
Faster Relative Entropy Coding with
Greedy Rejection Coding

Gergely Flamich⇤

Department of Engineering
University of Cambridge
gf332@cam.ac.uk

Stratis Markou⇤

Department of Engineering
University of Cambridge
em626@cam.ac.uk

José Miguel Hernández Lobato
Department of Engineering
University of Cambridge
jmh233@cam.ac.uk

Abstract

Relative entropy coding (REC) algorithms encode a sample from a target distribu-
tion Q using a proposal distribution P using as few bits as possible. Unlike entropy
coding, REC does not assume discrete distributions or require quantisation. As
such, it can be naturally integrated into communication pipelines such as learnt
compression and differentially private federated learning. Unfortunately, despite
their practical benefits, REC algorithms have not seen widespread application, due
to their prohibitively slow runtimes or restrictive assumptions. In this paper, we
make progress towards addressing these issues. We introduce Greedy Rejection
Coding (GRC), which generalises the rejection based-algorithm of Harsha et al.
(2007) to arbitrary probability spaces and partitioning schemes. We first show that
GRC terminates almost surely and returns unbiased samples from Q, after which
we focus on two of its variants: GRCS and GRCD. We show that for continuous
Q and P over R with unimodal density ratio dQ/dP , the expected runtime of
GRCS is upper bounded by �DKL[QkP]+O(1) where � ⇡ 4.82, and its expected
codelength is optimal. This makes GRCS the first REC algorithm with guaranteed
optimal runtime for this class of distributions, up to the multiplicative constant �.
This significantly improves upon the previous state-of-the-art method, A* coding
(Flamich et al., 2022). Under the same assumptions, we experimentally observe and
conjecture that the expected runtime and codelength of GRCD are upper bounded
by DKL[QkP] + O(1). Finally, we evaluate GRC in a variational autoencoder-
based compression pipeline on MNIST, and show that a modified ELBO and an
index-compression method can further improve compression efficiency.

1 Introduction and motivation

Over the past decade, the development of excellent deep generative models (DGMs) such as varia-
tional autoencoders (VAEs; Vahdat & Kautz, 2020; Child, 2020), normalising flows (Kingma et al.,
2016) and diffusion models (Ho et al., 2020) demonstrated great promise in leveraging machine
learning (ML) for data compression. Many recent learnt compression approaches have significantly
outperformed the best classical hand-crafted codecs across a range of domains, such as lossless and
lossy image or video compression (Zhang et al., 2021; Mentzer et al., 2020, 2022).

Transform coding. Most learnt compression algorithms are transform coding methods: they first
map a datum to a latent variable using a learnt transform, and encode it using entropy coding (Ballé
et al., 2020). Entropy coding assumes discrete variables while the latent variables in DGMs are
typically continuous, so most transform coding methods quantize the latent variable prior to entropy
coding. Unfortunately, quantization has zero derivative almost everywhere. Thus, state-of-the-art
DGMs trained with gradient-based optimisation must resort to some continuous approximation to

⇤Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

AS⇤ coding

Global A⇤

AD⇤ coding

GRCDGRCS

GRCG

On-sample partitioning

Global partitioning

Dyadic partitioning

Perturb-and-maximize

Rejection sampling

Figure 1: An illustration of the relations between the variants of GRC, introduced in this work, and
the variants of A⇤ coding. Algorithms in purple are introduced in this work. The algorithms of Harsha
et al. (2007) and Li & El Gamal (2018) are equivalent to GRCG and Global A⇤ coding respectively.

quantisation during training and switch to hard quantisation for compression. Previous works have
argued that using quantisation within learnt compression is restrictive or otherwise harmful, and that
a method which naturally interfaces with continuous latent variables is needed (Havasi et al., 2018;
Flamich et al., 2020; Theis & Agustsson, 2021; Flamich et al., 2022).

Relative entropy coding. In this paper, we study an alternative to quantizing and entropy coding
the latent representations: we consider randomly perturbing them and encoding the perturbed
representations instead. This problem is called relative entropy coding (REC; Havasi et al., 2018;
Flamich et al., 2020), and formally, it requires that we encode a random sample from a target Q (the
distribution of the perturbed latent representations) using a coding distribution P and some publicly
available randomness S (e.g. a publicly shared PRNG seed). Remarkably, there exist algorithms
which encode a target sample using only approximately DKL[QkP]-many bits on average and,
notably, allow Q and P to be continuous (Li & El Gamal, 2018; Flamich et al., 2022; Flamich &
Theis, 2023; Flamich, 2023). Thus, we can forgo quantization in our compression pipeline and learn
our transforms end-to-end using gradient descent and the reparameterization trick. Moreover, REC
has fundamental advantages over quantization in lossy compression with realism constraints (Theis
& Agustsson, 2021; Theis et al., 2022) and has a range of other applications, such as differentially
private compression for federated learning (Shah et al., 2022; Shahmiri et al., 2023) and compression
with Bayesian implicit neural representations (Guo et al., 2023; He et al., 2023).

Limitations of existing REC algorithms. While algorithms for solving REC problems already exist,
most of them suffer from limitations that render them impractical. These limitations fall into three
categories: 1) prohibitively long runtimes, 2) overly restrictive assumptions, or 3) excessive coding
overheads. In this work, we study and make progress towards addressing these limitations.

General-purpose REC algorithms. The minimal assumption made by any REC algorithm on Q

and P is that DKL[QkP] <1, which ensures that it produces a finite code. However, unfortunately,
Agustsson & Theis (2020) showed that without additional assumptions on Q and P , the expected
runtime of any algorithm that simulates a Q-distributed sample using P must scale at least exponen-
tially in DKL[QkP] in the worst case, which is impractically slow for most practical problems. This
result holds even in the approximate sense, i.e. the exponential runtime persists even if the algorithm
simulates a Q̃-distributed sample with ||Q� Q̃||TV < 1/12.

Faster algorithms with additional assumptions. On the other hand, there exist algorithms which
make additional assumptions in order to achieve faster runtimes. For example, dithered quantization
(Ziv, 1985; Agustsson & Theis, 2020) achieves an expected runtime of DKL[QkP], which is optimal
since any REC algorithm has an expected runtime of at least DKL[QkP]. However, it requires both
Q and P to be uniform distributions, which limits its applicability. Recently, Flamich et al. (2022)
introduced A⇤ coding, an algorithm based on A⇤ sampling (Maddison et al., 2014) which, under
assumptions satisfied in practice, achieves an expected runtime of D1[QkP]. Unfortunately, this
runtime is suboptimal and is not always practically fast, since D1[QkP] can be arbitrarily large for
fixed DKL[QkP]. Further, as discussed in Flamich et al. (2022) this runtime also comes at a cost of
an additional, substantial, overhead in codelength, which limits the applicability of A⇤ coding.

2

Our contributions. In this work, we address some of these limitations. First, we propose greedy
rejection coding (GRC), a REC algorithm based on rejection sampling. Then, inspired by A* coding
(Flamich et al., 2022), we develop GRCS and GRCD, two variants of GRC that partition the sample
space to dramatically speed up termination. Figure 1 illustrates the relations between GRC and its
variants with existing algorithms. We analyze the correctness and the runtime of these algorithms
and, in particular, prove that GRCS has an optimal codelength and order-optimal runtime on a wide
class of one-dimensional problems. In more detail, our contributions are

• We introduce Greedy Rejection Coding (GRC), which generalises the algorithm of Harsha
et al. (2007) to arbitrary probability spaces and partitioning schemes. We prove that under
mild conditions, GRC terminates almost surely and returns an unbiased sample from Q.

• We introduce GRCS and GRCD, two variants of GRC for continuous distributions over
R, which adaptively partition the sample space to dramatically improve their convergence,
inspired by AS⇤ and AD⇤ coding (Flamich et al., 2022), respectively.

• We prove that whenever dQ/dP is unimodal, the expected runtime and codelength of GRCS
is O(DKL[QkP]). This significantly improves upon the O(D1[QkP]) runtime of AS⇤

coding, which is always larger than that of GRCS. This runtime is order-optimal, while
making far milder assumptions than, for example, dithered quantization.

• We provide clear experimental evidence for and conjecture that whenever dQ/dP is uni-
modal, the expected runtime and codelength of GRCD are DKL[QkP]. This also signifi-
cantly improves over the D1[QkP] empirically observed runtime of AD⇤ coding.

• We implement a compression pipeline with VAEs, using GRC to compress MNIST images.
We propose a modified ELBO objective and show that this, together with a practical method
for compressing the indices returned by GRC further improve compression efficiency.

2 Background and related work

Relative entropy coding. First, we define REC algorithms. Definition 1 is stricter than the one
given by Flamich et al. (2022), as it has a stronger condition on the the expected codelength of the
algorithm. In this paper, all logarithms are base 2, and all divergences are measured in bits.
Definition 1 (REC algorithm). Let (X ,⌃) be a measurable space, let R be a set of pairs of
distributions (Q,P) over (X ,⌃) such that DKL[QkP] < 1 and P be the set of all distributions
P such that (Q,P) 2 R for some distribution Q. Let S = (S1, S2, . . .) be a publicly available
sequence of independent and fair coin tosses, with corresponding probability space (S,F ,P) and
let C = {0, 1}⇤ be the set of all finite binary sequences. A REC algorithm is a pair of functions
enc : R ⇥ S ! C and dec : C ⇥ P ⇥ S ! X , such that for each (Q,P) 2 R and S ⇠ P, the
outputs of the encoder C = enc(Q,P, S) and the decoder X = dec(P,C, S) satisfy

X ⇠ Q and ES [|C|] = DKL[QkP] +O(log(DKL[QkP] + 1)), (1)

where |C| is the length of the string C. We call enc the encoder and dec the decoder.

In practice, S is implemented with a pseudo-random number generator (PRNG) with a public seed.
In the remainder of this section, we discuss relevant REC algorithms, building up to GRC in section 3.

Existing REC algorithms. While there are many REC algorithms already, they suffer from various
issues limiting their applicability in practice. Our proposed algorithm, Greedy Rejection Coding
(GRC), is based on and generalises Harsha et al. (2007)’s REJ-SAMPLER, by drawing inspiration
from A⇤ coding (Flamich et al., 2022). Specifically, A⇤ coding generalises Li & El Gamal (2018)’s
Poisson functional representation by introducing a partitioning scheme to speed up the algorithm’s
termination. In an analogous fashion, GRC generalises Harsha et al. (2007) by also introducing
partitioning schemes to speed up termination and achieve optimal runtimes. Here we discuss relevant
algorithms, building up to GRC in section 3.

REC with rejection sampling. In this work, we generalize the rejection sampler introduced by
Harsha et al. (2007). While they presented the algorithm for discrete Q and P originally, we
generalise it to arbitrary probability spaces in this section and further extend it to arbitrary partitioning
schemes (see definition 5) in section 3. The generalisation to arbitrary probability spaces relies on

3

Figure 2: Example run of Harsha et al. (2007), for a pair of continuous Q and P over [0, 1]. The
green and red regions correspond to acceptance and rejection regions at each step. Here the algorithm
rejects the first two samples and accepts the third one, terminating at the third step.

the Radon-Nikodym derivative dQ/dP , which is guaranteed to exist since Q⌧ P by definition 1.
When Q and P both have densities, dQ/dP coincides with the density ratio.

At each step, the algorithm draws a sample from P and performs an accept-reject step, as illustrated
in fig. 2. If it rejects the sample, it rules out part of Q corresponding to the acceptance region, adjusts
the proposal to account for the removed mass, and repeats until acceptance. More formally, define T0

to be the zero-measure on X , and recursively for d 2 N, set:

Td+1(S)
def
= Td(S) +Ad+1(S), Ad+1(S)

def
=

Z

S

↵d+1(x) dP (x), (2)

td(x)
def
=

dTd

dP
(x), ↵d+1(x)

def
= min

⇢
dQ

dP
(x)� td(x), (1� Td(X))

�
, (3)

Xd ⇠ P, Ud ⇠ Uniform(0, 1) �d+1(x)
def
=

↵d+1(x)

1� Td(X)
, (4)

for all x 2 X , S 2 ⌃. The algorithm terminates at the first occurrence of Ud �d+1(Xd). The
Td measure corresponds to the mass that has been ruled off up to and including the d

th rejection:
T1(X), T2(X) and T3(X) are the sums of the blue and green masses in the left, middle and right
plots of fig. 2 respectively. The Ad measure corresponds to the acceptance mass at the d

th step:
A1(X), A2(X) and A3(X) are the masses of the green regions in the left, middle and right plots
of fig. 2 respectively. Lastly, td,↵d are the Radon-Nikodym derivatives i.e., roughly speaking, the
densities, of Td, Ad with respect to P , and �d+1(Xd) is the probability of accepting the sample Xd.

To encode the accepted sample X , enc outputs the number of rejections C that occurred before
acceptance. To decode X from C, dec draws C + 1 samples from P, using the same PRNG seed
as the encoder, and returns the last sample. While this algorithm is elegantly simple and achieves
optimal codelengths, Flamich & Theis (2023) showed its expected runtime is 2D1[QkP], where
D1[QkP] = sup

x2X log(dQ/dP)(x) is the Rényi1-divergence. Unfortunately, this runtime is
prohibitively slow in most practical cases.

REC with Poisson & Gumbel processes. Li & El Gamal (2018) introduced a REC algorithm based
on Poisson processes, referred to as Poisson Functional Representation (PFR). PFR assumes that
dQ/dP is bounded above, and relies on the fact that (Kingman, 1992), if Tn are the ordered arrival
times of a homogeneous Poisson process on R

+ and Xn ⇠ P , then

N
def
= argmin

n2N

⇢
Tn

dP

dQ
(Xn)

�
=) XN ⇠ Q. (5)

Therefore, PFR casts the REC problem into an optimisation, or search, problem, which can be solved
in finite time almost surely. The PFR encoder draws pairs of samples Tn, Xn, until it solves the
search problem in eq. (5), and returns X = XN , C = N � 1. The decoder can recover XN from
(P,C, S), by drawing N samples from P , using the same random seed, and keeping the last sample.
While, like the algorithm of Harsha et al. (2007), PFR is elegantly simple and achieves optimal
codelengths, its expected runtime is also 2D1[QkP] (Maddison, 2016).

Fast REC requires additional assumptions. These algorithms’ slow runtimes are perhaps unsur-
prising considering Agustsson & Theis’s result, which shows under the computational hardness
assumption RP 6= NP that without making additional assumptions on Q and P , there is no REC

4

Algorithm 1 Harsha et al.’s rejection algorithm;
equivalent to GRC with a global partition
Require: Target Q, proposal P , space X
1: d 0, T0 0
2:
3: while True do
4: Xd+1 ⇠ P
5: Ud+1 ⇠ Uniform(0, 1)
6: �d+1 AcceptProb(Q,P,Xd+1, Td)
7: if Ud+1 �d+1 then
8: return Xd+1, d
9: end if

10:
11:
12:
13: Td+1 RuledOutMass(Q,P, Td)
14: d d+ 1
15: end while

Algorithm 2 GRC with partition process Z; differ-
ences to Harsha et al.’s algorithm shown in green
Require: Target Q, proposal P , space X , partition Z
1: d 0, T0 0
2: I0 1, S1 X
3: while True do
4: XId ⇠ P |Sd/P (Sd)
5: UId ⇠ Uniform(0, 1)
6: �Id AcceptProb(Q,P,XId , Td)
7: if UId �d+1 or d = Dmax then
8: return XId , Id
9: end if

10: p PartitionProb(Q,P, Td, Z2d, Z2d+1)
11: bd ⇠ Bernoulli(p)
12: Id+1 2Id + bd and Sd+1 ZId+1

13: Td+1 RuledOutMass(Q,P, Td, Sd+1)
14: d d+ 1
15: end while

algorithm whose expected runtime scales polynomially in DKL[QkP]. Therefore, in order achieve
faster runtimes, a REC algorithm must make additional assumptions on Q and P .

A⇤ coding. To this end, Flamich et al. (2022) proposed: (1) a set of appropriate assumptions which
are satisfied by many deep latent variable models in practice and (2) a REC algorithm, referred to
as A⇤ coding, which leverages these assumptions to achieve a substantial speed-up over existing
methods. In particular, A⇤ coding generalizes PFR by introducing a partitioning scheme, which
splits the sample space X in nested partitioning subsets, to speed up the solution of eq. (5). Drawing
inspiration from this, our proposed algorithm generalises eqs. (2) to (4) in an analogous manner (see
fig. 1), introducing partitioning processes (definition 2) to speed up the algorithm’s termination.

Definition 2 (Partitioning process). A partitioning process is a process Z : N+
! ⌃ such that

Z1 = X , Z2n \ Z2n+1 = ;, Z2n [Z2n+1 = Zn. (6)

In other words, a partitioning process Z is an infinite binary tree-structured process, where the root
node is Z1 = X and has index 1, and each node Zn with index n is partitioned by its two children
nodes Z2n, Z2n+1 with indices 2n and 2n+ 1. We refer to this system of indexing as heap indexing.
In section 3 we present specific choices of partitioning processes which dramatically speed up GRC.

Greedy Poisson Rejection Sampling. Contemporary to our work, Flamich (2023) introduces a
rejection sampler based on Poisson processes, called Greedy Poisson Rejection Sampling (GPRS),
which can be used as a REC algorithm. Similar to GRC and A* coding, GPRS partitions the
sample space to speed up the convergence to the accepted sample. Furthermore, a variant of GPRS
also achieves order-optimal runtime for one-dimensional distribution pairs with a unimodal density
ratio. However, the construction of their method is significantly different from ours, relying entirely
on Poisson processes. Moreover, GPRS requires numerically solving a certain ODE, while our
method does not, making it potentially more favourable in practice. We believe establishing a closer
connection between GPRS and GRC is a promising future research direction.

3 Greedy Rejection Coding

Generalising Harsha et al. (2007). In this section we introduce Greedy Rejection Coding (GRC;
definition 5), which generalises the algorithm of Harsha et al. (2007) in two ways. First, GRC can
be used with distributions over arbitrary probability spaces. Therefore, it is applicable to arbitrary
REC problems, including REC with continuous distributions. Second, similar to A⇤ coding, GRC
can be combined with arbitrary partitioning processes, allowing it to achieve optimal runtimes given
additional assumptions on the REC problem, and an appropriate choice of partitioning process.

5

(a) Sample & accept or reject (b) Partition & sample b1 2 {0,1} (c) Sample & accept or reject

(d) Sample & accept or reject (e) Partition & sample b1 2 {0,1} (f) Sample & accept or reject

Figure 3: Illustrations of the two variants of GRC considered in this work. (a) to (c) show GRC with
the on-sample partitioning process (GRCS). (d) to (f) show GRC with the dyadic partition process
(GRCD). GRC interleaves accept-reject steps with partitioning steps. In the former, it draws a sample
and either accepts or rejects it. In the latter, it partitions the sample space and randomly chooses one
of the partitions, ruling out large parts of the sample space and speeding up termination.

3.1 Algorithm definition

Overview. Before specifying GRC, we summarise its operation with an accompanying illustration.
On a high level, GRC interleaves accept-reject steps with partitioning steps, where the latter are
determined by a partitioning process. Specifically, consider the example in figs. 3d to 3f, where Q

and P are distributions over X = [0, 1], and Z is the partitioning process defined by

Zn = [L,R] =) Z2n = [L,M), Z2n+1 = [M,R], where M = (L+R)/2. (7)

In each step d = 1, 2, . . . , GRC maintains a heap index Id of an infinite binary tree, and an active
subset Sd = ZId ✓ X of the sample space, initialised as I0 = 1 and S1 = Z1 = X respectively.

Accept-reject step. In each step, GRC draws a sample from the restriction of P to Sd, namely
P |Sd/P (Sd), and either accepts or rejects it. If the sample is accepted, the algorithm terminates.
Otherwise, GRC performs a partitioning step as shown in fig. 3d

Partitioning step. In each partitioning step, GRC partitions Sd = ZId into Z2Id and Z2Id+1, as
specified by the partitioning process Z. It then samples a Bernoulli random variable bd, whose
outcomes have probabilities proportional to the mass of Q which has not been accounted for, up
to and including step d, within the partitions Z2Id and Z2Id+1 respectively. In fig. 3e, these two
masses correspond to the purple and orange areas, and the algorithm has sampled bd = 1. Last, GRC
updates the heap index to Id+1 = 2Id + bd and the active subset to Sd+1 = ZId+1 . GRC proceeds by
interleaving accept-reject and partitioning steps until an acceptance occurs.

Algorithm specification. The aforementioned algorithm can be formalised in terms of probability
measures over arbitrary spaces and arbitrary partitioning processes. Above, algorithms 1 and 2
describe Harsha et al.’s rejection sampler and our generalisation of it, respectively. For the sake of
keeping the exposition lightweight, we defer the formal measure-theoretic definition of GRC to the
appendix (see definition 5 in appendix A.1), and refer to algorithm 2 as a working definition here.

Comparison to Harsha et al. While algorithms 1 and 2 are similar, they differ in two notable ways.
First, rather than drawing a sample from P , GRC draws a sample from the restriction of P to an active
subset Sd = Zd ✓ X , namely P |Sd/P (Sd). Second, GRC updates its active subset Sd = Zd at each
step, setting it to one of the children of Zd, namely either Z2d or Z2d+1, by drawing bd ⇠ Bernoulli,
and setting Z2d+bd . This partitioning mechanism, which does not appear in algorithm 1, yields a

6

different variant of GRC for each choice of partitioning process Z. In fact, as shown in Proposition 1
below, algorithm 1 is a special case of GRC with Sd = X for all d. See appendix A.2 for the proof.
Proposition 1 (Harsha et al. (2007) is a special case of GRC). Let Z be the global partitioning
process over ⌃, defined as

Z1 = X , Z2n = Zn, Z2n+1 = ;, for all n = 1, 2, (8)
Harsha et al. (2007) is equivalent to GRC using this Z and setting C = D

⇤ instead of C = ID⇤ . We
refer to this algorithm as Global GRC, or GRCG for short.

Partitioning processes and additional assumptions. While Proposition 1 shows that Harsha et al.’s
algorithm is equivalent to GRC with a particular choice of Z, a range of other choices of Z is possible,
and this is where we can leverage additional structure. In particular, we show that when Q and P are
continuous distributions over R with a unimodal density ratio dQ/dP , we can dramatically speed
up GRC with an appropriate choice of Z. In particular, we will consider the on-sample and dyadic
partitioning processes from Flamich et al. (2022), given in Definitions 3 and 4.
Definition 3 (On-sample partitioning process). Let X = R [{�1,1} and P a continuous
distribution. The on-sample partitioning process is defined as

Zn = [a, b], a, b 2 X =) Z2n = [a,Xn], Z2n+1 = [Xn, b], where Xn ⇠ P |Zn/P (Zn).

In other words, in the on-sample partitioning process, Zn are intervals of R, each of which is
partitioned into sub-intervals Z2n and Z2n+1 by splitting at the sample Xn drawn from P |Zn/P (Zn).
We refer to GRC with on-sample partitioning as GRCS.
Definition 4 (Dyadic partitioning process). Let X = R[{�1,1} and P a continuous distribution.
The dyadic partitioning process is defined as

Zn = [a, b], a, b 2 X =) Z2n = [a, c], Z2n+1 = [c, b], such that P (Z2n) = P (Z2n+1).

Similar to on-sample partitioning, in the dyadic process Zn are intervals of R. However, in the dyadic
process, Zn is partitioned into sub-intervals Z2n and Z2n+1 such that P (Z2n) = P (Z2n+1). We
refer to GRC with the dyadic partitioning process as GRCD.

GRC with a tunable codelength. Flamich et al. (2022) presented a depth-limited variant of AD⇤

coding, DAD⇤ coding, in which the codelength |C| can be provided as a tunable input to the algorithm.
Fixed-codelength REC algorithms are typically approximate because they introduce bias in their
samples, but are nevertheless useful in certain contexts, such as for coding a group of random
variables with the same fixed codelength. GRCD can be similarly modified to accept |C| as an input,
by limiting the maximum steps of the algorithm by Dmax (see algorithm 2). Setting Dmax =1 in
algorithm 2 corresponds to exact GRC, while setting Dmax <1 corresponds to depth-limited GRC.
In appendix D we provide detailed analysis of depth-limited GRC.

3.2 Theoretical results

Correctness of GRC. Below, we present three sets of assumptions on Q,P and Z, and in theorem 1,
we show that fulfilling any of them is sufficient to ensure the correctness of GRC.
Assumption 1. GRC has a finite ratio mode, i.e. dQ/dP (x) < M for all x 2 X , for some M > 0.

Assumption 1 is the most generally applicable, as it does not restrict the sample space. Assumption 1
holds for GRCG, GRCS and GRCD, so long as dQ/dP is bounded. While this assumption is very
general, in some cases we may want to consider Q,P with unbounded dQ/dP . To this end, we show
that it can be replaced by alternative assumptions, such as assumptions 2 and 3.
Assumption 2. GRC is single-branch, i.e. for each d, bd = 0 or bd = 1 almost surely.

GRC with the global partitioning process (eq. 8) satisfies assumption 2. In addition, if Q and P are
distributions over R and dQ/dP is unimodal, GRCS also satisfies assumption 2.
Assumption 3. X ✓ R

N and GRC has nicely-shrinking bounds, i.e. P-almost surely the following
holds: for each x 2 X which is in a nested sequence of partitions x 2 Z1 ◆ · · · ◆ Zkd ◆ . . . with
P (Zkd)! 0 as kd !1, there exist �, r1, r2, ... 2 R>0 such that

rd ! 0, Zkd ✓ Brd(x) and P (Zkd) � �P (Brd(x)), (9)
where Br(x) denotes the open ball of radius r centered on x. We recall that P is the measure
associated with the sequence of publicly available coin flips S.

7

Intuitively, Z is nicely shrinking if its branches shrink in a roughly uniform way over X . As the most
important example, when Q and P are distributions over R, GRCD satisfies assumption 3. Now,
Theorem 1 shows that if any of the above assumptions hold, then GRC terminates almost surely and
yields unbiased samples from Q. We provide the proof in appendix B.
Theorem 1 (Correctness of GRC). Suppose Q,P and Z satisfy any one of assumptions 1 to 3. Then,
algorithm 2 terminates with probability 1, and its returned sample X has law X ⇠ Q.

Expected runtime and codelength of GRCS. Now we turn to the expected runtime and codelength
of GRCS. Theorem 2 shows that the expected codelength of GRCS is optimal, while Theorem 3
establishes that its runtime is order-optimal. We present the proofs of the theorems in appendix C.
Theorem 2 (GRCS codelength). Let Q and P be distributions over R with DKL[QkP] <1 and
dQ/dP unimodal. Let Z be the on-sample partitioning process, and X its returned sample. Then,

H[X|Z] DKL[QkP] + 2 log (DKL[QkP] + 1) +O(1). (10)

Theorem 3 (GRCS runtime). Let Q and P be distributions over R with DKL[QkP] < 1 and
dQ/dP unimodal. Let Z be the on-sample partitioning process and D the number of steps the
algorithm takes before accepting a sample. Then, for � = 2/ log(4/3) ⇡ 4.82 we have

E[D] � DKL[QkP] +O(1). (11)

Improving the codelength of GRCD. In theorem 2, we state the bound for the REC setting, where
we make no further assumptions on Q and P . However, we can improve the bound if we consider the
reverse channel coding (RCC) setting (Theis & Yosri, 2022). In RCC, we have a pair of correlated
random random variables X,Y ⇠ PX,Y . During one round of communication, the encoder receives
Y ⇠ PY and needs to encode a sample X ⇠ PX|Y from the posterior using PX as the proposal
distribution. Thus, RCC can be thought of as the average-case version of REC, where the encoder
sets Q PX|Y and P PX . In this case, when the conditions of theorem 2 hold for every
(PX|Y , PX) pair, in appendix C we show that the coefficient of the log-factor in eq. (10) can be
improved so that the average-case bound becomes I[X;Y] + log(I[X;Y] + 1) + O(1), where
I[X;Y] = EY⇠PY

⇥
DKL[PX|Y kPY]

⇤
is the mutual information between X and Y .

GRCS runtime is order-optimal. Theorem 3 substantially improves upon the runtime of A⇤ coding,
which is the current fastest REC algorithm with similar assumptions. In particular, AS⇤ coding has
O(D1[QkP]) expected runtime, which can be arbitrarily larger than that of GRCS. Remarkably, the
runtime of GRCS is optimal up to the multiplicative factor �.

4 Experiments

We conducted two sets of experiments: one on controlled synthetic REC problems to check the
predictions of our theorems numerically, and another using VAEs trained on MNIST to study how
the performance of GRC-based compression pipelines can be improved in practice. We conducted all
our experiments under fair and reproducible conditions. Our code is available at https://github.
com/cambridge-mlg/fast-rec-with-grc.

4.1 Synthetic Experiments

Synthetic REC experiments. First, we compare GRCS and GRCD, against AS⇤ and AD⇤ coding,
on a range of synthetic REC problems. We systematically vary distribution parameters to adjust the
difficulty of the REC problems. Figure 4 shows the results of our synthetic experiments.

Partitioning processes improve the runtime of GRC. First, we observe that, assuming that dQ/dP

is unimodal, introducing the on-sample or the dyadic partitioning process speeds up GRC dramatically.
In particular, fig. 4 shows that increasing the infinity divergence D1[QkP] (for a fixed DKL[QkP])
does not affect the runtimes of GRCS and GRCD, which remain constant and small. This is a
remarkable speed-up over the exponential expected runtime of GRCG.

GRC is faster than A⇤ coding. Further, we observe that GRC significantly improves upon the
runtime of A* coding, which is the fastest previously known algorithm with similar assumptions.
In particular, Figure 4 shows that increasing the infinity divergence D1[QkP], while keeping the

8

https://github.com/cambridge-mlg/fast-rec-with-grc
https://github.com/cambridge-mlg/fast-rec-with-grc

Figure 4: Comparison between GRC and A⇤ coding on synthetic REC problems with Gaussian Q

and P . Left: we fix DKL[QkP] = 3 and vary D1[QkP], measuring the number of steps taken
by each algorithm. Right: we fix D1[QkP] = DKL[QkP] + 2 and vary DKL[QkP], plotting the
codelengths produced by each algorithm. Reported codelengths do not include additional logarithmic
overhead terms. Results are averaged over 4⇥ 103 different random seeds for each datapoint. We
have included error-bars in both plots but these are too small to see compared to the plot scales.

KL divergence DKL[QkP] fixed, increases the runtime of both AS⇤ and AD⇤ coding, while the
runtimes of GRCS and GRCD remain constant. More generally, for a fixed KL divergence, the infinity
divergence can be arbitrarily large or even infinite. In such cases, A⇤ coding would be impractically
slow or even inapplicable, while GRCS and GRCD remain fast.

4.2 Compression with Variational Autoencoders

Compressing images with VAEs and REC. One of the most promising applications of REC
is in learnt compression. Here, we implement a proof-of-concept lossless neural compression
pipeline using a VAE with a factorized Gaussian posterior on MNIST and take the architecture
used by Townsend et al. (2018). To compress an image Y , we encode a latent sample X from the
VAE posterior q(X | Y) by applying GRCD dimensionwise after which we encode the image Y

with entropy coding using the VAE’s conditional likelihood p(Y | X) as the coding distribution.
Unfortunately, in addition to the DKL[q(Xd | Y)kp(Xd)] bits coding cost for latent dimension d, this
incurs an overhead of log(DKL[q(Xd | Y)kp(Xd)] + 1) +O(1) bits, analogously to how a symbol
code, like Huffman coding, incurs a constant overhead per symbol (MacKay, 2003). However, since
log(1 + x) ⇡ x when x ⇡ 0, the logarithmic overhead of GRC can become significant compared to
the KL divergence. Hence, we now investigate two approaches to mitigate this issue.

Modified ELBO for REC. A principled approach to optimizing our neural compression pipeline
is to minimize its expected codelength. For bits-back methods (Townsend et al., 2018, 2019), the
negative ELBO indeed expresses their expected codelength, but in REC’s case, it does not take into
account the additional dimensionwise logarithmic overhead we discussed above. Thus, we propose to
minimize a modified negative ELBO to account for this (assuming that we have D latent dimensions):

EX⇠q(X|Y)[� log p(Y |X)] +DKL[q(X|Y)kp(X)]
| {z }

Regular ELBO

+
DX

d=1

log (DKL[q(Xd|Y)kp(Xd)] + 1)| {z }
Logarithmic overhead per dimension

. (12)

Coding the latent indices. As the final step during the encoding process, we need a prefix code to
encode the heap indices Id returned by GRCD for each d. Without any further information, the best
we can do is use Elias � coding (Elias, 1975), which, assuming our conjecture on the expected runtime
of GRCD holds, yields an expected codelength of I[Y ;X]+2 log(I[Y ;X]+1)+O(1). However, we
can improve this if we can estimate E[log Id] for each d: it can be shown, that the maximum entropy
distribution of a positive integer-valued random variable with under a constraint on the expectation
on its logarithm is ⇣(n|�) / n

��, with �
�1 = E[log Id] + 1. In this case, entropy coding Id using

this ⇣ distribution yields improves the expected codelength to I[Y ;X] + log(I[Y ;X] + 1) +O(1).

Experimental results. We trained our VAE with L 2 {20, 50, 100} latent dimensions optimized
using the negative ELBO and its modified version in Equation (12), and experimented with encoding
the heap indices of GRCD with both � and ⇣ coding. We report the results of our in Table 1 on the
MNIST test set in bits per pixel. In addition to the total coding cost, we report the negative ELBO
per pixel, which is the fundamental lower bound on the compression efficiency of REC with each

9

TRAINING
OBJECTIVE

LATENT
TOTAL BPP

WITH ⇣ CODING
TOTAL BPP

WITH � CODING
NEG. ELBO

PER PIXEL
OVERHEAD BPP
WITH � CODING

ELBO
20 1.472± 0.004 1.482± 0.004 1.391± 0.004 0.091± 0.000
50 1.511± 0.003 1.530± 0.003 1.357± 0.003 0.172± 0.000
100 1.523± 0.003 1.600± 0.003 1.362± 0.003 0.238± 0.000

MODIFIED ELBO
20 1.470± 0.004 1.478± 0.004 1.393± 0.004 0.085± 0.000
50 1.484± 0.003 1.514± 0.003 1.373± 0.003 0.141± 0.000
100 1.485± 0.003 1.579± 0.003 1.373± 0.003 0.205± 0.000

Table 1: Lossless compression performance comparison on the MNIST test set of a small VAE with
different latent space sizes, optimized using either the ELBO or the modified ELBO in eq. (12). We
report the bits per pixel (BPP) attained using different coding methods, averaged over the 10,000 test
images, along with the standard error, using GRCD. See section 4.2 for further details.

VAE. Finally, we report the logarithmic overhead due to � coding. We find that both the modified
ELBO and ⇣ coding prove beneficial, especially as the dimensionality of the latent space increases.
This is expected, since the overhead is most significant for latent dimensions with small KLs, which
becomes more likely as the dimension of the latent space grows. The improvements yielded by each
of the two methods are significant, with ⇣ coding leading to a consistent 1� 7% gain compared to �

coding and the modified objective resulting in up to 2% gain in coding performance.

5 Conclusion and Future Work

Summary. In this work, we introduced Greedy Rejection Coding (GRC), a REC algorithm which
generalises the rejection algorithm of Harsha et al. to arbitrary probability spaces and partitioning
processes. We proved the correctness of our algorithm under mild assumptions, and introduced GRCS
and GRCD, two variants of GRC. We showed that the runtimes of GRCS and GRCD significantly
improve upon the runtime of A⇤ coding, which can be arbitrarily larger. We evaluated our algorithms
empirically, verifying our theory and conducted a proof-of-concept learnt compression experiment
on MNIST using VAEs. We demonstrated that a principled modification to the ELBO and entropy
coding GRCD’s indices using a ⇣ distribution can further improve compression efficiency.

Limitations and Further work. One limitation of GRC is that, unlike A⇤ coding, it requires us
to be able to evaluate the CDF of Q. While in some settings this CDF may be intractable, this
assumption is satisfied by most latent variable generative models, and is not restrictive in practice.
However, one practical limitation of GRCS and GRCD, as well as AS⇤ and AD⇤ , is that they assume
target-proposal pairs over R. For multivariate distributions, we can decompose them into univariate
conditionals and apply GRC dimensionwise, however this incurs an additional coding overhead per
dimension, resulting in a non-negligible cost. Thus, an important direction is to investigate whether
fast REC algorithms for multivariate distributions can be devised, to circumvent this challenge.

6 Author Contributions

SM suggested that single-branch greedy rejection coding (Flamich & Theis, 2023) can be extended
to arbitrary partitioning processes. GF discovered GRCS and SM discovered GRCD. SM provided a
proof for Theorem 1 and GF provided proofs for Theorems 2 and 3. SM carried out the synthetic
experiments and GF carried out the VAE experiments. SM drafted the majority of the paper, while
GF wrote section 4.2 and parts of sections 2 and 3.2. They contributed to the editing of the paper
equally. JMH supervised and steered the project.

7 Acknowledgements

GF acknowledges funding from DeepMind. SM acknowledges funding from the Qualcomm In-
novation Fellowship and the Vice Chancellor’s & George and Marie Vergottis scholarship of the
Cambridge Trust.

10

References
Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. In Advances in

Neural Information Processing Systems, 2020.

Johannes Ballé, Philip A. Chou, David Minnen, Saurabh Singh, Nick Johnston, Eirikur Agustsson,
Sung Jin Hwang, and George Toderici. Nonlinear transform coding. IEEE Journal of Selected
Topics in Signal Processing, 2020.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images.
In International Conference on Learning Representations, 2020.

Richard M. Dudley. Real analysis and probability. CRC Press, 2018.

Nelson Dunford and Jacob T. Schwartz. Linear operators, part 1: general theory, volume 10. John
Wiley & Sons, 1988.

Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 1975.

Gergely Flamich. Greedy Poisson rejection sampling. In Advances in Neural Information Processing
Systems, 2023.

Gergely Flamich and Lucas Theis. Adaptive greedy rejection sampling. In IEEE International
Symposium on Information Theory, 2023.

Gergely Flamich, Marton Havasi, and José Miguel Hernández-Lobato. Compressing images by en-
coding their latent representations with relative entropy coding. In Advances in Neural Information
Processing Systems, 2020.

Gergely Flamich, Stratis Markou, and José Miguel Hernández-Lobato. Fast relative entropy coding
with A* coding. In International Conference on Machine Learning, 2022.

Zongyu Guo, Gergely Flamich, Jiajun He, Zhibo Chen, and José Miguel Hernández-Lobato. Compres-
sion with Bayesian implicit neural representations. In Advances in Neural Information Processing
Systems, 2023.

Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The communica-
tion complexity of correlation. In Twenty-Second Annual IEEE Conference on Computational
Complexity (CCC’07). IEEE, 2007.

Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code learning:
Getting bits back from compressed model parameters. In International Conference on Learning
Representations, 2018.

Jiajun He, Gergely Flamich, Zongyu Guo, and José Miguel Hernández-Lobato. RECOMBINER:
Robust and enhanced compression with Bayesian implicit neural representations. arXiv preprint
arXiv:2309.17182, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
neural information processing systems, 2020.

Durk P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, 2016.

John F. C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, 1992.

Cheuk Ting Li and Abbas El Gamal. Strong functional representation lemma and applications to
coding theorems. IEEE Transactions on Information Theory, 2018.

David J. C. MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Chris J. Maddison. Poisson process model for Monte Carlo. Perturbation, Optimization, and
Statistics, 2016.

11

Chris J. Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in Neural Information
Processing Systems, 2014.

Fabian Mentzer, George Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity genera-
tive image compression. In Advances in Neural Information Processing Systems, 2020.

Fabian Mentzer, George Toderici, David Minnen, Sergi Caelles, Sung Jin Hwang, Mario Lucic, and
Eirikur Agustsson. VCT: A video compression transformer. In Advances in Neural Information
Processing Systems, 2022.

Fernando Pérez-Cruz. Kullback-Leibler divergence estimation of continuous distributions. In IEEE
International Symposium on Information Theory, 2008.

Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1986.

Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, and Lucas Theis. Optimal compression
of locally differentially private mechanisms. In International Conference on Artificial Intelligence
and Statistics. PMLR, 2022.

Ali Moradi Shahmiri, Chih Wei Ling, and Cheuk Ting Li. Communication-efficient Laplace mecha-
nism for differential privacy via random quantization. arXiv preprint arXiv:2309.06982, 2023.

Lucas Theis and Eirikur Agustsson. On the advantages of stochastic encoders. In Neural Compression
Workshop at ICLR, 2021.

Lucas Theis and Noureldin Yosri. Algorithms for the communication of samples. In International
Conference on Machine Learning, 2022.

Lucas Theis, Tim Salimans, Matthew D. Hoffman, and Fabian Mentzer. Lossy compression with
Gaussian diffusion. arXiv preprint arXiv:2206.08889, 2022.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables
using bits back coding. In International Conference on Learning Representations, 2018.

James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: lossless image com-
pression with hierarchical latent variable models. In International Conference on Learning
Representations, 2019.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in
neural information processing systems, 2020.

Shifeng Zhang, Ning Kang, Tom Ryder, and Zhenguo Li. iFlow: Numerically invertible flows for
efficient lossless compression via a uniform coder. In Advances in Neural Information Processing
Systems, volume 34, pp. 5822–5833, 2021.

Jacob Ziv. On universal quantization. IEEE Transactions on Information Theory, 1985.

12

	Introduction and motivation
	Background and related work
	Greedy Rejection Coding
	Algorithm definition
	Theoretical results

	Experiments
	Synthetic Experiments
	Compression with Variational Autoencoders

	Conclusion and Future Work
	Author Contributions
	Acknowledgements
	Formal definition of Greedy Rejection Coding
	Formal definition
	Harsha et al.'s algorithm is a special case of GRC

	Proof of correctness of GRC
	Preliminary definitions, assumptions and notation
	Deriving the measure of samples returned by GRC
	Breaking down the proof of Theorem 1 in five cases

	Optimality of GRCS
	Additional experiments with depth-limited GRC

