
A Formal definition of Greedy Rejection Coding

A.1 Formal definition

Here we give a formal definition of GRC in terms of measures. We chose to omit this from the main
text for the sake of exposition, and instead formally define GRC in definition 5 below.
Definition 5 (Greedy Rejection Coding). Let Z be a partitioning process on ⌃, and I0 = 1, S0 = ZI0 .
Let T0(·, S0) be the zero-measure on (X ,⌃). Then for d = 0, 1, . . . define

td(x, S0:d)
def
=

dTd(·, S0:d)

dP (·)
(x), (13)

↵d+1(x, S0:d)
def
= min

⇢
dQ

dP
(x)� td(x, S0:d),

1� Td(X , S0:d)

P (Sd)

�
(14)

Ad+1(S, S0:d)
def
=

Z

S

dP (x) ↵d+1(x, S0:d), (15)

�d+1(x, S0:d)
def
= ↵d+1(x, S0:d)

P (Sd)

1� Td(X , S0:d)
, (16)

XId ⇠
P |Sd

P (Sd)
, (17)

UId ⇠ Uniform(0, 1), (18)

bd ⇠ Bernoulli
✓
Q(Z2Id+1)� Td(Z2Id+1, S0:d)�Ad+1(Z2Id+1, S0:d)

Q(Sd)� Td(Sd, S0:d)�Ad+1(Sd, S0:d)

◆
, (19)

Id+1
def
= 2Id + bd, (20)

Sd+1
def
= ZId+1 , (21)

Td+1(S, S0:d+1)
def
= Td(S \ Sd+1, S0:d) +Ad+1(S \ Sd+1, S0:d) +Q(S \ S

0
d+1), (22)

where S 2 ⌃ and P |Zd denotes the restriction of the measure P to the set Zd. Generalised Greedy
Rejection Coding (GRC) amounts to running this recursion, computing

D
⇤ = min{d 2 N : UId �d+1(XId , S0:d)}, (23)

and returning X = XID⇤ and C = ID⇤ .

The functions AcceptProb and RuledOutMass in algorithm 2 correspond to calculating the quanti-
ties in eq. (16) and eq. (22). The function PartitionProb corresponds to computing the success
probability of the Bernoulli coin toss in eq. (19).

A.2 Harsha et al.’s algorithm is a special case of GRC

Here we show that the algorithm of Harsha et al. is a special case of GRC which assumes discrete P

and Q distributions and uses the global partitioning process, which we refer to as GRCG. Note that
the original algorithm described by Harsha et al. assumes discrete P and Q distributions, whereas
GRCG does not make this assumption.
Proposition 2 (Harsha et al. (2007) is a special case of GRC). Let Z be the global partitioning
process over ⌃, defined as

Z1 = X , Z2n = Zn, Z2n+1 = ;, for all n = 1, 2, (24)

Harsha et al. (2007) is equivalent to GRC using this Z and setting C = D
⇤ instead of C = ID⇤ . We

refer to this variant of GRC as Global GRC, or GRCG for short.

Proof. With Z defined as in eq. (24), we have bd ⇠ Bernoulli(0) by eq. (19), so bd = 0 almost surely.
Therefore Sd = X for all d 2 N

+. From this, we have Td+1(S, S0:d) = Td(S, S0:d) + Ad(S, S0:d)
and also P (Sd) = P (X) = 1 for all d 2 N

+. Substituting these in the equations of definition 5, we
recover eqs. (2) to (4). Setting C = D

⇤ instead of C = ID⇤ makes the two algorithms identical.

13

B Proof of correctness of GRC: Theorem 1

In this section we give a proof for the correctness of GRC. Before going into the proof, we outline
our approach and the organisation of the proof.

Proof outline. To prove theorem 1, we consider running GRC for a finite number of d steps. We
consider the measure ⌧d : ⌃! [0, 1], defined such that for any S 2 ⌃, the quantity ⌧d(S) is equal to
the probability that GRC terminates within d steps and returns a sample X 2 S ✓ ⌃. We then show
that ⌧d ! Q in total variation as d!1, which proves theorem 1.

Organisation of the proof. First, in section B.1 we introduce some preliminary definitions, assump-
tions and notation on partitioning processes, which we will use in later sections. Then, in B.2 we
derive the ⌧d measure, and prove some intermediate results about it. Specifically, proposition 3 shows
that the measures Ad and Td from the definition of GRC (definition 5) correspond to probabilities
describing the termination of the algorithm, and lemma 1 uses these facts to derive the form of ⌧d in
terms of Ad. Then, lemma 2 shows that the measure ⌧d is no larger than the measure Q and lemma 3
shows that the limit of ⌧d as d ! 1 is also a measure. Lastly lemma 4 shows that Td and ⌧d are
equal on the active sets of the partition process followed within a run of GRC, and then lemma 5 uses
that result to derive the subsets of the sample space on which ⌧d is equal to Q and ⌧ is equal to Q.

Then, in appendix B.3 we break down the proof of theorem 1 in four cases. First, we consider the
probability pd that GRC terminates at step d, given that it has not terminated up to and including step
d� 1. Lemma 7 shows that if pd 6! 0, then ⌧d ! Q in total variation. Then we consider the case
pd ! 0 and show that in this case, if any of assumptions 1, 2 or 3 hold, then again ⌧d ! Q in total
variation. Putting these results together proves theorem 1.

B.1 Preliminary definitions, assumptions and notation

For the sake of completeness, we restate relevant definitions and assumptions. Definition 6 restates
our notation on the target Q and proposal P measures and assumption 4 emphasises our assumption
that Q⌧ P . Definition 7 restates the definition of partitioning processes.
Definition 6 (Target Q and proposal P distributions). Let Q and P be probability measures on a
measurable space (X ,⌃). We refer to Q and P as the target and proposal measures respectively.
Assumption 4 (Q⌧ P). We assume Q is absolutely continuous w.r.t. P , that is Q⌧ P . Under this
assumption, the Radon-Nikodym derivative of Q w.r.t. P exists and is denoted as dQ/dP : X ! R

+.
Definition 7 (Partitioning process). A random process Z : N+

! ⌃ which satisfies

Z1 = X , Z2n \ Z2n+1 = ;, Z2n [Z2n+1 = Zn. (25)

is called a partitioning process.

That is, a partitioning process Z is a random process indexed by the heap indices of an infinite binary
tree, where the root node is X and any two children nodes Z2n and Z2n+1 partition their parent node
Zn. Note that by definition, a partitioning process takes values which are measurable sets in (X ,⌃).

Because GRC operates on an binary tree, we find it useful to define some appropriate notation.
Definition 8 specifies the ancestors of a node in a binary tree. Notation 1 gives some useful indexing
notation for denoting different elements of the partitioning process Z, as well as for denoting the
branch of ancestors of an element in a partitioning process.

Definition 8 (Ancestors). We define the one-step ancestor function A1 : 2N
+

! 2N
+

as

A1(N) = N [{n 2 N
+ : n0 = 2n or n0 = 2n+ 1, for some n

0
2 N}, (26)

and the ancestor function A : 2N
+

! 2N
+

as

A(N) =
�
n 2 N

+ : n 2 A
k

1({n
0
}) for some n

0
2 N, k 2 N

+

. (27)

where A
k

1 denotes the composition of A1 with itself k times.

Viewing N
+ as the set of heap indices of an infinite binary tree, A maps a set N ✓ N of natural

numbers (nodes) to the set of all elements of N and their ancestors.

14

Notation 1 (Double indexing for Z, ancestor branch). Given a partitioning process Z, we use the
notation Zd,k, where d = 1, 2, . . . and k = 1, . . . , 2d�1 to denote the k

th node at depth d, that is

Zd,k := Z2d�1�1+k. (28)

We use the hat notation Ẑd,k to denote the sequence of nodes consisting of Zd,k and all its ancestors

Ẑd,k := (Zn : n 2 A({2d�1
� 1 + k})), (29)

and call Ẑd,k the ancestor branch of Zd,k.
Notation 2 (P measure). In definition 5, we defined P to be the measure associated with an infinite
sequence of independent fair coin tosses over a measurable space (⌦,S). To avoid heavy notation,
for the rest of the proof we will overload this symbol as follows: if F is a random variable from ⌦ to
some measurable space, we will abbreviate P � F

�1 by simply P(F).

B.2 Deriving the measure of samples returned by GRC

For the remainder of the proof, we condition on a fixed partitioning process sample Z. For brevity,
we omit this conditioning which, from here on is understood to be implied. Proposition 3 shows that
the measures Ad and Td correspond to the probabilities that GRC picks a particular branch of the
binary tree and terminates at step d, or does not terminate up to and including step d, respectively.
Proposition 3 (Acceptance and rejection probabilities). Let Vd be the event that GRC does not
terminate up to and including step d and Wd be the event that it terminates at step d. Let S0:d = B0:d

denote the event that the sequence of the first d bounds produced is B0:d. Then

P(Vd, S0:d = B0:d) = 1� Td(X , B0:d), for d = 0, 1, . . . , (30)
P(Wd+1, S0:d = B0:d) = Ad+1(X , B0:d), for d = 0, 1, (31)

Proof. First we consider the probability that GRC terminates at step k + 1 given that it has not
terminated up to and including step d, that is the quantity P(Wk+1 | Vk, S0:k = B0:k). By definition 5,
this probability is given by integrating the acceptance probability �k+1(x,B0:k) over x 2 X , with
respect to the measure P |Bk/P (Bk), that is

P(Wk+1 | Vk, S0:k = B0:k) =

Z

x2Bk

dP (x)
�k+1(x,B0:k)

P (Bk)
(32)

=

Z

x2X
dP (x)

�k+1(x,B0:k)

P (Bk)
(33)

=

Z

x2X
dP (x)

↵k+1(x,B0:k)

1� Tk(X , B0:k)
(34)

=
Ak+1(X , B0:k)

1� Tk(X , B0:k)
, (35)

Now, we show the result by induction on d, starting from the base case of d = 0. Base case: For
d = 0, by the definition of GRC (definition 5) S0 = ZI0 = X , so

P (V0, S0 = B0) = 1 and T0(X , B0) = 0, (36)

which show the base case for eq. (30). Now, plugging in k = 0 in eq. (35) we obtain

P(W1, S0 = B0) = P(W1 | V0, S0 = B0) =
A1(X , B0)

1� T0(X , B0)
= A1(X , B0) (37)

where we have used the fact that T0(X , B0) = 0, showing the base case for eq. (31).

Inductive step: Suppose that for all k = 0, 1, 2, . . . , d it holds that

P (Vd, S0:k = B0:k) = 1� Td(X , B0:k) and P (Wk+1, S0:k = B0:k) = Ak+1(X , B0:k). (38)

Setting k = d in eq. (35), we obtain

P(W 0
d+1 | Vd, S0:d = B0:d) =

1� Td(X , B0:d)�Ad+1(X , B0:d)

1� Td(X .B0:d)
, (39)

15

and using the inductive hypothesis from eq. (38), we have
P(Vd+1, S0:d = B0:d) = P(W 0

d+1, Vd, S0:d = B0:d) = 1� Td(X , B0:d)�Ad+1(X , B0:d). (40)

Now, Bd = Zn for some n 2 N
+. Denote B

L

d
:= Z2n and B

R

d
:= Z2n+1. Then, by the product rule

P(Vd+1, S0:d = B0:d, Sd+1 = B
R

d
) = (41)

= P(Sd+1 = B
R

d
| Vd+1, S0:d = B0:d)P(Vd+1, S0:d = B0:d) (42)

=
Q(BR

d
)� Td(BR

d
, B0:d)�Ad+1(BR

d
, B0:d)

Q(Bd)� Td(Bd, B0:d)�Ad+1(Bd, B0:d)
P(Vd+1, S0:d = B0:d) (43)

=
Q(BR

d
)� Td(BR

d
, B0:d)�Ad+1(BR

d
, B0:d)

Q(X)| {z }
= 1

�Td(X , B0:d)�Ad+1(X , B0:d)
P(Vd+1, B0:d = B0:d) (44)

= Q(BR

d
)� Td(B

R

d
, B0:d)�Ad+1(B

R

d
, B0:d) (45)

= 1� Td+1(X , B0:d+1) (46)

where we have written B0:d+1 = (B0, . . . , Bd, B
R

d
). Above, to go from 41 to 42 we used the

definition of conditional probability, to go from 42 to 43 we used the definition in 19, to go from 43
to 44 we used the fact that for k = 0, 1, 2, . . . , it holds that

Q(X)� Tk(X , B0:k)�Ak+1(X , B0:k) = Q(Bk)� Tk(Bk, B0:k)�Ak+1(Bk, B0:k)+

+Q(B0
k
)� Tk(B

0
k
, B0:k)| {z }

= Q(B0
k)

�Ak+1(B
0
k
, B0:k)| {z }

= 0

(47)

= Q(Bk)� Td(Bk, B0:k)�Ak+1(Bk, B0:k), (48)
from 44 to 45 we have used eq. (40), and lastly from 45 to 46 we have again used eq. (48). Equa-
tion (46) similarly holds if Bd+1 = B

R

d
by Bd+1 = B

L

d
, so we arrive at

P(Vd+1, B0:d+1 = B0:d+1) = 1� Td+1(X , B0:d+1), (49)
which shows the inductive step for eq. (30). Further, we have

P(Wd+2, B0:d+1 = B0:d+1) = P(Wd+2 | Vd+1, B0:d+1 = B0:d+1)P(Vd+1, B0:d+1 = B0:d+1)
(50)

and also by setting k = d+ 1 in eq. (35) we have

P(Wd+2 | Vd+1, B0:d+1 = B0:d+1) =
Ad+2(X , B0:d+1)

1� Td+1(X , B0:d+1)
. (51)

Combining eq. (49) and eq. (51) we arrive at
P(Wd+2, B0:d+1 = B0:d+1) = Ad+2(X , B0:d+1), (52)

which is the inductive step for eq. (31). Putting eqs. (49) and (52) together shows the result.

We now turn to defining and deriving the form of the measure ⌧D. We will define ⌧D to be the
measure such that for any S 2 ⌃, the probability that GRC terminates up to and including step D

and returns a sample within S is given by ⌧D(S). We will also show that ⌧D is non-increasing in D.
Lemma 1 (Density of samples generated by GRC). The probability that GRC terminates by step
D � 1 and produces a sample in S is given by the measure

⌧D(S) =
DX

d=1

2d�1X

k=1

Ad(S, Ẑd,k), (53)

where ẐD,k is the ancestor branch of ZD,k as defined in eq. (29). Further, ⌧D is non-decreasing in
D, that is if n m, then ⌧n(S) ⌧m(S) for all S 2 ⌃.

16

Proof. Let Vd be the event that GRC does not terminate up to and including step d and let Wd(S) be
the event that GRC terminates at step d and returns a sample in S. Then

⌧D(S) =
DX

d=1

P(Wd(S)) (54)

=
DX

d=1

P(Wd(S), Vd�1) (55)

=
DX

d=1

2d�1X

k=1

P(Wd(S), Vd�1, S0:d�1 = Ẑd,k) (56)

=
DX

d=1

2d�1X

k=1

P(Wd(S) | Vd�1, S0:d�1 = Ẑd,k) P(Vd�1, S0:d�1 = Ẑd,k). (57)

Further, the terms in the summand can be expressed as

P(Vd�1, S0:d�1 = Ẑd,k) = 1� Td�1(X , Ẑd,k), (58)

P(Wd(S) | Vd�1, S0:d�1 = Ẑd,k) =

Z

x2S

dP (x)
�d(x, Ẑd,k)

P (Zd,k)
(59)

=

Z

x2S

dP (x)
↵d(x, Ẑd,k)

1� Td�1(X , Ẑd,k)
(60)

=
Ad(S, Ẑd,k)

1� Td�1(X , Ẑd,k)
, (61)

and substituting eqs. (58) and (61) into the sum in eq. (57), we obtain eq. (53). Further, since the
inner summand is always non-negative, increasing D adds more non-negative terms to the sum, so
⌧D is also non-decreasing in D.

Now we turn to proving a few results about the measure ⌧D. Lemma 2 shows that ⌧D Q for all D.
This result implies that ||Q� ⌧D||TV = Q(X)� ⌧D(X), which we will use later.
Lemma 2 (Q� ⌧D is non-negative). Let D 2 N

+. Then Q� ⌧D is a positive measure, that is

Q(S)� ⌧D(S) � 0 for any S 2 ⌃. (62)

Proof. Let S 2 ⌃ and write

Q(S)� ⌧D(S) =
2D�1X

k=1

Q(S \ ZD,k)� ⌧D(S \ ZD,k) (63)

=
2D�1X

k=1

2

4Q(S \ ZD,k)�
DX

d=1

2D�1X

k0=1

Ad(S \ ZD,k, ẐD,k0)

3

5 (64)

=
2D�1X

k=1

"
Q(S \ ZD,k)�

DX

d=1

Ad(S \ ZD,k, ẐD,k)

#
(65)

=
2D�1X

k=1

h
Q(S \ ZD,k)� TD�1(S \ ZD,k, ẐD,k)�AD(S \ ZD,k, ẐD,k)

i
(66)

We will show that the summand in eq. (66) is non-negative. From the definition in eq. (14) we have

↵D(x, ẐD,k) = min

(
dQ

dP
(x)� tD�1(x, ẐD,k),

1� TD�1(X , ẐD,k)

P (ZD,k)

)
(67)

dQ

dP
(x)� tD�1(x, ẐD,k) (68)

17

and integrating both sides of eq. (68) over S \ ZD,k, we obtain

AD(S \ ZD,k, ẐD,k) Q(S \ ZD,k)� TD�1(S \ ZD,k, ẐD,k) (69)
Putting this together with eq. (66) we arrive at

Q(S)� ⌧D(S) � 0, (70)
which is the required result.

Thus far we have derived the form of ⌧D, shown that it is non-decreasing in D and that it is no
greater than Q. As we are interested in the limiting behaviour of ⌧D, we next show that its limit,
⌧ = limD!1 ⌧D, is also a measure. Further, it also holds that ⌧ Q.
Lemma 3 (Measures ⌧D converge to a measure ⌧ Q). For each S 2 ⌃, ⌧D(S) converges to a
limit. Further, the function ⌧ : ⌃! [0, 1] defined as

⌧(S) = lim
D!1

⌧D(S) (71)

is a measure on (X ,⌃) and ⌧(S) Q(S) for all S 2 ⌃.

Proof. First, by lemma 1, ⌧D(S) is non-decreasing in D, and bounded above by Q(S) for all S 2 ⌃.
Therefore, for each S 2 ⌃, ⌧D(S) converges to some limit as D !1. Define ⌧ : ⌃! [0, 1] as

⌧(S) = lim
D!1

⌧D(S), (72)

and note that ⌧ is a non-negative set function for which ⌧(;) = 0. By the Vitali-Hahn-Saks theorem
(see Corollary 4, p. 160; Dunford & Schwartz, 1988), ⌧ is also countably additive, so it is a measure.
Also, by lemma 2, ⌧D(S) Q(S) for all D 2 N

+ and all S 2 ⌃, so ⌧(S) Q(S) for all S 2 ⌃.

Definition 9 (Hd,k, Hd and H). For d = 1, 2, . . . and k = 1, . . . , 2d�1, we define the sets Hd,k as

Hd,k =

(
x 2 Zd,k

���
dQ

dP
(x)� td�1(x, Ẑd,k) �

1� Td�1(X , Ẑd,k)

P (Zd,k)

)
. (73)

Also, define the sets Hd and H as

Hd =
2d�1[

k=1

Hd,k and H =
1\

d=1

Hd. (74)

Lemma 4 (TD(·, ẐD+1,k) and ⌧D agree in ZD+1,k). Let R 2 ⌃. If R ✓ ZD+1,k, then

⌧D(R) = TD(R, ẐD+1,k). (75)

Proof. Suppose R ✓ ZD+1,k. First, we have

⌧D(R) =
DX

d=1

2d�1X

k0=1

Ad(R, Ẑd,k0) =
DX

d=1

Ad(R, (ẐD+1,k)1:d). (76)

From the definition of TD in eq. (22), we have

TD(R, ẐD+1,k) = TD�1(R \ ZD+1,k, (ẐD+1,k)1:D) +AD(R \ ZD+1,k, (ẐD+1,k)1:D)+ (77)
+Q(R \ Z

0
D+1,k)| {z }

= 0

= TD�1(R \ ZD+1,k, (ẐD+1,k)1:D) +AD(R \ ZD+1,k, (ẐD+1,k)1:D) (78)

= TD�1(R, (ẐD+1,k)1:D) +AD(R, (ẐD+1,k)1:D) (79)
where we have used the assumption that R ✓ ZD+1,k. In a similar manner, applying eq. (79)
recursively D � 1 more times, we obtain

TD(R, ẐD+1,k) =
DX

d=1

Ad(R, (ẐD+1,k)1:d) = ⌧D(R). (80)

which is the required result.

18

Lemma 5 (Equalities with Q, ⌧D and ⌧). The following two equalities hold

Q(X \HD) = ⌧D(X \HD) and Q(X \H) = ⌧(X \H). (81)

Proof. Let R = ZD+1,k \HD,k. Then, by similar reasoning used to prove eq. (77), we have

TD(R, ẐD+1,k) = TD�1(R, (ẐD+1,k)1:D) +AD(R, (ẐD+1,k)1:D) (82)

Further, we also have

AD(R, ẐD,k) =

Z

R

dP (x) ↵D(x, ẐD,k) (83)

=

Z

R

dP (x) min

(
dQ

dP
(x)� tD�1(x, ẐD,k),

1� TD�1(X , ẐD,k)

P (ZD,k)

)
(84)

=

Z

R

dP (x)

✓
dQ

dP
(x)� tD�1(x, ẐD,k)

◆
(85)

= Q(R)� TD�1(R, ẐD,k) (86)

where from eq. (84) to eq. (85) we have used the definition of HD,k. Then, combining eqs. (82)
and (86) and using lemma 4, we arrive at

Q(ZD+1,k \HD,k) = TD(ZD+1,k \HD,k, ẐD+1,k) = ⌧D(ZD+1,k \HD,k). (87)

Now, using the equation above, we have that

⌧D(X \HD) =
2DX

k=1

⌧D(ZD+1,k \HD) =
2DX

k=1

Q(ZD+1,k \HD) = Q(X \HD). (88)

Now, using ⌧D ⌧ Q and ⌧D(X \HD) = Q(X \HD), we have that ⌧(X \HD) = Q(X \HD),
which is the first part of the result we wanted to show. Taking limits, we obtain

Q(X \H) = lim
D!1

Q(X \HD) = lim
D!1

⌧(X \HD) = ⌧(X \H), (89)

which is the second part of the required result.

19

B.3 Breaking down the proof of Theorem 1 in five cases

In definition 10 we introduce the quantities wd = Q(X)� ⌧d(X) and pd = P(Wd | Vd�1). Then we
break down the proof of theorem 1 in five cases. First, in lemma 7 we show that if pd 6! 0, then
wd ! 0. Second, in lemma 8 we show that if P (Hd) ! 0, then wd ! 0. In lemma 9 we show
an intermediate result, used in the other three cases, which we consider in lemmas 10, 11 and 12.
Specifically, in these three cases we show that if pd ! 0 and P (Hd) 6! 0, and assumption 1, 2 or 3
hold respectively, we have wd ! 0. Putting these results together shows theorem 1.
Definition 10 (pd, wd,k and wd). Define pd = P(Wd | Vd�1). Also define wd,k and wd as

wd,k

def
= Q(Zd,k)� ⌧d(Zd,k), (90)

wd

def
=

2d�1X

k=1

wd,k. (91)

Lemma 6 (wd non-increasing in d). The sequence wd is non-negative and non-increasing in d.

Proof. Since ⌧d is non-decreasing in d (from lemma 5) and

wd =
2d�1X

k=1

Q(Zd,k)� ⌧d(Zd,k) = Q(X)� ⌧d(X), (92)

it follows that wd is a non-increasing and non-negative sequence.

Lemma 7 (Case 1). If pd 6! 0, then wd ! 0.

Proof. Let pd = P(Wd | Vd�1) and suppose pd 6! 0. Then, there exists ✏ > 0 such that pd > ✏

occurs infinitely often. Therefore, there exists an increasing sequence of integers ad 2 N such that
pad > ✏ for all d 2 N. Then

⌧ad(X) = P

ad[

d=1

Wd

!
(93)

= 1� P (Vad) , (94)

= 1�
adY

d=1

P (Vd | Vd�1) , (95)

= 1�
adY

d=1

(1� pd), (96)

� 1� (1� ✏)d ! 1 as d!1. (97)

Therefore, ⌧d(X)! 1 as d!1, which implies that ||Q� ⌧d||TV ! 0.

Lemma 8 (Case 2). If P (Hd)! 0, then wd ! 0.

Proof. Suppose P (Hd) ! 0. Since Q ⌧ P , we have Q(H) = 0, and since Q � ⌧ � 0 (by
lemma 3), we also have ⌧(H) = 0. Therefore

lim
d!1

wd = lim
d!1

||Q� ⌧d||TV (98)

= Q(X)� ⌧(X) (99)
= Q(X \H)� ⌧(X \H)| {z }

= 0 from lemma 5

+Q(H)| {z }
= 0

� ⌧(H)| {z }
= 0

(100)

= 0 (101)

which is the required result.

20

Lemma 9 (An intermediate result). If pd ! 0 and wd 6! 0 as d!1, then

2d�1X

k=1

P (Hd,k)

P (Zd,k)
wd,k ! 0 as d!1. (102)

Proof. Suppose that pd = P(Wd | Vd�1)! 0 and wd 6! 0. Then

P(Wd | Vd�1) � P(Wd(Hd) | Vd�1) (103)

=
2d�1X

k=1

P (Wd(Hd,k) | Vd�1) (104)

=
2d�1X

k=1

P

⇣
Wd(Hd,k), S0:d�1 = Ẑd,k | Vd�1

⌘
(105)

=
2d�1X

k=1

P

⇣
Wd(Hd,k) | Vd�1, S0:d�1 = Ẑd,k

⌘
P

⇣
S0:d�1 = Ẑd,k | Vd�1

⌘
(106)

=
2d�1X

k=1

P (Hd,k)

P (Zd,k)
P

⇣
S0:d�1 = Ẑd,k | Vd�1

⌘
(107)

=
2d�1X

k=1

P (Hd,k)

P (Zd,k)

wd,k

wd

! 0. (108)

In addition, if wd 6! 0, then since 0 wd 1 we have

2d�1X

k=1

P (Hd,k)

P (Zd,k)
wd,k ! 0. (109)

which is the required result.

Lemma 10 (Case 3). Suppose that pd ! 0, P (Hd) 6! 0 and assumption 1 holds. Then wd ! 0.

Proof. Suppose that pd ! 0, P (Hd) 6! 0. Suppose also that assumption 1 holds, meaning there
exists M 2 R such that dQ/dP (x) < M for all x 2 X . Then for any S 2 ⌃, we have

Q(S)� ⌧(S)

P (S)

Q(S)

P (S)
=

R
S

dQ

dP
dP

P (S)
M

R
S
dP

P (S)
= M =)

Q(S)� ⌧(S)

M
 P (S). (110)

Further, we have

2d�1X

k=1

P (Hd,k)

P (Zd,k)
wd,k �

2d�1X

k=1

P (Hd,k)

P (Zd,k)
(Q(Hd,k)� ⌧(Hd,k)) (111)

�
1

M

2d�1X

k=1

(Q(Hd,k)� ⌧(Hd,k))2

P (Zd,k)
(112)

�
1

M

2d�1X

k=1

(Q(H \Hd,k)� ⌧(H \Hd,k))2

P (Zd,k)
(113)

�
1

M

2d�1X

k=1

�2
d,k

P (Zd,k)
(114)

=
1

M
�d (115)

! 0, (116)

21

where in the second inequality we have used eq. (110) and we have defined

�d,k

def
= Q(H \Hd,k)� ⌧(H \Hd,k), (117)

�d

def
=

2d�1X

k=1

�2
d,k

P (Zd,k)
. (118)

Now note that the sets H \Hd+1,2k and H \Hd+1,2k+1 partition the set H \Hd,k. Therefore

�d,k = �d+1,2k +�d+1,2k+1. (119)

By the definition of �d in eq. (118), we can write

�d+1 =
2dX

k=1

�2
d,k

P (Zd+1,k)
=

2d�1X

k=1

"
�2

d+1,2k

P (Zd+1,2k)
+

�2
d+1,2k+1

P (Zd+1,2k+1)

#
, (120)

where we have written the sum over 2d terms as a sum over 2d�1 pairs of terms. We can rewrite the
summand on the right hand side as

�2
d+1,2k

P (Zd+1,2k)
+

�2
d+1,2k+1

P (Zd+1,2k+1)
=

�2
d+1,2k

P (Zd+1,2k)
+

(�d,k ��d+1,2k)2

P (Zd+1,2k+1)
(121)

= �2
d,k

⇢
2

P (Zd+1,2k�1)
+

(1� ⇢)2

P (Zd+1,2k)

�
(122)

= �2
d,k

g(⇢) (123)

where in eq. (121) we have used eq. (119), from eq. (121) to eq. (122) we defined the quantity
⇢ = �d+1,2k/�d,k, and from eq. (122) to eq. (123) we have defined g : [0, 1]! R as

g(r)
def
=

r
2

P (Zd+1,2k)
+

(1� r)2

P (Zd+1,2k+1)
. (124)

The first and second derivatives of g are
dg

dr
=

2r

P (Zd+1,2k)
�

2(1� r)

P (Zd+1,2k+1)
, (125)

d
2
g

dr2
=

2

P (Zd+1,2k)
+

2

P (Zd+1,2k+1)
> 0, (126)

so g has a single stationary point that is a minimum, at r = rmin, which is given by

rmin :=
P (Zd+1,2k)

P (Zd+1,2k) + P (Zd+1,2k+1)
. (127)

Plugging this back in g, we obtain

g(rmin) =
1

P (Zd+1,2k) + P (Zd+1,2k+1)
=

1

P (Zd,k)
, (128)

which implies that

�2
d+1,2k

P (Zd+1,2k)
+

�2
d+1,2k+1

P (Zd+1,2k+1)
�

�2
d,k

P (Zd,k)
. (129)

Therefore

�d+1 =
2dX

k=1

�2
d,k

P (Zd+1,k)
�

2d�1X

k=1

�2
d,k

P (Zd,k)
= �d, (130)

but since �d ! 0, this is only possible if �d = 0 for all d, including d = 1, which would imply that

�1,1 = Q(H \H1,1)� ⌧(H \H1,1) = Q(H)� ⌧(H) = 0, (131)

which, together with lemma 5, implies that

Q(X)� ⌧(X) = Q(H)� ⌧(H) = 0, (132)

and therefore wd = ||Q� ⌧d||TV ! 0.

22

Lemma 11 (Case 4). Suppose that pd ! 0, P (Hd) 6! 0 and assumption 3 holds. Then wd ! 0.

Proof. Suppose that pd ! 0, P (Hd) 6! 0. Suppose also that assumption that assumption 3 holds,
meaning that for each d, we have wd,k > 0 for exactly one value of k = kd, and wd,k = 0 for all
other k 6= kd. In this case, it holds that Hd,k = ; for all k 6= kd and Hd = Hd,kd . Since P (Hd) 6! 0
and P (Hd) is a decreasing sequence, it converges to some positive constant. We also have

pd �

2d�1X

k=1

P (Hd,k)

P (Zd,k)
wd,k =

P (Hd,kd)

P (Zd,kd)
wd,kd =

P (Hd,kd)

P (Zd,kd)
wd � P (Hd) wd ! 0, (133)

which can only hold if wd ! 0, arriving at the result.

Lemma 12 (Case 5). Suppose that pd ! 0, P (Hd) 6! 0 and assumption 3 holds. Then wd ! 0.

Proof. Suppose that pd ! 0, P (Hd) 6! 0 and assumption 3 holds. Since each x 2 X belongs to
exactly one Zd,k we can define the function Bd : X ! ⌃ as

Bd(x) = Zd,k such that x 2 Zd,k. (134)
Using this function we can write

pd �

2d�1X

k=1

P (Hd,k)

P (Zd,k)
wd,k =

2d�1X

k=1

P (Hd,k)
Q(Zd,k)� ⌧d(Zd,k)

P (Zd,k)
=

Z

Hd

dP
Q(Bd(x))� ⌧d(Bd(x))

P (Bd(x))
.

Now, because the sets Hd are measurable, their intersection H := \1
d=1Hd is also measurable. We

can therefore lower bound the integral above as follows
Z

Hd

dP
Q(Bd(x))� ⌧d(Bd(x))

P (Bd(x))
�

Z

H

dP
Q(Bd(x))� ⌧d(Bd(x))

P (Bd(x))
(135)

�

Z

H

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
, (136)

where the first inequality holds as the integrand is non-negative and we are constraining the integration
domain to H ✓ Hd, and the second inequality holds because ⌧d(S) ⌧(S) for any S 2 ⌃. Define C
to be the set of all intersections of nested partitions, with non-zero mass under P

C =

(1\

d=0

Zd,kd : P

 1\

d=0

Zd,kd

!
> 0, k0 = 1, kd+1 = 2kd or kd+1 = 2kd + 1

)
, (137)

and note that all of its elements are pairwise disjoint. Each of the elements of C is a measurable set
because it is a countable intersection of measurable sets. In addition, C is a countable set, which can
be shown as follows. Define the sets Cn as

Cn =
�
E 2 C : 2�n�1

< P (E) 2�n

for n = 0, 1, . . . (138)
and note that their union equals C. Further, note that each Cn must contain a finite number of elements.
That is because if Cn contained an infinite number of elements, say E1, E2, · · · 2 Cn, then

P (X) � P

 1[

k=1

Ek

!
=

1X

k=1

P (Ek) >
1X

k=1

2�n�1
!1, (139)

where the first equality holds because P is an additive measure and the En terms are disjoint, and
the second inequality follows because Ek 2 Cn so P (Ek) > 2�n�1. This results in a contradiction
because P (X) = 1, so each Cn must contain a finite number of terms. Therefore, C is a countable
union of finite sets, which is also countable. This implies that the union of the elements of C, namely
C = [C02CC

0 is a countable union of measurable sets and therefore also measurable. Since C is
measurable, H \ C is also measurable and we can rewrite the integral in eq. (135) as

pd �

Z

H

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
(140)

=

Z

H\C

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
+

Z

H\C
dP

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
(141)

! 0 (142)

23

Since both terms above are non-negative and their sum converges to 0, the terms must also individually
converge to 0. Therefore, for the first term, we can write

lim
d!1

Z

H\C

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
= lim inf

d!1

Z

H\C

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
= 0. (143)

Similarly to Bd defined in eq. (134), let us define B : C ! ⌃ as

B(x) = C
0
2 C such that x 2 C

0
. (144)

Applying Fatou’s lemma (4.3.3, p. 131; Dudley, 2018) to eq. (143), we obtain

lim inf
d!1

Z

H\C

dP
Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
�

Z

H\C

dP lim inf
d!1

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
(145)

=

Z

H\C

dP
Q(B(x))� ⌧(B(x))

P (B(x))
(146)

= 0, (147)

where from eq. (145) to eq. (146) we have used the fact that P (Bd(x)) > 0 whenever x 2 C and
also that B1(x) ◆ B2(x) ◆ Now we can re-write this integral as a sum, as follows. Let the
elements of C, which we earlier showed is countable, be C1, C2, . . . and write

Z

H\C

dP
Q(B(x))� ⌧(B(x))

P (B(x))
=

1X

n=1

Z

H\Cn

dP
Q(B(x))� ⌧(B(x))

P (B(x))
(148)

=
1X

n=1

P (H \ Cn)

P (Cn)
(Q(Cn)� ⌧(Cn)) (149)

= 0. (150)

Now, from lemma 5, we have
1X

n=1

P (H \ Cn)

P (Cn)
(Q(Cn)� ⌧(Cn)) =

1X

n=1

P (H \ Cn)

P (Cn)
(Q(H \ Cn)� ⌧(H \ Cn)) = 0, (151)

which in turn implies that for each n = 1, 2, . . . , we have either Q(H \ Cn) � ⌧(H \ Cn) = 0
or P (H \ Cn) = 0. However, the latter case also implies Q(H \ Cn)� ⌧(H \ Cn) = 0 because
Q⌧ P , so Q(H \ Cn)� ⌧(H \ Cn) = 0 holds for all n. Therefore

⌧(H \ C) =
1X

n=1

⌧(H \ Cn) =
1X

n=1

Q(H \ Cn) = Q(H \ C). (152)

Returning to the second term in the right hand of eq. (141), and again applying Fatou’s lemma

lim inf
d!1

Z

H\C
dP

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
�

Z

H\C
dP lim inf

d!1

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
. (153)

Now, since Z has the nice-shrinking property from assumption 3, we can apply a standard result
from measure theory and integration Rudin (1986, given in Theorem 7.10, p. 140), to show that the
following limit exists and the following equalities are satisfied

lim
d!1

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
= lim

d!1

1

P (Bd(x))

Z

Bd

dP

✓
dQ

dP
(x)�

d⌧

dP
(x)

◆
(154)

=
dQ

dP
(x)�

d⌧

dP
(x) (155)

Inserting 155 into eq. (153), we obtain

lim inf
d!1

Z

H\C
dP

Q(Bd(x))� ⌧(Bd(x))

P (Bd(x))
�

Z

H\C
dP

✓
dQ

dP
(x)�

d⌧

dP
(x)

◆
= 0, (156)

which in turn implies that

dQ

dP
(x)�

d⌧

dP
(x) = 0 P -almost-everywhere on H \ C, (157)

24

or equivalently that Q(H \C) = ⌧(H \C). Combining this with the fact that Q(X \H) = ⌧(X \H)
and our earlier result that Q(H \ C) = ⌧(H \ C), we have

||Q� ⌧ ||TV = Q(X \H)� ⌧(X \H) +Q(H \ C)� ⌧(H \ C) +Q(H \ C)� ⌧(H \ C) = 0,

which is equivalent to wd = ||Q� ⌧d||TV ! 0, that is the required result.

Theorem (Correcness of GRC). If any one of the assumptions 1, 2 or 3 holds, then

||Q� ⌧d||TV ! 0 as d!1. (158)

Proof. If pd ! 0, then wd ! 0 by lemma 7. If P (Hd)! 0, then wd ! 0 by lemma 8. Therefore
suppose that pd 6! 0 and P (Hd) 6! 0. Then if any one of assumptions 1, 2 or 3 holds, we can
conclude from lemma 10, 11 or 12 respectively, that ||Q� ⌧d||TV ! 0.

25

C Optimality of GRCS

Algorithm 3 GRCS with arthmetic coding for the heap index.

Require: Target Q, proposal P over R with unimodal density ratio r = dQ/dP with mode µ.
1: d 0, T0 0, L0 0
2: I0 1, S1 R

3: while True do
4: XId ⇠ P |Sd/P (Sd)
5: UId ⇠ Uniform(0, 1)

6: �Id clip
⇣
P (Sd) ·

r(XId
)�Ld

1�Td
, 0, 1

⌘
. clip(y, a, b)

def
= max{min{y, b}, a}

7: if UId �d+1 then
8: return XId , Id

9: end if
10: if XId > µ then
11: Id+1 2Id
12: Sd+1 Sd \ (�1, XId)
13: else
14: Id+1 2Id + 1
15: Sd+1 Sd \ (XId ,1)
16: end if
17: Ld+1 Ld + Td/P (Sd)
18: Td+1 PY⇠Q[r(Y) � Ld+1]� Ld+1 · PY⇠P [r(Y) � Ld+1]
19: d d+ 1
20: end while

In this section, we prove Theorems 2 and 3. We are only interested in continuous distributions over R
with unimodal density ratio dQ/dP for these theorems. Hence, we begin by specializing Algorithm 2
to this setting, shown in Algorithm 3. For simplicity, we also dispense with the abstraction of
partitioning processes and show the bound update process directly. Furthermore, we also provide an
explicit form for the AcceptProb and RuledOutMass functions.

Before we move on to proving our proposed theorems, we first prove two useful results. First, we
bound the negative log P -mass of the bounds with which Algorithm 3 terminates.
Lemma 13. Let Q and P be distributions over R with unimodal density ratio r = dQ/dP , given
to Algorithm 3 as the target and proposal distribution as input, respectively. Let d � 0 and let
X1:d

def
= X1, . . . , Xd denote the samples simulated by Algorithm 3 up to step d+ 1, where for d = 0

we define the empty list as X1:0 = ;. Let Sd denote the bounds at step d+ 1. Then,

�

dX

j=0

Aj+1(R, S0:d) · logP (Sj) DKL[QkP] + log e. (159)

Proof. For brevity, we will write Ad = Ad(R, S0:d) and Td = Td(R, S0:d). Furthermore, as in
Algorithm 3, we define

Ld

def
=

d�1X

j=0

1� Tj

P (Sj)
with L0 = 0. (160)

Note that X1:d is well-defined for all d � 0 since we could remove the return statement from the
algorithm to simulate the bounds it would produce up to an arbitrary step d. Now, note that by
Proposition 3 we have P[D = d | X1:d] = Ad+1(R, S0:d). Now, fix d � 0 and bounds S0:d, and let
x 2 R be such that ↵d+1(x) > 0 which holds whenever r(x) � Ld. From this, for d � 1 we find

r(x) �
d�1X

j=0

1� Tj

P (Sj)
(161)

�
1� Td�1

P (Sd�1)
, (162)

26

where the second inequality follows from the fact that the (1 � Tj)/P (Sj) terms are all positive.
taking logs, we get

log r(x)� log(1� Td�1) � � logP (Sd�1). (163)

Now, we consider the expectation of interest:

dX

j=0

�Aj+1 · logP (Sj) = �
dX

j=0

Z

R
↵j+1(x) logP (Sj) dx (164)

eq. (163)

dX

j=0

Z

R
↵j+1(x)(log(r(x))� log(1� Tj)) dx (165)

(a)

Z

R

1X

j=0

↵j+1(x) log r(x) dx+
1X

j=0

Aj+1 log
1

1� Tj

(166)

(b)
=

Z

R
q(x) log r(x) dx+

1X

j=0

(Tj+1 � Tj) log
1

1� Tj

(167)

= DKL[QkP] +
1X

j=0

(Tj+1 � Tj) log
1

1� Tj

(168)

(c)
 DKL[QkP] · log 2 +

Z 1

0
log

1

1� t
dt (169)

= DKL[QkP] + log e. (170)

Inequality (a) holds because all terms are positive. This is guaranteed by the fact that for d � 1, we
have Ld � 1, hence 0 logLd r(x) whenever Equation (163) holds. Equality (b) follows by the
correctness of GRC (Theorem 1), which implies that for all x 2 R we have

P1
j=0 ↵d(x) = q(x), and

inequality (c) follows from the facts that 0 Td 1 for all d and that the summand in the second
term forms a lower-Riemann sum approximation to � log(1� t).

Second, we consider the contraction rate of the bounds S0:d, considered by Algorithm 3.
Lemma 14. Let Q and P be distributions over R with unimodal density ratio r = dQ/dP , given to
Algorithm 3 as the target and proposal distribution as input, respectively. Assume P has CDF FP

and the mode of r is at µ. Fix d � 0 and let X1:d be the samples considered by Algorithm 3 and Sd

the bounds at step d+ 1. Then,

EX1:d [P (Sd)]

✓
3

4

◆d

(171)

Proof. We prove the claim by induction. For d = 0 the claim holds trivially, since S0 = R, hence
P (S0) = 1. Assume now that the claim holds for d = k � 1, and we prove the statement for d = k.
By the law of iterated expectations, we have

EX1:k [P (Sk)] = EX1:k�1 [EXk|X1:k�1
[P (Sk)]]. (172)

Let us now examine the inner expectation. First, assume that Sk�1 = (a, b) for some real numbers
a < b and define A = FP (a), B = FP (B),M = FP (µ) and U = FP (Xk). Since Xk | X1:k�1 ⇠

P |Sk�1 , by the probability integral transform we have U ⇠ Unif(A,B), where Unif(A,B) denotes
the uniform distribution on the interval (A,B). The two possible intervals from which Algorithm 3
will choose are (a,Xk) and (Xk, b), whose measures are P ((a,Xk)) = FP (Xk)�FP (a) = U �A

and similarly P ((Xk, b)) = B � U . Then, P (Sk) max{U �A,B � U}, from which we obtain
the bound

EXk|X1:k�1
[P (Sk)] EU [max{U �A,B � U}] =

3

4
(B �A) =

3

4
P (Sk�1). (173)

27

Plugging this into Equation (172), we get

EX1:k [P (Sk)]
3

4
EX1:k�1 [P (Sk�1)] (174)

3

4
·

✓
3

4

◆k�1

, (175)

where the second inequality follows from the inductive hypothesis, which finishes the proof.

The proof of Theorem 3: We prove our bound on the runtime of Algorithm 3 first, as this will
be necessary for the proof of the bound on the codelength. First, let D be the number of steps
Algorithm 3 takes before it terminates minus 1. Then, we will show that

E[D]
1

log(4/3)
DKL[QkP] + 4 (176)

We tackle this directly. Hence, let

ED[D] = lim
d!1

EX1:j

2

4
dX

j=1

j ·Aj+1

3

5 (177)

= lim
d!1

EX1:j

2

4
dX

j=1

�j

logP (Sj)
·�Aj+1 logP (Sj)

3

5 (178)

 lim
d!1

EX1:j

2

4 max
j2[1:d]

⇢
�j

logP (Sj)

�
·

dX

j=1

�Aj+1 logP (Sj)

3

5 (179)

lemma 13
 (DKL[QkP] + log e) · lim

d!1
EX1:j

max
j2[1:d]

⇢
�j

logP (Sj)

��
. (180)

To finish the proof, we will now bound the term involving the limit. To do this, note, that for any
finite collection of reals F , we have maxx2F {x} = �minx2F {�x}, and that for a finite collection
of real-valued random variables F̂ we have E[minx2F̂

{x}] minx2F̂
{E[x]}. Now, we have

lim
d!1

EX1:j

max
j2[1:d]

⇢
�j

logP (Sj)

��
= lim

d!1
�EX1:j

min

j2[1:d]

⇢
j

logP (Sj)

��
(181)

 lim
d!1

✓
� min

j2[1:d]

⇢
EX1:j

j

logP (Sj)

��◆
(182)

(a)
 lim

d!1

✓
� min

j2[1:d]

⇢
j

logEX1:j [P (Sj)]

�◆
(183)

lemma 14
 lim

d!1

✓
� min

j2[1:d]

⇢
�j

j log(4/3)

�◆
(184)

= lim
d!1

✓
max
j2[1:d]

⇢
1

log(4/3)

�◆
(185)

=
1

log(4/3)
(186)

Inequality (a) follows from Jensen’s inequality. Finally, plugging this back into the previous equation,
we get

E[D]
DKL[QkP] + log e

log 4/3

DKL[QkP]

log 4/3
+ 4 (187)

Proof of Theorem 2: For the codelength result, we need to encode the length of the search path
and the search path itself. More formally, since the returned sample X is a function of the partition
process Z, the search path length D and search path S0:D, we have

H[X | Z] H[D,S0:D] = H[D] +H[S0:D | D]. (188)

28

we can encode D using Elias �-coding, from which we get

H[D] ED[2 log(D + 1)] + 1 (189)
 2 log(E[D] + 1) + 1 (190)

 2 log

✓
DKL[QkP] + log e

log(4/3)
+ 1

◆
+ 1 (191)

 2 log (DKL[QkP] + log e+ log(4/3)) + 1� 2 log (log(4/3)) (192)
 2 log (DKL[QkP] + 1) + 1� 2 log (log(4/3)) + 2 log(log e+ log(4/3)) (193)
 2 log (DKL[QkP] + 1) + 6. (194)

Given the search path length D, we can use arithmetic coding (AC) to encode the sequence of bounds
S0:D using � logP (SD) + 2 bits (assuming infinite precision AC). Hence, we have that the average
coding cost is upper bounded by

H[S0:D | D] ED[� logP (SD)] + 2
lemma 13
 DKL[QkP] + 5. (195)

Putting everything together, we find

H[D,S0:D] DKL[QkP] + 2 log(DKL[QkP] + 1) + 11, (196)

as required.

D Additional experiments with depth-limited GRC

In this section we show the results of some experiments comparing the approximation bias of depth
limited GRCD, to that of depth limited AD⇤ , following the setup of Flamich et al. (2022). Limiting
the depth of each algorithm introduces bias in the resulting samples, as these are not guaranteed to
be distributed from the target distribution Q, but rather from a different distribution Q̂. Figure 5
quantifies the effect of limiting the depth on the bias of the resulting samples.

In our experiment we take Q and P to be Gaussian and we fix DKL[QkP] = 3 (bits), and consider
three different settings of D1[QkP] = 5, 7 or 9 (bits), corresponding to each of the panes in fig. 5.
For each such setting, we set the depth limit of each of the two algorithms to Dmax = DKL[QkP]+d

bits, and refer to d as the number of additional bits. We then vary the number of additional bits
allowed for each algorithm, and estimate the bias of the resulting samples by evaluating the KL
divergence between the empirical and the exact target distribution, that is DKL[Q̂kQ]. To estimate
this bias, we follow the method of Pérez-Cruz (2008). For each datapoint shown we draw 200 samples
X ⇠ Q̂ and use these to estimate DKL[Q̂kQ]. We then repeat this for 10 different random seeds,
reporting the mean bias and standard error in the bias, across these 10 seeds.

Generally we find that the bias of GRCD is higher than that of AD⇤ . This is likely because AD⇤

is implicitly performing importance sampling over a set of 2Dmax+d
� 1 samples, and returning the

one with the highest importance weight. By contrast, GRCD is running rejection sampling up to a
maximum of Dmax+d steps, returning its last sample if it has not terminated by its (Dmax+d)th step.
While it might be possible to improve the bias of depth limited GRCD by considering an alternative
way of choosing which sample to return, using for example an importance weighting criterion, we do
not examine this here and leave this possibility for future work.

Figure 5: Bias of depth-limited AD⇤ and GRCD, as a function of the number of additional bit budget
given to each algorithm. See text above for discussion.

29

	Introduction and motivation
	Background and related work
	Greedy Rejection Coding
	Algorithm definition
	Theoretical results

	Experiments
	Synthetic Experiments
	Compression with Variational Autoencoders

	Conclusion and Future Work
	Author Contributions
	Acknowledgements
	Formal definition of Greedy Rejection Coding
	Formal definition
	Harsha et al.'s algorithm is a special case of GRC

	Proof of correctness of GRC
	Preliminary definitions, assumptions and notation
	Deriving the measure of samples returned by GRC
	Breaking down the proof of Theorem 1 in five cases

	Optimality of GRCS
	Additional experiments with depth-limited GRC

