
Automatic Integration for Spatiotemporal
Neural Point Processes

Zihao Zhou
Department of Computer Science

University of California, San Diego
La Jolla, CA 92092
ziz244@ucsd.edu

Rose Yu
Department of Computer Science

University of California, San Diego
La Jolla, CA 92092
roseyu@ucsd.edu

Abstract

Learning continuous-time point processes is essential to many discrete event fore-
casting tasks. However, integration poses a major challenge, particularly for
spatiotemporal point processes (STPPs), as it involves calculating the likelihood
through triple integrals over space and time. Existing methods for integrating
STPP either assume a parametric form of the intensity function, which lacks
flexibility; or approximating the intensity with Monte Carlo sampling, which in-
troduces numerical errors. Recent work by Omi et al. [2019] proposes a dual
network approach for efficient integration of flexible intensity function. However,
their method only focuses on the 1D temporal point process. In this paper, we
introduce a novel paradigm: AutoSTPP (Automatic Integration for Spatiotempo-
ral Neural Point Processes) that extends the dual network approach to 3D STPP.
While previous work provides a foundation, its direct extension overly restricts
the intensity function and leads to computational challenges. In response, we
introduce a decomposable parametrization for the integral network using ProdNet.
This approach, leveraging the product of simplified univariate graphs, effectively
sidesteps the computational complexities inherent in multivariate computational
graphs. We prove the consistency of AutoSTPP and validate it on synthetic data
and benchmark real-world datasets. AutoSTPP shows a significant advantage
in recovering complex intensity functions from irregular spatiotemporal events,
particularly when the intensity is sharply localized. Our code is open-source at
https://github.com/Rose-STL-Lab/AutoSTPP.

1 Introduction

Spatiotemporal point process (STPP) [Daley and Vere-Jones, 2007, Reinhart, 2018] is a continuous
time stochastic process for modeling irregularly sampled events over space and time. STPPs are par-
ticularly well-suited for modeling epidemic outbreaks, ride-sharing trips, and earthquake occurrences.
A central concept in STPP is the intensity function, which captures the expected rates of events occur-
rence. Specifically, given the event sequence over space and timeHt = {(s1, t1), . . . , (sn, tn)}tn≤t,
the joint log-likelihood of the observed events is:

log p(Ht) =

n∑
i=1

log λ∗(si, ti)−
ˆ
S

ˆ t

0

λ∗(u, τ)dudτ (1)

λ∗ is the optimal intensity, S the spatial domain, u and τ the space and time, and t the time range.

Learning STPP requires multivariate integrals of the intensity function, which is numerically challeng-
ing. Traditional methods often assume a parametric form of the intensity function, such as the integral

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Rose-STL-Lab/AutoSTPP

can have a closed-form solution Daley and Vere-Jones [2007]. But this also limits the expressive
power of the model in describing complex spatiotemporal patterns.

Others propose to parameterize the model using neural ODE models Chen et al. [2020] and Monte
Carlo sampling, but their computation is costly for high-dimensional functions. Recently, work
by Zhou et al. [2022] proposes a nonparametric STPP approach. They use kernel density estimation
for the intensity and model the parameters of the kernels with a deep generative model. Still, their
method heavily depends on the number of background data points chosen as a hyper-parameter. Too
few background points cause the intensity function to be an inflexible Gaussian mixture, while too
many background points may cause overfitting on event arrival.

To reduce computational cost while maintaining expressive power, we propose a novel automatic
integration scheme based on dual networks to learn STPPs efficiently. Our framework models
intensity function as the sum of background and influence functions. Instead of relying on closed-
form integration or Monte Carlo sampling, we directly approximate the integral of the influence
function with a deep neural network (DNN). Taking the partial derivative of a DNN results in a new
computational graph that shares the same parameters; see Figure 1.

Figure 1: Illustration of AutoSTPP. W denotes the
linear layer’s weight. σ is the nonlinear activation
function. Left shows the intensity network approx-
imating λ(s, t), and right is the integral network
that computes

´
s

´
t
λ. The two networks share the

same parameters.

First, we construct an integral network whose
derivative is the intensity function. Then, we
train the network parameters by maximizing the
data likelihood formulated in terms of the linear
combinations of the integral networks. Finally,
we reassemble the parameters of the integral
network to obtain the intensity. This approach
leads to the exact intensity function and its an-
tiderivative without restricting its parametric
forms, thereby making the integration process
“automatic”.

Our approach bears a resemblance with the fully
NN approach by Omi et al. [2019] for 1D tempo-
ral point processes. There, automatic integration
can be easily implemented by imposing mono-
tonicity constraints on the integral network [Lin-
dell et al., 2021, Li et al., 2019]. However, due
to triple integration in STPP, imposing mono-
tonicity constraints significantly hurdles the ex-
pressivity of the integral network, leading to
inaccurate intensity. As the experiments show,
extending Fully NN to 3D cannot learn complex
spatiotemporal intensity functions. Instead, we
propose a decomposable parametrization for the
integral network that bypasses this restriction.

Our approach can efficiently compute the exact likelihood of any continuous influence function.
We validate our approach using synthetic spatiotemporal point processes with complex intensity
functions. We also demonstrate the superior performance on several real-world discrete event datasets.
Compared to FullyNN by Omi et al. [2019], our approach presents a more general higher-order
automatic integration scheme and is more effective in learning complex intensity functions. Also,
the probability density of Omi et al. [2019] is ill-defined as its intensity integral does not diverge to
infinity [Shchur et al., 2019]. We fix the issue by adding a constant background intensity µ.

To summarize, our contributions include:

• We propose the first deep learning framework AutoSTPP to speed up spatiotemporal point
process learning with automatic integration. We use dual networks and enforce the non-
negativity of the intensity via a monotone integral network.

• We show that our automatic integration scheme empirically learns intensity functions more
accurately than other integration approaches.

• We prove that the derivative network of AutoSTPP is a universal approximator of continuous
functions and, therefore, is a consistent estimator under mild assumptions.

2

• We demonstrate that AutoSTPP can recover complex influence functions from synthetic
data, enjoys high training efficiency and model interpretability, and outperforms the state-of-
the-art methods on benchmark real-world data.

2 Related Work

Parametrizing Point Process. Fitting traditional STPP, such as the spatiotemporal Hawkes process,
to data points with parametric models can perform poorly if the model is misspecified. To address this
issue, statisticians have extensively studied semi- and non-parametric inference for STPP. Early works
like Brix and Moller [2001], Brix and Diggle [2001] usually rely on Log-Gaussian Cox processes as
a backbone and Epanechnikov kernels as estimators of the pair correlation function. Adams et al.
[2009] propose a non-parametric approach that allows the generation of exact Poisson data from a
random intensity drawn from a Gaussian Process, thus avoiding finite-dimensional approximation.
These Cox process models are scalable but assume a continuous intensity change over time.

Recently, neural point processes (NPPs) that combine point processes with neural networks have
received considerable attention [Yan et al., 2018, Upadhyay et al., 2018, Huang et al., 2019, Shang and
Sun, 2019, Zhang et al., 2020]. Under this framework, models focus more on approximating a discrete
set of intensities before and after each event. The continuous intensity comes from interpolating the
intensities between discrete events. For example, [Du et al., 2016] uses an RNN to generate intensities
after each event. [Mei and Eisner, 2016] proposes a novel RNN architecture that generates intensities
at both ends of each inter-event interval. Other works consider alternative training schema: Xiao
et al. [2017] used Wasserstein distance, Guo et al. [2018] introduced noise-contrastive estimation,
and Li et al. [2018] leveraged reinforcement learning. While these NPP models are more expressive
than the traditional point process models, they still assume simple (continuous, usually monotonous)
inter-event intensity changes and only focus on temporal point processes.

Neural STPP [Chen et al., 2020, Zhou et al., 2022] further generalizes NPP to spatiotemporal
data. They use a non-negative activation function to map the hidden states to a scalar, i.e., the
temporal intensity immediately after an event, and a conditional spatial distribution. The change
of intensity between events is represented by a decay function or a Neural ODE. The conditional
spatial distribution is represented by a kernel mixture or a normalizing flow. Nevertheless, all models
assume a continuous transformation of the intensity function and have limited expressivity.

In the context of temporal point processes (TPP), closely related approaches are Omi et al. [2019]
and Zhou and Yu [2023]. Both propose using a Deep Neural Network (DNN) to parameterize the
integral of an intensity function. The work by Omi et al. [2019] offers a more flexible formulation yet
does not incorporate any specific prior assumptions about the form of the intensity changes. On the
other hand, the approach by Zhou and Yu [2023] is capable of capturing more sophisticated influence
functions, and it is this work that our research builds upon. However, both of these studies focus on
the easier problem of learning the derivative with respect to time alone, thereby neglecting the rich
amount of other features that may associated with the timestamps.

Integration Methods. Integration methods are largely ignored in NPP literature but are central to a
model’s ability to capture the complex dynamics of a system. Existing works either use an intensity
function with an elementary integral [Du et al., 2016] or Monte Carlo integration [Mei and Eisner,
2016]. However, we will see in the experiment section that the choice of integration method has a
non-trivial effect on the model performance.

Integration is generally more complicated than differentiation, which can be mechanically solved
using the chain rule. Most integration rules, e.g., integration by parts and change of variables,
transform an antiderivative to another that is not necessarily easier. Elementary antiderivative only
exists for a small set of functions, but not for simple composite functions such as exp(x2) [Dunham,
2018]. The Risch algorithm can determine such elementary antiderivative [Risch, 1969, 1970] but has
never been fully implemented due to its complexity. The most commonly used integration methods
are still numerical: Newton-Cotes Methods, Romberg Integration, Quadrature, and Monte Carlo
integration [Davis and Rabinowitz, 2007].

Several recent works leverage automatic differentiation to speedup integration, a paradigm known as
Automatic Integration (AutoInt). Liu [2020] proposes integrating the Taylor polynomial using the
derivatives from Automatic Differentiation (AutoDiff). It requires partitioning of the integral limits

3

and choosing the order of Taylor approximation. Though it makes use of AutoDiff, the integration
procedure involves a trade-off between runtime and accuracy and is numerical in nature. Li et al.
[2019] and Lindell et al. [2021] proposed a dual network approach, which we will discuss in detail in
Section 3. This approach guarantees a closed-form integral and is efficient.

3 Methodology

We first review the background of Spatiotemporal Point Processes. Then, we introduce the AutoInt
technique, which is interpretable and flexible. Lastly, we consider applying the AutoInt technique to
the 3D integration in the spatiotemporal point process.

3.1 Spatiotemporal Point Process

A spatiotemporal point process (STPP) generalizes TPP to model the number of events N(S × (a, b))
that occurred in the Cartesian product of the spatial domain S ⊆ Rd (d is the spatial dimensionality)
and the time interval (a, b]. It is characterized by a non-negative space-time intensity function given
the event historyHt := {(s1, t1), . . . , (sn, tn)}tn≤t,

λ∗(s, t) := lim
∆s→0,∆t→0

E[N(B(s,∆s)× (t, t+∆t))|Ht]

B(s,∆s)∆t
(2)

which is the probability of finding an event in an infinitesimal time interval (t, t + ∆t] and an
infinitesimal spatial ball S = B(s,∆s) centered at location s. Alternatively, an STPP can be seen as
a TPP with a conditional spatial distribution f∗(s|t), such that λ∗(s, t) = λ∗(t)f∗(s|t).

3.2 AutoInt Point Process

Consider the following NPP model that generalizes the spatiotemporal Hawkes process:

λ∗(s, t) = µ+
∑
ti<t

f+
θ (s− si, t− ti,H(ti)). (3)

Here µ is the base intensity. f+
θ is a positive scalar function that takes space, time, and representations

of event historyH(si, ti) as inputs. Each f+
θ is approximated by a DNN.

The two main benefits of such design are flexibility and interpretability. fθ is a neural network that
can model complex inter-event change. The additive form allows the decomposition of the intensity
function for event influence analysis. We extend this model into the spatiotemporal domain,

3.3 Automatic Integration (AutoInt)

One advantage of the neural STPP model in Equation 3 is that we can instantiate automatic integration
(AutoInt) and calculate the volume integral

´ b
t=a

fθ(s, t,h) := Fθ(b,h)− Fθ(a,h), where h is the
latent representation of the event history until t generated by a deep sequence model. AutoInt first
constructs the integral network Fθ and then reorganizes the computational graph of Fθ to form the
integrant, the derivative network fθ. The two networks thus share the same set of parameters θ.

Specifically, let x := s⊕ t⊕ h, we approximate the integral of the intensity function with a DNN of
the following form:

Fθ(x) = Wn · · · (W3σ(W2σ(W1x))),

where n is the number of layers, Wk : RMk 7→ RNk denotes the weight of the k-th linear layer
of the neural network and σ denotes the elementwise nonlinearity. Mk and Nk are the input
and output dimension for the k-th layer. Hence, the set of parameters in this neural network is
θ = {Wk ∈ RMk×Nk ,∀k}.
The derivative network fθ is the partial derivative of the integral network Fθ. As long as the activation
function is differentiable everywhere, one can compute the intensity recursively,

fθ(x) :=
∂Fθ

∂t
(x) = Wnσ

′(Wn−1σ(Wn−2 . . . (W1x))) · · · ◦W2σ
′(W1x) ◦W11,

4

where ◦ indicates the Hadamard product, and W11 is the first column of W1, i.e.,

W1 := [W11 W12 . . . W1,M1
]

Computing fθ(x) involves many repeated operations. For example, the result of W1x is used for
compute both σ(W1x) and σ′(W1x), see Figure 1. We have developed a program that harnesses the
power of dynamical programming to compute derivatives efficiently with AutoDiff. See Appendix D
for the detailed algorithm.

3.4 AutoInt Point Processes as Consistent Estimators

We show that the universal approximation theorem (UAT) holds for derivative networks. This
theorem signifies that, given a sufficient number of hidden units, derivative networks can theoretically
approximate any continuous functions, no matter how complex. Therefore, using derivative networks
does not limit the range of influence functions that can be approximated.
Proposition 3.1 (Universal Approximation Theorem for Derivative Networks). The set of derivative
networks corresponding to two-layer feedforward integral networks is dense in C(R) with respect to
the uniform norm.

For a detailed proof, see Appendix E. With UAT, it is clear that under some mild assumptions, AutoInt
Point Processes are consistent estimators of point processes that take the form of Equation 5.
Proposition 3.2 (Consistency of AutoInt Point Process). Under the assumption that the ground
truth point process is stationary, ergodic, absolutely continuous and predictable, if the ground truth
influence function is truncated (i.e., ∃C, f(t) = 0 ∀t > c), the maximum likelihood estimator fθ
converges to the true influence function f in probability as T →∞.

Our model belongs to the class of linear self-excitation processes, whose maximum likelihood
estimator properties were analyzed by Ogata et al. [1978]. Under the assumptions above, two
conditions are needed for the proof of consistency:
Assumption 3.3. (Consistency Conditions) For any θ ∈ Θ there is a neighbourhood U of θ such that

1. supθ′∈U |λθ′(t, ω)− λ∗
θ′(t, ω)| → 0 in probability as t→∞,

2. supθ′∈U |log λ∗
θ∗(t, ω)| has, for some α > 0, finite (2 + α) th moment uniform bounded

with respect to t.

The first condition is satisfied by UAT. The second condition depends on the rate of decrease of the
influence tail and is satisfied by truncation. In our experiments, we truncated the history by only
including the influences of the previous 20 events. If the ground truth influence function decays over
the entire time domain, our estimator may exhibit negligible bias.

3.5 3D Automatic Integration

AutoInt gives us an efficient way to calculate a line integral over one axis. However, for spatiotemporal
point process models, we need to calculate the triple integral of the intensity function over space and
time. Since we cannot evaluate the integral network with an input of infinity, we assume the spatial
domain to be a rectangle, such that the triple integral is over a cuboid. We then convert the triple
integral to line integrals using Divergence and Green’s theorem [Marsden and Tromba, 2003].

Define s := (x, y) and t := z, we model the spatiotemporal influence f∗
θ (x, y, z) as

f∗
θ (s, t) =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
(4)

The Divergence theorem relates volume and surface integrals. It states that for any
P (x, y, z), Q(x, y, z), R(x, y, z) that is differentiable over the cuboid Ω, we have

ˆˆˆ
Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dv =

‹
Σ

Pdydz +Qdzdx+Rdxdy,

where Σ are the six rectangles that enclose Ω.

5

Figure 2: Comparison of fitting a nonnegative function f(x, y, z) = sin(x) cos(y) sin(z) + 1. Our
proposed AutoInt ProdNet approach can well approximate the ground truth function. In contrast,
imposing the constraint through activation function with a nonnegative triple derivative “Constrained
Triple AutoInt” fails due to overly stringent constraint.

Using R as an example, we begin with two neural network approximators, LR and MR. We
initialize the two approximators as first-order derivative networks, whose corresponding integral
networks are

´
LRdx and

´
MRdy. We use the xy partial derivatives of the two networks to

model R, such that R :=
∂MR

∂x
− ∂LR

∂y
. Then the z partial derivative

∂R

∂z
is

∂2MR

∂x∂z
− ∂2LR

∂y∂z
=

∂3
´
MRdy

∂x∂y∂z
−

∂3
´
LRdx

∂x∂y∂z
. We can see that

∂R

∂z
can be exactly evaluated as the third derivatives

of two integral networks. In the same manner, we can model P and Q such that the intensity is
parametrized by six networks: LR, LQ, LP ,MR,MQ, and MP .

We use neural network pairs {L,M} to parametrize each intensity term in Equation 4 according to
Green’s theorem. It states that for any L and M differentiable over the rectangle D,ˆˆ

D

(
∂L

∂x
− ∂M

∂y

)
dxdy =

˛
L+

(Ldx+Mdy),

where L+ is the counterclockwise path that encloses D.
´
Rdxdy is then

¸
LRdx+MRdy, and can

be exactly evaluated using the integral networks.

In practice, we observe that the six networks’ parametrization of intensity can be simplified. LR, LQ,
LP can share the same set of weights, and similarly for MR, MQ, MP . The influence is essentially
parametrized by two different neural networks, L and M . That is,

fθ(t,h) :=

(
δ3
´
Mdy

δxδyδz
−

δ3
´
Ldx

δxδyδz

)
+

(
δ3
´
Mdz

δxδyδz
−

δ3
´
Ldy

δxδyδz

)
+

(
δ3
´
Mdx

δxδyδz
−

δ3
´
Ldz

δxδyδz

)
3.6 Imposing the 3D Non-negativity Constraint

For the NPP model in Equation 3, the derivative network fθ needs to be non-negative. Imposing the
non-negativity constraint for 3D AutoInt is a challenging task. It implies that the integral network Fθ

always has a nonnegative triple derivative.

A simple approach is to apply an activation function with a nonnegative triple derivative. An integral
network that uses this activation and has nonnegative linear layer weights satisfies the condition. We
call this approach “Constrained Triple AutoInt”. However, the output of an integral network can grow
very quickly with large input, and the gradients are likely to explode during training. Moreover, the

non-negative constraint on the influence function only requires
∂Fθ

∂s∂t
to be positive. But an activation

function with a nonnegative triple derivative would also enforce other partial derivatives to be positive.

Such constraints are overly restrictive for STPPs, whose partial derivatives
∂Fθ

∂s∂s
and

∂Fθ

∂t∂t
can both

be negative when the intensity is well-defined.

ProdNet. We propose a different solution to enforce the 3D non-negative constraint called ProdNet.
Specifically, we decompose the influence function fθ(s1, s2, t) : R3 → R as f1

θ (s1)f
2
θ (s2)f

3
θ (t),

the product of three R→ R AutoInt derivative networks. The triple antiderivative of the influence

6

Figure 3: Comparing the ground truth conditional intensity λ∗(s, t) with the learned intensity on the ST Hawkes
Dataset 1 and ST Self-Correcting Dataset 3. Top row: Ground truth. Second row: Our AutoSTPP. Rest of the
rows: Baselines. The crosses on top represent past events. Larger crosses indicate more recent events.

function is then F 1
θ (s1)F

2
θ (s2)F

3
θ (t), the product of their respective integral networks. Then we can

apply 1D non-negative constraint to each of the derivative networks. The other partial derivatives are
not constrained because F 1

θ , F
2
θ , F

3
θ can be negative.

One limitation of such decomposition is that it can only learn the joint density of marginally indepen-
dent distribution. We circumvent this issue by parameterizing the influence function as the sum of N
ProdNet,

∑N
i=1 f

1
θ,i(s1)f

2
θ,i(s2)f

3
θ,i(t). The formulation is no longer marginally independent since it

is not multiplicative decomposable. Figure 2 shows that the sum of two ProdNets is already sufficient
to approximate a function that cannot be written as the sum of products of positive functions. In
contrast, the constrained triple AutoInt’s intensity is convex everywhere and fails to fit f .

Increasing the number of ProdNet improves AutoInt’s flexibility at the cost of time and memory. We
perform an ablation study of the number of ProdNet in Appendix F.

3.7 Model Training

Given the integral network Fθ(t,h) :=
´
S Fθ(s, t,h) and the derivative network approximating the

influence function fθ = ∂Fθ

∂t∂s , the log-likelihood of an event sequenceHn = {(s1, t1), · · · , (sn, tn)}
observed in time interval [0, T] with respect to the model is

L(Hn) =

n∑
i=1

log

i−1∑
j=1

fθ(si − sj , ti − tj ,hi)

− n∑
i=1

(
Fθ(T − ti,hn)− Fθ(0,hi)

)

Obtaining the above from Equation 1 is straightforward by the Fundamental Theorem of Calculus.
Fθ is evaluated using the Divergence theorem. We can learn the parameters θ in both networks
by maximizing the log-likelihood function. In experiments, we parametrize fθ with two AutoInt
networks L and M . Each network is a sum of N ProdNets. That is,

fθ(s, t) :=

N∑
i=1

fθi(s, t) = 3

N∑
i=1

∏
x∈{s1,s2,t}

[
δ3
´
Midx

δx3
−

δ3
´
Lidx

δx3

]
We name our method Automatic Spatiotemporal Point Process (AutoSTPP).

4 Experiments

We compare the performances of different neural STPPs using synthetic and real-world benchmark
data. For synthetic data, our goal is to validate our AutoSTPP can accurately recover complex

7

Table 1: Test log likelihood (LL) and Hellinger distance of distribution (HD) on synthetic data (LL
higher is better, HD lower is better). Comparison between AutoSTPP, NSTPP, Monte Carlo STPP, on
synthetic datasets from two types of spatiotemporal point processes.

Spatiotemporal Hawkes process Spatiotemporal Self Correcting process

DS1 DS2 DS3 DS1 DS2 DS3

LL HD LL HD LL HD LL HD LL HD LL HD
NSTPP -5.3110 0.5341 -4.8564 0.5849 -3.7366 0.1498 -2.0759 0.5426 -2.3612 0.3933 -3.0599 0.3097
DSTPP -3.8240 0.0033 -3.1142 0.4920 -3.6327 0.0908 -1.2248 0.2348 -1.4915 0.1813 -1.3927 0.2075

Monte Carlo STPP -4.0066 0.3198 -3.2778 0.3780 -3.7704 0.2587 -1.0317 0.1224 -1.3681 0.1163 -1.4439 0.2334
AutoSTPP -3.9548 0.3018 -2.5304 0.1891 -3.7700 0.1495 -1.0269 0.1216 -1.3657 0.1119 -1.3979 0.2181

intensity functions. Additionally, we show that the errors resulting from numerical integration lead
to a higher variance in the learned intensity than closed-form integration. We show that our model
performs better or on par with the state-of-the-art methods for real-world data.

4.1 Experimental Setup

Synthetic Datasets. We follow the experiment design of Zhou et al. [2022] to validate that our
method can accurately recover the true intensity functions of complex STPPs. We use six synthetic
point process datasets simulated using Ogata’s thinning algorithm [Chen, 2016], see Appendix B for
details. The first three datasets were based on spatiotemporal Hawkes processes, while the remaining
three were based on spatiotemporal self-correcting processes. Each dataset spans a time range of
[0, 10000) and is generated using a fixed set of parameters. Each dataset was divided into a training,
validation, and testing set in an 8 : 1 : 1 ratio based on the time range.

Spatiotemporal Hawkes process (STH). A spatiotemporal Hawkes process, also known as a
self-exciting process, posits that every past event exerts an additive, positive, and spatially local
influence on future events. This pattern is commonly observed in social media and earthquakes. The
process is characterized by the intensity function [Reinhart, 2018]:

λ∗(s, t) := µg0(s) +
∑
i:ti<t

g1(t, ti)g2(s, si) : µ > 0. (5)

g0 represents the density of the background event distribution over S . g2 represents the density of the
event influence distribution centered at si and over S. g1 describes each event ti’s influence decay
over time. We implement g0 and g2 as Gaussian densities and g2 as exponential decay functions.

Spatiotemporal Self-Correcting process (STSC). A spatiotemporal Self-Correcting process
assumes that the background intensity always increases between the event arrivals. Each event
discretely reduces the intensity in the vicinity. The STSC is often used for modeling events with
regular intervals, such as animal feeding times. It is characterized by:

λ∗(s, t) = µ exp
(
g0(s)βt−

∑
i:ti<t

αg2(s, si)
)
: α, β, µ > 0 (6)

g0(s) again represents the density of the background event distribution. g2(s, si) represents the
density of the negative event influence centered at si.

See the Appendix B for the simulation parameters of the six synthetic datasets.

Real-world Datasets. We follow the experiment design of Chen et al. [2020] and use two of the
real-world datasets, Earthquake Japan and COVID New Jersey. The first dataset includes information
on the times and locations of all earthquakes in Japan between 1990 and 2020, with magnitudes of at
least 2.5. This dataset includes 1050 sequences over a [0, 30) time range and is split with a ratio of
950 : 50 : 50. The second dataset is published by The New York Times and describes COVID-19
cases in New Jersey at the county level. This dataset includes 1650 sequences over a [0, 7) time range
and is split with a ratio of 1450 : 100 : 100.

Evaluation Metrics. For real-world datasets, we report the average test log-likelihood (LL) of events.
For synthetic datasets, the ground truth intensities are available, so we report the test log-likelihood

8

(LL) and the time-average Hellinger distance between the learned conditional spatial distribution
f∗(s|t) and the ground truth distribution. The distributions are estimated as multinomial distributions
P = {pi, ..., pk} and Q = {qi, ..., qk} at k discretized grid points. The Hellinger distance is then

calculated as H(P,Q) = 1√
2

√∑k
i=1

(√
pi −

√
qi
)2

Baselines. We compare with two state-of-the-art neural STPP models, NSTPP [Chen et al., 2020]
and Deep-STPP [Zhou et al., 2022]. We also design another baseline, Monte Carlo STPP, which
uses the same underlying model as AutoSTPP but applies numerical integration instead of AutoInt
to calculate the loss. For a fair comparison, Monte Carlo STPP models the influence f∗

θ (s, t) as a
multi-layer perceptron instead of a derivative network. This numerical baseline aims to demonstrate
the benefit of automatic integration.

4.2 Results and Discussion

Figure 4: Forward mixed (d/dx1dx2 · · · dxk) par-
tial derivative computation average speed compari-
son between our efficient implementation and Py-
Torch naive AutoGrad, for a two-layer MLP.

Exact Likelihood. Not all baseline methods
have exact likelihood available. NSTPP [Chen
et al., 2020] uses a numerical Neural-ODE
solver. DeepSTPP [Zhou et al., 2022] introduces
a VAE that optimizes a lower bound of likeli-
hood. Monte Carlo STPP estimates the triple
integral of intensity by Monte Carlo integration.
As such, the results presented in Table 1 are es-
timated for these baseline models, whereas for
our model, the results reflect the true likelihood.

Advantage of AutoInt. We visualize and com-
pare two sample sets of intensities from STH
Dataset 1 and STSC Dataset 3 in Figure 3.
While the influence function approximator in
Monte Carlo STPP can theoretically approxi-
mate more functions than Auto-STPP, the inten-
sity it learns is “flatter” than the intensity learned
by Auto-STPP. This flatness indicates a lack of
information regarding future event locations.

The primary reason behind this flatness can be traced back to numerical errors inherent in the Monte
Carlo method. The Monte Carlo integration performs poorly for sharply localized integrants because
its samples are homogeneous over the phase space. The intensity of ST-Hawkes is a localized
function; it is close to zero in most of the places but high near some event locations. As a result,
Monte Carlo STPP can hardly recover the sharpness of the ground truth intensity. NSTPP also uses
Monte Carlo integration and suffers the same drawback on STH Dataset 1. In contrast, AutoSTPP
evaluates the integral with closed-form integration and alleviates this issue.

Table 2: Test log likelihood (LL) comparison
for space and time on real-world benchmark
data, mean and standard deviation over three
runs.

LL COVID-19 NY Earthquake JP

NSTPP 2.5566±0.0447 −4.4949±0.1172

DSTPP 2.3433±0.0109 −3.9852±0.0129

MonteSTPP 2.1070±0.0342 −3.6085±0.0436

AutoSTPP 2.6243±0.5905 -3.5948±0.0025

Synthetic Datasets Results. Table 1 compares
the test LL and the Hellinger distance between
AutoSTPP and the baseline models on the six syn-
thetic datasets. For the STSC datasets, we can see that
AutoSTPP accurately recovers the intensity functions
compared to other models. In Figure 3, AutoSTPP
is the only model whose peak intensity location is
always the same as the ground truth. DeepSTPP
does not perform well in learning the dynamics of
the STSC dataset; it struggles to align the peak and
tends to learn the flat intensity as overly sharp. The
peak intensity location of NSTPP is also biased.

For the STHP datasets, DeepSTPP has a clear advantage because it uses Gaussian kernels to ap-
proximate the Gaussian ground truth. In Table 1, AutoSTPP outperforms all other models except
DeepSTPP, and its performance is comparable. Figure 3 shows that Monte Carlo STPP and NSTPP

9

can only learn an unimodal function, whereas AutoSTPP can capture multi-modal behavior in the
ground truth, especially the small bumps near the mode.

Real-world Datasets Results. Table 2 compares the test LL of AutoSTPP against the baseline
models on the earthquakes and COVID datasets. Our model demonstrates superior performance,
outperforming all the state-of-the-art methods. One should note that while Monte Carlo STPP shows
performance comparable to ours on the Earthquake JP dataset, it falls short when applied to the
COVID-19 NY dataset. We attribute this discrepancy to the large low-population-density areas in the
COVID-19 NY data, which causes higher numerical error in integration.

4.3 Computational Efficiency

Figure 4 visualizes the benefit of using our implementation of AutoInt instead of the PyTorch naive
implementation. More visualizations of the forward and backward computation times can be found
in Appendix A. We can see that our implementation can be extended to compute any order of partial
derivative. It is significantly faster than the naive autograd. In our AutoSTPP, we calculate the
intensity using the product of three first-order derivatives. Our implementation would lead to a
speedup of up to 68% for computing each first-order derivative.

5 Conclusion

We propose Automatic Integration for neural spatiotemporal point process models (AutoSTPP) using
a dual network approach. AutoSTPP can efficiently compute the exact likelihood of any sophisticated
intensity.

We validate the effectiveness of our method using synthetic data and real-world datasets and demon-
strate that it significantly outperforms other point process models with numerical integration when
the ground truth intensity function is localized.

However, like any approach, ours is not without its limitations. While AutoSTPP excels in computing
the likelihood, sampling from AutoSTPP is computationally expensive as we only have the expression
of the probability density. Closed-form computation of expectations is also not possible; Knowing
the form of

´
λ(t), calculating

´
tλ(t) is still intractable.

Our work presents a new paradigm for learning continuous-time dynamics. Currently, our neural
process model takes the form of Hawkes processes (self-exciting) but cannot handle the discrete
decreases of intensity after events due to the difficulty of integration. Future work includes relaxing
the form of the intensity network with advanced integration techniques. Another interesting direction
is to increase the approximation ability of the product network.

Acknowledgement

This work was supported in part by U. S. Army Research Office under Army-ECASE award W911NF-
07-R-0003-03, the U.S. Department Of Energy, Office of Science, IARPA HAYSTAC Program, NSF
Grants #2205093, #2146343, and #2134274.

References
Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric bayesian

inference in poisson processes with gaussian process intensities. In Proceedings of the 26th annual
international conference on machine learning, pages 9–16, 2009.

Anders Brix and Peter J Diggle. Spatiotemporal prediction for log-gaussian cox processes. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 63(4):823–841, 2001.

Anders Brix and Jesper Moller. Space-time multi type log gaussian cox processes with a view to
modelling weeds. Scandinavian Journal of Statistics, 28(3):471–488, 2001.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
arXiv preprint arXiv:2011.04583, 2020.

10

Yuanda Chen. Thinning algorithms for simulating point processes. Florida State University, Talla-
hassee, FL, 2016.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. IEEE
Transactions on Neural Networks, 21(6):906–917, 2010.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corporation, 2007.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages
1555–1564, 2016.

William Dunham. The calculus gallery. Princeton University Press, 2018.

Ruocheng Guo, Jundong Li, and Huan Liu. Initiator: Noise-contrastive estimation for marked
temporal point process. In IJCAI, pages 2191–2197, 2018.

Hengguan Huang, Hao Wang, and Brian Mak. Recurrent poisson process unit for speech recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6538–6545,
2019.

Haibin Li, Yangtian Li, and Shangjie Li. Dual neural network method for solving multiple definite
integrals. Neural computation, 31(1):208–232, 2019.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. arXiv preprint arXiv:1811.05016, 2018.

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast
neural volume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14556–14565, 2021.

Keqin Liu. Automatic integration. arXiv e-prints, pages arXiv–2006, 2020.

Jerrold E. Marsden and Anthony Tromba. Vector Calculus. Macmillan, August 2003. ISBN
978-0-7167-4992-9. Google-Books-ID: LiRLJf2m_dwC.

Hongyuan Mei and Jason Eisner. The neural hawkes process: A neurally self-modulating multivariate
point process. arXiv preprint arXiv:1612.09328, 2016.

Yosihiko Ogata et al. The asymptotic behaviour of maximum likelihood estimators for stationary
point processes. Annals of the Institute of Statistical Mathematics, 30(1):243–261, 1978.

Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. Fully neural network based model for general
temporal point processes. arXiv preprint arXiv:1905.09690, 2019.

Alex Reinhart. A review of self-exciting spatio-temporal point processes and their applications.
Statistical Science, 33(3):299–318, 2018.

Robert H Risch. The problem of integration in finite terms. Transactions of the American Mathemati-
cal Society, 139:167–189, 1969.

Robert H Risch. The solution of the problem of integration in finite terms. Bulletin of the American
Mathematical Society, 76(3):605–608, 1970.

Jin Shang and Mingxuan Sun. Geometric hawkes processes with graph convolutional recurrent neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4878–4885, 2019.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. arXiv preprint arXiv:1909.12127, 2019.

11

Utkarsh Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep reinforcement learning of marked
temporal point processes. arXiv preprint arXiv:1805.09360, 2018.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. arXiv preprint arXiv:1705.08051, 2017.

Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. Improving maximum
likelihood estimation of temporal point process via discriminative and adversarial learning. In
IJCAI, pages 2948–2954, 2018.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183–11193. PMLR, 2020.

Zihao Zhou and Rose Yu. Automatic integration for fast and interpretable neural point process. In
Learning for Dynamics and Control Conference. PMLR, 2023.

Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for
learning spatiotemporal event dynamics. In Learning for Dynamics and Control Conference, pages
777–789. PMLR, 2022.

12

A More Implementation Benchmarks

Figure 5: Forward mixed (d/dx1dx2...dxk)
partial derivative computation speed, 3 layers
MLP

Figure 6: Forward mixed (d/dx1dx2...dxk)
partial derivative computation speed, 4 layers
MLP

As the number of MLP layers increases, the lower-order derivative computation becomes faster
(relative to PyTorch naive implementation), whereas the higher-order derivative computation becomes
slower. This performance pattern is because our implementation uses Python for loop. Our approach
is faster than the baseline in the majority of cases.

Figure 7: Forward + Backward mixed
(d/dx1dx2 · · · dxk) partial derivative compu-
tation speed, 3 layers MLP

Figure 8: Forward + Backward univariate
(d/dx1dx1 · · · dx1) partial derivative compu-
tation speed, 3 layers MLP

As for both forward and backward computation times, our implementation still consistently surpasses
the baseline in terms of speed. Notably, our method is even more efficient when calculating univariate
partial derivatives than mixed partial derivatives. This advantage is primarily due to the reduced
number of iterations required by the Python for-loop in the case of univariate derivatives.

B STSC and ST-Hawkes Introduction and Simulation Parameters

We use the same parameters as Zhou et al. [2022].

The STSCP’s and the STHP’s kernels g0(s) and g2(s, sj) are prespecified to be Gaussian:

g0(s) :=
1

2π
|Σg0|−

1
2 exp

(
−1

2
(s− [0, 0])Σ−1

g0 (s− [0, 0])T
)

g2(s, sj) :=
1

2π
|Σg2|−

1
2 exp

(
−1

2
(s− sj)Σ

−1
g2 (s− sj)

T

)
The STSCP is defined on S = [0, 1]× [0, 1], while the STHP is defined on S = R2. The STSCP’s
kernel functions are normalized according to their cumulative probability on S. Table 4 shows the

13

simulation parameters. We discretized the STSCP’s spatial domain as a 101× 101 grid during the
simulation.

Table 3: Parameter settings for the synthetic dataset
α β µ Σg0 Σg2

ST-Hawkes DS1 .5 1 .2 [.2 0; 0 .2] [0.5 0; 0 0.5]
DS2 .5 .6 .15 [5 0; 0 5] [.1 0; 0 .1]
DS3 .3 2 1 [1 0; 0 1] [.1 0; 0 .1]

ST-Self Correcting DS1 .2 .2 1 [1 0; 0 1] [0.85 0; 0 0.85]
DS2 .3 .2 1 [.4 0; 0 .4] [.3 0; 0 .3]
DS3 .4 .2 1 [.25 0; 0 .25] [.2 0; 0 .2]

Each dataset is a single, long sequence that spans over 10,000 time units. We divide each dataset into
50 sequences, each spanning 200 time units. We use 40 sequences for training, 5 for validation, and 5
for testing. Here’s a summary of the total number of events found in each dataset:

Table 4: Number of events in each synthetic dataset
number of events

ST-Hawkes DS1 3983
DS2 9017
DS3 11693

ST-Self Correcting DS1 10002
DS2 6668
DS3 5004

The prediction task applies sliding windows to each of the datasets. We try to use historical events to
predict the likelihood of the next event in the same sequence.

C Model Setup Details

We detail the specific hyperparameter settings in Table 5. Except for the learning rate, the same set of
parameters was applied across all datasets. Despite varying datasets, This consistency in performance
demonstrates our model’s robustness to hyperparameters.

Name Value Description

Optimizer Adam -
Learning rate - Depends on dataset, [0.0002, 0.004]
Momentum 0.9 Adam momentum

Epoch 50 / 100 50 for synthetic dataset and 100 for real-world dataset
Batch size 128 -
Activation tanh Activation function in L and M (intensity parameter networks)

N 2 / 10 Number of product nets to sum in L and M
2 for synthetic dataset and 10 for real-world dataset

bias true L and M use bias in their linear layers

Table 5: Hyperparameter settings for training AutoSTPP on all datasets.

D Forward-pass Algorithm for Automatic Integration

Function: dnforward(f, n, x, dims), partition(n, k) finds all k-subset partitions of n

14

Data: n, dimension of f(x), x, a tensor of shape (batch, dim),
dims, list of dimensions to derive, layers, composite functions in f
Result: ddimsf/dxdims
Initialize dictionary dnf, mapping from dims to ddimsf/dxdims, empty list pd
if |dims| = 1 then

Precompute f(x)
pd← δi,dim|i∈[1,n]

else
for subdims ∈ combination(dims, len(dims)-1) do

Precompute dnforward(f , n, x, subdims)
end
pd← 0

end
for layer ∈ layers do

if layer is linear then
pd append last pd ×WT , W is the linear weight

else if layer is activation then
if |dims| = 1 then

termsum← last pd × layer′(f)
else

termsum← 0
for order ∈ 0, · · · , |dims| do

if order = 0 then
term← last pd

else
term← 0
for part ∈ partition(dims, order + 1) do

temp← 1
for subdims ∈ part do

temp← temp × dnforward(f, n, x, subdims) (precomputed)
term← term + temp

end
termsum← termsum + term

end
end
termsum← termsum × layer(n)(f)

end
end

pd append termsum
end
return last pd

E Universal Approximation Theorem for Derivative Network

Consider an AutoInt integral network with the form

g(x) = C · (σ ◦ (A · x+ b)), A ⊆ Rk×n, b ⊆ Rk, C ⊆ Rk,

where σ denotes a R→ R continuous non-polynomial function applied elementwise to each input
dimension.

The derivative network thus takes the form

g′(x) = C · (σ′ ◦ (A · x+ b) ◦Acol),

where Acol ⊆ Rk is a column of A that corresponds to the deriving dimension.

Recall the universal approximation theorem [Daniels and Velikova, 2010], which says for every
compact K ⊆ Rn and f ∈ C(K,R), ε > 0, there exist A, b, C such that

sup
x∈K
∥f(x)− g(x)∥ < ε

15

Proposition E.1. (Universal Approximation Theorem for Derivative Network) for every compact
K ⊆ Rn and f ∈ C(K,R), ε > 0, there exists A ∈ Rk×n, b ∈ Rk, C ∈ Rk, β ∈ R such that

g(x) := C · (σ ◦ (Ax+ b))− βx

sup
x∈K
∥f(x)− g′(x)∥ < ε

Proof. Given the mapping f , by UAT, there exists A, b, C that approximate f(x). Construct C̃ ∈ Rk

and β ∈ R, such that

C̃j =

{
Cj/Acol,j , Acol,j ̸= 0

0, Acol,j = 0
, and β =

∑
j|Acol,j=0

Cjσ(bj)

Then,

sup
x∈K
∥f(x)− C · (σ ◦ (A · x+ b))∥

= sup
x∈K

∥∥∥∥∥∥f(x)−
k∑

j=1

Cj(σ(Aj · x+ bj))

∥∥∥∥∥∥
= sup

x∈K

∥∥∥∥∥∥f(x)−
k∑

j=1

C̃j(σ(Aj · x+ bj)Acol,j)−
∑

j|Acol,j=0

Cjσ(bj)

∥∥∥∥∥∥
= sup

x∈K
∥f(x)− C̃ · (σ′ ◦ (A · x+ b) ◦Acol)− β∥,

Note that C̃ · (σ′ ◦ (A ·x+ b) ◦Acol)−β =
d

dxcol

(
C̃ · (σ ◦ (Ax+ b))−βx

)
, which is the derivative

net of a two-layer feedforward integral network.

F Relationship between Number of ProdNets and Model Expressivity

Figure 9: Training MSE for fitting a positive derivative network to sin(x) cos(y) sin(z) + 1

We applied ten summations of positive ProdNets to fit the non-multiplicative-decomposable function
sin(x) cos(y) sin(z) + 1.

Each of these ProdNets consists of three MLP components, each with two hidden layers with 128
dimensions. All models underwent training with a consistent learning rate set at 0.005.

Our results, shown in Figure 9, indicate that increasing the number of ProdNets generally improves
the model’s performance in fitting the non-decomposable function. The model with the best MSE

16

uses 10 ProdNets, while the model with 2 ProdNets had the second-worst performance. This result
is intuitively sensible, as more linear terms are typically required to express an arbitrary function
precisely. However, we observed that employing more ProdNets does not always lead to better
performance, as demonstrated by the model with 8 ProdNets.

17

	Introduction
	Related Work
	Methodology
	Spatiotemporal Point Process
	AutoInt Point Process
	Automatic Integration (AutoInt)
	AutoInt Point Processes as Consistent Estimators
	3D Automatic Integration
	Imposing the 3D Non-negativity Constraint
	Model Training

	Experiments
	Experimental Setup
	Results and Discussion
	Computational Efficiency

	Conclusion
	More Implementation Benchmarks
	STSC and ST-Hawkes Introduction and Simulation Parameters
	Model Setup Details
	Forward-pass Algorithm for Automatic Integration
	Universal Approximation Theorem for Derivative Network
	Relationship between Number of ProdNets and Model Expressivity

