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Abstract

We describe an approach to predict open-vocabulary 3D semantic voxel occu-
pancy map from input 2D images with the objective of enabling 3D grounding,
segmentation and retrieval of free-form language queries. This is a challenging
problem because of the 2D-3D ambiguity and the open-vocabulary nature of the
target tasks, where obtaining annotated training data in 3D is difficult. The con-
tributions of this work are three-fold. First, we design a new model architecture
for open-vocabulary 3D semantic occupancy prediction. The architecture consists
of a 2D-3D encoder together with occupancy prediction and 3D-language heads.
The output is a dense voxel map of 3D grounded language embeddings enabling a
range of open-vocabulary tasks. Second, we develop a tri-modal self-supervised
learning algorithm that leverages three modalities: (i) images, (ii) language and (iii)
LiDAR point clouds, and enables training the proposed architecture using a strong
pre-trained vision-language model without the need for any 3D manual language
annotations. Finally, we demonstrate quantitatively the strengths of the proposed
model on several open-vocabulary tasks: Zero-shot 3D semantic segmentation
using existing datasets; 3D grounding and retrieval of free-form language queries,
using a small dataset that we propose as an extension of nuScenes. You can find
the project page here https://vobecant.github.io/POP3D.

1 Introduction

The detailed analysis of 3D environments –both geometrically and semantically– is a fundamental
perception brick in many applications, from augmented reality to autonomous robots and vehicles. It
is usually conducted with cameras and/or laser scanners (LiDAR). In its most complete version, called
semantic 3D occupancy prediction, this analysis amounts to labelling each voxel of the perceived
volume as occupied by a certain class of object or empty. This is extremely challenging since both
cameras and LiDAR only capture information about visible surfaces, which may be projected from
3D into 2D without the loss of information, but not for every point in the 3D space. This one extra
dimension makes prediction arduous and hugely complicates the manual annotation task.

Recent works, e.g., [26], propose to leverage manually-annotated LiDAR data to produce a partial
annotation of the 3D occupancy space. However, relying on manual semantic annotation of point
clouds remains difficult to scale, even if sparse, and limits the learned representation to encode solely
a closed vocabulary, i.e., a limited predefined set of classes. In this work, we tackle these challenges
and propose an open-vocabulary approach to 3D semantic occupancy prediction that relies only on
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Figure 1: Overview of the proposed method. Provided only with surround-view images as input, our
model called POP-3D produces a voxel grid of 3D text-aligned features that support open-vocabulary
downstream tasks such as zero-shot occupancy segmentation or text-based grounding and retrieval.

unlabeled image-LiDAR data for training. In addition, our model uses only camera inputs at run time,
bypassing altogether the need for expensive dense LiDAR sensor, in contrast with most 3D semantic
perception systems (whether at point or voxel level).

To this end, we harness the progress made recently in supervised 3D occupancy prediction [26] and in
language-image alignment [64], within a two-head image-only model that can be trained with aligned
image-LiDAR raw data. Leveraging sparse 3D occupancy information that LiDAR scans provide for
free, we first train a class-agnostic occupancy prediction head. Using this same LiDAR information
along with pre-trained language-aligned visual features at the corresponding locations in images, we
jointly train a second head that predicts the same type of features at the 3D voxel level. At run time,
these features can be probed from text prompts to get open-vocabulary semantic segmentation of
voxels that are predicted as occupied (Fig. 1). To assess the effectiveness of our method for semantic
3D occupancy prediction, we introduce a novel evaluation protocol specifically tailored to this task.
Through evaluation with this protocol on autonomous driving data, our method is shown to achieve a
strong performance relative to the fully-supervised approach.

In a nutshell, we attack the difficult problem of 3D semantic occupancy prediction with the lightest
possible requirements: no manual annotation of the training data, no pre-defined semantic vocabulary,
and no recourse to LiDAR readings at run time. As a result, the proposed image-only 3D semantic
occupancy model named POP-3D (for oPen-vocabulary Occupancy Prediction in 3D) provides
training data scalability and operational versatility, while opening up new understanding capabilities
for autonomous systems through language-driven scene perception.

2 Related work

Semantic 3D occupancy prediction. Automatic understanding of the 3D geometry and semantics
of a scene has been traditionally enabled through high precision LiDAR sensors and corresponding
architectures. 3D semantic segmentation, i.e., point-level classification of a point cloud, can be
addressed with different types of transformations of the point cloud: point-based, directly operating on
the three-dimensional points [45, 46, 53], and projection-based, operating on a different representation,
e.g., two-dimensional images [57, 32, 8] or three-dimensional voxel representations [61, 65, 52, 18].
However, they produce predictions as sparse as the LiDAR point cloud offering an incomplete
understanding of the full scene. Semantic scene completion [50] aims for dense inference of 3D
geometry and semantics of objects and surfaces within a given extent, typically leveraging rich
geometry information at the input extracted from depth [16, 35], occupancy grids [58, 49], point
clouds [48], or a mix of modalities, e.g., RGBD [11, 17]. In this line, MonoScene [12] is the first
camera-based method to produce dense semantic occupancy predictions from a single image by
projecting image features into 3D voxels by optical ray intersection. Recent progress in multi-
camera Bird’s-Eye-View (BEV) projection [44, 25, 63, 38, 5, 37] enables the recent TPVFormer [26]
to generate surrounding 3D occupancy predictions by effectively exploiting tri-perspective view
representations [13] augmenting the standard BEV with two additional perpendicular planes to
recover the full 3D. All prior methods are trained in a supervised manner requiring rich voxel-level
semantic information, which is costly to curate and annotate. While we build on [26], we forego
manual label supervision and, instead, develop a model able to produce semantic 3D occupancy
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predictions using supervision from LiDAR and from an image-language model allowing our model
to acquire open-vocabulary skills in the voxel space.

Multi-modal representation learning. Distilling signals and knowledge from one modality into
another is an effective strategy to learn representations [2, 3] or to learn to solve tasks using only
few [14, 42, 1] or no human labels [54, 55]. The interplay between images, language and sounds
is often used for self-supervised representation learning over large repositories of unlabeled data
fetched from the internet [2–4, 41, 42]. Images can be paired with different modalities towards
solving complex 2D tasks, e.g., semantic segmentation [55], detection of road objects [54] or sound-
emitting objects [14, 42, 1]. Image-language aligned models project images and text into a shared
representation space [21, 51, 34, 36, 19, 47, 28]. Contrastive image-language learning on many
millions of image-text pairs [47, 28] leads to high-quality representations with impressive zero-shot
skills from one modality to the other. We use CLIP [47] for its appealing open-vocabulary property
that enables the querying of visual content with natural language toward recognizing objects of
interest without manual labels. POP-3D uses LiDAR supervision for precise occupancy prediction
and learns to produce in the 3D space CLIP-like features easily paired with language.

Open-vocabulary semantic segmentation. The aim of zero-shot semantic segmentation is to
segment object classes that are not seen during training [59, 9, 24]. The advent of CLIP [47], which is
trained on abundant web data, has inspired a new wave of methods, dubbed open-vocabulary,
for recognizing random objects via natural language queries. CLIP features can be projected
into 3D meshes [27] and NeRFs [29] to enable language queries. Originally producing image-
level embeddings, CLIP can be extended to pixel-level predictions for open-vocabulary semantic
segmentation by exploiting different forms of supervision from segmentation datasets, e.g., pixel-
level labels [33] or class agnostic masks [20, 39, 62] coupled with region-word grounding [23],
however with potential forgetting of originally learned concepts [27]. MaskCLIP+ [64] adjusts the
attentive-pooling layer of CLIP to generate pixel-level CLIP features that are further distilled into an
encoder-decoder semantic segmentation network. MaskCLIP+ [64] preserves the open-vocabulary
properties of CLIP, and we exploit it here to distill its knowledge into POP-3D. We generate target
3D CLIP features by mapping MaskCLIP+ pixel-level features to LiDAR points observed in images.
By being trained to match these distillation targets, POP-3D manages to learn 3D features with
open-vocabulary perception abilities, in contrast to prior work on 3D occupancy prediction that is
limited to recognizing a closed-set of visual concepts.

3 Open-vocabulary 3D occupancy prediction

Our goal is to predict 3D voxel representations of the environment, given a set of 2D input RGB
images, that is amenable to open-vocabulary tasks such as zero-shot semantic segmentation or concept
search driven by natural language queries. This is a challenging problem as we need to address the
following two questions. First, what is the right architecture to handle the 2D-to-3D ambiguity and
the open-vocabulary nature of the task? Second, how to formulate the learning problem without
requiring manual annotation of large amounts of 3D voxel data, which are extremely hard to produce.

To address these questions we propose the following two innovations. First, we design an architecture
for open-vocabulary 3D occupancy prediction (Fig. 2(a) and Sec. 3.1) that handles the 2D-to-3D
prediction and open-vocabulary tasks with two specialized heads. Second, we formulate its training
as a tri-modal self-supervised learning problem (Fig. 2(b) and Sec. 3.2) that leverages aligned (i)
2D images with (ii) 3D point clouds equipped with (iii) pre-trained language-image features as the
three input modalities (i.e. camera, LiDAR and language) without the need for any explicit manual
annotations. The details of these contributions are given next.

3.1 Architecture for open-vocabulary 3D occupancy prediction

We are given a set of surround-view images captured from one camera location and our goal is to
output a 3D occupancy voxel map and to support language-driven tasks. To reach the goals, we
propose an architecture composed of three modules (Fig. 2(a)). First, a 2D-3D encoder predicts a
voxel feature grid from the input images. Second, the occupancy head decodes this entire voxel
grid into an occupancy map, predicting which voxels are free and which are occupied. Finally, the
3D-language head is applied on each occupied voxel to output a powerful language embedding vector
enabling a range of 3D open-vocabulary tasks. The three modules are described next.
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Figure 2: Proposed approach. In (a), we show the architecture of the proposed method. Having
only surround-view images on the input, the model first extracts dense voxel feature grid that is then
fed to two parallel heads: occupancy head g producing voxel-level occupancy predictions, and to
3D-language feature head h which outputs features aligned with text representations. In b), we show
how we train our approach, namely the occupancy loss Locc used to train class-agnostic occupancy
predictions, and the feature loss Lft that enforces the 3D-language head h to output features aligned
with text representations.

2D-to-3D encoder f3D. The objective of the 2D-to-3D encoder is to predict a dense feature voxel
grid given one or more images captured at one location as input. The output voxel grid representation
encodes 3D visual information captured by the cameras. In detail, given surround-view camera RGB
images I and camera calibration parameters, the encoder f3D produces a feature voxel grid

V = f3D (I) ∈ RHV×WV×DV×CV , (1)

where HV,WV, and DV are the spatial dimensions of the voxel grid, and CV is the feature dimension
of each voxel. This feature voxel grid is then passed to two distinct prediction heads designed to
perform class-agnostic occupancy prediction and text-aligned feature prediction tasks respectively.
The two heads are described next.

Occupancy head g. Given the feature voxel grid V, the occupancy prediction head g aims at
classifying every voxel as ‘empty’ or ‘occupied’. Following [26], this head is implemented as a
non-linear network composed of Nocc hidden blocks with configuration Linear-Softplus-Linear,
each with Chidden

occ hidden features, and a final linear classifier outputting two logits, one per class. It
outputs the tensor

Oocc = g (V) ∈ RHV×WV×DV×2, (2)

containing the occupancy prediction for each voxel.

3D language head h. In parallel, the voxel grid V is fed to a language feature extractor. This
head processes each voxel feature to output an embedding vector that is aligned to vision-language
representations, such as CLIP [47], aiming to inherit their open-vocabulary abilities. This allows us
to address the limitations of closed-vocabulary predictions encountered in supervised 3D occupancy
prediction models, which are bound to a set of predefined visual classes. In contrast, our representa-
tion enables us to perform 3D language-driven tasks such as zero-shot 3D semantic segmentation.
Similarly to the occupancy head, the 3D-language head consists of Nft blocks with configuration
Linear-Softplus-Linear, where each linear layer outputs Chidden

ft features, and a final linear layer
that outputs Cout

ft -dimensional vision language embedding for each voxel. It outputs the tensor

Oft = h (V) ∈ RHV×WV×DV×Cout
ft , (3)

containing the predicted vision-language embedding of each voxel.
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3.2 Tri-modal self-supervised training

The goal is to train the network architecture described in Sec. 3.1 to predict the 3D occupancy
map together with language-aware features for each occupied voxel. In turn, this will enable 3D
open-vocabulary tasks such as 3D zero-shot segmentation or language-driven search. The main
challenge is obtaining the appropriate 3D-grounded language annotations, which is expensive to
do manually. Instead, we propose a tri-modal self-supervised learning algorithm that leverages
three modalities: (i) images, (ii) language and (iii) LiDAR point clouds. Specifically, we employ
a pre-trained image-language network to generate image-language features for the input images.
These features are then mapped to the 3D space using registered LiDAR point clouds, resulting in 3D
grounded image-language features. These grounded features serve as training targets for the network.
The training algorithm is illustrated in Fig. 2(b). The training is implemented via two losses that are
used to train the two heads of the proposed architectures jointly with the 2D-to-3D encoder. The
details are given next.

Occupancy loss. We guide the occupancy head g to perform a class-agnostic occupancy prediction by
the available unlabeled LiDAR point clouds, which we convert to occupancy prediction targets Tocc ∈
{0, 1}. Each voxel location x containing at least one LiDAR point is labeled as ‘occupied’ (i.e.,
Tocc(x) = 1) and as ‘empty’ otherwise (Tocc(x) = 0). Having these targets, we supervise the
occupancy prediction head densely at all locations of the voxel grid. The occupancy loss Locc is a
combination of cross-entropy loss LCE and Lovász-softmax [6] loss LLov:

Locc (Oocc,Tocc) = LCE (Oocc,Tocc) + LLov (Oocc,Tocc) , (4)

where Oocc is the predicted occupancy tensor and Tocc the tensor of corresponding occupancy targets.

Image-language distillation. Unlike the occupancy prediction head that is supervised densely at the
level of voxels, we supervise the 3D-language head at the level of points pn ∈ Pcam which project to
at least one of the cameras, i.e., Pcam ⊂ P , where P is the complete point cloud. This is required in
order to obtain feature targets from the language-image pre-trained model fI.

To get a feature target for a 3D point pn ∈ Pcam in the voxel feature grid, we use the known camera
projection function Πc that projects 3D point pn into 2D point un = (u

(x)
n , u

(y)
n ), where (u

(x)
n , u

(y)
n )

are (x, y) coordinates of point un in camera c:

un = Πc (pn) . (5)

This way, we get a set of 2D points U = {Πc (pn)}Nn=1 in the camera coordinates.To obtain feature
targets Tft for 3D points in Pcam with corresponding 2D projections U in camera c, we run the
language-image-aligned feature extractor fI on image Ic, and use the 2D projections’ coordinates to
sample from the resulting feature map, i.e.,

Tft =
{
fI (Ic) [u

(x)
n , u(y)

n ]
}N

n=1
∈ RN×Cout

ft , (6)

where [x, y] is an indexing operator in the extracted feature map.

To train the 3D language head, we use L2 mean squared error loss between the targets Tft and the
predicted features Õft ∈ RN×Cout

ft computed from h for the 3D point locations in Pcam:

Lft =
1

NCout
ft

∥Tft − Õft∥2, (7)

where ∥ · ∥ is the Frobenius norm.

Final loss. The final loss used to train the whole network is a weighted sum of the occupancy and
image-language losses. We use a single hyperparameter λ to balance the weighting of the two losses:

L = Locc + λLft. (8)

3.3 3D open-vocabulary test-time inference

Once trained, as described in Sec. 3.2, our model supports different 3D open-vocabulary tasks at test-
time. We focus on the following two: (i) zero-shot 3D semantic segmentation and (ii) language-driven
3D grounding.
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Zero-shot 3D semantic segmentation from images. Given an input test image, the 3D-text-aligned
voxel features produced by our model support zero-shot 3D segmentation for a target set of classes
specified via input text queries (prompts), as illustrated in Fig. 1. Unlike supervised approaches
that necessitate retraining when the set of target classes changes, our approach requires training
the model only once. We can adjust the number of segmented classes effortlessly by providing
a different set of input text queries. In detail, at test-time we proceed along the following steps.
First, a set of test surround-view images I from one location is fed into the trained POP-3D network,
resulting in class-agnostic occupancy prediction Oocc via the occupancy head g, and language-aligned
feature predictions Oft via the 3D-language head h. Next, as described in [22], we generate a set of
query sentences for each text query using predefined templates. These queries are then input into
the pre-trained language-image encoder ftext, resulting in a set of language features. To obtain a
single text feature per query, we compute the average of these features. Finally, considering M such
averaged text features, one for each of the M target segmentation classes, we measure their similarity
to the predicted language-aligned features Oft at occupied voxels obtained from Oocc. We assign the
label with the highest similarity to each occupied voxel.

Language-driven 3D grounding. The task of language-driven 3D grounding is performed in a
similar manner. However, here only a single input language query is given. Once determining the
occupied voxels from Oocc, we compute the similarity between the input text query encoded via the
language-image encoder ftext and predicted language-aligned features Oft at the occupied voxels.
The resulting similarity score can be visualized as a heat-map, as shown in Fig. 1, or thresholded to
obtain the location of the target query.

4 Experiments

This section studies architecture design choices and demonstrates the capabilities of the proposed
approach. First, in Sec. 4.1, we describe the experimental setup used, particularly the dataset, metrics,
proposed evaluation protocol, and implementation details. Then, we compare our model to the state of
the art in Sec. 4.2. Next, we present a set of studies on training hyperparameter sensitivity in Sec. 4.3
and finally show qualitative results in Sec. 4.4.

4.1 Experimental setup

We test the proposed approach on autonomous driving data, which provides a challenging test-bed.

Dataset. We use the nuScenes [10] dataset composed of 1000 sequences in total, divided into
700/150/150 scenes for train/val/test splits. Each sequence consists of 30− 40 scenes resulting in
28, 130 training and in 6, 019 validation scenes. The dataset provides 3D point clouds captured with
32-beam LiDAR, surround-view images obtained from six cameras mounted at the top of the car, and
projection matrices between the 3D point cloud and cameras. LiDAR point clouds are annotated with
16 semantic labels. When using subsets of the complete dataset for ablations, we sort the scenes by
their timestamp and take every N -th scene, e.g., every second scene in the case of a 50% subset.

Metrics. To evaluate our models on the task of 3D occupancy prediction, we need to convert
the point-level semantic annotations from LiDAR to voxel-level annotations. We do this by taking
the most-present label inside each voxel. As we aim at semantic segmentation, our main metric is
mean Intersection over Union (mIoU), which we use in the evaluation protocol proposed in the next
paragraph. Additionally, we measure the class-agnostic occupancy Intersection over Union (IoU).
For the retrieval benchmark, we report the average precision (AP) for each query, the mean of which
over all queries yields the mean average precision (mAP).

New benchmark for open-vocabulary language-driven 3D retrieval. To evaluate the retrieval
capabilities, we collected a new language-driven 3D grounding & retrieval benchmark equipped with
natural language queries. To build this benchmark, we annotated 3D scenes from various splits of
the nuScenes dataset with the ground-truth spatial localization for a set of natural language open-
vocabulary queries. The resulting set contains 105 samples in total, which are divided to 42/28/35
samples from train/val/test splits of the nuScenes dataset. The objective is, given the query, to retrieve
all relevant 3D points from the LiDAR point cloud. Results are evaluated using the precision-recall
curve; negative data are all the non-relevant 3D points in the given scene. For the evaluation purposes,
we report numbers on a concatenated set consisting of samples from the validation and test splits
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(63 samples). To annotate the 3D retrieval ground truth, we (1) manually provide the bounding box
of the relevant object(s) in the image domain, (2) use Segment Anything Model [31] guided by our
manual bounding box to produce a binary mask of this object, (3) project the LiDAR point cloud into
the image, and (4) assign each 3D point a label corresponding to its projection into the binary mask.
Furthermore, we use HDBSCAN [40] to filter points that are projected to the mask in the image but
in fact do not belong to the object. This resolves the imprecisions caused by projection.

New evaluation protocol for 3D occupancy prediction. The relatively new task of 3D oc-
cupancy prediction has no established evaluation protocol yet. TPVFormer [26] did not in-
troduce any evaluation protocol and provided only qualitative results. Having semantic labels
only from LiDAR points, i.e., not in the target voxel space, makes it challenging to evalu-
ate. Since voxel semantic segmentation consists of both occupancy prediction of the voxel grid
and classification of occupied voxels, it is not enough to evaluate just at the points of ground-
truth information from the LiDAR, as this does not take free space prediction into account.

Figure 3: Validation labels: blue = free,
red = occupied, and gray = ignored voxels.

To tackle this, we take inspiration from [7] and pro-
pose to obtain the evaluation labels from the available
LiDAR point clouds, as depicted in Fig. 3 and de-
scribed next. First, LiDAR rays passing through 3D
space set the labels of intersected voxels to free. Sec-
ond, voxels containing LiDAR points are assigned the
most frequent semantic label of points lying within
(or an occupied label in the case of class-agnostic
evaluation). Third, all other voxels are ignored dur-
ing evaluation, as they were not observed by any
LiDAR ray and we are not certain whether they are
occupied or not.

Implementation details. We use the recent TPVFormer [26] as backbone for the 2D-3D encoder. It
takes surround-view images on the input and produces a voxel grid of size 100 × 100 × 8, which
corresponds to the volume [−51.2m,+51.2m]×[−51.2m,+51.2m]×[−5m,+3m] around the car. For
the language-image feature extractor, we use MaskCLIP + [64], which provides features of dimension
Cout

ft = 512. If not mentioned otherwise, we use the default learning rate of 2e-4, Adam [30]
optimizer, and a cosine learning rate scheduler with final learning rate 1e-6, and with linear warmup
from 1e-5 learning rate for the first 500 iterations. We train our models on 8×A100 GPUs. We
use ResNet-101 as image backbone in the f3D encoder, and full-scale images on the input. Both
prediction heads have two layers, i.e., Nocc = Nft = 2, and Cocc = 512 and Cft = 1024 feature
channels. With this architecture setup, we train our model on 100% of the nuScenes training data for
12 epochs. We put the same weight to the occupancy and feature losses, i.e., we set λ = 1 in Eq. 8.
We ablate these choices in Sec. 4.3.

4.2 Comparison to the state of the art

Here we compare our approach to four relevant methods: (i) the fully supervised (closed-vocabulary)
TPVFormer [26] and the following three open-vocabulary image-based methods, namely to (ii)
MaskCLIP+ [64], (iii) ODISE [60], and (iv) OpenScene [43], which require 3D LiDAR point clouds
on the input during the inference. Please note that compared to methods (ii)-(iv), our POP-3D does
not require (1) strong manual annotations (either in the image or point cloud domain) or (2) having
point clouds on the input during the inference. Details are given next.

Comparison to a fully-supervised TPVFormer [26]. In figure Fig. 4b, we compare our results to
the supervised TPVFormer [26] in terms of class-agnostic IoU and (16+1)-class mIoU (16 semantic
classes plus the empty class) on the nuScenes [10] validation set. Interestingly, our model outperforms
its supervised counterpart in the class-agnostic IoU by 11.5 points, showing superiority in the
prediction of the occupied space. This can be attributed to different training schemes of the two
methods: in the fully-supervised case, the empty class competes with the other semantic classes,
whereas in our case the occupancy head performs only class-agnostic occupancy prediction. Next, for
the (16+1)-class semantic occupancy segmentation, we can see that our zero-shot approach reaches
≈ 78% of the supervised counterpart performance, which we consider as strong result given that the
latter requires manually annotated point clouds for training. In contrast, our approach is zero-shot
and does not require any manual point cloud annotations at training. These results pave the way
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Figure 4: Comparison to the state of the art. We compare our POP-3D approach to differ-
ent baselines using (a) the LiDAR-based evaluation, (b) occupancy evaluation, and (c) open-
vocabulary language-driven retrieval. In (a), our zero-shot approach POP-3D outperforms the strong
MaskCLIP+ [64] (M.CLIP+) baseline, while closing the gap to the fully supervised. Other recent
methods using supervision and requiring LiDAR points during inference (ODISE [60] and Open-
Scene [43]) are even better. All methods that require manual annotations during training are denoted
by striped bars). In (b), our zero-shot approach POP-3D surpasses the fully-supervised model [26]
on occupancy prediction (IoU) while reaching 78% of its performance on semantic occupancy seg-
mentation (mIoU). Finally, in (c) we present results of open-vocabulary language-driven retrieval
on our newly composed dataset, where we compare our approach to the MaskCLIP+ baseline. We
measure mAP on manually annotated LiDAR 3D points in the scene. Our POP-3D outperforms the
MaskCLIP+ approach on this task by 3.5 mAP points.

for language-driven vision-only 3D occupance prediction and semantic segmentation in automotive
applications. We show qualitative results of our POP-3D approach in Fig. 5 and in the supplementary
materials.

Comparison to MaskCLIP+ [64]. In Fig. 4a we compare the quality of the 3D vision-language
features learnt by our POP-3D approach against the strong MaskCLIP+[64] baseline. In detail, we
project the 3D LiDAR points to the 2D image(s) space, sample MaskCLIP+[64] features extracted
from the 2D image at the projected locations and backproject those extracted features back to 3D via
the LiDAR rays. Note that MaskCLIP+ features are used in our tri-modal training to represent the
language modality so it is interesting to evaluate the benefits of our approach in comparison to directly
transferring MaskCLIP+ features to 3D. For a fair comparison, we evaluate only the LiDAR points
with a projection to the camera, i.e., this evaluation considers only the classification of the 3D points,
not the occupancy prediction itself. We call this metric LiDAR mIoU. Our POP-3D outperforms
MaskCLIP+ (26.4 vs. 23.0 mIoU), i.e., our method learns better 3D vision-language features than
its teacher, while also not requiring LiDAR data at test time (as MaskCLIP+ does). Finally, Fig. 4a
shows that POP-3D reaches ≈ 84% of the performance of the fully-supervised model [26].

Comparison to open-vocabulary methods that require additional supervision. Furthermore, we
compare our approach to ODISE [60] and OpenScene [43], which both require manual supervision
during training. ODISE requires panoptic segmentation annotations for training, while OpenScene
uses features from either LSeg [33] or OpenSeg [20], which are two image-language encoders that
are trained with supervision from manually provided segmentation masks. We report results using
OpenSeg. As Fig. 4b shows, these methods perform best, which can be attributed to additional
manual annotations available during training.

Open-vocabulary language-driven retrieval. The goal is, given a text query of the searched object,
to retrieve all 3D points belonging to the object in the given scene. During the evaluation, to get the
relevance of LiDAR points to the query text description, we follow the same approach as for the task
of zero-shot semantic segmentation, i.e., we pass the images to our model, get features aligned with
the text, and compute their relevance to the given text query. This gives a score for every 3D point in
the scene. In the ideal case the points belonging to the target object should have the highest score. We
compare our method with MaskCLIP+ and report results in Fig. 4c. Our approach exhibits superior
mAP compared to MaskCLIP+, achieving 18.4 mAP while MaskCLIP+ obtains mAP of 14.9.
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4.3 Sensitivity analysis

Here we study the sensitivity of our model to various hyperparameters. Except otherwise stated, for
this study we use half-resolution input images, i.e., 450× 800, the ResNet-50 backbone, and train for
6 epochs using 50% of the nuScenes training data.

Table 1: Sensitivity analysis. We investigate here the impact of loss weight λ in the final loss function
(a), the image resolution and image backbone (b) and the depth of the prediction heads (c).

(a) Loss weight λ impact

λ mIoU IoU

1.00 12.0 30.0
0.50 12.0 30.5
0.25 11.9 30.5

(b) Image resolution and backbone

image mIoU
resolution RN50 RN101

450×800 12.0 15.1
900×1600 12.3 15.2

(c) Depth of prediction heads

mIoU
Nocc / Nft 2 3

2 15.4 15.3
3 15.3 15.5

Loss weight λ. In Tab. 1a we study the sensitivity of our model to the loss weight λ of Lft in
Eq. 8. We see that the model’s performance is not sensitive to λ. By default we use λ = 1.

Input resolution and image backbone. In Tab. 1b we experiment with (a) using half (450×800)
or full (900×1600) input images, and (b) using ResNet-50 (RN50) or ResNet-101 (RN101) for the
image backbone. Following [26], RN50 is initialized from MoCov2 [15] weights and RN101 from
FCOS3D [56] weights. We see that it is better to use the RN101 backbone while the input resolution
has small impact (with full resolution being better).

Depth of prediction head. In Tab. 1c we study the impact of the Nocc and Nft hyperparameters
that control the number of hidden layers on the occupancy prediction head g and 3D language head h
respectively, using RN101 as backbone. We see that the depth of the two prediction heads does not
play a major role and it is slightly better to be the same, i.e, Nocc = Nft. Therefore, we opt to use
Nocc = Nft = 2 in our experiments, as it performs well and requires less compute.

4.4 Demonstration of open-vocabulary capabilities

In Fig. 6 we provide visualizations of language-based 3D object retrievals inside a scene using text
queries like “building door” and “tire”. For reference, green boxes denote locations of reference
objects (cars), to ease the orientation in the scene. The results show that our model is able to localize
in 3D space fine-grained language queries.

Limitations. First, given the low spatial resolution of the voxel grid our model does not discover
well small objects. This is not a limitation of the method, but of the currently used backbone
architecture and input data. Second, another limitation is that our architecture does not natively
support sequences of images as input which might be beneficial for reasoning about semantic
occupancy of occluded objects and areas appearing thanks to relative motion of objects in the scene.

5 Conclusion

In this paper we propose POP-3D, a tri-modal self-supervised learning strategy with a novel architec-
ture that enables open-vocabulary voxel segmentation from 2D images and at the same time improves
the occupancy grid estimation by a significant margin over the state of the art. Our approach also
outperforms the strong baseline of directly back-projecting 2D vision-language features into 3D via
LiDAR and does not require LiDAR at test-time. This work opens-up the possibility of large-scale
open-vocabulary 3D scene understanding driven by natural language.
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Figure 5: Qualitative results of zero-shot semantic 3D occupancy prediction on the 16 classes in
the nuScenes [10] validation split. Please note how our method is able to quite accurately localize and
segment objects in 3D including road (magenta), vegetation (dark green), cars (blue), or buildings
(gray) from only input 2D images and in a zero-shot manner, i.e. only by providing natural language
prompts for the target classes. Visualizations are shown on an interpolated 300x300x24 voxel grid.

Figure 6: Qualitative results showcasing the language-driven 3D grounding and retrieval. On
left (in red) we can see the six input images passed to the POP-3Dto get open-vocabulary 3D features
(middle). Given the searched object name ("Black hatchback"), we compute the similarity with the 3D
feature field and obtain similarity heatmap (right). Language-based 3D retrieval is not possible using
existing close-vocabulary methods such as [26]. Please see additional results in the supplementary.
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