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Abstract

Graph Contrastive Learning (GCL) has emerged as a popular training approach
for learning node embeddings from augmented graphs without labels. Despite the
key principle that maximizing the similarity between positive node pairs while
minimizing it between negative node pairs is well established, some fundamental
problems are still unclear. Considering the complex graph structure, are some
nodes consistently well-trained and following this principle even with different
graph augmentations? Or are there some nodes more likely to be untrained
across graph augmentations and violate the principle? How to distinguish these
nodes and further guide the training of GCL? To answer these questions, we
first present experimental evidence showing that the training of GCL is indeed
imbalanced across all nodes. To address this problem, we propose the metric
"node compactness", which is the lower bound of how a node follows the GCL
principle related to the range of augmentations. We further derive the form of node
compactness theoretically through bound propagation, which can be integrated into
binary cross-entropy as a regularization. To this end, we propose the PrOvable
Training (POT1) for GCL, which regularizes the training of GCL to encode node
embeddings that follows the GCL principle better. Through extensive experiments
on various benchmarks, POT consistently improves the existing GCL approaches,
serving as a friendly plugin.

1 Introduction
Graph Neural Networks (GNNs) are successful in many graph-related applications, e.g., node
classification [10, 20] and link prediction [33, 27]. Traditional GNNs follow a semi-supervised
learning paradigm requiring task-specific high-quality labels, which are expensive to obtain [9]. To
alleviate the dependence on labels, graph contrastive learning (GCL) is proposed and has received
considerable attention recently [35, 31, 25, 21, 29]. As a typical graph self-supervised learning
technique, GCL shows promising results on many downstream tasks [22, 30, 23].

The learning process of GCL usually consists of the following steps: generate two graph augmen-
tations [35]; feed these augmented graphs into a graph encoder to learn the node embeddings, and
then optimize the whole training process based on the InfoNCE principle [15, 35, 36], where the
positive and negative node pairs are selected from the two augmentations. With this principle ("GCL
principle" for short), GCL learns the node embeddings where the similarities between the positive
node pairs are maximized while the similarities between the negative node pairs are minimized.

However, it is well known that the real-world graph structure is complex and different nodes may have
different properties [1, 2, 11, 36]. When generating augmentations and training on the complex graph
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structure in GCL, it may be hard for all nodes to follow the GCL principle well enough. This naturally
gives rise to the following questions: are some of the nodes always well-trained and following the
principle of GCL given different graph augmentations? Or are there some nodes more likely not to be
well trained and violate the principle? If so, it implies that each node should not be treated equally
in the training process. Specifically, GCL should pay less attention to those well-trained nodes that
already satisfy the InfoNCE principle. Instead, GCL should focus more on those nodes that are
sensitive to the graph augmentations and hard to be well trained. The answer to these questions can
not only deepen our understanding of the learning mechanism but also improve the current GCL.
We start with an experimental analysis (Section 3) and find that the training of GCL is severely
imbalanced, i.e. the averaged InfoNCE loss values across the nodes have a fairly high variance,
especially for the not well-trained nodes, indicating that not all the nodes follow the GCL principle
well enough.

Once the weakness of GCL is identified, another two questions naturally arise: how to distinguish
these nodes given so many possible graph augmentations? How to utilize these findings to further
improve the existing GCL? Usually, given a specific graph augmentation, it is easy to check how
different nodes are trained to be. However, the result may change with respect to different graph
augmentations, since the graph augmentations are proposed from different views and the graph
structure can be changed in a very diverse manner. Therefore, it is technically challenging to discover
the sensitivity of nodes to all these possible augmentations.

In this paper, we theoretically analyze the property of different nodes in GCL. We propose a novel
concept "node compactness", measuring how worse different nodes follow the GCL principle in all
possible graph augmentations. We use a bound propagation process [5, 32] to theoretically derive
the node compactness, which depends on node embeddings and network parameters during training.
We finally propose a novel PrOvable Training model for GCL (POT) to improve the training of
GCL, which utilizes node compactness as a regularization term. The proposed POT encourages the
nodes to follow the GCL principle better. Moreover, because our provable training model is not
specifically designed for some graph augmentation, it can be used as a friendly plug-in to improve
current different GCL methods. To conclude, our contributions are summarized as follows:

• We theoretically analyze the properties of different nodes in GCL given different graph
augmentations, and discover that the training of GCL methods is severely imbalanced, i.e.,
not all the nodes follow the principle of GCL well enough and many nodes are always not
well trained in GCL.

• We propose the concept of "node compactness" that measures how each node follows
the GCL principle. We derive the node compactness as a regularization using the bound
propagation method and propose PrOvable Training for GCL (POT), which improves the
training process of GCL provably.

• POT is a general plug-in and can be easily combined with existing GCL methods. We
evaluate our POT method on various benchmarks, well showing that POT consistently
improves the current GCL baselines.

2 Preliminaries
Let G = (V, E) denote a graph, where V is the set of nodes and E ⊆ V × V is the set of edges,
respectively. X ∈ RN×F and A = {0, 1}N×N are the feature matrix and the adjacency matrix.
D = diag{d1, d2, . . . , dN} is the degree matrix, where each element di = ∥Ai∥0 =

∑
j∈V aij

denotes the degree of node i, Ai is the i-th row of A. Additionally, Asym = D−1/2(A+ I)D−1/2

is the degree normalized adjacency matrix with self-loop (also called the message-passing matrix).

GCN [10] is one of the most common encoders for graph data. A graph convolution layer can
be described as H(k) = σ(AsymH(k−1)W(k)), where H(k) and W(k) are the embedding and the
weight matrix of the k-th layer respectively, H(0) = X, and σ represents the non-linear activation
function. A GCN encoder fθ with K layers takes a graph (X,A) as input and returns the embedding
Z = fθ(X,A).

Graph Contrastive learning (GCL). GCL learns the embeddings of the nodes in a self-supervised
manner. We consider a popular setting as follows. First, two graph augmentations G1 = (X, Ã1)

and G2 = (X, Ã2) are sampled from G, which is the set of all possible augmentations. In this paper,
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we focus on the augmentations to graph topology (e.g. edge dropping [35]). Then the embeddings
Z1 = fθ(X, Ã1) and Z2 = fθ(X, Ã2) are learned with a two-layer GCN [35, 36]. InfoNCE [15, 35]
is the training objective as follows:

l(z1,i, z2,i) =
eθ(z1,i,z2,i)/τ

eθ(z1,i,z2,i)/τ +
∑

j ̸=i e
θ(z1,i,z2,j)/τ +

∑
l ̸=i e

θ(z1,i,z1,l)/τ
, (1)

where θ(a, b) = s(g(a), g(b)), s is a similarity measure, g is a projector, and τ is the tempera-
ture hyperparameter. For node i, the positive pair is (z1,i, z2,i), where z1,i and z2,i denote the
embedding of node i in the two augmentations, {(z1,i, z2,j) | j ̸= i} and {(z1,i, z1,l) | l ̸= i}
are the negative pairs. The overall loss function of the two augmentations is LInfoNCE(Z1,Z2) =
1

2N

∑N
i=1(l(z1,i, z2,i) + l(z2,i, z1,i)).

3 The Imbalanced Training of GCL: an Experimental Study

(a) GRACE (b) GCA (c) ProGCL

Figure 1: The imbalance of GCL training

As mentioned in Section 1, due to
the complex graph structure, we aim
to investigate whether all the nodes
are trained to follow the principle
of GCL. Specifically, we design an
experiment by plotting the distribu-
tion of InfoNCE loss values of the
nodes. To illustrate the result of a
GCL method, we sample 500 pairs of
augmented graphs with the same aug-
mentation strategy in the GCL method
and obtain the average values of In-
foNCE loss. We show the results of GRACE [35], GCA [36], and ProGCL [25] on WikiCS [14] in
Figure 1 with histograms. The vertical red lines represent 1/4-quantile, median, and 3/4-quantile from
left to right. The results imply that the nodes do not follow the GCL principle well enough in two
aspects: 1) the InfoNCE loss of the nodes has a high variance; 2) It is shown that the untrained nodes
(with higher InfoNCE loss values) are much further away from the median than the well-trained
nodes (with lower InfoNCE loss values), indicating an imbalanced training in the untrained nodes.
GCL methods should focus more on those untrained nodes. Therefore, it is highly desired that we
should closely examine the property of different nodes so that the nodes can be trained as we expected
in a provable way. Results on more datasets can be found in Appendix D.

4 Methodology
4.1 Evaluating How the Nodes Follow the GCL Principle

In this section, we aim to define a metric that measures the extent of a node following the GCL princi-
ple. Since how the nodes follow the GCL principle relies on the complex graph structure generated by
augmentation, the metric should be related to the set of all possible augmentations. Because InfoNCE
loss can only measure the training of a node under two pre-determined augmentations, which does
not meet the requirement, we propose a new metric as follows:
Definition 1 (Node Compactness). Let f denote the encoder of Graph Contrastive Learning. The
compactness of node i is defined as

f̃
1,i

= min
G1=(X,A1)∈G;
G2=(X,A2)∈G

{ 1

N − 1

∑
j ̸=i

(z1,i · z̄2,i−z1,i · z̄2,j) | Z1 = fθ(X,A1),Z2 = fθ(X,A2)}. (2)

where z̄ = z/ ∥z∥2 is the normalized vector.

Definition 1 measures how worse node i follows the GCL principle in all possible augmentations.
If f̃

i
is greater than zero, on average, the node embedding z1,i is closer to the embedding of the

positive sample z2,i than the embedding of the negative sample z2,j in the worst case of augmentation;
otherwise, the embeddings of negative samples are closer. Note that normalization is used to eliminate
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the effect of a vector’s scale. In Definition 1, the anchor node is node i in G1, so similarly we can
define f̃

2,i
if the anchor node is node i in G2.

We can just take one of G1 and G2 as the variable, for example, set G2 to be a specific sampled
augmentation and G1 to be an augmentation within the set G. From this perspective, based on
Definition 1, we can also obtain a metric, which has only one variable:
Definition 2 (G2-Node Compactness). Under Definition 1, if G2 is the augmentation sampled in an
epoch of GCL training, then the G2-Node Compactness is

f̃
G2,i

= min
G1=fθ(X,A1)∈G

{z1,i ·WCL
2,i | Z1 = fθ(X,A1)}, (3)

where WCL
2,i = z̄2,i − 1

N−1

∑
j ̸=i z̄2,j is a constant vector.

Similarly, we can define G1-node compactness f̃
G1,i

. Usually we have f̃
G1,i

≥ f̃
2,i

and f̃
G2,i

≥ f̃
1,i

,
i.e., G1-node compactness and G2-node compactness are upper bounds of node compactness.

4.2 Provable Training of GCL

To enforce the nodes to better follow the GCL principle, we optimize G1-node compactness and
G2-node compactness in Definition 2. Designing the objective can be viewed as implicitly performing
a "binary classification": the "prediction" is minG1

z1,i ·WCL
2,i , and the "label" is 1, which means that

we expect the embedding of the anchor more likely to be classified as a positive sample in the worst
case. To conclude, we propose the PrOvable Training (POT) for GCL, which provably enforces the
nodes to be trained more aligned with the GCL principle. Specifically, we use binary cross-entropy
as a regularization term:

LPOT(G1, G2) =
1

2
(LBCE(f̃G1

, 1n) + LBCE(f̃G2
, 1n)), (4)

where LBCE(x, y) = −
∑N

i=1(yi log σ(xi) + (1− yi) log(1− σ(xi))), σ is the sigmoid activation,
1N = [1, 1, . . . , 1] ∈ RN , and f̃

G2
= [f̃

G2,1
, f̃

G2,2
, . . . , f̃

G2,N
] is the vector of the lower bounds in

Eq. 3. Overall, we add this term to the original InfoNCE objective and the loss function is

L = (1− κ)LInfoNCE(Z1, Z2) + κLPOT(G1, G2), (5)

where κ is the hyperparameter balancing the InfoNCE loss and the compactness loss. Since G1-
node compactness and G2-node compactness are related to the network parameter θ, LPOT can be
naturally integrated into the loss function, which can regularize the network parameters to encode
node embeddings more likely to follow the GCL principle better.

4.3 Deriving the Lower Bounds

In Section 4.2, we have proposed the formation of our loss function, but the lower bounds f̃
G1

and

f̃
G2

are still to be solved. In fact, to see Eq. 3 from another perspective, f̃
G1,1

(or f̃
G2,1

) is the lower
bound of the output of the neural network concatenating a GCN encoder and a linear projection with
parameter WCL

1,i (or WCL
2,i ). It is difficult to find the particular G1 which minimizes Eq. 3, since

finding that exact solution G1 can be an NP-hard problem considering the discreteness of graph
augmentations. Therefore, inspired by the bound propagation methods [5, 32, 38], we derive the
output lower bounds of that concatenated network in a bound propagation manner, i.e., we can derive
the lower bounds f̃

G1
and f̃

G2
by propagating the bounds of the augmented adjacency matrix A1.

However, there are still two challenges when applying bound propagation to our problem: 1) A1 in
Eq. 3 is not defined as continuous values with element-wise bounds; 2) to do the propagation process,
the nonlinearities in the GCN encoder fθ should be relaxed.

Defining the adjacency matrix with continuous values First, we define the set of augmented
adjacency matrices as follows:
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Definition 3 (Augmented adjacency matrix). The set of augmented adjacency matrices is

A ={Ã ∈ {0, 1}N×N |ãij ≤ aij ∧ Ã = ÃT

∧ ∥Ã−A∥0 ≤ 2Q ∧
∥∥∥Ãi −Ai

∥∥∥
0
≤ qi ∀1 ≤ i ≤ N},

where Ã denotes the augmented adjacency matrix, Q and qi are the global and local budgets of edge
dropped, which are determined by the specific GCL model.

The first constraint restricts the augmentation to only edge dropping, which is a common setting in
existing GCL models[35, 36, 8, 25](see more discussions in Appendix B). The second constraint is
the symmetric constraint of topology augmentations.

Since the message-passing matrix is used in GNN instead of the original adjacency matrix, we further
relax Definition 3 and define the set of all possible message-passing matrices, which are matrices
with continuous entries as expected, inspired by [38]:

Definition 4 (Augmented message-passing matrix). The set of augmented message-passing matrices
is

Â = {Â ∈ [0, 1]N×N | Â = ÂT ∧ ∀i, j : Lij ≤ âij ≤ Uij},

Lij =

{
ãij , i = j
0 , i ̸= j

, Uij =

{
((di − qi)(dj − qj))

− 1
2 , i = j

min{aij , ((di − qi)(dj − qj))
− 1

2 } , i ̸= j
,

where Â denotes the augmented message-passing matrix.

Under Definition 4, the augmented message-passing matrices are non-discrete matrices with element-
wise bounds Lij and Uij . Lij is ãij when i = j, since there is no edge added and the self-loop can
not be dropped; Lij is 0 when i ̸= j, which implies the potential dropping of each edge. Uij is set to
((di − qi)(dj − qj))

− 1
2 when i = j because âii is the largest when its adjacent edges are dropped as

much as possible, and Uij = min{aij , ((di − qi)(dj − qj))
− 1

2 } when i ̸= j since there is only edge
dropping, Uij cannot exceed aij .

Relaxing the nonlinearities in the GCN encoder The GCN encoder in our problem has non-linear
activation functions as the nonlinearities in the network, which is not suitable for bound propagation.
Therefore, we relax the activations with linear bounds [32]:

Definition 5 (Linear bounds of non-linear activation function). For node i and the m-th neuron in
the k-th layer, the input of the neuron is p(k)i,m, and σ is the activation function of the neuron. With the

lower bound and upper bound of the input denoted as p(k)L,i,m and p
(k)
U,i,m, the output of the neuron is

bounded by linear functions with parameters α(k)
L,i,m, α

(k)
U,i,m, β

(k)
L,i,m, β

(k)
U,i,m ∈ R, i.e.

α
(k)
L,i,m(p

(k)
i,m + β

(k)
L,i,m) ≤ σ(p

(k)
i,m) ≤ α

(k)
U,i,m(p

(k)
i,m + β

(k)
U,i,m).

The values of α(k)
L,i,m, α

(k)
U,i,m, β

(k)
L,i,m, β

(k)
U,i,m depend on the activation σ and the pre-activation bounds

p
(k)
L,i,m and p

(k)
U,i,m.

To further obtain α and β, we compute the pre-activation bounds P(k)
L and P

(k)
U as follows, which is

the matrix with elements p(k)L,i,m and p
(k)
U,i,m:

Theorem 1 (Pre-activation bounds of each layer [16]). If f = σ(Âσ(ÂXW(1)+b(1))W(2)+b(2))

is the two-layer GCN encoder, given the element-wise bounds of Â in Definition 4, H(k) is the input
embedding of t-th layer, then the pre-activation bounds of t-th layer are

P
(k)
L = L[H(k)W(k)]+ +U[H(k)W(k)]− + b(k),

P
(k)
U = U[H(k)W(k)]+ + L[H(k)W(k)]− + b(k),

where [X]+ = max(X, 0) and [X]− = min(X, 0).
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The detailed proof is provided in Appendix A.1. Therefore, p(k)L,i,m and p
(k)
U,i,m are known with

Theorem 1 given, then the values of α and β can be obtained by referring to Table 1. In the table,
we denote p

(k)
U,i,m as u and p

(k)
L,i,m as l for short. γ is the slope parameter of ReLU-like activation

functions that are usually used in GCL, such as ReLU, PReLU, and RReLU. For example, γ is zero
for ReLU.

Table 1: Values of α and β

l ≥ 0 u ≤ 0 else

α
(k)
L,i,m 1 γ u−γl

u−l

α
(k)
U,i,m 1 γ u−γl

u−l

β
(k)
L,i,m 0 0 0

β
(k)
U,i,m 0 0 (γ−1)ul

u−γl

To this end, all the parameters to derive the lower bounds f̃
G1

and f̃
G2

are known: the bounds of the variable Â in our prob-
lem, which are L and U defined in Definition 4; the parameters
of the linear bounds for non-linear activations, which are α
and β defined in Definition 5 and obtained by Theorem 1 and
Table 1. To conclude, the whole process is summarized in the
following theorem, where we apply bound propagation to our
problem with those parameters:
Theorem 2 (The lower bound of neural network output). If the
encoder is defined as 1, Â is the augmented message-passing
matrix and σ is the non-linear activation function, for G1 =

(X,A1) ∈ G, Â = D−1/2(A1 + I)D−1/2 ∈ Â, then

f̃
G2,i

=
∑

j1∈N (i)

âj1i[
∑

j2∈N (j1)

âj2j1xj2W̃
(1)
i + b̃(1)] + b̃(2) (6)

where WCL
2,i = z̄2,i −

1

N − 1

∑
j ̸=i

z̄2,j , N (i) = {j | aij > 0 or j = i}, (7)

λ
(2)
i,m =

{
α
(2)
L,i,m if WCL

2,i,m ≥ 0

α
(2)
U,i,m if WCL

2,i,m < 0
, ∆

(2)
i,m =

{
β
(2)
L,i,m if WCL

2,i,m ≥ 0

β
(2)
U,i,m if WCL

2,i,m < 0
(8)

Λ
(2)
i = WCL

2,i ⊙ λ
(2)
i , W̃

(2)
i =

d2∑
m=1

Λ
(2)
i,mW (2)

:,m, b̃
(2)
i =

d2∑
m=1

Λ
(2)
i,m(b(2)m +∆

(2)
i,m), (9)

λ
(1)
i,m =

{
α
(1)
L,i,m if W̃ (2)

i,m ≥ 0

α
(1)
U,i,m if W̃ (2)

i,m < 0
, ∆

(1)
i,l =

{
β
(1)
L,i,l if W̃ (2)

i,l ≥ 0

β
(1)
U,i,l if W̃ (2)

i,l < 0
(10)

Λ(1) = W̃
(2)
i ⊙ λ(1), W̃

(1)
i =

d1∑
l=1

Λ
(1)
i,l W

(1)
:,l , b̃

(1)
i =

d2∑
l=1

Λ
(1)
i,l (b

(1)
m +∆

(1)
i,l ). (11)

λ
(2)
i , ∆

(2)
i , Λ

(2)
i ∈ Rd2; λ(1)

i , ∆
(1)
i , Λ

(1)
i ∈ Rd1; W̃(2)

i , W̃
(1)
i ∈ RF×1; b̃(2), b̃(1) ∈ R; d1 and

d2 are the dimension of the embedding of layer 1 and layer 2 respectively.

We provide detailed proof in Appendix A.2. Theorem 2 demonstrates the process of deriving the node
compactness f̃

G2,i
in a bound propagation manner. Before Theorem 2, we obtain all the parameters

needed, and we apply the bound propagation method [32] to our problem, which is the concatenated
network of the GCN encoder fθ and a linear transformation WCL

2,i .As the form of Eq. 6, the node
compactness f̃

G2,i
can be also seen as the output of a new "GCN" encoder with network parameters

W̃
(1)
i , b̃(1), b̃(2), which is an encoder constructed from the GCN encoder in GCL.Additionally, we

present the whole process of our POT method inAlgorithm 1.

Time Complexity The computation of the weight matrices in Theorem 2 dominates the time
complexity of POT. Thus, the time complexity of our algorithm is O(Ndk−1dk + Edk) for the k-th
layer, which is the same as the message-passing [4, 10] in the GNN encoders.

5 Experiments

5.1 Experimental Setup

We choose four GCL baseline models for evaluation: GRACE [35], GCA [36], ProGCL [25], and
COSTA [34]. Since POT is a plugin for InfoNCE loss, we integrate POT with the baselines and
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Algorithm 1: Provable Training for GCL
Input :Graph G = (X,A), the set of all possible augmentations G
Output :Node embeddings Z1 and Z2

1 Initialize GNN encoder paramenters {W(1),b(1),W(2),b(2)};
2 while not converge do
3 Generate graph augmentations G1 = (X, Ã1) and G2 = (X, Ã2);
4 Do forward pass, obtain Z1 = fθ(X, Ã1) and Z2 = fθ(X, Ã2), calculate LInfoNCE;
5 Obtain the pre-activation bounds {P(k)

L ,P
(k)
U }, k = 1, 2 as in Theorem 1;

6 Set {α(k)
L , α

(k)
U , β

(k)
L , β

(k)
U }, k = 1, 2 according to Table 1;

7 Derive f̃
G1,i

, f̃
G2,i

as in Theorem 2 for i = 1 to N and calculate LPOT as in Equation 4;
8 Do backward propagation with L = (1− κ)LInfoNCE(Z1,Z2) + κLPOT(G1, G2);
9 end

10 return Z1, Z2 for downstream tasks;

construct four models: GRACE-POT, GCA-POT, ProGCL-POT, and COSTA-POT. Additionally, we
report the results of two supervised baselines: GCN and GAT [20]. For the benchmarks, we choose 8
common datasets: Cora, CiteSeer, PubMed [28], Flickr, BlogCatalog [13], Computers, Photo [18],
and WikiCS [14]. Details of the datasets and baselines are presented in Appendix C.2. For datasets
with a public split available [28], including Cora, CiteSeer, and PubMed, we follow the public split;
For other datasets with no public split, we generate random splits, where each of the training set and
validation set contains 10% nodes of the graph and the rest 80% nodes of the graph is used for testing.

5.2 Node Classification

Table 2: Performance (%± σ) on Node Classification

GRACE GCA ProGCL COSTA
Datasets Metrics GCN GAT

w/o POT w/ POT w/o POT w/ POT w/o POT w/ POT w/o POT w/ POT

Cora
Mi-F1 81.9± 1.1 82.8± 0.5 78.2± 0.6 79.2± 1.2 78.6± 0.2 79.6± 1.4 77.9± 1.4 79.9± 1.0 79.9± 0.7 80.5± 0.9

Ma-F1 80.6± 1.1 81.8± 0.3 76.8± 0.6 77.8± 1.4 77.7± 0.1 79.1± 1.4 77.3± 1.7 78.8± 0.9 79.5± 0.7 80.1± 0.8

CiteSeer
Mi-F1 71.6± 0.6 72.1± 1.0 66.8± 1.0 68.7± 0.6 65.0± 0.7 69.0± 0.8 65.9± 0.9 67.7± 0.9 66.8± 0.8 67.9± 0.7

Ma-F1 68.2± 0.5 67.1± 1.3 63.2± 1.3 64.0± 0.9 60.8± 0.8 65.5± 0.7 62.5± 0.9 63.6± 0.5 63.4± 1.4 64.0± 1.2

PubMed
Mi-F1 79.3± 0.1 78.3± 0.7 81.6± 0.5 82.0± 1.3 80.5± 2.3 82.8± 2.0 81.5± 1.1 81.9± 0.4 80.0± 1.5 80.6± 1.3

Ma-F1 79.0± 0.1 77.6± 0.8 81.7± 0.5 82.4± 1.2 80.5± 2.1 82.9± 2.0 81.3± 1.0 82.2± 0.4 79.3± 1.4 80.3± 1.5

Flickr
Mi-F1 48.8± 1.9 37.3± 0.5 46.5± 1.8 48.4± 1.3 47.4± 0.8 50.3± 0.3 46.4± 1.4 49.7± 0.5 52.6± 1.2 53.8± 1.2

Ma-F1 45.8± 2.4 35.2± 0.7 45.1± 1.4 47.0± 1.6 46.2± 0.8 49.3± 0.4 45.4± 1.1 48.9± 0.3 51.2± 0.9 52.6± 1.3

BlogCatalog
Mi-F1 72.4± 2.5 68.0± 2.1 70.5± 1.3 72.4± 1.4 76.2± 0.6 76.5± 0.5 74.1± 0.6 76.0± 0.7 73.3± 3.4 75.1± 1.5

Ma-F1 71.9± 2.4 67.6± 1.8 70.2± 1.3 71.8± 1.4 75.8± 0.7 76.1± 0.5 73.7± 0.6 75.7± 0.9 73.0± 3.6 74.9± 1.6

Computers
Mi-F1 87.6± 0.6 88.7± 1.3 85.9± 0.4 86.9± 0.7 88.7± 0.6 89.1± 0.3 88.6± 0.7 89.0± 0.5 82.5± 0.4 82.8± 0.7

Ma-F1 83.1± 2.3 79.3± 1.4 83.9± 0.8 84.5± 1.4 87.1± 0.7 87.6± 0.5 86.9± 1.1 87.4± 0.9 78.8± 1.7 79.0± 1.0

Photo
Mi-F1 91.7± 0.7 92.0± 0.5 91.2± 0.4 91.8± 0.3 91.5± 0.4 92.0± 0.3 92.1± 0.3 92.4± 0.3 91.5± 0.6 92.2± 1.0

Ma-F1 88.8± 2.0 88.9± 2.2 89.2± 0.7 90.0± 0.6 89.5± 0.5 90.0± 0.6 90.6± 0.6 90.9± 0.6 89.3± 1.3 90.1± 1.4

WikiCS
Mi-F1 81.2± 1.2 81.2± 0.8 80.3± 0.3 80.6± 0.3 78.7± 0.3 80.7± 0.3 78.8± 0.4 80.0± 0.5 76.2± 1.6 79.1± 0.9

Ma-F1 78.7± 1.9 78.5± 1.8 77.6± 0.3 78.0± 0.3 75.4± 0.1 78.0± 0.3 75.6± 0.3 77.2± 0.8 72.2± 1.6 75.8± 0.8

We test the performance of POT on node classification. For the evaluation process, we follow the
setting in baselines [35, 36, 25, 34] as follows: the encoder is trained in a contrastive learning manner
without supervision, then we obtain the node embedding and use the fixed embeddings to train and
evaluate a logistic regression classifier on the downstream node classification task. We choose two
measures: Micro-F1 score and Macro-F1 score. The results with error bars are reported in Table 2.
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Bolded results mean that POT outperforms the baseline, with a t-test level of 0.1. As it shows, our
POT method improves the performance of all the base models consistently on all datasets, which
verifies the effectiveness of our model. Moreover, POT gains significant improvements over baseline
models on BlogCatalog and Flickr. These two datasets are the graphs with the highest average node
degree, therefore there are more possible graph augmentations in these datasets (the higher node
degrees are, the more edges are dropped [35, 36]). This result illustrates our motivation that POT
improves existing GCL methods when faced with complex graph augmentations.

5.3 Analyzing the Node Compactness

To illustrate how POT improves the training of GCL, we conduct experiments to show some interesting
properties of POT by visualizing the node compactness in Definition 2. More experiments can be
found in Appendix D.

POT Improves Node Compactness. We illustrate that our POT does improve the node compactness,
which is the goal of InfoNCE. The result on Cora is shown in Figure 2. The x-axis is the epoch
number, and the y-axis is the average compactness of all nodes. We can see that the node compactness
of the model with POT is almost always higher than the model without POT, indicating that POT
increases node compactness in the training of GCL, i.e. how the nodes follow the GCL principle is
improved in the worst-case. Therefore, our POT promotes nodes to follow the GCL principle better.
More results on BlogCatalog are shown in Appendix D.

(a) GRACE (b) GCA (c) ProGCL (d) COSTA

Figure 2: Node compactness in the training process

Node Compactness Reflects Different Properties of Different Augmentation Strategies. There
are two types of augmentation strategies: GRACE adapts a uniform edge dropping rate, in other
words, the dropping rate does not change among different nodes; GCA, however, adapts a larger
dropping rate on edges with higher-degree nodes, then higher-degree nodes have a larger proportion
of edges dropped. Since node compactness is how a node follows the GCL principle in the worst
case, a higher degree results in larger node compactness, while a higher dropping rate results in lower
node compactness because worse augmentations can be taken. To see whether node compactness can
reflect those properties of different augmentation as expected, we plot the average node compactness
of the nodes with the same degree as scatters in Figure 3 on BlogCatalog and Flickr. For GRACE,
node degree and compactness are positively correlated, since the dropping rate does not change as the
degree increases; For GCA, node compactness reflects a trade-off between dropping rate and degree:
the former dominates in the low-degree stage then the latter dominates later, resulting the curve to
drop then slightly rise.

(a) GRACE, BlogCatalog (b) GRACE, Flickr (c) GCA, BlogCatalog (d) GCA, Flickr

Figure 3: Degree and node compactness score
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5.4 Hyperparameter Analysis

In this subsection, we investigate the sensitivity of the hyperparameter in POT, κ in Eq. 5. In our
experiments, we tune κ ranging from {0.5, 0.4, 0.3, 0.2, 0.1, 0.05}. The hyperparameter κ balances
between InfoNCE loss and POT, i.e. the importance of POT is strengthened when κ > 0.5 while the
InfoNCE is more important when κ < 0.5. We report the Micro-F1 score on node classification of
BlogCatalog in Figure 4. Although the performance is sensitive to the choice of κ, the models with
POT can still outperform the corresponding base models in many cases, especially on BlogCatalog
where POT outperforms the base models whichever κ is selected. The result on Cora is in Appendix D.

(a) GRACE-POT (b) GCA-POT (c) ProGCL-POT (d) COSTA-POT

Figure 4: Hyperparamenter analysis on κ

6 Related Work
Graph Contrastive Learning. Graph Contrastive Learning (GCL) methods are proposed to learn
the node embeddings without the supervision of labels. GRACE [35] firstly proposes GCL with
random edge dropping and feature masking as data augmentations and takes InfoNCE as the objective.
Based on GRACE, GCA [36] improves the data augmentation with adaptive masking and dropping
rate related to node centrality. COSTA [34] proposes feature augmentation in embedding space to
reduce sampling bias. ProGCL [25] reweights the negatives and empowers GCL with hard negative
mining. There are also node-to-graph GCL methods, like DGI [21] and MVGRL [8]. Inspired by
BYOL [6], there are also several GCL methods that do not need negative samples [19] or use BCE
objectives [31].

Bound Propagation. Bound Propagation methods derive the output bounds directly from input
bounds. Interval Bound Propagation [5] defines the input adversarial polytope as a l∞-norm ball,
and it deforms as being propagated through affine layers and monotonic activations. [16] proposes
a relaxation on nonlinearity via Semidefinite Programming but is restricted to one hidden layer.
[24] relaxes ReLU via convex outer adversarial polytope. [32] can be applied to general activations
bounded by linear functions. For GNN, [37] and [38] study the bound propagation on GNN with
feature and topology perturbations respectively. One step further, [17] proposes a Mixed Integer
Linear Programming based method to relax GNN certification with a shared perturbation as input.
However, almost all the previous works require solving an optimization problem with some specific
solver, which is time-consuming and impossible to be integrated into a training process as we
expected.

7 Conclusion
In this paper, we investigate whether the nodes follow the GCL principle well enough in GCL training,
and the answer is no. Therefore, to address this issue, we design the metric "node compactness" to
measure the training of each node, and we propose POT as a regularizer to optimize node compactness,
which can be plugged into the existing InfoNCE objective of GCL. Additionally, we provide a bound
propagation-inspired method to derive POT theoretically. Extensive experiments and insightful
visualizations verify the effectiveness of POT on various GCL methods.

Limitations and broader impacts. One limitation of our work is the restriction on the settings of
GCL. To extend our work to more types of GCL settings and graph-level GCL, one can define the set
of augmentations and network structure properly, then follow the proof in Appendix A.2 to derive the
node compactness in a new setting. The detailed discussion can be found in Appendix B. We leave
them for future work. Moreover, there are no negative social impacts foreseen.
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Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR
2021 Workshop on Geometrical and Topological Representation Learning, 2021.
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A Proofs and Derivations

A.1 Proof of Theorem 1

Proof. We mainly make use of a conclusion in [16] and express it as the lemma below:

Lemma 1 (Bound propagation of affine layers [16]). In an affine layer xk = Wk−1xk−1 + bk−1,
the lower bound lk and upper bound uk of k-th layer after affine transformation can be obtained by

lk = [Wk−1]+l
k−1 + [Wk−1]−u

k−1 + bk−1, uk = [Wk−1]+u
k−1 + [Wk−1]−l

k−1 + bk−1,

where [Wk]+ = max(Wk, 0) and [Wk]− = min(Wk, 0), Wk is the weights of affine transforma-
tion in the k-th layer.

In our problem, since Â is variable, we take H(k)W(k) as the weights of the affine transformation
and replace lk and uk with the bounds L and U. To this end, Theorem 1 is proved.

A.2 Proof of Theorem 2

Proof. Since H(k) is the output embedding of the k-th layer, which implies that H(k−1) is the
input embedding of k-th layer. P(k) is the pre-activation embedding in Theorem 1, fθ(X, A1) =

σ(P(2)),P(2) = Âσ(P(1))W(2) + b(2),P(1) = ÂXW(1) + b(1). With the parameters α, β, L, U
obtained, as well as the parameters of the GCN encoder {W(1), b(1), W(2), b(2)} given, we can
derive the lower bound f̃

G2,i
in a bound propagation [32] manner, by taking Â as a variable with

element-wise upper and lower bound in Definition 4:

f̃
G2,i

= min
Â

{σ(P(2)
i ) ·WCL

2,i } (12)

= min
Â

{
d2∑

m=1

σ(P
(2)
i,m)WCL

2,i,m} (13)

=
∑

WCL
2,i,m≥0

(α
(2)
L,i,m(p

(2)
i,m + β

(2)
L,i,m)) ·WCL

2,i,m +
∑

WCL
2,i,m<0

(α
(2)
U,i,m(p

(2)
i,m + β

(2)
U,i,m)) ·WCL

2,i,m

(14)

=

d2∑
m=1

WCL
2,i,mλ

(2)
i,m(p

(2)
i,m +∆

(2)
i,m) (15)

=

d2∑
m=1

Λ
(2)
i,m(p

(2)
i,m +∆

(2)
i,m) (16)

=

d2∑
m=1

Λ
(2)
i,m(

∑
j1∈N (i)

âj1iσ(P
(1)
i )W(2)

:,m + b(2)m +∆
(2)
i,m) (17)

=
∑

j1∈N (i)

âj1iσ(P
(1)
i )W̃

(2)
i + b̃

(2)
i (18)

=
∑

j1∈N (i)

âj1i

d1∑
l=1

W̃
(2)
i,l λ

(1)
j1,l

(p
(1)
j1,l

+∆
(1)
j1,l

) + b̃
(2)
i (19)

=
∑

j1∈N (i)

âj1i

d1∑
l=1

Λ
(1)
i,l (p

(1)
j1,l

+∆
(1)
j1,l

) + b̃
(2)
i (20)

=
∑

j1∈N (i)

âj1i(
∑

j2∈N (j1)

âj2j1xj2W̃
(1)
i + b̃(1)) + b̃

(2)
i . (21)
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(13) is the equivalent form of (12), and (14) is because: since α
(k)
L,i,m(p

(k)
i,m + β

(k)
L,i,m) ≤ σ(p

(k)
i,m) ≤

α
(k)
U,i,m(p

(k)
i,m + β

(k)
U,i,m), then if WCL

2,i,m is multiplied to the inequality, we have

α
(k)
L,i,m(p

(k)
i,m + β

(k)
L,i,m)WCL

2,i,m ≤ σ(p
(k)
i,m)WCL

2,i,m ≤ α
(k)
U,i,m(p

(k)
i,m + β

(k)
U,i,m)WCL

2,i,m if WCL
2,i,m ≥ 0,

(22)

α
(k)
U,i,m(p

(k)
i,m + β

(k)
U,i,m)WCL

2,i,m ≤ σ(p
(k)
i,m)WCL

2,i,m ≤ α
(k)
L,i,m(p

(k)
i,m + β

(k)
L,i,m)WCL

2,i,m if WCL
2,i,m < 0.

(23)

In (15), we combine α
(2)
L and α

(2)
U into a single parameter λ(2)

i , and similarly for ∆(2)
i . In (16), λ(2)

i

and WCL
2,i are combined to be Λ

(2)
i . We expand the expression of p(2)i,m to get (17). Since m is not

related to j1, we move the outer sum into the inner sum, and the parameters can be further combined,
therefore we get (18). With the ideas above, the following equations can be derived, and finally, we
get (21) which is exactly the form in Theorem 2.

B A Detailed Discussion on the Limitations

The definition of augmented adjacency matrix. In Definition 3, we present the definitions and
theorems under the condition of edge dropping since it is the most common topology augmentation
in GCL [35, 31, 19]. The proposed POT is suitable for various augmentation strategies including
edge dropping and adding. POT is applicable as long as the range of augmentation is well-defined
in Definition 3. For example, if edge addition is allowed, the first constraint in Definition 3 can be
removed, resulting in the change of the element-wise bound in Definition 5. After the element-wise
bound is defined, the other computation steps are the same, then the POT loss with edge addition can
be derived. Since edge addition is not a common practice and all the baselines use edge dropping
only, we set the first constraint in Definition 3 to obtain a tighter bound.

Applying POT to graph-level GCL. If the downstream task requires graph embeddings, POT still
stands. First, related concepts like "graph compactness" can be defined similarly to node compactness.
Second, the pooling operators like "MEAN", "SUM", and "MAX" are linear, therefore the form of
"graph compactness" can be derived with some modifications on the steps in Appendix A.2.

Generalizing to Other Types of Encoders. Definition 5 and Theorem 2 are based on the assumption
that the encoder is GCN since GCN is the most common choice in GCL. However, other encoders are
possible to be equipped with POT. GraphSAGE [7] has a similar form to GCN, then the derivation
steps are similar. For Graph Isomorphism Network [26] and its form is

h(k+1)
v = MLP((1 + ϵ)h(k)

v +
∑

u∈N (v)

h(k)
u ).

We can first relax the nonlinear activation functions in MLP with Definition 5, then obtain the
pre-activation bounds with Theorem 1, and finally follow the steps in Appendix A.2 to derive the
form of node compactness when a GIN encoder is applied.

The provable training of feature augmentation In this paper, we focus on topology augmentations.
However, as we have mentioned in the limitation, feature augmentation is also a common class
of augmentations. We explore the provable training for feature augmentation as follows. Unlike
topology augmentation, the augmented feature is only the input of the first layer, so it is easier to deal
with. Inspired by [37], we can relax the discrete manipulation into l − 1 constraints, then the node
compactness is related to the feasible solution of the dual form. A similar binary cross-entropy loss
can be designed. More detailed derivations are still working in progress.

However, more efforts are still to be made to deal with some subtle parts. Future works are in process.

C Experimental Details

C.1 Source Code

The complete implementation can be found at https://github.com/VoidHaruhi/POT-GCL. We also pro-
vide an implementation based on GammaGL [12] at https://github.com/BUPT-GAMMA/GammaGL.
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C.2 Datasets and Baselines

We choose 8 common datasets for evaluations: Cora, CiteSeer, and PubMed[28], which are the most
common graph datasets, where nodes are paper and edges are citations; BlogCatalog and Flickr, which
are social network datasets proposed in [13], where nodes represent users and edges represent social
connections; Computers and Photo [18], which are Amazon co-purchase datasets with products as
nodes and co-purchase relations as edges; WikiCS [14], which is a graph dataset based on Wikipedia
in Computer Science domain. The statistics of the datasets are listed in Table 3. A percentage in the
last 3 columns means the percentage of nodes used in the training/validation/testing phase.

Table 3: The statistics of datasets

Datasets Nodes Edges Features Classes Training Validation Test

Cora 2708 10556 1433 7 140 500 1000
CiteSeer 3327 9104 3703 6 120 500 1000
PubMed 19717 88648 500 3 60 500 1000

BlogCatalog 5196 343486 8189 6 10% 10% 80%
Flickr 7575 479476 12047 9 10% 10% 80%

Computers 13752 491722 767 10 10% 10% 80%
Photo 7650 238162 645 8 10% 10% 80%

WikiCS 11701 216123 300 10 10% 10% 80%

We obtain the datasets from PyG [3]. Although the datasets are available for public use, we cannot
find their licenses. The datasets can be found in the URLs below:

• Cora, CiteSeer, PubMed: https://github.com/kimiyoung/planetoid/raw/master/data

• BlogCatalog: https://docs.google.com/uc?export=download&id=178PqGqh67RUYMMP6-
SoRHDoIBh8ku5FS&confirm=t

• Flickr: https://docs.google.com/uc?export=download&id=1tZp3EB20fAC27SYWwa-
x66_8uGsuU62X&confirm=t

• Computers, Photo: https://github.com/shchur/gnn-benchmark/raw/master/data/npz/

• WikiCS: https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset

For the implementations of baselines, we use PyG to implement GCN and GAT. For other GCL
baselines, we use their original code. The sources are listed as follows:

• GCN: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gcn.py

• GAT: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gat.py

• GRACE: https://github.com/CRIPAC-DIG/GRACE

• GCA: https://github.com/CRIPAC-DIG/GCA

• ProGCL: https://github.com/junxia97/ProGCL

• COSTA: https://github.com/yifeiacc/COSTA

We implement our POT based on the GCL baselines with PyTorch.

C.3 Hyperparameter Settings

To make a fair comparison, we set the drop rate to be consistent when testing the performance gained
by our proposed POT. The drop rates of edges (p1e, p

2
e) are given in Table 4:

Table 4: Hyperparameters: (p1e, p
2
e)

Models Cora CiteSeer PubMed Flickr BlogCatalog Computers Photo WikiCS

GRACE (0.4, 0.3) (0.3, 0.1) (0.4, 0.1) (0.4, 0.1) (0.4, 0.3) (0.6, 0.4) (0.5, 0.3) (0.2, 0.3)
GCA (0.3, 0.1) (0.2, 0.2) (0.4, 0.1) (0.3, 0.1) (0.3, 0.1) (0.6, 0.3) (0.3, 0.5) (0.2, 0.3)

ProGCL (0.3, 0.1) (0.4, 0.3) (0.4, 0.1) (0.4, 0.1) (0.4, 0.2) (0.6, 0.3) (0.6, 0.3) (0.2, 0.3)
COSTA (0.2, 0.4) (0.3, 0.1) (0.4, 0.1) (0.4, 0.1) (0.4, 0.2) (0.6, 0.3) (0.3, 0.5) (0.2, 0.3)

15

https://github.com/kimiyoung/planetoid/raw/master/data
https://docs.google.com/uc?export=download&id=178PqGqh67RUYMMP6-SoRHDoIBh8ku5FS&confirm=t
https://docs.google.com/uc?export=download&id=178PqGqh67RUYMMP6-SoRHDoIBh8ku5FS&confirm=t
https://docs.google.com/uc?export=download&id=1tZp3EB20fAC27SYWwa-x66_8uGsuU62X&confirm=t
https://docs.google.com/uc?export=download&id=1tZp3EB20fAC27SYWwa-x66_8uGsuU62X&confirm=t
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gcn.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gat.py
https://github.com/CRIPAC-DIG/GRACE
https://github.com/CRIPAC-DIG/GCA
https://github.com/junxia97/ProGCL
https://github.com/yifeiacc/COSTA


Additionally, we provide the values of the hyperparameter κ in our POT, as well as the temperature τ ,
in Table 5:

Table 5: Hyperparameters: (τ, κ)

Models Cora CiteSeer PubMed Flickr BlogCatalog Computers Photo WikiCS

GRACE-POT (0.7, 0.4) (0.9, 0.5) (0.5, 0.1) (0.3, 0.1) (0.5, 0.3) (0.3, 0.1) (0.2, 0.4) (0.3, 0.05)
GCA-POT (0.6, 0.3) (0.7, 0.5) (0.3, 0.1) (0.2, 0.5) (0.3, 0.3) (0.2, 0.2) (0.6, 0.2) (0.3, 0.1)

ProGCL-POT (0.4, 0.4) (0.5, 0.2) (0.5, 0.3) (0.3, 0.5) (0.3, 0.2) (0.3, 0.2) (0.2, 0.3) (0.4, 0.1)
COSTA-POT (0.4, 0.1) (0.3, 0.05) (0.4, 0.3) (0.2, 0.1) (0.05, 0.4) (0.1, 0.1) (0.2, 0.3) (0.4, 0.3)

We provide more hyperparameters which may also have effects on the performance. In Table 6,
"num_epochs" is the epoch number for training, and "pot_batch" is the batch size of POT, "-1" means
full batch is used.

Table 6: Hyperparameters: (pot_batch, num_epochs)

Models Cora CiteSeer PubMed Flickr BlogCatalog Computers Photo WikiCS

GRACE-POT (-1, 200) (-1, 200) (256, 2500) (512, 1000) (-1, 1000) (512, 2500) (512, 0.4) (512, 4000)
GCA-POT (-1, 700) (-1, 1000) (256, 2500) (1024, 2500) (1024, 1500) (256, 2500) (1024, 2500) (1024, 3500)

ProGCL-POT (-1, 1000) (-1, 700) (256, 2000) (512, 2000) (1024, 1500) (256, 3000) (1024, 2500) (256, 3000)
COSTA-POT (-1, 600) (-1, 1500) (512, 2000) (1024, 2500) (1024, 2500) (256, 2500) (512, 3500) (256, 3000)

C.4 Environment

The environment where our codes run is as follows:

• OS: Linux 5.4.0-131-generic

• CPU: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz

• GPU: GeForce RTX 3090

D More Experimental Results

D.1 More Results for Section 3

We present more results of the imbalance of GCL training on Cora and Flickr shown in Figure 5. The
conclusion is similar: it can be observed that the training of GCL on more datasets is also imbalanced
on the untrained nodes.

D.2 More Results for Section 5.3

We provide more results of the experiments in Section 5.3: the node compactness score during
training on BlogCatalog in Figure 6. From the results, we can see that the conclusion in Section 5.3
is the same on more datasets: our POT can promote node compactness compared to the original GCL
methods, which can enforce the nodes to follow the GCL principle better.

D.3 More Results of Hyperparameter Analysis

The result of the hyperparameter analysis of κ on Cora is shown in Figure 7. POT outperforms the
baseline models with most of the choices of κ, which implies that the proposed POT is robust to the
change of κ.
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(a) GRACE-Cora (b) GCA-Cora (c) ProGCL-Cora

(d) GRACE-Flickr (e) GCA-Flickr (f) ProGCL-Flickr

Figure 5: More results showing the imbalance of GCL training

(a) GRACE (b) GCA (c) ProGCL (d) COSTA

Figure 6: Node compactness in the training process on BlogCatalog

(a) GRACE-POT (b) GCA-POT (c) ProGCL-POT (d) COSTA-POT

Figure 7: Hyperparamenter analysis of κ on Cora

D.4 More Insights and Explanations of Experiments on Node Compactness

Node Compactness during training. In Figure 2 and Figure 6, we observe that the node compactness
of traditional GCL methods may decreases with the increase of epoch. We think the "false negative"
issue may contribute to the drop in the curves in Figure 2. Since GCL uses all N−1 nodes as negative
samples, there are many false negatives, i.e., some nodes with the same class as the anchor node
are treated as negative samples in the contrastive loss. As in the definition, the node compactness
measures the worst case of how well a node behaves across all possible augmentations. Therefore, as
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the epoch increases and some false negative information is captured, that "worst case" value may
decrease. As a result, we observe a drop in node compactness in traditional GCL methods. There are
some existing methods alleviating this, called "hard negative mining", including the baseline method
ProGCL. From Figure 2, we see that the curve of ProGCL almost does not drop, while the average
node compactness of other methods decreases. Since our POT method explicitly optimizes the node
compactness, the curve will continue to rise as the epoch increases. It is an open question and may be
related to fundamental issues in contrastive learning.

Understanding the result in Figure 3. First, edges are randomly dropped with a uniform rate in
GRACE. Since there are fewer unimportant edges around a low-degree node, those informative
edges are more easily dropped, which prevents the contrastive loss from learning useful semantics,
therefore those low-degree nodes are hard to be well-trained in GRACE. This is also the motivation
of GCA. To alleviate this, GCA sets the dropping rate of edges by node centrality, keeping important
edges around low-degree nodes. That’s why we observe a high node compactness in low-degree
nodes. However, the augmentation strategy of GCA puts a higher dropping rate for high-degree nodes.
This may explain why node compactness drops as the degree increases at first. When the degree
comes to relatively large, the node is "strong" enough for this augmentation strategy and is prone
to be well-trained. To conclude, the node degree and node compactness are positively correlated
in GRACE, however, there is a trade-off between degree and node compactness in GCA. This may
explain why the result in Figure 3 is reasonable.

D.5 More Experimental Results

POT can improve the InfoNCE loss. In Section 2, we investigate the problem of existing GCL
training with InfoNCE, since it is the only metric we have. After that, we propose "node compactness"
as a more appropriate and intrinsic metric to evaluate the training of a node in GCL. Therefore,
we conduct experiments in the Figures to show the validity of node compactness as well as some
properties. That is the reason why we did not provide further analysis of InfoNCE. However, it
is still inspiring to investigate whether POT can improve InfoNCE. Intuitively, POT can improve
the InfoNCE loss. POT has a larger regularization on the nodes that are not well-trained across all
possible augmentations, as a result, the training of nodes under two specific augmentations is also
improved. To illustrate this, we conduct an experiment comparing the InfoNCE loss values of the
nodes with/without using POT, similar to the experiment in Section 2. We choose GRACE and GCA
as baselines and show the result of Cora in Figure 8. It can be seen that InfoNCE is improved by POT
in two aspects: the average InfoNCE of the nodes is reduced, and the distribution of InfoNCE values
becomes more centralized and balanced.

(a) GRACE (b) GCA

Figure 8: POT improves InfoNCE. The average of InfoNCE values is reduced and the loss values are
more balanced.

The applicability of POT to different augmentation strategies. To investigate whether our POT
applies to various graph augmentations, we evaluate the performance of POT under four types of
topology augmentation: random edge dropping proposed in GRACE; node centrality-based topology
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augmentations proposed in GCA, including degree centrality, eigenvector centrality, and PageRank
centrality. The backbone of the GCL baseline is GRACE. The result on Cora and Flickr is given
in Table 7. POT consistently outperforms the baseline models with different graph augmentations.
As stated in the Limitation section, since more theoretical verifications are needed, POT of other
augmentations, including feature augmentations, are working in progress. We are looking forward to
more capability of POT.

Table 7: POT improves existing GCL with different augmentations (Random: random edge dropping
with a uniform rate; Degree: degree-centrality dropping rate; Eigenvector: eigenvector-centrality
dropping rate; PageRank: PageRank-centrality dropping rate).

Dataset Method Random Degree Eigenvector PageRank

F1Mi F1Ma F1Mi F1Ma F1Mi F1Ma F1Mi F1Ma

Cora GCL 78.2± 0.6 76.8± 0.6 78.6± 0.2 77.7± 0.1 78.0± 0.8 77.3± 0.6 77.8± 1.1 77.0± 1.2
GCL+POT 79.2± 1.2 77.8± 1.4 79.6± 1.4 79.1± 1.4 79.1± 1.2 78.3± 1.5 79.1± 1.0 77.8± 1.4

Flickr GCL 46.5± 1.8 45.1± 1.4 47.4± 0.8 46.2± 0.8 47.7± 1.2 46.6± 1.3 48.4± 1.0 47.3± 1.2
GCL+POT 49.8± 1.0 48.7± 0.8 50.3± 0.3 49.3± 0.4 49.7± 1.0 48.8± 1.1 50.2± 0.8 49.3± 1.0

Figure 9: Node compactness and
the standard error of InfoNCE
loss under different augmentations.
More sensitive nodes have lower
node compactness as expected.

Node compactness can reflect the nodes’ sensitivity to aug-
mentations. We conduct an experiment to show the relationship
between a node’s compactness and the standard error of its In-
foNCE loss under different graph augmentations. Specifically,
we first train a GCL model, then fix the network parameters and
sample 500 pairs of different augmentations. After encoding
these augmentations, 500 InfoNCE loss values are obtained for
each node. We choose to calculate the standard error of these
500 values of each node to reflect its sensitivity to different
augmentations. We also compute each node’s compactness as
Theorem 2 in the paper, which is not related to specific aug-
mentations. With the process above, we have a data sample
(node_compactness, InfoNCE_std) for each node. We divide
these samples into several bins by the value of node compact-
ness and calculate the average of InfoNCE_std in each bin.
Finally, we show the result as a scatter plot in Figure 9. It can
be seen that less sensitive nodes have higher node compactness
values. To conclude, this experiment shows that our proposed
node compactness can be a proxy of the node’s sensitivity to
different graph augmentations, as the motivation stated.
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