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A Regions of Interests

In our study, we delineated our regions of interest (ROIs) into two primary segments: 1) the ventral
visual stream and object recognition-related regions and 2) the dorsal visual stream and overt attention-
related regions. This approach followed the parcellations proposed by [1]. For the dorsal visual
stream, the ROIs includes V3A, V3B, V6, V6A, and V7. Within the parietal cortex, visuo-spatial
information and overt attention are processed by the intraparietal sulcus (IPS) and the superior parietal
lobule (SPL) [2, 3, 4, 5, 6]. The IPS encompasses V7, IPS1, IP0, IP1, and IP2; whereas the SPL
consists of lateral intraparietal cortex (LIPv, LIPd), ventral intraparietal complex (VIP), anterior
intraparietal (AIP), medial intraparietal area (MIP), 7PC, 7AL, 7Am, 7PL, and 7Pm. We also included
the frontal eye field (FEF), which is acknowledged for controlling eye movements [7, 8, 9, 10]. In
contrast, the ROIs associated with object recognition and the ventral visual stream encompassed V8,
the posterior inferotemporal (PIT) complex, the fusiform face complex (FFC), and ventromedial
visual (VMV) areas 1, 2, 3, along with the lateral occipital area (LO). In addition, we included the
superior temporal sulcus (STS), which is recognized for processing multimodal signals, including
auditory and visual cues [11, 12, 13]. Fig. S1 displays the full set of region labels, corresponding to
Fig.3(a) from the main text. Among the parcellations by [1], regions including significantly predicted
voxels either by the WhereCNN or WhatCNN are presented in Fig. S1.
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Figure S1: Region labels. Regions including significant voxels from Fig.3(a) in the main text are
presented.
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B Training Details

The backbone Convolutional Neural Networks (CNNs) of both the WhereCNN and WhatCNN
share the same architecture, consisting of four blocks of convolutional operations. Situated atop the
backbone CNN, the WhereCNN and WhatCNN possess additional layers tailored to their specific
objectives: the WhereCNN features two convolutional layers that produce 2D saliency maps, whereas
the WhatCNN includes a Gated Recurrent Unit (GRU) layer followed by a fully connected layer for
object classification.

During the pre-training of the backbone CNN, a global average pooling and a fully connected layer
are integrated atop the backbone CNN, serving as a classifier. Upon completion of the pre-training
process, the classifier is detached, allowing the pre-trained backbone CNN to be incorporated as a
component of the WhereCNN or WhatCNN.

As detailed in Section 3.1 of the main text, our model underwent a three-stage training process. In
this section, we will elaborate on the specifics of the pre-training phase.

Stage 1 - WhereCNN The backbone architecture of the WhereCNN was pre-trained on ILSVRC2012
[14] for an image classification task over 120 epochs. A batch size of 1, 024 was employed, along with
the Adam optimizer [15] (lr=0.001, �1=0.9, �2=0.99). During pre-training, fixations for the retinal
transformation were randomly generated across the image area. Once the backbone architecture
had been pre-trained, we detached the classifier and initialized the WhereCNN using the model
parameters obtained from the pre-training stage. We then performed SALICON training, as described
in Section 3.1 of the main text.

Stage 2 - WhatCNN In a process mirroring Stage 1, the backbone of the WhatCNN was also
pre-trained on ILSVRC2012 [14] for an image classification task over 120 epochs, utilizing random
fixations and the Adam optimizer (lr=0.001, �1=0.9, �2=0.99). After pre-training the backbone CNN,
we initialized the WhatCNN using the weights of the pre-trained backbone CNN.

Subsequently, the WhatCNN, initialized with the pre-trained weights as a whole, was trained on
ILSVRC2012 [14] for object recognition using four fixations. Four randomly generated fixations were
employed for training the WhatCNN for 55 epochs, again utilizing the Adam optimizer (lr=0.001,
�1=0.9, �2=0.99). After this stage, we conducted a fine-tuning process using the learned fixations
from the WhereCNN. In this stage, the WhereCNN, after the pre-training in Stage 1, was incor-
porated to guide the WhatCNN’s fixations. However, only the WhatCNN was optimized, while
the WhereCNN remained unchanged. This fine-tuning with learned fixations deployed four gazes,
utilizing the Adam optimizer (lr=0.0001, �1=0.9, �2=0.99) over 25 epochs. Finally, the WhatCNN
underwent further training on MSCOCO, as described in Section 3.1 of the main text.

Stage3 - WhereCNN & WhatCNN During this stage, both WhereCNN and WhatCNN, trained in
the previous stages, were used to initialize model weights, followed by further end-to-end training,
leveraging the stream-specific objectives (object recognition and saliency prediction, respectively).
As the training requires labels for both tasks, the model was trained using images in the SALICON
dataset, which contain labels for both saliency prediction and object recognition.

The model samples fixations from the predicted saliency maps from WhereCNN. As this sampling
process is non-differentiable, the gradients from object recognition cannot optimize the weights of
WhereCNN. To tackle this issue, we utilized REINFORCE [16] to approximate the gradient for
WhereCNN. At the time t, a fixation lt is generated by WhereCNN, based on which WhatCNN
predicts a class prediction pt. Then, in the context of REINFORCE, the reward rt of choosing
lt as the fixation is calculated as the reduced classification loss relative to the previous time step
rt = CE(pt�1, labelc)� CE(pt, labelc), where CE is the cross-entropy loss, labelc is class labels.
The goal of REINFORCE is to maximize the discounted sum of rewards, R =

PT
t=1 �

t�1rt, where
� 2 (0, 1) is the discount factor and set as 0.8.

In this stage, we strived to minimize the object recognition and saliency prediction losses while
maximizing the discounted sum of rewards. As indicated in Section 3.1 of the main text, we utilized
the Adam optimizer (lr=0.0002, �1=0.9, �2=0.99) for 25 epochs for this training stage.

For All Stages All training stages were conducted using four NVIDIA A40 GPUs. All codes are
written in Pytorch 1.9.1.
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C Saliency Maps and Inhibition of Returns

Once the saliency maps were generated by WhereCNN, inhibition of return (IOR) was used to prohibit
future fixations to re-visit image areas that had been already explored. This process is illustrated in
Fig. S2
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Figure S2: Process of determining the next fixation point given the current fixation. A saliency map,
generated by WhereCNN, is multiplied element-wise (indicated by ⇤) with the inhibition of return
(IOR) to prevent future fixations from reverting to previous positions. In the IOR, white and black
colors correspond to values of 1 and 0, respectively.

In the process of determining the next fixation, the WhereCNN generate a saliency map based
on the current fixation. The location of this subsequent fixation is guided by the saliency map’s
probabilistic distribution. However, it’s important to note that if the current fixation point possesses a
high probability, subsequent fixations are likely to occur in proximity to the present fixation.

To ensure a more dynamic and comprehensive exploration of the visual field, we employed the
principle of Inhibition of Return (IOR), detailed in Eq.2 of the main text, and presented again here in
Eq.4.

IOR(t) = ReLU
⇣
1�

tX

⌧=1

G(µ = l⌧ ,⌃ = �2I)
⌘

(4)

where G(µ,⌃) is a 2D Gaussian function centered at l⌧ (prior fixations) with a standard deviation �
at the ⌧ -th step. The Inhibition of Return (IOR) is initially created at a resolution of 224⇥ 224 with
� = 25, and subsequently resized to align with the dimensions of the saliency map. IOR serves to
decrease the saliency of previously attended areas, thereby preventing the model from repetitively
focusing on these regions. This mechanism is informed by the model’s all prior fixation history.
The IOR map is designed such that it assigns lower values (approaching 0.0) in the vicinity of prior
fixation points, and higher values (up to 1.0) in regions further away. Thus, when the IOR map is
element-wise multiplied with the saliency map, it effectively reduces the saliency values in areas
already explored.

Following the application of IOR, the subsequent fixation point is decided upon by considering
the adjusted saliency map. It is then chosen based on the probabilistic distribution within this
updated map. This strategy encourages more diverse fixations and facilitates a broader and more
comprehensive understanding of the scene.

D WhereCNN’s Saliency Maps and Fixation Points

The original images are presented in Cartesian coordinates. Once the retinal transformation is applied
to these images, the resultant retinal images adopt retinal coordinates, as detailed in Eq.1 of the main
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text. Since the inputs to the WhereCNN operate in retinal coordinates, it naturally follows that the
output saliency maps mirror this coordinate system. To visualize these within this paper, we utilize
the inverse function of Eq.1, thereby transforming the saliency maps from retinal back to Cartesian
coordinates.

In preparation for our model’s processing of the movie Raiders of the Lost Ark, we reduce the frame
rate to 6 frames per second (fps). This adjustment helps mitigate computational and memory costs
associated with the handling of the extracted features. As the model engages with the movie, a solitary
fixation point is established for each frame. Importantly, the Inhibition of Return (IOR) mechanism is
not invoked during the model’s interaction with the movie. Fig. S3 showcases saliency maps and
fixation points derived from segments of the movie Raiders of the Lost Ark. Frames situated on the
same horizontal axis are selected at a rate of 1 fps.
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Figure S3: Given the movie frames (1st row), the WhereCNN generates saliency maps (2nd row) and
fixations (3rd row). The red marker in the 3rd row presents the fixation point.

.

E Investigating Layer-wise Correspondence to Visual Cortex

In the main text, the whole features from the all layers of each stream are used for predicting voxel
activities (noted as Stream-wise encoding). In an alternative way, the features from each layer can be
used to predict voxel activities, instead of concatenating all the layers, (noted as Layer-wise encoding).
In this way, the hierarchical correspondence between each layer in the model to the ROIs of the visual
system can be observed.

With the layer-wise encoding scheme, we predicted fMRI responses using features from each layer
in the WhereCNN and WhatCNN. Fig. S4 associates each voxel to one (color-coded) layer most
predictive of that voxel for either (a) WhatCNN or (b) WhereCNN. Fig. S4 (a) shows that the lower
layers of WhatCNN better predict earlier visual areas such as V1/V2, whereas the higher layers of
WhatCNN better predict higher-order visual areas such as LO and PIT, consistent with prior studies
[17, 18]. The results with the WhereCNN show different patterns, as shown in Fig. S4 (b). Within
early visual areas, the lower layers of WhereCNN better predict foveal representations, whereas the
higher layers better predict peripheral representations.
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Figure S4: Each voxel is predicted by the features from a single layer from (a) WhatCNN and (b)
WhereCNN. Layer indexes are color-coded so that the layer best predicting each voxel is presented.

F Implications to the Computer Visions

In the current study, we demonstrated that the biologically plausible components (two stream, retinal
sampling and eye movements) can be used to build a better model for the human visual cortex in a
naturalistic viewing condition. At the same time, those components we considered in this study may
also bring benefits to the computer vision applications.

1) Efficiency. Unlike conventional CNNs that process entire images, our dual-stream model allows
serial processing. It concentrates processing power on key image regions through attention directed
fixations. This serial processing may significantly lower memory and computational overhead,
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because resources are allocated only to the crucial image regions. It is plausible that such efficiency
underpins the brain’s adoption of dual stream processing due to biological constraints on energy use.

2) Adaptability. The dual streams of our model offer complementary lenses for visual exploration
and perception in real-world environments. One stream provides a broad yet rough overview of the
environment. The other gathers detailed observations with precision. Their synergistic interaction may
facilitate adaptive behaviors for tasks like visual search, object detection in complex and cluttered
scenes. Moreover, the distinct functions of each of the parallel streams present a combinatorial
flexibility when leveraged together, potentially enhancing the model’s overall capability to adapt to
diverse visual challenges, including potential applications in robotics.

However, leveraging such potential benefits within the scope of current study face challenges. First,
mainstream datasets like ImageNet and MS-COCO offer a narrow view and lack the high-resolution
detail our model thrives on. Moreover, these datasets often focus on large, central objects, limiting
our model’s adaptability that benefits object recognition. A better benchmark to our model would be
high-resolution panoramic images or synthetic virtual reality environments to accommodate unlimited
fixation variances. In such settings, the efficiency and adaptability of our model should be more
appealing.
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