposed Smooth-CASO method is equivalent to an attack using SmoothGrad and SmoothHess
on the cross-entropy loss function (when their regularizers are set to 0), which admits higher order
derivatives.

25

However, there are some key differences. First, our optimization is meant for use with arbitrary
network outputs as opposed to just the loss, as is the case with CAFO/CASO. While the vanilla loss
Hessian modeled by Singla et al. [74] is proven to be positive semi-definite, this is not the case for
arbitrary functions which one may wish to attack. Thus methods to optimize non-convex quadratic
objectives, such as those outlined in App. D.1, are required. Second, our goal is not to generate an
explanatory feature importance vector for analysis, as is an important motivation for CAFO/CASO,
but to assess the quality of the gradient Hessian pair used to attack the function. For this reason, we
do not use sparsity constraints such as in Singla et al. [74], which are in part meant to improve the
interpretability of CAFO/CASO as explainers. Last we stress that the techniques used to find the
cross-entropy loss Hessian for CASO and Smooth-CASO cannot be used for internal neurons, logits
or regression valued output in ReLU networks, due to their piecewise-linearity.

D.2 SmoothHess

The SmoothHess estimation procedure, and the amortization with SmoothGrad estimation, is pre-
sented below in Algorithm 1. While empirically our SmoothHess estimator converges, we have
additionally found that reflecting each point δi in the perturbation set {δi}ni=1 about the origin to
create an augmented perturbation set {δi}ni=1 ∪ {−δi}ni=1 before estimation can result in faster
per-sample convergence.
Algorithm 1 Joint SmoothHess and SmoothGrad Estimation
Input : Sample of interest x ∈ Rd, Neural network indexed to output scalar of interest f : Rd → R, Covariance
Σ ∈ Rd×d, Batch size for gradient oracle calls n1 ∈ N, Number of batches n2 ∈ N.
Output : Ĥ an estimate of SmoothHess, Ĝ an estimate of SmoothGrad

Ĥ, Ĝ← torch.zeros(d,d), torch.zeros(d) \\ Ĥ ∈ Rd×d, Ĝ ∈ Rd

Σ−1 ← torch.inverse(Σ) \\ Σ−1 ∈ Rd×d, If Σ diagonal O(d), Else O(d3)

\\O(n1n2(W + d2)) , O(W) is complexity of one forward pass through f
for i = 1, . . . , n2 do

δ ← torch.normal(n1, 0,Σ) \\ δ ∈ Rn1×d

∇f(x+ δ)← torch.autograd(f, x+ δ) \\ ∇f(x+ δ) ∈ Rn1×d, O(n1W)

Âi ← torch.matmul(δ,∇f(x+ δ).T) \\ Âi ∈ Rd×d, O(n1d
2)

Ĥ ← Ĥ + Âi / n1n2 \\ O(n1d
2)

Ĝ← Ĝ+∇f(x+ δ).sum(dim = 0) / n1n2 \\ O(n1d)
end
Ĥ ← torch.matmul(Σ−1, Ĥ) \\ If Σ diagonal O(d2), Else O(d3)
Ĥ ← Ĥ + Ĥ.T \\ O(d2)

Return Ĥ, Ĝ

D.3 Alternative Covariance Matrices

While in this work we use isotropic covariance matrices of the form Σ = σ2I, σ > 0, SmoothHess
can be estimated using arbitrary positive definite covariance matrices Σ ∈ Rd×d. Such a covariance
matrix can be set according to the users preference, encoded using the fact that the eigenvectors of Σ
represent directions of interest and their corresponding eigenvalues represent levels of smoothing.

In the simplest case the user already has an orthornomal eigenvector basis in mind, a1, . . . , ad ∈ Rd

as well as desired levels of smoothing σ1, . . . , σd > 0. In this case Σ may be set by constructing
eigenvector and eigenvalue matrices Q = [a1| . . . |ad] ∈ Rd×d and Λ = diag(σ1, . . . , σd) ∈ Rd×d

and simply multiplying Σ = QΛQT .

Alternatively, the user may only have k < d orthonormal eigenvectors in mind, a1, . . . , ak ∈ Rd, for
which they wish to smooth at specific levels σ1, . . . , σk > 0. A procedure such as Gram-Schmidt
may be used to find ak+1, . . . , ad ∈ Rd which extends a1, . . . , ak to an orthonormal basis of Rd.
Again, the smoothing levels along the eigenvectors ak+1, . . . , ad may be chosen according to user
preference. For instance, one may select σk+1 = . . . = σd ≈ 0 if minimal smoothing is desired along
these directions. Just as above Σ may be set by constructing eigenvector and eigenvalue matrices
Q = [a1| . . . |ad] ∈ Rd×d and Λ = diag(σ1, . . . , σd) ∈ Rd×d and simply multiplying Σ = QΛQT .

26

E Experiment Setup

E.1 Datasets and Models

In this work we make use of six datasets, two synthetic datasets (Four Quadrants, Nested Interactions)
three benchmark datasets (MNIST, FMNIST, CIFAR10) and a real world medical dataset (Spirometry).
Below we describe these datasets and training details.

Four Quadrant. The Four Quadrant dataset consists of points x ∈ R2 sampled from the grid
[−2, 2] × [−2, 2] with a spacing of 0.008. A 6-layer fully connected ReLU network was trained
using RMSProp [83] on the Four Quadrant dataset achieving a final mean-squared-error of ≈ 1e-4.
Training lasted for 40, 000 iterations with a batch size of 128 and a starting learning rate of 1e-3
which was decayed by a factor of 1e-1 at iterations 5000, 10, 000 and 20, 000.

Nested Interactions. The Nested Interactions dataset consists of points x ∈ R2 sampled from the
grid [−2, 2]× [−2, 2] with a spacing of 0.008. A 6-layer fully connected ReLU network was trained
using RMSProp on the Nested Interactions dataset achieving a final mean-squared-error of ≈ 1e-1.
Training lasted for 200, 000 iterations with a batch size of 64 and a starting learning rate of 1e-3
which was decayed by a factor of 1e-1 at iterations 40, 000, 80, 000, 120, 000 and 160, 000. For more
details on Nested Interactions see App. F.3.

MNIST MNIST consists of 70,000 28x28 greyscale images, each corresponding with one of the
digits 0-9. There are 60, 000 and 10, 000 images in the pre-defined train and test sets respectively.
We further split the train set into 50, 000 images for training and 10, 000 for validation. A 5-layer
fully connected network with dimensions 500-300-250-250-250 was trained with stochastic gradient
descent for 30 epochs, with a batch size of 128 and a starting learning rate of 1e-2 which was decayed
by a factor of 1e-1 at iterations 4, 000 and 8, 000. Final accuracies of ≈ 100% (Train) ≈ 100% (Val)
and ≈ 98% (Test) were achieved. All images are flattened. For PMSE all methods were evaluated on
200 test points. For adversarial attacks all methods were evaluated on 400 test points. The threshold
for the quadratic optimization attack was set to T = 0.98.

FMNIST. FMNIST consists of 70,000 28x28 greyscale images, each corresponding with one of
10 articles of clothing. There are 60, 000 and 10, 000 images in the pre-defined train and test sets
respectively. We further split the train set into 50, 000 images for training and 10, 000 for validation.
Final accuracies of ≈ 93% (Train) ≈ 93% (Val) and ≈ 88% (Test) were achieved. The network and
training details are identical to that used for MNIST above. All images are flattened. For PMSE all
methods were evaluated on 200 test points. For adversarial attacks all methods were evaluated on
400 test points. The threshold for the quadratic optimization attack was set to T = 0.98.

CIFAR10 CIFAR10 consists of 60,000 3x32x32 RGB color images, each corresponding with
an animal or vehicle. There are 50,000 and 10,000 images in the pre-defined train and test sets
respectively. We further split the train set into 40, 000 images for training and 10, 000 for validation.
A ResNet-18 [32] was trained on CIFAR10 for 55 epochs using a batch size of 128. The first 5 epochs
were used for warmup with a starting learning rate of 1e-2 ending at 0.5. For the rest of training a
cosine decay schedule was used [52] decaying down to 1e-5 by the final epoch. Augmentations used
for training were (i) Random Horizontal Flip (p = 0.5) (ii) Color Jitter (p = 0.8) with brightness,
contrast and saturation values equal to 0.4 and hue value 0.1 (iii) Random Grayscale (p = 0.2). Final
accuracies of ≈ 85% (Train, Augmentations) ≈ 96% (Val, No Augmentations) and ≈ 90% (Test,
No Augmentations) were achieved. No augmentations were applied to the validation/test data when
evaluating explainers. For PMSE all methods were evaluated on 100 test points. For adversarial
attacks all methods were evaluated on 200 test points. The threshold for the quadratic optimization
attack was set to T = 0.8

Spirometry. The Spirometry dataset uses raw exhalation curves, measured in volume over time,
recorded during a spirometry exam. Each spirometry curve is measured in 10ms intervals, which
we downsample to 50ms intervals and limit to 15s in total length, resulting in 300 features. We use
the UK Biobank dataset, which is a large, population-based study conducted in the United Kingdom.
Participant statistics have been previously reported in Sudlow et al. [79]. The UK Biobank records
2-3 exhalation efforts for each participant, using a Vitalograph Pneumotrac 6800 device∗. If two
efforts are recorded as passing acceptability criteria and are also reproducible (≤ 5% difference in
Forced Vital Capacity (FVC) and Forced Expiratory Volume in 1 Second (FEV1)), then the third

∗https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/Spirometry.pdf

27

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 1.1e-5 4.6e-5 1.8e-4 1.1e-5 4.6e-5 1.8e-4
SG [76] 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 4.5e-5 1.8e-4 7.2e-4 1.1e-5 4.6e-5 1.8e-4 1.1e-5 4.6e-5 1.8e-4
SP H + G 400.0 200.0 95.0 400.0 200.0 100.0 350.0 160.0 75.0 360.0 190.0 95.0 11.5 6.0 3.5 11.0 6.0 4.0
SP G 390.0 200.0 100.0 400.0 200.0 100.0 390.0 180.0 95.0 360.0 190.0 95.0 14.0 8.0 4.0 16.0 7.0 4.0
SW (H + G) 190.0 95.0 55.0 190.0 95.0 50.0 170.0 80.0 45.0 170.0 90.0 45.0 8.5 8.5 8.5 11.0 11.0 11.0
SW G 190.0 95.0 55.0 190.0 95.0 50.0 180.0 100.0 65.0 170.0 90.0 50.0 8.5 8.5 8.5 11.0 11.0 11.0

Table 3: Selected values of σ2 and β, achieving the lowest average PMSE on on a held-out validation set.

effort is omitted. A common metric used to evaluate lung health is the Forced Expiratory Volume in
1 Second (FEV1), which is the maximum volume of air that can be expelled by the participant in 1
second [59]. Note that a participant’s FEV1 measurement is taken as the maximum FEV1 over all
recorded exhalation efforts during a single visit.

The spirometer automatically evaluates effort against a number of acceptability criteria. One such
criteria is the detection of coughing. In our experiment, we use a subset of exhalation efforts where
coughing was detected and train a CNN to predict the participant’s final FEV1 measurement. This
subset contains 8,721 samples, which we split into training (80%) and test (20%) partitions. We follow
the preprocessing in Hill et al. [36] to ensure that participants have at least one effort that passes
quality control where FEV1 can be measured. The trained CNN includes 10 convolution blocks. Each
block contains a 1-d convolution of kernel width 200 and 20 channels, batch normalization, dropout
(p=0.5), and skip connection. The model is trained using mean squared error (MSE), achieving 0.563
MSE on the train set and 0.547 MSE on the test set.

E.2 Hyperparameters

For ease of reading, we use the following notation below: [a : b : c] = {a, a + c, a + 2c, . . . , b −
2c, b − c} ⊆ R denotes the set of points between a (inclusive) and b (exclusive) at intervals of
size c. Here a and b are chosen such that a < b and (b − a) mod c = 0. An example is:
[0.1 : 1.0 : 0.1] = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

E.2.1 PMSE

For each of the 18 combinations of dataset, function and neighborhood size ε the performance of
β and σ are validated on a held out set before selection. 200 validation points are used to choose
σ, β for MNIST and FMNIST and 50 validation points are used for CIFAR10. For SmoothHess
+ SmoothGrad and SmoothGrad only three values of σ are validated, based on the common sense
criterion σ = ε/

√
d: given neighborhood size ε and dataset with dimension d, σ is chosen from

σ ∈ {ε/2
√
d, 3ε/4

√
d, ε/

√
d}.

The following values of β are checked on a validation set:

MNIST and FMNIST β ∈ [0.1 : 1 : 0.1] ∪ [1 : 20 : 1] ∪ [20 : 95 : 5] ∪ [100 : 800 : 10]

CIFAR10: β ∈ [0.1 : 1 : 0.1] ∪ [1 : 20 : 0.5] ∪ [20 : 95 : 5] ∪ [100 : 800 : 10]

The values of σ for SH and SH + SG, and β for SP H + G and SP G which achieve the lowest PMSE

on the validation data are shown in Table 3. The results for SoftPlus β are interesting: (i) We see
that MNIST and FMNIST results, for both class logit and interior neuron, are consistent for fixed ε.
Further we see that CIFAR10 results between class logit and interior neuron are consistent for fixed
ε. (ii) The optimal value of β seems to be approximately proportional to the value of ε. While our
results in Table 1 show that SmoothHess is better at capturing local interactions than the SoftPlus
Hessian, the results in Table 3 indicate that the relationship between f , fβ and β warrants further
exploration.

E.2.2 Adversarial Attacks

200 validation points were used to choose β and σ2 for MNIST and FMNIST and 50 validation
points were used to choose β and σ2 for CIFAR10.

28

Dataset MNIST FMNIST CIFAR10
Attack Magnitude ϵ 0.25 0.50 0.75 1.25 1.75 0.25 0.50 0.75 1.25 1.75 0.1 0.2 0.3 0.4 1.0

SH+SG (Us) 1e-3 5e-3 3e-2 5e-2 1.5e-1 1e-3 4e-2 3e-2 8e-2 3e-2 5e-5 1e-4 4e-4 4e-4 7.5e-4
SG [76] 1e-3 5e-3 2e-2 6e-2 8e-2 5e-3 4e-2 8e-2 1.5e-1 3e-1 5e-5 3e-4 5e-4 7.5e-4 3e-3
SP H + G 8 18 17 10 6 20 25 13 9 6 5 4 3 2 2
SP G 10 12 10 11 3 30 9 11 8 3 5 4 3 2 2

Table 4: Selected values of σ2 and β, achieving the lowest post-hoc accuracy of adversarial attacks on a held-out
validation set.

The following values of σ2 were validated for adversarial attacks:

MNIST and FMNIST: σ2 ∈ {0.001, 0.005} ∪ [0.01 : 0.1 : 0.01] ∪ [0.15 : 1.00 : 0.05]

CIFAR10: σ2 ∈ {5e-05, 7.5e-05}∪[0.0001 : 0.0006 : 0.0001]∪{0.00075}∪[0.001 : 0.006 : 0.001]

The following values of β were validated for adversarial attacks:

MNIST and FMNIST: β ∈ [1 : 20 : 1] ∪ [20 : 100 : 5] ∪ [100 : 210 : 10].

CIFAR10: β ∈ [1 : 10 : 1] ∪ [10 : 45 : 5]

The values of σ2 and β that achieve lowest validation post-hoc accuracy are shown in Table 4.
Following intuition, it is generally the case that parameters corresponding with increased smoothing
(larger σ2 and smaller β) achieve better results (lower post-hoc accuracy) for large ε, and parameters
corresponding to less smoothing (smaller σ2 and larger β) achieve better results for small ε.

F Additional Experiments

F.1 PMSE

Comparison with Swish: In Table 1, PMSE results are presented for five methods: the first
(SmoothGrad) and second (SmoothHess + SmoothGrad) order Taylor expansions of the ReLU network
f convolved with a Gaussian, the first and second order Taylor expansions of the SoftPlus smoothed
network and the vanilla (unsmoothed) Gradient. We present Table 5, a version of Table 1 which
includes additional results comparing with Swish [65] smoothed networks. Swish, an alternative
smooth activation to SoftPlus, is formally defined as Swβ(x) = x sigmoid(βx) where sigmoid(x) =

1
1+exp (−x) and β is a hyperparamter determining the level of smoothing. It can be seen in Table 5
that Swish is generally less effective then SoftPlus, and is outperformed by our method at each
combination of dataset and locality.

Standard Deviation: We report the standard deviation of the PMSE for each method, dataset,
function and neighborhood size ε in Table 6. Of the 18 PMSE results, SmoothHess + SmoothGrad
attains the lowest standard deviation for 15 and ties with SoftPlus Hessian + SoftPlus Gradient for 2.
The standard deviation of SoftPlus Hessian + SoftPlus Gradient is the lowest for FMNIST internal
neuron at ε = 0.5, achieving 2.4e-7 while SmoothHess + SmoothGrad achieves 2.5e-7.

ResNet101: We repeat our PMSE experiment for the predicted class logits of CIFAR10 using a
ResNet101, reporting results in Table 7. It can be seen in the leftmost column that our method,
SH + SG, achieves superior performance to the competing methods at each locality, indicating that
SmoothHess can generalize to larger network architectures. The standard deviation of PMSE , as
well as choices of σ2 / β (as selected from a validation set) are reported in the center and rigthmost
columns, respectively.

F.2 Adversarial Attacks

Comparison with Vanilla Hessian: One may use the vanilla Hessian of the predicted SoftMax
probability, which admits higher order derivatives, to construct adversarial attacks. Table 8 is an
updated version of Table 2 which includes results for attacks using the vanilla Hessian + vanilla
Gradient (H + G), in the third to last row.

We see that inclusion of the vanilla Hessian generally results in more effective attacks then use of
the vanilla gradient alone. H + G ties SH+SG and SP H + G for lowest post-hoc accuracy at the

29

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 9.6e-7 7.8-6 6.7e-5 4.9e-8 4.0e-7 3.3e-6 6.5e-7 4.0e-6 4.3e-5 2.0e-8 1.8e-7 1.6e-6 9.8e-4 2.2e-2 1.2e-1 8.1e-7 1.4e-5 1.6e-4
SG [76] 4.5e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.0e-6 2.7e-5 2.6e-4 1.0e-7 9.0e-7 7.0e-6 1.3e-2 8.6e-2 4.9e-1 1.3e-5 1.1e-4 8.3e-4
SP (H + G) 1.2e-6 9.6e-6 8.1e-5 5.5e-8 4.4e-7 3.7e-6 9.6e-7 7.5e-6 6.5e-5 3.0e-8 2.1e-7 1.8e-6 2.1e-3 3.3e-2 2.5e-1 1.1e-5 1.0e-4 7.0e-4
SP G 4.6e-6 4.1e-5 3.9e-4 2.1e-7 1.7e-6 1.5e-5 3.2e-6 2.8e-5 2.6e-4 1.0e-7 8.5e-7 7.2e-6 1.3e-2 9.0e-2 5.2e-1 5.1e-5 2.9e-4 1.6e-3
SW (H+ G) 2.4e-6 2.0e-5 1.9e-4 1.0e-7 8.3e-7 7.3e-6 2.1e-6 1.7e-5 1.8e-4 5.0e-8 4.3e-7 3.7e-6 1.1e-2 3.3e-1 7.9e0 6.2e-5 1.7e-3 3.8e-2
SW G 5.6e-6 5.0e-5 4.9e-4 2.4e-7 2.0e-6 1.8e-5 3.9e-6 3.5e-5 3.5e-4 1.1e-7 9.6e-7 8.3e-6 4.9e-2 9.8e-2 6.0e-1 5.6e-5 3.4e-4 2.0e-3
G [73] 4.2e-3 1.7e-2 6.7e-2 2.0e-3 7.0e-3 2.9e-2 3.8e-3 1.5e-2 6.0e-2 1.0e-4 4.0e-4 1.8e-3 3.0e-1 1.2e-0 5.0e-0 9.0e-4 3.5e-3 1.4e-2

Table 5: Average PMSE results at three radii ε, with the inclusion of vanilla Gradient (G). Other methods
include: SmoothHess + SmoothGrad (SH+SG,Us) SmoothGrad (SG) SoftPlus Grad (SP G) SoftPlus Hessian +
Gradient (SP H + G). Results are provided for the predicted class logit, and the penultimate neuron maximally
activated by the "three," dress and cat classes for MNIST, FMNIST and CIFAR10 respectively.

Dataset MNIST FMNIST CIFAR10
Function Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓) Class Logit (↓) Int. Neuron (↓)
ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 9.9e-7 7.3-6 6.4e-5 3.9e-8 2.7e-7 2.1e-6 1.0e-6 7.7e-6 6.4e-5 2.8e-8 2.5e-7 1.9e-6 4.7e-3 1.1e-1 4.3e-1 1.5e-6 3.6e-5 4.2e-4
SG [76] 7.0e-6 7.4e-5 7.1e-5 2.2e-7 1.6e-6 1.2e-5 5.5e-6 5.1e-5 4.6e-4 2.0e-7 1.8e-6 1.3e-5 4.7e-2 1.9e-1 7.5e-1 4.2e-5 4.1e-4 2.9e-3
SP (H + G) 1.2e-6 9.5e-6 7.7e-5 4.4e-8 2.9e-7 2.1e-6 2.4e-6 1.5e-5 1.2e-4 3.1e-8 2.4e-7 1.9e-6 6.5e-3 1.3e-1 6.4e-1 5.7e-5 4.0e-4 1.9e-3
SP G 7.1e-6 7.4e-5 7.2e-4 2.2e-7 1.6e-6 1.2e-5 6.1e-6 5.4e-5 4.7e-4 2.0e-7 1.8e-6 1.4e-5 4.8e-2 1.9e-1 7.6e-1 2.6e-4 8.9e-4 3.6e-3
SW (H+ G) 2.6e-6 2.0e-5 1.9e-4 6.5e-8 4.6e-7 4.2e-6 7.2e-6 3.3e-5 3.7e-4 5.3e-8 4.5e-7 4.0e-6 5.0e-2 1.7e0 4.3e1 3.6e-4 1.2e-2 2.7e-1
SW G 7.3e-6 7.2e-5 7.4e-4 2.1e-7 1.5e-6 1.2e-5 6.6e-6 6.2e-5 6.2e-4 1.5e-7 1.1e-6 9.0e-6 5.0e-2 2.1e-1 8.6e-1 2.8e-4 1.0e-3 4.2e-3
G [73] 2.1e-3 8.4e-3 3.4e-2 7.9e-5 3.0e-4 1.2e-3 2.7e-3 1.1e-2 4.3e-2 9.1e-5 4.0e-4 1.4e-3 2.4e-1 9.6e-1 3.7e-0 9.0e-4 3.7e-3 1.5e-2

Table 6: Standard deviation of PMSE at three radii ϵ. SmoothHess + SmoothGrad (SH+SG,Us) SmoothGrad
(SG) SoftPlus Grad (SP G) SoftPlus Hessian + Gradient (SP H + G) Vanilla gradient (G). Results are provided
for the predicted class logit, and the penultimate neuron maximally activated by the "three," dress and cat classes
for MNIST, FMNIST and CIFAR10 respectively.

smallest magnitude (ε = 0.25) for the simplest dataset (MNIST). However, as no smoothing is done,
the attacks generated from the H + G are generally significantly weaker then those generated using
smooth surrogates. In fact, aside from MNIST with ε = 0.25, the second order vanilla H + G attacks
achieve higher post-hoc accuracy then first-order method SmoothGrad for all datasets and values of ε.
This is especially apparent for CIFAR10, the most complex dataset.

F.3 Nested Interactions

We use the Nested Interactions dataset to highlight SmoothHess’s ability to capture different interac-
tions occurring at various localities around a given point. In this experiment we measure interactions
around the origin x0 = (0, 0)T ∈ R2.

Just like the Four Quadrant dataset, the Nested Interactions dataset consists of points x ∈ R2 sampled
uniformly from [−2, 2]× [−2, 2] ⊂ R2 with a spacing of 0.008. We establish different interactions
occurring around the origin x0, based upon the distance from x0. Specifically, we set the label for a
given point x by: x ∈ B0.6(x0) =⇒ y(x) = 1

2x
2
1 + x1x2 , x ∈ B1.2(x0)\B0.6(x0) =⇒ y(x) =

x1x2, x ∈ R2\B1.2(x0) =⇒ y(x) = −5x1x2.

In words, the interaction between features x1 and x2 is 1 inside the radius-1.2 ball around x0 and is
−5 outside of this ball. The interaction between x1 and itself is 1 inside the radius-0.6 ball around x0

and 0 outside of this ball. The interaction between x2 and itself is 0 over all of R2.

We train a 6-layer neural network on the Nested Interactions dataset and estimate SmoothHess and
SoftPlus Hessian for σ2 ∈ {1e-6, . . . , 1e1} and β ∈ {1e-1, . . . , 4.0} respectively. The interaction
results for x1 with itself, x1 with x2 and x2 with itself as a function of the level of smoothing (σ or
β) are reported in Figure 5.

As the target function y(x) is discontinuous, it is not possible for a network to memorize the Nested
Interactions dataset. Thus, there very well may be interactions occurring in the network which are
not described as above; the interactions we know occur in the data are not a pure "gold-standard".
That being said, Figure 5 shows that SmoothHess captures the interactions as we know occur in the
data, and the SoftPlus Hessian does not. This suggests that, to a large extent, both (i) the network has

30

Value PMSE PMSE Std σ2, β used

ϵ 0.25 0.50 1.00 0.25 0.50 1.00 0.25 0.50 1.00

SH+SG (Us) 1.3e-4 9.5e-4 6.9e-3 1.7e-4 1.1e-3 1.1e-2 1.1e-5 4.6e-6 1.8e-4

SG 5.3e-4 4.3e-3 3.3e-2 1.0e-3 8.3e-3 6.7e-2 1.1e-5 4.6e-6 1.8e-4

SP (H + G) 3.7e-4 2.6e-3 1.7e-2 6.6e-4 2.7e-3 3.1e-2 41.0 16.0 11.5

SP G 6.2e-4 5.0e-3 3.7e-2 1.1e-3 8.8e-3 6.9e-2 55.0 22.5 11.5

Swish (H + G) 1.5e-3 1.2e-2 4.5e-2 2.5e-3 8.3e-3 2.8e-2 27.5 17.5 1.5

Swish G 8.8e-4 7.0e-3 5.3e-2 1.4e-3 1.1e-2 8.3e-2 60.0 1.0e6 1.0e6

G 3.8e0 1.5e+1 6.0e+1 3.3e0 1.3e1 5.2e1 n/a n/a n/a

Table 7: Using a ResNet101 trained on CIFAR10, the average PMSE achieved by SmoothHess + SmoothGrad
(SH + SG, Us), SmoothGrad (SG), SoftPlus Hessian + SoftPlus Gradient (SP (H+G)), SoftPlus Gradient (SP
G), Swish Hessian + Swish Gradient (Swish (H+G)), Swish Gradient (Swish G) and Vanilla Gradient (G), is
evaluated as a proxy for explainer quality. Results are reported at three radii ε, for the predicted class logit. Left:
PMSE results are reported. The lowest value in each column is bolded. Middle: The standard deviation of
PMSE is reported. The lowest value in each column is bolded. Right: The smoothing hyperparameter (σ2 for
SmoothGrad and SmoothHess + SmoothGrad, β for SoftPlus and Swish) used is reported. Our method, SH +
SG, achieves the lowest PMSE for each of the three radii ε. This indicates that the interactions SmoothHess
captures improve the model of network behaviour, even for large networks such as ResNet101.

Dataset MNIST FMNIST CIFAR10
Attack Magnitude ϵ 0.25 0.50 0.75 1.25 1.75 0.25 0.50 0.75 1.25 1.75 0.1 0.2 0.3 0.4 1.0

SH+SG (Us) 93.0 80.3 48.0 10.5 2.0 79.5 46.8 25.0 3.5 0.0 62.5 38.5 26.5 15.0 4.5
SG [76] 93.3 81.8 48.8 11.3 2.8 79.5 49.3 26.3 4.0 0.0 65.0 42.0 27.5 17.0 0.0
SP (H + G) 93.0 81.8 51.5 15.8 7.5 79.8 51.0 27.5 5.3 0.8 64.5 42.0 31.0 23.5 7.5
SP G 93.3 82.3 53.8 16.3 5.0 79.8 51.5 29.5 7.8 1.0 66.5 47.5 36.0 29.5 8.5
H + G 93.0 81.8 55.3 19.0 11.8 80.0 50.0 30.3 9.5 2.0 68.0 51.5 40.5 32.5 22.0
G [73] 93.3 82.8 56.0 18.5 8.8 80.3 52.3 31.8 11.0 2.5 69.0 51.5 41.0 34.0 21.5
Random 99.8 99.5 99.0 99.0 98.8 99.3 98.0 97.3 95.5 93.8 100.0 99.5 99.0 98.5 96.5

Table 8: Post-hoc accuracy of adversarial attacks performed on the predicted SoftMax probability, at five attack
magnitudes ϵ, with the inclusion of the vanilla Hessian + vanilla Gradient (H + G). Lower is better. Other
methods include: SmoothHess + SmoothGrad (SH + SG, Ours), SmoothGrad (SG), SoftPlus Gradient (SP G),
SoftPlus Hessian + SoftPlus Gradient (SP (H + G)) and vanilla Gradient (G). First order attack vectors are
constructed by scaling the normalized gradient by ϵ and subtracting from the input. Second order attack vectors
are found by minimizing the corresponding second-order Taylor expansions.

memorized the data and (ii) SmoothHess captures the network behaviour while the SoftPlus Hessian
does not.

F.4 Qualitative Comparison

We present a visual comparison of the interactions found by SmoothHess with those from other
methods. Namely, we consider methods that can be interpreted as the quadratic term in a second-order
Taylor expansion around a smooth surrogate network: SoftPlus Hessian and Swish Hessian.

We show interactions found between super-pixels of CIFAR10 test images. To this end, we utilize the
Simple Linear Iterative Clustering (SLIC) [2] algorithm to segment the image into 20-25 super-pixels.
We sum interactions between each pair of features in each pair of super-pixels, before visualization.

Results are shown in Figure 6 for the predicted class logit of a ResNet18 model for three CIFAR10
test images. Here, each row corresponds to a separate image. Test images are visualized in column
1. Columns 2-4 correspond to the three methods. For each image, interactions between one chosen

31

(a)

-5.0 -4.0 -3.0 -2.0-6.0 -1.0 0.0

x1, x1
x1, x2
x2, x2

2.0

-1.0

0.0

1.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

-3.0

-2.0

-4.0

-5.0

Sm
oo

th
H

es
s

va
lu

es
 Smoother

-1.0 0.0 1.0 2.0 3.0 4.0

(b) Smoother

So
ftP

lu
s

H
es

si
an

 V
al

ue
s

2.0

-1.0

0.0

1.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

-3.0

-2.0

-4.0

-5.0

log10 σ2 log10 β

SH : vs ∇2
x(f * qσ)(0) log10 σ2 SP Hess : vs ∇2

x fβ(0) log10 β

Figure 5: Three estimated Hessian elements at x0 = (0, 0)T for a 6-layer ReLU Network f : R2 → R trained
on the Nested Interactions dataset. (a) SmoothHess (SH) is estimated with isotropic covariance Σ = σ2I
using granularly sampled σ2 ∈ {1e-6, . . . , 10}. At minute log10 σ

2 < −4 either hyper-local noisy behavior
is captured, or smoothing is so negligible that the smoothed function is approximately piece-wise linear with
a low-magnitude Hessian. For σ2 ranging from log10 σ

2 = −4 to log10 σ
2 = 0 we see SmoothHess reflects

the interactions in the dataset: Starting at log10 σ
2 = −4 both x1x1 and x1x2 have an interaction ≈ 1 until

the interaction between x1x1 begins to dip to 0 around log10 σ
2 = −1.5. Finally around log10 σ

2 = −1
the interaction x1x2 begins to dip toward −5, until log10 σ

2 = 0 when σ2 is so large that samples outside
the training data distribution are incorporated into SmoothHess estimation. (b) The Hessian of the SoftPlus
smoothed function fβ (SP Hess) is computed using granularly sampled β ∈ {1e-1, . . . , 1e4}. Here, as β is
decreased, it is not apparent that the variety of interactions in the Nested Interactions dataset are captured, either
in relative ordering or magnitude.

super-pixel (outlined in black) and each other super-pixel are visualized as a heatmap overlaid upon
the image. In order to facilitate comparison across images and methods, we standardize the heatmap
colorbar to range between the most negative and most positive interaction values on a per-image and
method basis.

One interesting trend seen in each case is that there is a strong positive interaction between the chosen
super-pixel and one other super-pixel which (a) is spatially nearby and (b) contains the class object of
interest. For example, in the first row, the side-view mirror of the car positively interacts with the
front wheel. In the second row, the tip of the frogs head can be seen to interact positively with the
side of the head. In the third row, the upper and lower portions of the dogs front leg have a strong
positive interaction.

Due to the subjectivity of this comparison, we include quantitative results above each image. Specif-
ically, we indicate the PMSE each method achieves within an ε = 0.25 ball around each image.
Optimal smoothing parameters were chosen for each method for this task (see Table 3). It can be seen
that SmoothHess achieves the lowest PMSE in each case by a wide margin. Thus, SmoothHess may
be the preferable option if one wishes for a visualization which best reflects the network’s behaviour
in an ε = 0.25 ball around the image.

32

Max Positive
Interaction

Min Negative
Interaction

No Interaction

Test Image SmoothHess SoftPlus Hessian Swish Hessian
𝒫MSE = 2.0e-4

𝒫MSE = 1.0e-4

𝒫MSE = 1.0e-4

𝒫MSE = 7.0e-4

𝒫MSE = 3.0e-4

𝒫MSE = 4.0e-4

𝒫MSE = 1.5e-3

𝒫MSE = 7.0e-4

𝒫MSE = 8.0e-4

Figure 6: Visualization of interactions between super-pixels found for a ResNet18 on CIFAR10 by SmoothHess,
SoftPlus Hessian and Swish Hessian. Results are shown for test images of a car, frog and dog in the first
second and third rows respectively. Each image is visualised in column one. Images are segmented into
20-25 super-pixels using the SLIC algorithm [2]. Interactions are summed between each pair of features in
each pair of super-pixels. We show interactions with one given super-pixel in each image, outlined in black.
SmoothHess, SoftPlus Hessian and Swish Hessian interactions for this super-pixel are visualized as heatmaps
overlaid upon the image in columns two, three and four, respectively. The heatmap colorbar is standardized
to range between the minimum and maximum interactions on each image-method pair separately, to facilitate
comparison. Quantitative PMSE results for ε = 0.25 are shown above each method-image pairing, with
SmoothHess achieving the lowest PMSE in all cases.

33

	Introduction
	Related Work
	Technical Preliminary
	SmoothHess
	Experiments
	Experimental Setup
	Results

	Conclusion and Future Work
	Societal Impacts
	Proof of Proposition 1
	Preliminary
	Main Result

	Proof of Theorem 1
	Implementation Details
	Quadratic Optimization
	Similarities and Differences with CASO/CAFO

	SmoothHess
	Alternative Covariance Matrices

	Experiment Setup
	Datasets and Models
	Hyperparameters
	PMSE
	Adversarial Attacks

	Additional Experiments
	PMSE
	Adversarial Attacks
	Nested Interactions
	Qualitative Comparison

