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Abstract

Reproducing kernel Hilbert C∗-module (RKHM) is a generalization of reproducing
kernel Hilbert space (RKHS) by means of C∗-algebra, and the Perron–Frobenius
operator is a linear operator related to the composition of functions. Combining
these two concepts, we present deep RKHM, a deep learning framework for kernel
methods. We derive a new Rademacher generalization bound in this setting and
provide a theoretical interpretation of benign overfitting by means of Perron–
Frobenius operators. By virtue of C∗-algebra, the dependency of the bound on
output dimension is milder than existing bounds. We show that C∗-algebra is a
suitable tool for deep learning with kernels, enabling us to take advantage of the
product structure of operators and to provide a clear connection with convolutional
neural networks. Our theoretical analysis provides a new lens through which one
can design and analyze deep kernel methods.

1 Introduction

Kernel methods and deep neural networks are two major topics in machine learning. Originally, they
had been investigated independently. However, their interactions have been researched recently. One
important perspective is deep kernel learning [1, 2, 3]. In this framework, we construct a function
with the composition of functions in RKHSs, which is learned by given training data. Representer
theorems were shown for deep kernel methods, which guarantee the representation of solutions of
minimization problems only with given training data [4, 5]. We can combine the flexibility of deep
neural networks with the representation power and solid theoretical understanding of kernel methods.
Other important perspectives are neural tangent kernel [6, 7] and convolutional kernel [8], which
enable us to understand neural networks using the theory of kernel methods. In addition, Bietti et
al. [9] proposed a regularization of deep neural network through a kernel perspective.

The generalization properties of kernel methods and deep neural networks have been investigated. One
typical technique for bounding generalization errors is to use the Rademacher complexity [10, 11].
For kernel methods, generalization bounds based on the Rademacher complexity can be derived by
the reproducing property. Bounds for deep kernel methods and vector-valued RKHSs (vvRKHSs)
were also derived [5, 12, 13]. Table 1 shows existing Rademacher generalization bounds for kernel
methods. Generalization bounds for deep neural networks have also been actively studied [14, 15, 16,
17, 18, 19]. Recently, analyzing the generalization property using the concept of benign overfitting
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Reproducing space Output dimension Shallow Deep
RKHS 1 O(

√
1/n) [10] O(AL

√
1/n)

vvRKHS d O(
√

d/n) [12, 13] O(AL
√
d/n) [5]

RKHM (existing) d O(
√
d/n) [27] –

RKHM (ours) d O(d1/4/
√
n) O(BLd1/4

√
n)

Table 1: Existing generalization bounds for kernel methods based on the Rademacher complexity and
our bound (n: sample size, A: Lipschitz constant regarding the positive definite kernel, B: The norm
of the Perron–Frobenius operator)

has emerged [20, 21]. Unlike the classical interpretation of overfitting, which is called catastrophic
overfitting, it explains the phenomenon that the model fits both training and test data. For kernel
regression, it has been shown that the type of overfitting can be described by an integral operator
associated with the kernel [22].

In this paper, we propose deep RKHM to make the deep kernel methods more powerful. RKHM is a
generalization of RKHS by means of C∗-algebra [23, 24, 25], where C∗-algebra is a generalization of
the space of complex numbers, regarded as space of operators. We focus on the C∗-algebra of matrices
in this paper. Applications of RKHMs to kernel methods have been investigated recently [26, 27].
We generalize the concept of deep kernel learning to RKHM, which constructs a map from an
operator to an operator as the composition of functions in RKHMs. The product structure of operators
induces interactions among elements of matrices, which enables us to capture relations between data
components. Then, we derive a generalization bound of the proposed deep RKHM. By virtue of
C∗-algebras, we can use the operator norm, which alleviates the dependency of the generalization
bound on the output dimension.

We also use Perron–Frobenius operators, which are linear operators describing the composition of
functions and have been applied to analyzing dynamical systems [28, 29, 30, 31], to derive the bound.
The compositions in the deep RKHM are effectively analyzed by the Perron–Frobenius operators.

C∗-algebra and Perron–Frobenius operator are powerful tools that provide connections of the pro-
posed deep RKHM with existing studies. Since the norm of the Perron–Frobenius operator is
described by the Gram matrix associated with the kernel, our bound shows a connection of the deep
RKHM with benign overfitting. In addition, the product structure of a C∗-algebra enables us to
provide a connection between the deep RKHMs and convolutional neural networks (CNNs).

Our main contributions are as follows.
• We propose deep RKHM, which is a generalization of deep kernel method by means of C∗-algebra.

We can make use of the products in C∗-algebra to induce interactions among data components. We
also show a representer theorem to guarantee the representation of solutions only with given data.

• We derive a generalization bound for deep RKHM. The dependency of the bound on the output
dimension is milder than existing bounds by virtue of C∗-algebras. In addition, the Perron–
Frobenius operators provide a connection of our bound with benign overfitting.

• We show connections of our study with existing studies such as CNNs and neural tangent kernel.
We emphasize that our theoretical analysis using C∗-algebra and Perron–Frobenius operators gives a
new and powerful lens through which one can design and analyze kernel methods.

2 Preliminaries

2.1 C∗-algebra and reproducing kernel C∗-module

C∗-algebra, which is denoted by A in the following, is a Banach space equipped with a product and
an involution satisfying the C∗ identity (condition 3 below).

Definition 2.1 (C∗-algebra) A set A is called a C∗-algebra if it satisfies the following conditions:

1. A is an algebra over C and equipped with a bijection (·)∗ : A → A that satisfies the following
conditions for α, β ∈ C and a, b ∈ A:

• (αa+ βb)∗ = αa∗ + βb∗, • (ab)∗ = b∗a∗, • (a∗)∗ = a.
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2. A is a normed space endowed with ∥ · ∥A, and for a, b ∈ A, ∥ab∥A ≤ ∥a∥A∥b∥A holds. In
addition, A is complete with respect to ∥ · ∥A.

3. For a ∈ A, the C∗ identity ∥a∗a∥A = ∥a∥2A holds.

Example 2.2 A typical example of C∗-algebras is the C∗-algebra of d by d circulant matrices.
Another example is the C∗-algebra of d by d block matrices with M blocks and their block sizes are
m = (m1, . . . ,mM ). We denote them by Circ(d) and Block(m, d), respectively. See [27, 32] for
more details about these examples.

We now define RKHM. Let X be a non-empty set for data.

Definition 2.3 (A-valued positive definite kernel) An A-valued map k : X × X → A is called a
positive definite kernel if it satisfies the following conditions:
• k(x, y) = k(y, x)∗ for x, y ∈ X ,
•
∑n

i,j=1 c
∗
i k(xi, xj)cj is positive semi-definite for n ∈ N, ci ∈ A, xi ∈ X .

Let ϕ : X → AX be the feature map associated with k, defined as ϕ(x) = k(·, x) for x ∈ X and let
Mk,0 = {

∑n
i=1 ϕ(xi)ci| n ∈ N, ci ∈ A, xi ∈ X (i = 1, . . . , n)}. We can define an A-valued map

⟨·, ·⟩Mk
: Mk,0 ×Mk,0 → A as

〈 n∑
i=1

ϕ(xi)ci,

l∑
j=1

ϕ(yj)bj
〉
Mk

:=

n∑
i=1

l∑
j=1

c∗i k(xi, yj)bj ,

which enjoys the reproducing property ⟨ϕ(x), f⟩Mk
= f(x) for f ∈ Mk,0 and x ∈ X . The

reproducing kernel Hilbert A-module (RKHM) Mk associated with k is defined as the completion of
Mk,0. See, for example, the references [33, 34, 26] for more details about C∗-algebra and RKHM.

2.2 Perron–Frobenius operator on RKHM

We introduce Perron–Frobenius operator on RKHM [35]. Let X1 and X2 be nonempty sets and let k1
and k2 be A-valued positive definite kernels. Let M1 and M2 be RKHMs associated with k1 and
k2, respectively. Let ϕ1 and ϕ2 be the feature maps of M1 and M2, respectively. We begin with the
standard notion of linearity in RKHMs.

Definition 2.4 (A-linear) A linear map A : M1 → M2 is called A-linear if for any a ∈ A and
w ∈ M1, we have A(wa) = (Aw)a.

Definition 2.5 (Perron–Frobenius operator) Let f : X1 → X2 be a map. The Perron–Frobenius
operator with respect to f is an A-linear map Pf : M1 → M2 satisfying

Pfϕ1(x) = ϕ2(f(x)).

Note that a Perron–Frobenius operator is not always well-defined since ac = bc for a, b ∈ A and
nonzero c ∈ A does not always mean a = b.

Definition 2.6 (A-linearly independent) The set {ϕ1(x) | x ∈ X} is called A-linearly indepen-
dent if it satisfies the following condition: For any n ∈ N, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ A,

“
∑n

i=1 ϕ1(xi)ci = 0” is equivalent to “ci = 0 for all i = 1, . . . , n”.

Lemma 2.7 If {ϕ1(x) | x ∈ X} is A-linearly independent, then Pf is well-defined.

The following lemma gives a sufficient condition for A-linearly independence.

Lemma 2.8 Let k1 = k̃a, i.e., k is separable, for an invertible operator a and a complex-valued
kernel k̃. Assume {ϕ̃(x) | x ∈ X} is linearly independent (e.g. k̃ is Gaussian or Laplacian), where
ϕ̃ is the feature map associated with k̃. Then, {ϕ1(x) | x ∈ X} is A-linearly independent.

Note that separable kernels are widely used in existing literature of vvRKHS (see e.g. [36]).
Lemma 2.8 guarantees the validity of the analysis with Perron–Frobenius operators, at least in
the separable case. This provides a condition for "good kernels" by means of the well-definedness of
the Perron–Frobenius operator.
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Figure 1: Overview of the proposed deep RKHM. The small blue squares represent matrix elements.
In the case of the autoencoder (see Example 3.1), f1 ◦ f2 is the encoder, and f3 ◦ f4 is the decoder.

Notation We denote the Euclidean inner product and norm by ⟨·, ·⟩ and ∥ · ∥ without the subscript.
For a ∈ A, let |a|A be the unique element in A satisfying |a|2A = a∗a. If a is a matrix, ∥a∥HS is the
Hilbert–Schmidt norm of a. The operator norm of a linear operator A on an RKHM is denoted by
∥A∥op. All the technical proofs are documented in the supplementary.

3 Deep RKHM

We now construct an L-layer deep RKHM. Let A = Cd×d be the C∗-algebra of d by d matrices.
Let A0, . . . ,AL be C∗-subalgebras of A and for j = 1, . . . , L and kj : Aj−1 × Aj−1 → Aj be
an Aj-valued positive definite kernel for the jth layer. For j = 1, . . . , L, we denote by Mj the
RKHM over Aj associated with kj . In addition, we denote by M̃j the RKHM over A associated
with kj . Note that Mj is a subspace of M̃j and for u, v ∈ Mj , we have ⟨u, v⟩M̃j

= ⟨u, v⟩Mj
. We

set the function space corresponding to each layer as FL = {f ∈ ML | f(x) ∈ Rd×d for any x ∈
AL−1, ∥f∥ML

≤ BL} and Fj = {f ∈ Mj | f(x) ∈ Rd×d for any x ∈ Aj−1, ∥Pf∥op ≤ Bj} for
j = 1, . . . , L− 1. Here, for f ∈ Mj with j = 1, . . . , L− 1, Pf is the Perron–Frobenius operator
with respect to f from M̃j to M̃j+1. We assume the well-definedness of these operators. Then, we
set the class of deep RKHM as

Fdeep
L = {fL ◦ · · · ◦ f1 | fj ∈ Fj (j = 1, . . . , L)}.

Figure 1 schematically shows the structure of the deep RKHM.

Example 3.1 We can set Aj = Block((m1,j , . . . ,mMj ,j), d), the C∗-algebra of block diagonal
matrices. By setting M1 ≤ · · · ≤ Ml and Ml ≥ · · · ≥ ML for l < L, the number of nonzero
elements in Aj decreases during 1 ≤ j ≤ l and increases during l ≤ j ≤ L. This construction is
regarded as an autoencoder, where the 1 ∼ lth layer corresponds to the encoder and the l + 1 ∼ Lth
layer corresponds to the decoder.

Advantage over existing deep kernel methods Note that deep kernel methods with RKHSs and
vvRKHSs have been proposed [1, 4, 2]. Autoencoders using RKHSs and vvRKHSs were also
proposed [3, 5]. We have at least three advantages of deep RKHM over deep vvRKHSs or RKHSs:
1) useful structures of matrices stated in Remark 5.2, 2) availability of the operator norm in the
generalization bound stated in Section 4, 3) connection with CNNs stated in Subsection 6.1.

4 Generalization Bound

We derive a generalization error for deep RKHM. To derive the bound, we bound the Rademacher
complexity, which is one of the typical methods on deriving generalization bounds [11]. Let Ω be
a probability space equipped with a probability measure P . We denote the integral

∫
Ω
s(ω)dP (ω)

of a measurable function s on Ω by E[s]. Let x1, . . . , xn and y1, . . . , yn be input and output
samples from the distributions of A0 and AL-valued random variables x and y, respectively. Let
σi,j (i = 1, . . . , d, j = 1, . . . , n) be i.i.d. Rademacher variables. Let σj = (σ1,j , . . . , σd,j). For an
Rd-valued function class F and x = (x1, . . . , xn), the empirical Rademacher complexity R̂n(x,F)

is defined by R̂n(x,F) := E[supf∈F
∑n

i=1 ⟨σi, f(xi)⟩]/n.

4.1 Bound for shallow RKHMs

We use the operator norm to derive a bound, whose dependency on output dimension is milder
than existing bounds. Availability of the operator norm is one of the advantages of considering
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C∗-algebras (RKHMs) instead of vectors (vvRKHSs). Note that although we can also use the Hilbert–
Schmidt norm for matrices, it tends to be large as the dimension d becomes large. On the other hand,
the operator norm is defined independently of the dimension d. Indeed, the Hilbert–Schmidt norm
of a matrix a ∈ Cd×d is calculated as (

∑d
i=1 s

2
i )

1/2, where si is the ith singular value of a. The
operator norm of a is the largest singular value of a.

To see the derivation of the bound, we first focus on the case of L = 1, i.e., the network is shallow.
Let E > 0. For a space F of A-valued functions on A0, let G(F) = {(x, y) 7→ f(x) − y | f ∈
F , ∥y∥A ≤ E}. The following theorem shows a bound for RKHMs with the operator norm.

Theorem 4.1 Assume there exists D > 0 such that ∥k1(x, x)∥A ≤ D for any x ∈ A0. Let
K̃ = 4

√
2(
√
DB1 + E)B1 and M̃ = 6(

√
DB1 + E)2. Let δ ∈ (0, 1). Then, for any g ∈ G(F1),

where F1 is defined in Section 3, with probability at least 1− δ, we have

∥E[|g(x, y)|2A]∥A ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)

)1/2

+ M̃

√
log(2/δ)

2n
.

Theorem 4.1 is derived by the following lemmas. We first fix a vector p ∈ Rd and consider the
operator-valued loss function acting on p. We first show a relation between the generalization
error and the Rademacher complexity of vector-valued functions. Then, we bound the Rademacher
complexity. Since the bound does not depend on p, we can finally remove the dependency on p.

Lemma 4.2 Let F be a function class of Rd×d-valued functions on A0 bounded by C (i.e.,
∥f(x)∥A ≤ C for any x ∈ A0). Let G̃(F , p) = {(x, y) 7→ ∥(f(x) − y)p∥2 | f ∈ F , ∥y∥A ≤ E}
and M = 2(C + E)2. Let p ∈ Rd satisfy ∥p∥ = 1 and let δ ∈ (0, 1). Then, for any g ∈ G̃(F , p),
with probability at least 1− δ, we have

∥E[|g(x, y)|2A]1/2p∥2 ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+ 2R̂n(x, G̃(F , p)) + 3M

√
log(2/δ)

2n
.

Lemma 4.3 With the same notations in Lemma 4.2, let K = 2
√
2(C + E). Then, we have

R̂n(x,G(F , p)) ≤ KR̂n(x,Fp), where Fp = {x 7→ f(x)p | f ∈ F}.

Lemma 4.4 Let p ∈ Rd satisfy ∥p∥ = 1. For F1 defined in Section 3, we have

R̂n(x,F1p) ≤
B1

n

( n∑
i=1

tr(k(xi, xi))
)1/2

.

4.2 Bound for deep RKHMs

We now generalize Theorem 4.1 to the deep setting (L ≥ 2) using the Perron–Frobenius operators.

Theorem 4.5 Assume there exists D > 0 such that ∥kL(x, x)∥A ≤ D for any x ∈ A0. Let
K̃ = 4

√
2(
√
DBL + E)B1 · · ·BL and M̃ = 6(

√
DBL + E)2. Let δ ∈ (0, 1). Then, for any

g ∈ G(Fdeep
L ), with probability at least 1− δ, we have

∥E[|g(x, y)|2A]∥A ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)
)1/2

+ M̃

√
log(2/δ)

2n
.

We use the following proposition and Lemmas 4.2 and 4.3 to show Theorem 4.5. The key idea of the
proof is that by the reproducing property and the definition of the Perron–Frobenius operator, we get
fL ◦ · · · ◦ f1(x) = ⟨ϕL(fL−1 ◦ · · · ◦ f1(x)), fL⟩M̃L

=
〈
PfL−1

· · ·Pf1ϕ(x), fL
〉
M̃L

.

Proposition 4.6 Let p ∈ Rd satisfy ∥p∥ = 1. Then, we have

R̂n(x,Fdeep
L p) ≤ 1

n
sup

(fj∈Fj)j

∥PfL−1
· · ·Pf1 |Ṽ(x)∥op ∥fL∥ML

( n∑
i=1

tr(k1(xi, xi))
)1/2

.

Here, Ṽ(x) is the submodule of M̃1 generated by ϕ1(x1), . . . ϕ1(xn).
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Corollary 4.7 Let p ∈ Rd satisfy ∥p∥ = 1. Then, we have

R̂n(x,Fdeep
L p) ≤ 1

n
B1 · · ·BL

( n∑
i=1

tr(k1(xi, xi))
)1/2

.

Comparison to deep vvRKHS We can also regard Cd×d as the Hilbert space equipped with the
Hilbert–Schmidt inner product, i.e., we can flatten matrices and get d2-dimensional Hilbert space. In
this case, the corresponding operator-valued kernel is the multiplication operator of k(x, y), which
we denote by Mk(x,y). Then, we can apply existing results for vvRKHSs [5, 12], which involve the
term (

∑n
i=1 tr(Mk(xi,xi)))

1/2. It is calculated as

n∑
i=1

tr(Mk(xi,xi)) =

n∑
i=1

d∑
j,l=1

⟨ejl, k(xi, xi)ejl⟩HS =

n∑
i=1

d∑
j,l=1

k(xi, xi)l,l = d

n∑
i=1

tr k(xi, xi).

Thus, using the existing approaches, we have the factor (d
∑n

i=1 tr k(xi, xi))
1/2. On the other hand,

we have the smaller factor (
∑n

i=1 tr k(xi, xi))
1/2 in Theorems 4.1 and 4.5. Using the operator norm,

we can reduce the dependency on the dimension d.

5 Learning Deep RKHMs

We focus on the practical learning problem. To learn deep RKHMs, we consider the following
minimization problem based on the generalization bound derived in Section 4:

min
(fj∈Mj)j

∥∥∥∥ 1n
n∑

i=1

|fL ◦ · · · ◦ f1(xi)− yi|2A
∥∥∥∥
A
+ λ1∥PfL−1

· · ·Pf1 |Ṽ(x)∥op + λ2∥fL∥ML
. (1)

The second term regarding the Perron–Frobenius operators comes from the bound in Proposition 4.6.
We try to reduce the generalization error by reducing the magnitude of the norm of the Perron–
Frobenius operators.

5.1 Representer theorem

We first show a representer theorem to guarantee that a solution of the minimization problem (1) is
represented only with given samples.

Proposition 5.1 Let h : An ×An → R+ be an error function, let g1 be an R+-valued function on
the space of bounded linear operators on M̃1, and let g2 : R+ → R+ satisfy g2(a) ≤ g2(b) for
a ≤ b. Assume the following minimization problem has a solution:

min
(fj∈Mj)j

h(fL ◦ · · · ◦ f1(x1), . . . , fL ◦ · · · ◦ f1(xn)) + g1(PfL−1
· · ·PfL |Ṽ(x)) + g2(∥fL∥ML

).

Then, there exists a solution admitting a representation of the form fj =
∑n

i=1 ϕj(x
j−1
i )ci,j for some

c1,j , . . . , cn,j ∈ A and for j = 1, . . . , L. Here, xj
i = fj ◦ · · · ◦ f1(xi) for j = 1, . . . , L and x0

i = xi.

Remark 5.2 An advantage of deep RKHM compared to deep vvRKHS is that we can make use of the
structure of matrices. For example, the product of two diagonal matrices is calculated by the element-
wise product of diagonal elements. Thus, when A1 = · · · = AL = Block((1, . . . , 1), d), interactions
among elements in an input are induced only by the kernels, not by the product kj(x, x

j−1
i ) · ci,j .

That is, the form of interactions does not depend on the learning parameter ci,j . On the other hand,
if we set Aj = Block(mj , d) with mj = (m1,j , . . . ,mMj ,j) ̸= (1, . . . , 1), then at the jth layer, we
get interactions among elements in the same block through the product kj(x, x

j−1
i ) · ci,j . In this case,

the form of interactions is learned through ci,j . For example, the part M1 ≤ · · · ≤ Ml (the encoder)
in Example 3.1 tries to gradually reduce the dependency among elements in the output of each layer
and describe the input with a small number of variables. The part Ml ≥ · · · ≥ ML (the decoder)
tries to increase the dependency.
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5.2 Computing the norm of the Perron–Frobenius operator

We discuss the practical computation and the role of the factor ∥PfL−1
· · ·Pf1 |Ṽ(x)∥op in Eq. (1). Let

Gj ∈ An×n be the Gram matrix whose (i, l)-entry is kj(x
j−1
i , xj−1

l ) ∈ A.

Proposition 5.3 For j = 1, L, let [ϕj(x
j−1
1 ), . . . , ϕj(x

j−1
n )]Rj = Qj be the QR decomposition of

[ϕj(x
j−1
1 ), . . . , ϕj(x

j−1
n )]. Then, we have ∥PfL−1

· · ·Pf1 |Ṽ(x)∥op = ∥R∗
LGLR1∥op.

The computational cost of ∥R∗
LGLR1∥op is expensive if n is large since computing R1 and RL is

expensive. Thus, we consider upper bounding ∥R∗
LGLR1∥op by a computationally efficient value.

Proposition 5.4 Assume GL is invertible. Then, we have

∥PfL−1
· · ·Pf1 |Ṽ(x)∥op ≤ ∥G−1

L ∥1/2op ∥GL∥op∥G−1
1 ∥1/2op . (2)

Since G1 is independent of f1, . . . , fL, to make the value ∥PfL−1
· · ·Pf1 |Ṽ(x)∥op small, we try to

make the norm of GL and G−1
L small according to Proposition 5.4. For example, instead of the

second term regarding the Perron–Frobenius operators in Eq. (1), we can consider the following term
with η > 0:

λ1(∥(ηI +GL)
−1∥op + ∥GL∥op).

Note that the term depends on the training samples x1, . . . , xn. The situation is different from the
third term in Eq. (1) since the third term does not depend on the training samples before applying
the representer theorem. If we try to minimize a value depending on the training samples, the model
seems to be more specific for the training samples, and it may cause overfitting. Thus, the connection
between the minimization of the second term in Eq. (1) and generalization cannot be explained by the
classical argument about generalization and regularization. However, as we will see in Subsection 6.2,
it is related to benign overfitting and has a good effect on generalization.

Remark 5.5 The inequality (2) implies that as {ϕL(x
L−1
1 ), . . . , ϕL(x

L−1
n )} becomes nearly linearly

dependent, the Rademacher complexity becomes large. By the term ∥(ηI +GL)
−1∥ in Eq. (1), the

function fL−1 ◦ · · · ◦ f1 is learned so that it separates x1, . . . , xn well.

Remark 5.6 To evaluate f1 ◦ · · · ◦ fL(xi) for i = 1, . . . , n, we have to construct a Gram matrix
Gj ∈ An×n

j , and compute the product of the Gram matrix and a vector cj ∈ An
j for j = 1, . . . , L.

The computational cost of the construction of the Gram matrices does not depend on d. The cost
of computing Gjcj is O(n2d̃j), where d̃j is the number of nonzero elements in the matrices in Aj .
Note that if Aj is the C∗-algebra of block diagonal matrices, then we have d̃j ≪ d2. Regarding the
cost with respect to n, if the positive definite kernel is separable, we can use the random Fourier
features [37] to replace the factor n2 with mn for a small integer m ≪ n.

6 Connection and Comparison with Existing Studies

The proposed deep RKHM is deeply related to existing studies by virtue of C∗-algebra and the
Perron–Frobanius operators. We discuss the connection below.

6.1 Connection with CNN

The proposed deep RKHM has a duality with CNNs. Let A0 = · · · = AL = Circ(d), the C∗-algebra
of d by d circulant matrices. For j = 1, . . . , L, let aj ∈ Aj . Let kj be an Aj-valued positive definite
kernel defined as kj(x, y) = k̃j(ajx, ajy), where k̃j is an Aj-valued function. The Aj-valued
positive definite kernel makes the output of each layer become a circulant matrix, which enables
us to apply the convolution as the product of the output and a parameter. Then, fj is represented
as fj(x) =

∑n
i=1 k̃j(ajx, ajx

j−1
i )ci,j for some ci,j ∈ Aj . Thus, at the jth layer, the input x is

multiplied by aj and is transformed nonlinearly by σj(x) =
∑n

i=1 kj(x, ajx
j−1
i )ci,j . Since the

product of two circulant matrices corresponds to the convolution, aj corresponds to a filter. In
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addition, σj corresponds to the activation function at the jth layer. Thus, the deep RKHM with
the above setting corresponds to a CNN. The difference between the deep RKHM and the CNN is
the parameters that we learn. Whereas for the deep RKHM, we learn the coefficients c1,j , . . . , cn,j ,
for the CNN, we learn the parameter aj . In other words, whereas for the deep RKHM, we learn
the activation function σj , for the CNN, we learn the filter aj . It seems reasonable to interpret this
difference as a consequence of solving the problem in the primal or in the dual. In the primal, the
number of the learning parameters depends on the dimension of the data (or the filter for convolution),
while in the dual, it depends on the size of the data.

Remark 6.1 The connection between CNNs and shallow RKHMs has already been studied [27].
However, the existing study does not provide the connection between the filter and activation function.
The above investigation shows a more clear layer-wise connection of deep RKHMs with CNNs.

6.2 Connection with benign overfitting

Benign overfitting is a phenomenon that the model fits any amount of data yet generalizes well [20, 21].
For kernel regression, Mallinar et al. [22] showed that if the eigenvalues of the integral operator
associated with the kernel function over the data distribution decay slower than any powerlaw decay,
than the model exhibits benign overfitting. The Gram matrix is obtained by replacing the integral with
the sum over the finite samples. The inequality (2) suggests that the generalization error becomes
smaller as the smallest and the largest eigenvalues of the Gram matrix get closer, which means the
eigenvalue decay is slower. Combining the observation in Remark 5.5, we can interpret that as the
right-hand side of the inequality (2) becomes smaller, the outputs of noisy training data at the L− 1th
layer tend to be more separated from the other outputs. In other words, for the random variable x
following the data distribution, fL−1 ◦ · · · ◦ f1 is learned so that the distribution of fL−1 ◦ · · · ◦ f1(x)
generates the integral operator with more separated eigenvalues, which appreciates benign overfitting.
We will also observe this phenomenon numerically in Section 7 and Appendix C.3.2. Since the
generalization bound for deep vvRKHSs [5] is described by the Lipschitz constants of the feature
maps and the norm of fj for j = 1, . . . , L, this type of theoretical interpretation regarding benign
overfitting is not available for the existing bound for deep vvRKHSs.

Remark 6.2 The above arguments about benign overfitting are valid only for deep RKHMs, i.e., the
case of L ≥ 2. If L = 1 (shallow RKHM), then the Gram matrix GL = [k(xi, xj)]i,j is fixed and
determined only by the training data and the kernel. On the other hand, if L ≥ 2 (deep RKHM), then
GL = [kL(fL−1 ◦ · · · ◦ f1(xi), fL−1 ◦ · · · ◦ f1(xj))]i,j depends also on f1, . . . , fL−1. As a result, by
adding the term using GL to the loss function, we can learn proper f1, . . . , fL−1 so that they make
the right-hand side of Eq. (2) small, and the whole network overfits benignly. As L becomes large,
the function fL−1 ◦ · · · ◦ f1 changes more flexibly to attain a smaller value of the term. This is an
advantage of considering a large L.

6.3 Connection with neural tangent kernel

Neural tangent kernel has been investigated to understand neural networks using the theory of kernel
methods [6, 7]. Generalizing neural networks to C∗-algebra, which is called the C∗-algebra network,
is also investigated [32, 38]. We define a neural tangent kernel for the C∗-algebra network and develop
a theory for combining neural networks and deep RKHMs as an analogy of the existing studies.
Consider the C∗-algebra network f : AN0 → A over A with A-valued weight matrices Wj ∈
ANj×Nj−1 and element-wise activation functions σj : f(x) = WLσL−1(WL−1 · · ·σ1(W1x) · · · ).
The (i, j)-entry of f(x) is fi(xj) = WL,iσL−1(WL−1 · · ·σ1(W1xj) · · · ), where xj is the jth
column of x regarded as x ∈ CdN0×d and WL,i is the ith row of WL regarded as WL ∈ Cd×dNL−1 .
Thus, the (i, j)-entry of f(x) corresponds to the output of the network fi(xj). We can consider the
neural tangent kernel for each fi. Chen and Xu [7] showed that the RKHS associated with the neural
tangent kernel restricted to the sphere is the same set as that associated with the Laplacian kernel.
Therefore, the ith row of f(x) is described by the shallow RKHS associated with the neural tangent
kernel kNT

i . Let kNN be the A-valued positive definite kernel whose (i, j)-entry is kNT
i for i = j and

0 for i ̸= j. Then, for any function g ∈ MkNN , the elements in the ith row of g are in the RKHS
associated with kNT

i , i.e., associated with the Laplacian kernel. Thus, f is described by this shallow
RKHM.
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Remark 6.3 We can combine the deep RKHM and existing neural networks by replacing some fj in
our model with an existing neural network. The above observation enables us to apply our results in
Section 4 to the combined network.

6.4 Comparison to bounds for classical neural networks

Existing bounds for classical neural networks typically depend on the product or sum of matrix (p, q)

norm of all the weight matrices Wj [14, 15, 16, 17]. Typical bound is O(
√
1/n

∏L
j=1 ∥Wj∥HS).

Note that the Hilbert–Schmidt norm is the matrix (2, 2) norm. Unlike the operator norm, the matrix
(p, q) norm tends to be large as the width of the layers becomes large. On the other hand, the
dependency of our bound on the width of the layer is not affected by the number of layers in the
case where the kernels are separable. Indeed, assume we set k1 = k̃1a1 and kL = k̃LaL for some
complex-valued kernels k̃1 and k̃2, a1 ∈ A1, and aL ∈ AL. Then by Proposition 5.3, the factor
α(L) := ∥PfL−1

· · ·Pf1 |Ṽ(x)∥op is written as ∥R̃∗
LG̃LR̃1⊗a2La1∥op = ∥R̃∗

LG̃LR̃1∥op ∥a2La1∥A for
some R̃L, G̃L, R̃1 ∈ Cn×n. Thus, it is independent of d. The only part depending on d is tr k1(xi, xi),
which results in the bound O(α(L)

√
d/n). Note that the width of the jth layer corresponds to the

number of nonzero elements in a matrix in Aj . We also discuss in Appendix B the connection of our
bound with the bound by Koopman operators, the adjoints of the Perron–Frobenius operators [18].

7 Numerical Results

We numerically confirm our theory and the validity of the proposed deep RKHM.

Comparison to vvRKHS We compared the generalization property of the deep RKHM to the deep
vvRKHS with the same positive definite kernel. For d = 10 and n = 10, we set xi = (azi)

2 + ϵi as
input samples, where a ∈ R100×10 and zi ∈ R10 are randomly generated by N (0, 0.1), the normal
distribution of mean 0 and standard deviation 0.1, (·)2 is the elementwise product, and ϵi is the random
noise drawn from N (0, 1e− 3). We reshaped xi to a 10 by 10 matrix. We set L = 3 and kj = k̃I

for j = 1, 2, 3, where k̃ is the Laplacian kernel. For RKHMs, we set A1 = Block((1, . . . , 1), d),
A2 = Block((2, . . . , 2), d), and A3 = Cd×d. This is the autoencoder mentioned in Example 3.1. For
vvRKHSs, we set the corresponding Hilbert spaces with the Hilbert–Schmidt inner product. We set the
loss function as 1/n∥

∑n
i=1 |f(xi)− xi|2A∥A for the deep RKHM and as 1/n

∑n
i=1 ∥f(xi)− xi∥2HS

for the deep vvRKHS. Here, f = f3 ◦ f2 ◦ f1. We did not add any terms to the loss function to see
how the loss function with the operator norm affects the generalization performance. We computed
the same value ∥E[|f(x)− x|2A]∥A − 1/n∥

∑n
i=1 |f(xi)− xi|2A∥A for both RKHM and vvRKHS.

Figure 2 (a) shows the results. We can see that the deep RKHM generalizes better than the deep
vvRKHS, only with the loss function and without any additional terms.

Observation about benign overfitting We analyzed the overfitting numerically. For d = 10
and n = 1000, we randomly sampled d by d diagonal matrices x1, . . . , xn ∈ A0 from the normal
distribution N (0, 0.1). We set yi = x2

i + ϵi for i = 1, . . . , n, where ϵi is a noise drawn from the
normal distribution N (0, 0.001). The magnitude of the noise is 10% of x2

i . In addition, we set L = 2,
A1 = Cd×d, A2 = Block((1, . . . , 1), d), and kj as the same kernel as the above experiment. The
additional term to the loss function is set as λ1(∥(ηI +GL)

−1∥op + ∥GL∥op) + λ2∥fL∥2ML
, where

η = 0.01 and λ2 = 0.01 according to Subsection 5.2. We computed the generalization error for the
cases of λ1 = 0 and λ1 = 102. Figure 2 (b) shows the result. We can see that the generalization
error saturates without the additional term motivated by the Perron–Frobenius operator. On the other
hand, with the additional term, the generalization error becomes small, which is the effect of benign
overfitting.

Comparison to CNN We compared the deep RKHM to a CNN on the classification task with
MNIST [39]. We set d = 28 and n = 20. We constructed a deep RKHM combined with a
neural network with 2 dense layers. For the deep RKHM, we set L = 2, A0 = Cd×d, A1 =
Block((7, 7, 7, 7), d), and A2 = Block((4, . . . , 4), d). Then, two dense layers are added. See
Subsection 6.3 about combining the deep RKHM with neural networks. Regarding the additional
term to the loss function, we set the same term with the previous experiment with λ2 = 0.001 and

9



(a) (b) (c)

Figure 2: (a) The box plot of the generalization error of the deep RKHM and vvRKHS at the point
that the training error reaches 0.05. (b) Behavior of the generalization error during the learning
process with and without the additional term regarding the Perron–Frobenius operators. (c) Test
accuracy of the classification task with MNIST for a deep RKHM and a CNN.

set λ1 = 1 or λ1 = 0. To compare the deep RKHM to CNNs, we also constructed a network by
replacing the deep RKHM with a CNN. The CNN is composed of 2 layers with 7×7 and 4×4 filters.
Figure 2 (c) shows the test accuracy of these networks. We can see that the deep RKHM outperforms
the CNN. In addition, we can see that the test accuracy is higher if we add the term regarding the
Perron–Frobenius operators. We discuss the memory consumption and the computational cost of
each of the deep RKHM and the CNN in Appendix C.3, and we empirically show that the deep
RKHM outperforms the CNN that has the same size of learning parameters as the deep RKHM. We
also show additional results about benign overfitting in Appendix C.3.

8 Conclusion and Limitations

In this paper, we proposed deep RKHM and analyzed it through C∗-algebra and the Perron–Frobenius
operators. We derived a generalization bound, whose dependency on the output dimension is alleviated
by the operator norm, and which is related to benign overfitting. We showed a representer theorem
about the proposed deep RKHM, and connections with existing studies such as CNNs and neural
tangent kernel. Our theoretical analysis shows that C∗-algebra and Perron–Frobenius operators are
effective tools for analyzing deep kernel methods. The main contributions of this paper are our
theoretical results with C∗-algebra and the Perron–Frobenius operators. More practical investigations
are required for further progress. For example, although we numerically showed the validity of our
method for the case where the number of samples is limited (the last experiment in Section 7), more
experimental results for the case where the number of samples is large are useful for further analysis.
Also, although we can apply random Fourier features (Remark 5.6) to reduce the computational costs,
studying more efficient methods specific to deep RKHM remains to be investigated in future work.
As for the theoretical topic, we assumed the well-definedness of the Perron–Frobenius operators.
Though separable kernels with invertible matrices, which are typical examples of kernels, satisfy the
assumption, generalization of our analysis to other kernels should also be studied in future work.
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A Proofs

We provide the proofs of the theorems, propositions, and lemmas in the main paper.

Lemma 2.7 If {ϕ1(x) | x ∈ X} is A-linearly independent, then Pf is well-defined.

Proof Assume
∑n

i=1 ϕ1(xi)ci =
∑n

i=1 ϕ1(xi)di for n ∈ N, ci, di ∈ A. Since {ϕ1(x) | x ∈
X} is A-linearly independent, we have ci = di for i = 1, . . . , n. Thus, Pf

∑n
i=1 ϕ1(xi)ci =∑n

i=1 ϕ1(f(xi))ci =
∑n

i=1 ϕ1(f(xi))di = Pf

∑n
i=1 ϕ1(xi)di. □

Lemma 2.8 Let k1 = k̃a, i.e., k is separable, for an invertible operator a and a complex-valued
kernel k̃. Assume {ϕ̃(x) | x ∈ X} is linearly independent (e.g. k̃ is Gaussian or Laplacian), where
ϕ̃ is the feature map associated with k̃. Then, {ϕ1(x) | x ∈ X} is A-linearly independent.

Proof If
∑n

i=1 ϕ1(xi)ci = 0, we have

0 =

〈
n∑

i=1

ϕ1(xi)ci,

n∑
i=1

ϕ1(xi)ci

〉
Mk

= c∗Gc = (G1/2c)∗(G1/2c),

where G is the An×n-valued Gram matrix whose (i, j)-entry is k(xi, xj) ∈ A and c = (c1, . . . , cn).
Thus, we obtain G1/2c = 0. Let G̃ be the standard Gram matrix whose (i, j)-entry is k̃(xi, xj).
Since G = G̃⊗ a and G̃ is invertible, the inverse of G is G̃−1 ⊗ a−1. Thus, G1/2 is invertible and
we have c = 0. □

Lemma 4.2 Let F be a function class of Rd×d-valued functions on A0 bounded by C (i.e.,
∥f(x)∥A ≤ C for any x ∈ A0). Let G̃(F , p) = {(x, y) 7→ ∥(f(x) − y)p∥2 | f ∈ F , ∥y∥A ≤ E}
and M = 2(C + E)2. Let p ∈ Rd satisfy ∥p∥ = 1 and let δ ∈ (0, 1). Then, for any g ∈ G̃(F , p),
with probability at least 1− δ, we have

∥E[|g(x, y)|2A]1/2p∥2 ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+ 2R̂n(x, G̃(F , p)) + 3M

√
log(2/δ)

2n
.

Proof For (x, y), (x′, y′) ∈ A× Rd×d, we have

∥(f(x)− y)p∥2 − ∥(f(x′)− y′)p∥2

= ∥f(x)p∥2 − 2 ⟨f(x)p, yp⟩+ ∥yp∥2 − ∥f(x′)p∥2 + 2 ⟨f(x′)p, y′p⟩ − ∥y′p∥2 ≤ 2(C + E)2.

In addition, we have

∥E[|g(x, y)|2A]1/2p∥2 −
∥∥∥∥( 1

n

n∑
i=1

|g(xi, yi)|2A
)1/2

p

∥∥∥∥2 =
〈
p,E[|g(x, y)|2A]p

〉
−

〈
p,

1

n

n∑
i=1

|g(xi, yi)|2Ap
〉

= E[
〈
p, |g(x, y)|2Ap

〉
]− 1

n

n∑
i=1

〈
p, |g(xi, yi)|2Ap

〉
= E[∥g(x, y)p∥2]− 1

n

n∑
i=1

∥g(xi, yi)p∥2.

Since (x, y) 7→ ∥g(x, y)p∥2 is a real-valued map, by Theorem 3.3 by Mohri et al. [11], we have

∥E[|g(x, y)|2A]1/2p∥2 −
∥∥∥∥( 1

n

n∑
i=1

|g(xi, yi)|2A
)1/2

p

∥∥∥∥2 ≤ 2R̂n(x, G̃(F , p)) + 3M

√
log(2/δ)

2n
.

The inequality ∥(
∑n

i=1 |g(xi, yi)|2A)1/2p∥2 ≤ ∥
∑n

i=1 |g(xi, yi)|2A∥A completes the proof. □
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Lemma 4.3 With the same notations in Lemma 4.2, let K = 2
√
2(C + E). Then, we have

R̂n(x, G̃(F , p)) ≤ KR̂n(x,Fp), where Fp = {x 7→ f(x)p | f ∈ F}.

Proof Let hi(z) = ∥z − yip∥2 for z ∈ {f(x)p | f ∈ F} ⊆ Rd and i = 1, . . . , n. The Lipschitz
constant of hi is calculated as follows: We have

hi(z)− hi(z
′) = ∥z∥2 − 2 ⟨z − z′, yip⟩ − ∥z′∥2

≤ (∥z∥+ ∥z′∥)(∥z∥ − ∥z′∥) + 2∥z − z′∥∥yip∥
≤ (∥z∥+ ∥z′∥)(∥z − z′∥+ ∥z′∥ − ∥z′∥) + 2∥z − z′∥∥yip∥
≤ (2C + 2E)∥z − z′∥.

Thus, we have |hi(z)− hi(z
′)| ≤ 2(C + E)∥z − z′∥. By Corollary 4 by Maurer [40], the statement

is proved. □

Lemma 4.4 Let p ∈ Rd satisfy ∥p∥ = 1. For F1 defined in Section 3, we have

R̂n(x,F1p) ≤
B1

n

( n∑
i=1

tr(k(xi, xi))
)1/2

.

Proof We have

E

[
sup
f∈F1

1

n

n∑
i=1

⟨σi, f(xi)p⟩
]
= E

[
sup
f∈F1

1

n

n∑
i=1

〈
(σip

∗)p, ⟨ϕ1(xi), f⟩M1
p
〉 ]

= E

[
sup
f∈F1

1

n

〈
p,

n∑
i=1

(pσ∗
i ) ⟨ϕ1(xi), f⟩M1

p

〉]

= E

[
sup
f∈F1

1

n

〈
p,

〈 n∑
i=1

ϕ1(xi)(σip
∗), f

〉
M̃1

p

〉]

= E

[
sup
f∈F1

1

n

( n∑
i=1

ϕ1(xi)(σip
∗), f

)
M̃1,p

]

≤ E

[
sup
f∈F1

1

n

∥∥∥∥ n∑
i=1

ϕ1(xi)(σip
∗)

∥∥∥∥
M̃1,p

∥f∥M̃1,p

]
(3)

≤ E

[
sup
f∈F1

1

n

〈
p,

∣∣∣∣ n∑
i=1

ϕ1(xi)(σip
∗)

∣∣∣∣2
M̃1

p

〉1/2

∥f∥M̃1

]
(4)

≤ B1

n
E

[( n∑
i,j=1

p∗pσ∗
i k1(xi, xj)σjp

∗p

)1/2]

≤ B1

n
E

[ n∑
i,j=1

σ∗
i k1(xi, xj)σj

]1/2
(5)

=
B1

n
E

[ n∑
i=1

σ∗
i k1(xi, xi)σi

]1/2
=

B1

n

( n∑
i=1

tr k1(xi, xi)

)1/2

,

where for p ∈ Cd and f, g ∈ M̃1, (f, g)M̃1,p
is the semi-inner product defined by (f, g)M̃1,p

=〈
p, ⟨f, g⟩M̃1

p
〉

and |f |2M̃1
= ⟨f, f⟩M̃1

. In addition, the inequality (3) is by the Cauchy–Schwartz
inequality and the inequality (5) is by the Jensen’s inequality. Note that the Cauchy–Schwartz
inequality is still valid for semi-inner products. The inequality (4) is derived by the inequality

∥fL∥2M̃L,p
=

〈
p, ⟨fL, fL⟩ML

p
〉
≤ ∥p∥2∥ ⟨fL, fL⟩ML

∥A ≤ ∥fL∥2M̃L
.
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□

Theorem 4.1 Assume there exists D > 0 such that ∥k1(x, x)∥A ≤ D for any x ∈ A0. Let
K̃ = 4

√
2(
√
DB1 + E)B1 and M̃ = 6(

√
DB1 + E)2. Let δ ∈ (0, 1). Then, for any g ∈ G(F1),

where F1 is defined in Section 3, with probability at least 1− δ, we have

∥E[|g(x, y)|2A]∥A ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)

)1/2

+ M̃

√
log(2/δ)

2n
.

Proof For f ∈ M1 and x ∈ A0, we have

∥f(x)∥A = ∥ ⟨ϕ1(x), f⟩M1
∥A ≤ ∥k1(x, x)∥1/2A ∥f∥M1 ≤

√
DB1.

Thus, we set C as
√
DB1 and apply Lemmas 4.2, 4.3, and 4.4. Then, for p ∈ Rd satisfy ∥p∥ = 1,

with probability at least 1− δ, we have

∥E[|g(x, y)|2A]1/2p∥2 ≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)

)1/2

+ M̃

√
log(2/δ)

2n
.

Therefore, we obtain

∥E[|g(x, y)|2A]∥A = ∥E[|g(x, y)|2A]1/2∥2A

≤
∥∥∥∥ 1n

n∑
i=1

|g(xi, yi)|2A
∥∥∥∥
A
+

K̃

n

( n∑
i=1

tr k1(xi, xi)

)1/2

+ M̃

√
log(2/δ)

2n
,

which completes the proof. □

Proposition 4.6 We have

R̂n(x,Fdeep
L p) ≤ 1

n
sup

(fj∈Fj)j

∥PfL−1
· · ·Pf1 |Ṽ(x)∥op ∥fL∥ML

( n∑
i=1

tr(k1(xi, xi))
)1/2

.

Here, Ṽ(x) is the submodule of M̃1 generated by ϕ1(x1), . . . ϕ1(xn).

The following lemma by Lance [33, Proposition 1.2] is used in proving Proposition 4.6. Here, for
a, b ∈ A, a ≤ b means b− a is Hermitian positive definite.

Lemma A.1 Let M and N be Hilbert A-modules and let A be an A-linear operator from M to N .
Then, we have |Aw|2N ≤ ∥A∥2op|w|2M.

Proof

E

[
sup

f∈Fdeep
L

1

n

n∑
i=1

⟨σi, f(xi)p⟩
]
= E

[
sup

(fj∈Fj)j

1

n

n∑
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⟨(σip
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]

= E

[
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1

n
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〈
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p
〉]

= E

[
sup

(fj∈Fj)j

1

n

n∑
i=1

〈
p, (pσ∗

i ) ⟨ϕL(fL−1(· · · f1(xi) · · · )), fL⟩ML
p
〉]

= E

[
sup

(fj∈Fj)j

1

n

〈
p,

〈 n∑
i=1

ϕL(fL−1(· · · f1(xi) · · · ))(σip
∗), fL

〉
M̃L

p

〉]
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= E

[
sup

(fj∈Fj)j

1

n

( n∑
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ϕL(fL−1(· · · f1(xi) · · · ))(σip
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]

≤ E
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]
(6)

≤ E

[
sup
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1

n
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M̃L
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≤ 1
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i,j=1

p∗pσ∗
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,

where the inequality (6) is by the Cauchy–Schwartz inequality and the inequality (7) is by Lemma A.1.
□

Proposition 5.1 Let h : An × An → R+ be an error function, let g1 be an R+-valued function
on the space of bounded linear operators on M̃1, and let g2 : R+ → R+ satisfy g2(a) ≤ g2(b) for
a ≤ b. Assume the following minimization problem has a solution:

min
(fj∈Mj)j

h(fL ◦ · · · ◦ f1(x1), . . . , fL ◦ · · · ◦ f1(xn)) + g1(PfL−1
· · ·PfL |Ṽ(x)) + g2(∥fL∥ML

).

Then, there exists a solution admitting a representation of the form fj =
∑n

i=1 ϕj(x
j−1
i )ci,j for some

c1,j , . . . , cn,j ∈ A and for j = 1, . . . , L. Here, xj
i = fj ◦ · · · ◦ f1(xi) for j = 1, . . . , L and x0

i = xi.

Proof Let Vj(x) be the submodule of Mj generated by ϕj(x
j−1
1 ), . . . , ϕj(x

j−1
n ). Let fj = f

∥
j +f⊥

j ,

where f
∥
j ∈ Vj(x) and f⊥

j ∈ Vj(x)
⊥. Then, for j = 1, . . . , L− 1, we have

fj(x
j−1
i ) =

〈
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j−1
i ), fj

〉
Mj

=
〈
ϕj(x

j−1
i ), f

∥
j

〉
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= f
∥
j (x
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i ). (8)

In addition, we have

PfL−1
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j=1

Pfj |Ṽj(x)
,

where Ṽj(x) is the submodule of M̃j generated by ϕj(x
j−1
1 ), . . . ϕj(x

j−1
n ). In the same manner as

Eq. (8), we obtain

Pfj

n∑
i=1

ϕj(x
j−1
i )ci,j =

n∑
i=1

ϕj+1(fj(x
j−1
i ))ci,j =

n∑
i=1

ϕj+1

(
f
∥
j (x

j−1
i )

)
ci,j

=

n∑
i=1

P
f
∥
j
ϕj(x

j−1
i )ci,j .
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Thus, we have Pfj |Ṽj(x)
= P

f
∥
j
|Ṽj(x)

. Furthermore, we have∥∥fL∥ML
= ∥

〈
f
∥
L + f⊥

L , f
∥
L + f⊥

L

〉
ML

∥∥
A =

∥∥〈f∥
L, f

∥
L

〉
ML

+
〈
f⊥
L , f⊥

L

〉
ML

∥∥
A ≥

∥∥〈f∥
L, f

∥
L

〉
ML

∥∥
A,

where the last inequality is derived from the fact that
〈
f
∥
L, f

∥
L

〉
ML

+
〈
f⊥
L , f⊥

L

〉
ML

−
〈
f⊥
L , f⊥

L

〉
ML

is positive and Theorem 2.2.5 (3) by Murphy [34]. As a result, the statement is proved. □

Proposition 5.3 For j = 1, L, let [ϕj(x
j−1
1 ), . . . , ϕj(x

j−1
n )]Rj = Qj be the QR decomposition of

[ϕj(x
j−1
1 ), . . . , ϕj(x

j−1
n )]. Then, we have ∥PfL−1

· · ·Pf1 |Ṽ(x)∥op = ∥R∗
LGLR1∥op.

Proof The result is derived by the identities
∥PfL−1

· · ·Pf1 |Ṽ(x)∥op = ∥Q∗
LPfL−1

· · ·Pf1Q1∥op = ∥Q∗
LPfL−1

· · ·Pf1 [ϕ1(x1), . . . , ϕ1(xn)]R1∥op
= ∥R∗

L[ϕL(x
L−1
1 ), . . . , ϕL(x

L−1
n )]∗[ϕL(x

L−1
1 ), . . . , ϕL(x

L−1
n )]R1∥op

= ∥R∗
LGLR1∥op.

□

Proposition 5.4 Assume GL is invertible. Then, we have

∥PfL−1
· · ·Pf1 |Ṽ(x)∥op ≤ ∥G−1

L ∥1/2op ∥GL∥op∥G−1
1 ∥1/2op .

Proof Since GL is invertible, by Proposition 5.3, ∥R∗
LGLR1∥op is bounded as

∥PfL−1
· · ·Pf1 |Ṽ(x)∥op = ∥R∗

LGLR1∥op ≤ ∥RL∥op∥GL∥op∥R1∥op = ∥G−1
L ∥1/2op ∥GL∥op∥G−1

1 ∥1/2op ,

where the last equality is derived by the identity ∥Rj∥2op = ∥RjR
∗
j∥op = ∥Gj

−1∥op. □

B Connection with Generalization Bound with Koopman Operators

Hashimoto et al. [18] derived a generalization bound for the classical neural network composed of
linear transformations and activation functions using Koopman operators. The Koopman operator is
the adjoint of the Perron–Frobenius operator. In their analysis, they set the final transformation fL
in an RKHS and observed that if the transformation of each layer is injective, the noise is separated
through the linear transformations and cut off by fL. Since the final transformation fL in our case is
in an RKHM, the same interpretation about noise is valid for deep RKHM, too. Indeed, if fL ◦ · · · ◦f1
is not injective, then GL is not invertible, which results in the right-hand side of the inequality (2)
going to infinity. The bound derived by Hashimoto et al. also goes to infinity if the network is not
injective.

C Experimental Details and Additional Results

We provide details for the experiments in Section 7. All the experiments are executed with Python
3.9 and TensorFlow 2.6 on Intel(R) Core(TM) i9 CPU and NVIDIA Quadro RTX 5000 GPU with
CUDA 11.7.

C.1 Comparison with vvRKHS

We set kj(x, y) = k̃(x, y)I for j = 1, . . . , 3 with k̃(x, y) = e−c
∑d

i,j=1 |xi,j−yi,j | and c = 0.001 for
positive definite kernels. For the optimizer, we used SGD. The learning rate is set as 1e−4 both for
the deep RKHM and deep vvRKHS. The initial value of ci,j is set as ai,j + ϵi,j , where ai,j ∈ Aj

is the block matrix all of whose elements are 0.1 and ϵi,j is randomly drawn from N (0, 0.05). The
result in Figure 2 is obtained by 5 independent runs.
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C.2 Observation about benign overfitting

We set the same positive definite kernel as Subsection C.1 for j = 1, 2. For the optimizer, we used
SGD. The learning rate is set as 3 × 1e−4. The initial value of ci,j is the same as Subsection C.1.
The result in Figure 2 is obtained by 3 independent runs.

C.3 Comparison to CNN

We set kj(x, y) = k̃(xaj , yaj)xy
∗ for j = 1, 2, where a1 and a2 are block matrices whose block

sizes are 2 and 4, for positive definite kernels. All the nonzero elements of aj are set as 1. We set a1
and a2 to induce interactions in the block elements (see Remark 5.2). For the optimizer, we used
Adam with learning rate 1e−3 for both the deep RKHM and the CNN. The initial value of ci,j is set
as ϵi,j , where ϵi,j is randomly drawn from N (0, 0.1).

We combined the deep RKHM and CNN with 2 dense layers. Their activation functions are sigmoid
and softmax, respectively. For the CNN layers, we also used the sigmoid activation functions. The
loss function is set as the categorical cross-entropy for the CNN. The result in Figure 2 is obtained by
5 independent runs.

C.3.1 Memory consumption and computational cost

Memory consumption We used a CNN with (7× 7) and (4× 4)-filters. On the other hand, for the
deep RKHM, we learned the coefficients ci,j in Proposition 5.1 for j = 1, 2 and i = 1, . . . , n. That
is, we learned the following coefficients:

• n(= 20) block diagonal matrices each of whom has four (7× 7)-blocks (for the first layer)
• n block diagonal matrices each of whom has seven (4× 4)-blocks (for the second layer)

Thus, the size of the parameters we have to learn for the deep RKHM is larger than the CNN. Since
the memory consumption depends on the size of learning parameters, the memory consumption is
larger for the deep RKHM than for the CNN.

Computational cost In each iteration, we compute f(xi) for i = 1, . . . , n and the derivative of
f with respect to the learning parameters. Here, f = f1 ◦ f2 is the network. For the deep RKHM,
we compute the product of a Gram matrix (composed of n × n block diagonal matrices) and a
vector (composed of n block diagonal matrices) for computing fj(xi) for all i = 1, . . . , n. Thus, the
computational cost for computing f(xi) for all i = 1, . . . , n is O(n2d(m1 +m2)), where m1 = 7
and m2 = 4 are the sizes of the block diagonal matrices. For the CNN, the computational cost for
computing f(xi) for all i = 1, . . . , n is O(nd2(l1 + l2)), where l1 = 7× 7 and l2 = 4× 4 are the
number of elements in the filters. Since we set n = 20 and d = 28, the computational cost of the
deep RKHM for computing f(xi) for i = 1, . . . , n is smaller than that of the CNN. However, since
the size of the learning parameters of the deep RKHM is large, the computational cost for computing
the derivative of f(xi) is larger than that of the CNN.

Additional results To compare the deep RKHM to a CNN with the same size of learning parameters
(the same memory consumption), we conducted the same experiment as the last experiment in the
main text, excepting for the structure of the CNN. We constructed a CNN with (28 × 7 · 20) and
(28× 4 · 20)-filters (The size of learning parameters is the same as the deep RKHM) and replaced the
CNN used in the experiment in the main text. Figure 3 shows the result. The result is similar to that
in Figure 2 (c), and the deep RKHM also outperforms the CNN with the same learning parameter
size. Since the size of the learning parameter is the same in this case, the computational cost for one
iteration for learning the deep RKHM is the same or smaller than that for learning the CNN.

C.3.2 Additional results for benign ovefitting

We also observed benign overfitting for the deep RKHM. We compared the train and test losses for
the deep RKHM with λ1 = 1 to those with λ1 = 0. The results are illustrated in Figure 4. If we set
λ1 = 0 in Eq. (1), i.e., do not minimize the term in Eq. (2), then whereas the training loss becomes
small as the learning process proceeds, the test loss becomes large after sufficient iterations. On
the other hand, if we set λ1 = 1, i.e., minimize the term in Eq. (2), then the training loss becomes
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Figure 3: Comparison of deep RKHM to a CNN with the same size of learning parameter.

Figure 4: Train loss and test loss for the MNIST classification task with (λ = 1) and without (λ = 0)
the minimization of the second term in Eq. (1) regarding the Perron–Frobenius operators.

smaller than the case of λ1 = 0, and the test loss does not become large even the learning process
proceeds. The result implies that the term regarding the Perron–Frobenius operators in Eq. (1) causes
overfitting, but it is benign overfitting.
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