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Abstract

As larger deep learning models are hard to interpret, there has been a recent focus
on generating explanations of these black-box models. In contrast, we may have
apriori explanations of how models should behave. In this paper, we formalize this
notion as learning from explanation constraints and provide a learning theoretic
framework to analyze how such explanations can improve the learning of our
models. One may naturally ask, “When would these explanations be helpful?” Our
first key contribution addresses this question via a class of models that satisfies these
explanation constraints in expectation over new data. We provide a characterization
of the benefits of these models (in terms of the reduction of their Rademacher
complexities) for a canonical class of explanations given by gradient information
in the settings of both linear models and two layer neural networks. In addition, we
provide an algorithmic solution for our framework, via a variational approximation
that achieves better performance and satisfies these constraints more frequently,
when compared to simpler augmented Lagrangian methods to incorporate these
explanations. We demonstrate the benefits of our approach over a large array of
synthetic and real-world experiments.

1 Introduction

There has been a considerable recent focus on generating explanations of complex black-box models
so that humans may better understand their decisions. These can take the form of feature importance
[31, 35], counterfactuals [31, 35], influential training samples [18, 43], etc. But what if humans were
able to provide explanations for how these models should behave? We are interested in the question of
how to learn models given such apriori explanations. A recent line of work incorporates explanations
as a regularizer, penalizing models that do not exhibit apriori given explanations [33, 32, 15, 36].
For example, Rieger et al. [32] penalize the feature importance of spurious patches on a skin-cancer
classification task. These methods lead to models that inherently satisfy “desirable” properties and,
thus, are more trustworthy. In addition, some of these empirical results suggest that constraining
models via explanations also leads to higher accuracy and robustness to changing test environments.
However, there is no theoretical analysis to explain this phenomenon.

We note that such explanations can arise from domain experts and domain knowledge, but also other
large “teacher” models that might have been developed for related tasks. An attractive facet of the
latter is that we can automatically generate model-based explanations given unlabeled data points.
For instance, we can use segmentation models to select the background pixels of images solely on
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Figure 1: A restricted hypothesis class Hϕ,α (left). Our algorithmic solution to solve a proposed
variational objective in Section 5 (right).

unlabeled data, which we can use in our model training. We thus view incorporating explanation
constraints from such teacher models as a form of knowledge distillation into our student models [13].

In this paper, we provide an analytical framework for learning from explanations to reason when and
how explanations can improve the model performance. We first provide a mathematical framework
for model constraints given explanations. Casting explanations as functionals g that take in a model
h and input x (as is standard in explainable AI), we can represent domain knowledge of how models
should behave as constraints on the values of such explanations. We can leverage these to then solve
a constrained ERM problem where we additionally constrain the model to satisfy these explanation
constraints. Since the explanations and constraints are provided on randomly sampled inputs, these
constraints are random. Nevertheless, via standard statistical learning theoretic arguments [38], any
model that satisfies the set of explanation constraints on the finite sample can be shown to satisfy the
constraints in expectation up to some slack with high probability. In our work, we term a model that
satisfies explanations constraints in expectation, an CE model (see Definition 1). Then, we can capture
the benefit of learning with explanation constraints by analyzing the generalization capabilities of
this class of CE models (Theorem 3.2). This analysis builds off of a learning theoretic framework for
semi-supervised learning of Balcan and Blum [1, 2]. We remark that if the explanation constraints
are arbitrary, it is not possible to reason if a model satisfies the constraints in expectation based on
a finite sample. We provide a detailed discussion on when this argument is possible in Appendix
B,D. In addition, we note that our work also has a connection with classical approaches in stochastic
programming [16, 4] and is worth investigating this relationship further.

Another key contribution of our work is concretely analyzing this framework for a canonical class
of explanation constraints given by gradient information for linear models (Theorem 4.1) and two
layer neural networks (Theorem 4.2). We focus on gradient constraints as we can represent many
different notions of explanations, such as feature importance and ignoring spurious features. These
corollaries clearly illustrate that restricting the hypothesis class via explanation constraints can lead
to fewer required labeled data. Our results also provide a quantitative measure of the benefits of
the explanation constraints in terms of the number of labeled data. We also discuss when learning
these explanation constraints makes sense or is possible (i.e., with a finite generalization bound).
We note that our framework allows for the explanations to be noisy, and not fully satisfied by even
the Bayes optimal classifier. Why then would incorporating explanation constraints help? As our
analysis shows, this is by reducing the estimation error (variance) by constraining the hypothesis
class, at the expense of approximation error (bias). We defer the question of how to explicitly denoise
noisy explanations to future work.

Now that we have provided a learning theoretic framework for these explanation constraints, we next
consider the algorithmic question: how do we solve for these explanation-constrained models? In
general, these constraints are not necessarily well-behaved and are difficult to optimize. One can
use augmented Lagrangian approaches [33, 7], or simply regularized versions of our constrained
problems [32] (which however do not in general solve the constrained problems for non-convex
parameterizations but is more computationally tractable). We draw from seminal work in posterior
regularization [9], which has also been studied in the capacity of model distillation [14], to provide
a variational objective. Our objective is composed of two terms; supervised empirical risk and
the discrepancy between the current model and the class of CE models. The optimal solution of
our objective is also the optimal solution of the constrained problem which is consistent with our
theoretical analysis. Our objective naturally incorporates unlabeled data and provides a simple way to
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control the trade-off between explanation constraints and the supervised loss (Section 5). We propose
a tractable algorithm that iteratively trains a model on the supervised data, and then approximately
projects this learnt model onto the class of CE models. Finally, we provide an extensive array of
experiments that capture the benefits of learning from explanation constraints. These experiments also
demonstrate that the variational approach improves over simpler augmented Lagrangian approaches
and can lead to models that indeed satisfy explanations more frequently.

2 Related Work

Explainable AI. Recent advances in deep learning have led to models that achieve high performance
but which are also highly complex [20, 11]. Understanding these complex models is crucial for
safe and reliable deployments of these systems in the real-world. One approach to improve our
understanding of a model is through explanations. This can take many forms such as feature
importance [31, 35, 23, 37], high level concepts [17, 44], counterfactual examples [39, 12, 25],
robustness of gradients [41], or influential training samples [18, 43].

In contrast to generating post-hoc explanations of a given model, we aim to learn models given apriori
explanations. There has been some recent work along such lines. Koh et al. [19], Zarlenga et al. [45]
incorporates explanations within the model architecture by requiring a conceptual bottleneck layer.
Ross et al. [33], Rieger et al. [32], Ismail et al. [15], Stacey et al. [36] use explanations to modify the
learning procedure for any class of models: they incorporate explanations as a regularizer, penalizing
models that do not exhibit apriori given explanations; Ross et al. [33] penalize input gradients, while
Rieger et al. [32] penalize a Contextual Decomposition score [26]. Some of these suggest that
constraining models via explanations leads to higher accuracies and more robustness to spurious
correlation, but do not provide analytical guarantees. On the theoretical front, Li et al. [22] show that
models that are easier to explain locally also generalize well. However, Bilodeau et al. [3] show that
common feature attribution methods without additional assumptions on the learning algorithm or
data distribution do no better than random guessing at inferring counterfactual model behavior.

Learning Theory. Our contribution is to provide an analytical framework for learning from expla-
nations that quantify the benefits of explanation constraints. Our analysis is closely related to the
framework of learning with side information. Balcan and Blum [2] shows how unlabeled data can
help in semi-supervised learning through a notion of compatibility between the data and the target
model. This work studies classical notions of side information (e.g., margin, smoothness, and co-
training). Subsequent papers have adapted this learning theoretic framework to study the benefits of
representation learning [10] and transformation invariance [34]. On the contrary, our paper focuses
on the more recent notion of explanations. Rather than focus on the benefits of unlabeled data, we
characterize the quality of different explanations. We highlight that constraints here are stochastic, as
they depend on data points which differs from deterministic constraints that have been considered in
existing literature, such as constraints on the norm of weights (i.e., L2 regularization).

Self-Training. Our work can also be connected to the self-training literature [5, 42, 40, 8], where we
could view our variational objective as comprising a regularized (potentially simpler) teacher model
that encodes these explanation constraints into a student model. Our variational objective (where we
use simpler teacher models) is also related to distillation, which has also been studied in terms of
gradients [6].

3 Learning from Explanation Constraints

Let X be the instance space and Y be the label space. We focus on binary classification where
Y = {−1, 1}, but which can be naturally generalized. Let D be the joint data distribution over
(X ,Y) and DX the marginal distribution over X . For any classifier h : X → Y , we are interested
in its classification error err(h) := Pr(x,y)∼D(h(x) ̸= y), though one could also use other losses to
define classification error. Our goal is to learn a classifier with small error from a family of functions
H. In this work, we use the words model and classifier interchangeably. Now, we formalize local
explanations as functionals that take in a model and a test input, and output a vector:

Definition 1 (Explanations). Given an instance space X , model hypothesis class H, and an explana-
tion functional g : H×X → Rr, we say g(h, x) is an explanation of h on point x induced by g.
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For simplicity, we consider the setting when g takes a single data point and model as input, but this
can be naturally extended to multiple data points and models. We can combine these explanations
with prior knowledge on how explanations should look like at sample points in term of constraints.
Definition 2 (Explanation Constraint Set). For any instance space X , hypothesis class H, an
explanation functional g : H×X → Rr, and a family of constraint sets {C(x) ⊆ Rr | x ∈ X}, we
say that h ∈ H satisfies the explanation constraints with respect to C iff:

g(h, x) ∈ C(x), ∀x ∈ X .

In our definition, C(x) represents values that we believe our explanations should take at a point x.
For example, “an input gradient of a feature 1 must be larger than feature 2” can be represented by
g(h, x) = ∇xh(x) and C(x) = {(x1, . . . , xd) ∈ Rd | x1 > x2}. In practice, human annotators will
be able to provide the constraint set C(x′) for a random sample k data points SE = {x′

1, . . . , x
′
k}

drawn i.i.d. from DX . We then say that any h ∈ H SE-satisfies the explanation constraints with
respect to C iff g(h, x) ∈ C(x), ∀x ∈ SE . We note that the constraints depends on random samples
x′
i and therefore are random. To tackle this challenge, we can draw from the standard learning

theoretic arguments to reason about probably approximately satisfying the constraints in expectation.
Before doing so, we first consider the notion of explanation surrogate losses, which will allow us to
generalize the setup above to a form that is amenable to practical estimators.
Definition 3. (Explanation surrogate loss) An explanation surrogate loss ϕ : H×X → R quantifies
how well a model h satisfies the explanation constraint g(h, x) ∈ C(x). For any h ∈ H, x ∈ X :

1. ϕ(h, x) ≥ 0.

2. If g(h, x) ∈ C(x) then ϕ(h, x) = 0.

For example, we could define ϕ(h, x) = 1{g(h, x) ∈ C(x)}. Given such a surrogate loss, we can
substitute the explanation constraint that g(h, x) ∈ C(x) with the surrogate ϕ(h, x) ≤ 0. We now
have the machinery to formalize how to reason about the random explanation constraints given a
random set of inputs. First, denote the expected explanation loss as ϕ(h,D) := Ex∼D[ϕ(h, x)]. We
are interested in models that satisfy the explanation constraints up to some slack τ (i.e. approximately)
in expectation. We define a learnability condition of this explanation surrogate loss as EPAC
(Explanation Probably Approximately Correct ) learnability.
Definition 4 (EPAC learnability). For any δ ∈ (0, 1), τ > 0, the sample complexity of (δ, τ) - EPAC
learning of H with respect to a surrogate loss ϕ, denoted m(τ, δ;H, ϕ) is defined as the smallest
m ∈ N for which there exists a learning rule A such that every data distribution DX over X , with
probability at least 1− δ over S ∼ Dm,

ϕ(A(S),D) ≤ inf
h∈H

ϕ(h,D) + τ.

If no such m exists, define m(τ, δ;H, ϕ) = ∞. We say that H is EPAC learnable in the agnostic
setting with respect to a surrogate loss ϕ if ∀δ ∈ (0, 1), τ > 0, m(τ, δ;H, ϕ) is finite.

Furthermore, for a constant τ , we denote any model h ∈ H with τ -Approximately Correct Explanation
where ϕ(h,D) ≤ τ , with a τ - CE models. We define the class of τ - CE models as

Hϕ,D,τ = {h ∈ H : ϕ(h,D) ≤ τ}. (1)

We simply use Hϕ,τ to denote this class of CE models. From natural statistical learning theoretic
arguments, a model that satisfies the random constraints in SE might also be a CE model.
Proposition 3.1. Suppose a model h SE-satisfies the explanation constraints then

ϕ(h,DX ) ≤ 2Rk(G) +
√

ln(4/δ)

2k
,

with probability at least 1− δ, when k = |SE | and G = {ϕ(h, ·) | h ∈ H}.

We use Rk(·) to denote Rademacher complexity; please see Appendix A where we review this
and related concepts. Note that even when h satisfies the constraints exactly on S, we can only
guarantee a bound on the expected surrogate loss ϕ(h,DX ).We can achieve a bound similar to that
in Proposition 3.1 via a single and simpler constraint on the empirical expectation ϕ(h, SE) =
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1
|SE |

∑
x∈SE

ϕ(h, x). We can then extend the above proposition to show that if ϕ(h, SE) ≤ τ ,

then ϕ(h,DX ) ≤ τ + 2Rk(G) +
√

ln(4/δ)
2k , with probability at least 1 − δ. Another advantage of

such a constraint is that the explanation constraints could be noisy, or it may be difficult to satisfy
them exactly, so τ also serves as a slack. The class G contains all surrogate losses of any h ∈ H.
Depending on the explanation constraints, G can be extremely large. We remark that the surrogate
loss ϕ allows us to reason about satisfying an explanation constraint on a new data point and in
expectation. However, for many constraints, ϕ does not have a closed-form or is unknown on an
unseen data point. The question of which types of explanation constraints are generalizable may be
of independent interest, and we further discuss this in Appendix B and provide further examples of
learnable constraints in Appendix D.

EPAC-ERM Objective. Let us next discuss combining the two sources of information: the explana-
tion constraints that we set up in the previous section, together with the usual set of labeled training
samples S = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from D that informs the empirical risk. Combin-
ing these, we get what we call EPAC-ERM objective:

min
h∈H

1

n

n∑
i=1

ℓ(h, xi, yi) s.t.
1

k

k∑
i=1

ϕ(h, x′
i) ≤ τ. (2)

We provide a learnability condition for a model that achieve both low average error and surrogate
loss in Appendix F.

3.1 Generalization Bound

We assume that we are in a doubly agnostic setting. Firstly, we are agnostic in the usual sense that
there need be no classifier in the hypothesis class H that perfectly labels (x, y); instead, we hope
to achieve the best error rate in the hypothesis class, h∗ = argminh∈H errD(h). Secondly, we are
also agnostic with respect to the explanations, so that the optimal classifier h∗ may not satisfy the
explanation constraints exactly, so that it incurs nonzero surrogate explanation loss ϕ(h∗, D) > 0.

Theorem 3.2 (Generalization Bound for Agnostic Setting). Consider a hypothesis class H, distri-
bution D, and explanation loss ϕ. Let S = {(x1, y1), . . . , (xn, yn)} be drawn i.i.d. from D and
SE = {x′

1, . . . , x
′
k} drawn i.i.d. from DX . With probability at least 1− δ, for h ∈ H that minimizes

empirical risk errS(h) and has ϕ(h, SE) ≤ τ , we have

errD(h) ≤ errD(h∗
τ−εk

) + 2Rn(Hϕ,τ+εk) + 2

√
ln(4/δ)

2n
,

εk = 2Rk(G) +
√

ln(4/δ)

2k
,

when G = {ϕ(h, x) | h ∈ H, x ∈ X} and h∗
τ = argminh∈Hϕ,τ

errD(h).

Proof. The proof largely follows the arguments in Balcan and Blum [2], but we use Rademacher
complexity-based deviation bounds instead of VC-entropy. We defer the full proof to Appendix E.

Our bound suggests that these constraints help with our learning by shrinking the hypothesis class H
to Hϕ,τ+εk , reducing the required sample complexity. However, there is also a trade-off between
reduction and accuracy. In our bound, we compare against the best classifier h∗

τ−εk
∈ Hϕ,τ−εk

instead of h∗. Since we may have ϕ(h∗,D) > 0, if τ is too small, we may reduce H to a hypothesis
class that does not contain any good classifiers. Recall that the generalization bound for standard
supervised learning — in the absence of explanation constraints — is given by

errD(h) ≤ errD(h∗) + 2Rn(H) + 2

√
ln(2/δ)

2n
.

We can see the difference between this upper bound and the upper bound in Theorem 3.2 here as a
possible notion of the goodness of an explanation constraint. We further discuss this in Appendix C.
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Figure 2: Visualization of the piecewise constant function of ∇xh(x)−∇xh
′(x) when h is a two

layer NNs with 1 node. Background colors represent regions with non-zero value.

4 Gradient Explanations for Particular Hypothesis Classes

In this section, we further quantify the usefulness of explanation constraints on different concrete
examples and characterize the Rademacher complexity of the restricted hypothesis classes. In
particular, we consider an explanation constraint of a constraint on the input gradient. For example,
we may want our model’s gradient to be close to that of some h′ ∈ H. This translates to g(h, x) =
∇xh(x) and C(x) = {x ∈ Rd | ∥x−∇xh

′(x)∥ ≤ τ} for some τ > 0.

4.1 Gradient Explanations for Linear Models

We now consider the case of a uniform distribution on a sphere, and we use the symmetry of this
distribution to derive an upper bound on the Rademacher complexity (full proof to Appendix H).
Theorem 4.1 (Rademacher complexity of linear models with a gradient constraint, uniform distri-
bution on a sphere). Let DX be a uniform distribution on a unit sphere in Rd, let H = {h : x 7→
⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a class of linear models with weights bounded by a constant B.
Let ϕ(h, x) = θ(wh, wh′) be a surrogate loss where θ(u, v) is an angle between u, v. We have

Rn(Hϕ,τ ) ≤
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where p = erf
(√

d sin(τ)√
2

)
and erf(x) = 2√

π

∫ x

0
e−t2dt is the standard error function.

The standard upper bound on the Rademacher complexity of linear models is B√
n

. Our bound has a

nice interpretation; we shrink our bound by a factor of ( 1−p
2 + sin(τ)p). We remark that d increases,

we observe that p → 1, so the term sin(τ)p dominates this factor. As a consequence, we get that our
bound is now scaled by sin(τ) ≈ τ and the the Rademacher complexity scales down by a factor of τ .
This implies that given n labeled data, to achieve a fast rate O( 1n ), we need τ to be as good as O( 1√

n
).

4.2 Gradient Explanations for Two Layer Neural Networks

Theorem 4.2 (Rademacher complexity of two layer neural networks (m hidden nodes) with a gradient
constraint). Let X be an instance space and DX be a distribution over X with a large enough support.
Let H = {h : x 7→

∑m
j=1 wjσ(u

⊤
j x)|wj ∈ R, uj ∈ Rd,

∑m
j=1 |wj | ≤ B, ∥uj∥2 = 1} be a class of

two layer neural networks with a ReLU activation function and bounded weight. Assume that there
exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Consider an explanation loss given by

ϕ(h, x) =∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}

for some τ > 0. Then, we have that Rn(Hϕ,τ ) ≤ 3τmC√
n

.

Proof. (Sketch) The key ingredient is to identify the impact of the gradient constraint and the form
of class Hϕ,τ . We provide an idea when we have m = 1 node. We write h(x) = wσ(u⊤x) and
h′(x) = w′σ(u′⊤x). Note that ∇xh(x) − ∇xh

′(x) = wu1{u⊤x > 0} − w′u′1{(u′)⊤x > 0} is
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a piecewise constant function (Figure 2). Assume that the probability mass of each region is non-
negative, our gradient constraint implies that the norm of each region cannot be larger than τ .

1. If u, u′ have different directions, we have 4 regions in ∇xh(x)−∇xh
′(x) and can conclude

that |w| < τ, |w′| < τ .

2. If u = u′ have the same direction, we only have 2 regions in ∇xh(x)−∇xh
′(x) and can

conclude that ∥wu− w′u′∥ = |w − w′| < τ .

The gradient constraint enforces a model to have the same node boundary (u = u′) with a small
weight difference |w − w′| < τ or that node would have a small weight |w| < τ . This finding allows
us to determine the restricted class Hϕ,τ , and we can use this to bound the Rademacher complexity
accordingly. For full details, see Appendix I.

We compare this with the standard Rademacher complexity of a two layer neural network [24],

Rn(H) ≤ 2BC√
n

.

We can do better than this standard bound if τ < 2B
3m . One interpretation for this is that we have

a budget at most τ to change the weight of each node and for total m nodes, we can change
the weight by at most τm. We compare this to B which is an upper bound on the total weight∑m

j=1 |wj | ≤ B. Therefore, we can do better than a standard bound when we can change the weight
by at most two thirds of the average weight 2B

3m for each node. We would like to point out that our
bound does not depend on the distribution D because we choose a specific explanation loss that
guarantees that the gradient constraint holds almost everywhere. Extending to a weaker loss such
as ϕ(h, x) = ∥∇xh(x)−∇xh

′(x)∥ is a future research direction. In contrast, our result for linear
models uses a weaker explanation loss and depends on D (Theorem H.1). We also assume that there
exists x with a positive probability density at any partition created by ∇xh(x). This is not a strong
assumption, and it holds for any distribution where the support is the Rd, e.g., Gaussian distributions.

5 Algorithms for Learning from Explanation Constraints

Although we have analyzed learning with explanation constraints, algorithms to solve this con-
strained optimization problem are non-trivial. In this setting, we assume that we have access
to n labeled data {(xi, yi)}ni=1, m unlabeled data {xn+i}mi=1, and k data with explanations
{(xn+m+i, ϕ(·, xn+m+i))}ki=1. We argue that in many cases, n labeled data are the most expensive
to annotate. The k data points with explanations also have non-trivial cost; they require an expert
to provide the annotated explanation or provide a surrogate loss ϕ. If the surrogate loss is specified
then we can evaluate it on any unlabeled data, otherwise these data points with explanations could
be expensive. On the other hand, the m data points can cheaply be obtained as they are completely
unlabeled. We now consider existing approaches to incorporate this explanation information.

EPAC-ERM: Recall our EPAC-ERM objective from (2):

min
h∈H

1

n

n∑
i=1

1{h(xi) ̸= yi} s.t.
1

k

n+m+k∑
j=n+m+1

ϕ(h, xj) ≤ τ

for some constant τ . This constraint in general requires more complex optimization techniques
(e.g., running multiple iterations and comparing values of τ ) to solve algorithmically. We could also
consider the case where τ = 0, which would entail the hypotheses satisfy the explanation constraints
exactly, which however is in general too strong a constraint with noisy explanations.

Augmented Lagrangian objectives:

min
h∈H

1

n

n∑
i=1

1[h(xi) ̸= yi] +
λ

k

n+m+k∑
j=n+m+1

ϕ(h, xj)

As is done in prior work [32], we can consider an augmented Lagrangian objective. A crucial caveat
with this approach is that the explanation surrogate loss is in general a much more complicated
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functional of the hypothesis than the empirical risk. For instance, it might involve the gradient of the
hypothesis when we use gradient-based explanations. Computing the gradients of such a surrogate
loss can be more expensive compared to the gradients of the empirical risk. For instance, in our
experiments, computing the gradients of the surrogate loss that involves input gradients is 2.5 times
slower than that of the empirical risk. With the above objective, however, we need to compute the same
number of gradients of both the explanation surrogate loss and the empirical risk. These computational
difficulties have arguably made incorporating explanation constraints not as popular as they could be.

5.1 Variational Method

To alleviate these aforementioned computational difficulties, we propose a new variational objective
min
h∈H

(1− λ) E
(x,y)∼D

[ℓ(h(x), y)] + λ inf
f∈Hϕ,τ

E
x∼DX

[ℓ(h(x), f(x))] ,

where ℓ is some loss function and t ≥ 0 is some threshold. The first term is the standard expected
risk of h while the second term can be viewed as a projection distance between h and τ -CE models.
It can be seen that the optimal solution of EPAC-ERM would also be an optimal solution of our

proposed variational objective. The advantage of this formulation however is that it decouples the
standard expected risk component from the surrogate risk component. This allows us to solve this
objective with the following iterative technique, drawing inspiration from prior work in posterior
regularization [9, 14]. More specifically, let ht be the learned model at time t and at each timestep t,

1. We project ht to the class of τ -CE models.

ft+1,ϕ =argmin
h∈H

1

m

n+m∑
i=n+1

ℓ(h(xi), ht(xi)) + λmax

(
0,

1

k

n+m+k∑
i=n+m+1

ϕ(h, xi)− τ

)
.

The first term is the difference between ht and f on unlabeled data. The second term is the
surrogate loss, which we want to be smaller than t. η is a regularization hyperparameter.

2. We calculate ht+1 that minimizes the empirical risk of labeled data and matches pseudolabels
from ft+1,ϕ

ht+1,ϕ =argmin
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi) +
1

m

n+m∑
i=n+1

ℓ(h(xi), ft+1,ϕ(xi)).

Here, the discrepancy between h and ft+1,ϕ is evaluated on the unlabeled data {xj}n+m
j=n+1.

The advantage of this decoupling is that we could use a differing number of gradient steps and
learning rates for the projection step that involves the complicated surrogate loss when compared to
the empirical risk minimization step. Secondly, we can simplify the projection iterate computation by
replacing Hϕ,τ with a simpler class of teacher models Fϕ,τ for greater efficiency. Thus, the decoupled
approach to solving the EPAC-ERM objective is in general more computationally convenient.

We initialize this procedure with some model h0. We remark that could see this as a constraint
regularized self-training where ht is a student model and ft is a teacher model. At each timestep, we
project a student model to the closest teacher model that satisfies the constraint. The next student
model then learns from both labeled data and pseudo labels from the teacher model. In the standard
self-training, we do not have any constraint and we have ft = ht.

6 Experiments

We provide both synthetic and real-world experiments to support our theoretical results and clearly
illustrate interesting tradeoffs of incorporating explanations. In our experiments, we compare our
method against 3 baselines: (1) a standard supervised learning approach, (2) a simple Lagrangian-
regularized method (that directly penalizes the surrogate loss ϕ), and (3) self-training, which propa-
gates the predictions of (1) and matches them on unlabeled data. We remark that (2) captures the
essence of the method in Ross et al. [33], except there is no ℓ2 regularization term.

Our experiments demonstrate that the proposed variational approach is preferable to simple La-
grangian methods and other supervised methods in many cases. In particular, the variational ap-
proach leads to a higher accuracy under limited labeled data settings. In addition, our method leads
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Figure 3: Comparison of MSE on regressing a linear model. Results are averaged over 5 seeds.
m = 1000, k = 20.
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Figure 4: Comparison of MSE on regressing a two layer neural network (left) and ℓ2 distance over
input gradients as we vary the amount of labeled data n (right). Left is task performance and right is
explanation constraint satisfcation. Results are averaged over 5 seeds. m = 1000, k = 20.

to models that satisfy the explanation constraints much more frequently than other baselines. We also
compare to a Lagrangian-regularized + self-training baseline (first, we use the model (2) to generate
pseudolabels for unlabeled data and then train a new model on both labeled and unlabeled data) in
Appendix L. We remark that this baseline isn’t a standard method in practice and does not fit nicely
into a theoretical framework, although it seems to be the most natural approach to using unlabeled
data in this procedure. More extensive ablations are deferred to Appendix N, and code to replicate
our experiments will be released with the full paper.

6.1 Regression Task with Exact Gradient Information

In our synthetic experiments, we focus on a regression task where we try to learn some model
contained in our hypothesis class. Our data is given by X = Rd, and we try to learn a target function
h∗ : X → R. Our data distribution is given by X ∼ N (0, σ2I), where I is a d× d identity matrix.
We generate h∗ by randomly initializing a model in the specific hypothesis class H. We assume that
we have n labeled data, m unlabeled data, and k data with explanations.

We first present a synthetic experiment for learning with a perfect explanation, meaning that
ϕ(h∗, S) = 0. We consider the case where we have the exact gradient of h∗. Here, let H be a linear
classifier and note that the exact gradient gives us the slope of the linear model, and we only need
to learn the bias term. Incorporating these explanation indeed helps as both methods that include
explanation constraints (Lagrangian and ours) perform much better (Figure 3).

We also demonstrate incorporating this information for two layer neural networks. We observe a clear
difference between the simpler Lagrangian approach and our variational objective (Figure 4 - left).
Our method is clearly the best in the setting with limited labeled data and matches the performance of
the strong self-training baseline with sufficient labeled data. We note that this is somewhat expected,
as these constraints primarily help in the setting with limited labeled data; with enough labeled data,
standard PAC bounds suffice for strong performance.

We also analyze how strongly the approaches enforce these explanation constraints on new data
points that are seen at test time (Figure 4 - right) for two layer NNs. We observe that our variational
objective approaches have input gradients that more closely match the ground-truth target network’s

9



10 15 20 25 30 35 40 45 50
Number of Labeled Data (n)

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

Supervised
Lagrangian
Lagrangian + Self-train
Variational

10 15 20 25 30 35 40 45 50
Number of Labeled Data (n)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

Supervised
Lagrangian
Lagrangian + Self-train
Variational

Figure 5: Comparison of accuracy on the YouTube (left) and the Yelp (right) datasets. Here, we let
m = 500, k = 150, T = 2, τ = 0.0. Results are averaged over 40 seeds.

input gradients. This demonstrates that, in the case of two layer NNs with gradient explanations,
our approach best achieves both good performance and satisfying the constraints. Standard self-
training achieves similar performance in terms of MSE but has no notion of satisfying the explanation
constraints. The Lagrangian method does not achieve the same level of satisfying these explanations
as it is unable to generalize and satisfy these constraints on new data.

6.2 Tasks with Imperfect Explanations

Assuming access to perfect explanations may be unrealistic in practice, so we present experiments
when our explanations are imperfect. We present classification tasks (Figure 5) from a weak supervi-
sion benchmark [46]. In this setting, we obtain explanations through the approximate gradients of a
single weak labeler, as is done in [? ]. More explicitly, weak labelers are heuristics designed by do-
main experts; one example is functions that check for the presence of particular words in a sentence
(e.g., checking for the word “delicious” in a Yelp comment, which would indicate positive sentiment).
We can then access gradient information from such weak labelers, which gives us a notion of feature
importance about particular features in our data. We note that these examples of gradient information
are rather easy to obtain, as we only need domain experts to specify simple heuristic functions for a
particular task. Once given these functions, we can apply them easily over unlabeled data without
requiring any example-level annotations.

We observe that our variational objective achieves better performance than all other baseline ap-
proaches on the majority of settings defined by the number of labeled data. We remark that the ex-
planation in this dataset is a noisy gradient explanation along two feature dimensions, yet this still
improves upon methods that do not incorporate this explanation constraint. Indeed, our method out-
performs the Lagrangian approach, showing the benefits of iterative rounds of self-training over the
unlabeled data. In addition to our real-world experiments, we present synthetic experiments with
noisy gradients in Appendix K.1.

7 Discussion

Our work proposes a new learning theoretic framework that provides insight into how apriori
explanations of desired model behavior can benefit the standard machine learning pipeline. The
statistical benefits of explanations arise from constraining the hypothesis class: explanation samples
serve to better estimate the population explanation constraint, which constrains the hypothesis class.
This is to be contrasted with the statistical benefit of labeled samples, which serve to get a better
estimate of the population risk. We provide instantiations of our analysis for the canonical class of
gradient explanations, which captures many explanations in terms of feature importance. It would be
of interest to provide corollaries for other types of explanations in future work. As mentioned before,
the generality of our framework has larger implications towards incorporating constraints that are not
considered as “standard” explanations. For example, this work can be leveraged to incorporate more
general notions of side information and inductive biases. We also discuss the societal impacts of our
approach in Appendix O. As a whole, our paper supports using further information (e.g., explanation
constraints) in the standard learning setting.
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A Uniform Convergence via Rademacher Complexity

A standard tool for providing performance guarantees of supervised learning problems is a gener-
alization bound via uniform convergence. We will first define the Rademacher complexity and its
corresponding generalization bound.
Definition 5. Let F be a family of functions mapping X → R. Let S = {x1, . . . , xm} be a set of
examples drawn i.i.d. from a distribution DX . Then, the empirical Rademacher complexity of F is
defined as

RS(F) = E
σ

[
sup
f∈F

(
1

m

m∑
i=1

σif(xi)

)]
where σ1, . . . , σm are independent random variables uniformly chosen from {−1, 1}.
Definition 6. Let F be a family of functions mapping X → R. Then, the Rademacher complexity of
F is defined as

Rn(F) = E
S∼Dn

X

[RS(F)] .

The Rademacher complexity is the expectation of the empirical Rademacher complexity, over n
samples drawn i.i.d. from the distribution DX .
Theorem A.1 (Rademacher-based uniform convergence). Let DX be a distribution over X , and F a
family of functions mapping X → [0, 1]. Let S = {x1, . . . , xn} be a set of samples drawn i.i.d. from
DX , then with probability at least 1− δ over our draw S,

|ED[f(x)]− ÊS [f(x)]| ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

This holds for every function f ∈ F , and ÊS [f(x)] is expectation over a uniform distribution over S.

This bound on the empirical Rademacher complexity leads to the standard generalization bound for
supervised learning.
Theorem A.2. For a binary classification setting when y ∈ {±1} with a zero-one loss, for H ⊂
{h : X → {−1, 1}} be a family of binary classifiers, let S = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d.
from D then with probability at least 1− δ, we have

|errD(h)− êrrS(h)| ≤ Rn(H) +

√
ln(2/δ)

2n
,

for every h ∈ H when
errD(h) = Pr

(x,y)∼D
(h(x) ̸= y)

and

êrrS(h) =
1

n

n∑
i=1

1[h(xi) ̸= yi]

is the empirical error on S.

For a linear model with a bounded weights in ℓ2 norm, the Rademacher complexity is O( 1√
n
). We

refer to the proof from Ma [24] for this result.
Theorem A.3 (Rademacher complexity of a linear model ([24])). Let X be an instance space in Rd,
let DX be a distribution on X , let H = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a class of
linear model with weights bounded by some constant B > 0 in ℓ2 norm. Assume that there exists a
constant C > 0 such that Ex∼DX [||x||22] ≤ C2. For any S = {x1, . . . , xn} is drawn i.i.d. from DX ,
we have

RS(H) ≤ B

n

√√√√ n∑
i=1

||xi||22

and

Rn(H) ≤ BC√
n
.
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Many of our proofs require the usage of Talgrand’s lemma, which we now present.
Lemma A.4 (Talgrand’s Lemma [21]). Let ϕ : R → R be a k-Lipschitz function. Then for a
hypothesis class H = {h : Rd → R}, we have that

RS(ϕ ◦ H) ≤ kRs(H)

where ϕ ◦ H = {f : z 7→ ϕ(h(z))|h ∈ H}.

B Generalizable Constraints

We know that constraints C(x) capture human knowledge about how explanations at a point x should
behave. For any constraints C(x) that are known apriori for all x ∈ X , we can evaluate whether a
model satisfies the constraints at a point x ∈ X . This motivates us to discuss the ability of models
to generalize from any finite samples SE to satisfy these constraints over X with high probability.
Having access to C(x) is equivalent to knowing how models should behave over all possible data
points in terms of explanations, which may be too strong of an assumption. Nevertheless, many forms
of human knowledge can be represented by a closed-form function C(x). For example,

1. An explanation has to take value in a fixed range can be represented by C(x) =
Πr

i=1[ai, bi],∀x ∈ X .

2. An explanation has to stay in a ball around x can be represented by C(x) = {u ∈ Rd |
||u− x||2 ≤ r}.

3. An explanation has to stay in a rectangle around x
3 can be represented by C(x) = {u ∈ Rd |

xi

3 − ai ≤ ui ≤ xi

3 + bi, i = 1, . . . , d}.

ball around 

fixed interval

rectangle around 

Figure 6: Illustration of examples of explanation constraints, given from some learnable class C(x).

In this case, there always exists a surrogate loss that represents the explanation constraints C(x);
for example, we can set ϕ(h, x) = 1{g(h, x) ∈ C(x)}. On the other hand, directly specifying
explanation constraints through a surrogate loss would also imply that C(x) is known apriori for all
x ∈ X . The task of generalization to satisfy the constraint on unseen data is well-defined in this
setting. Furthermore, if a surrogate loss ϕ is specified, then we can evaluate ϕ(h, x) on any unlabeled
data point without the need for human annotators which is a desirable property.

On the other hand, we usually do not have knowledge over all data points x ∈ X ; rather, we may
only know these explanation constraints over a random sample of k data points SE = {x′

1, . . . , x
′
k}.

If we do not know the constraint set C(x), it is unclear what satisfying the constraint at an unseen
data point x means. Indeed, without additional assumptions, it may not make sense to think about
generalization. For example, if there is no relationship between C(x) for different values of x, then it
is not possible to infer about C(x) from C(x′

i) for i = 1, . . . , k. In this case, we could define

ϕ(h, x) = 1{g(h, x) ∈ C(x)}1{x ∈ SE},
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where we are only interested in satisfying these explanation constraints over the finite sample SE .
For other data points, we have ϕ(h, x) = 0. This guarantees that any model with low empirical
explanation loss would also achieve loss expected explanation loss, although this does not have any
particular implication on any notion of generalization to new constraints. Regardless, we note that
our explanation constraints still reduce the size of the hypothesis class from H to Hϕ,τ , leading to an
improvement in sample complexity.

The more interesting setting, however, is when we make an additional assumption that the true
(unknown) surrogate loss ϕ exists and, during training, we only have access to instances of this
surrogate loss evaluated on the sample ϕ(·, x′

i). We can apply a uniform convergence argument to
achieve

ϕ(h,DX ) ≤ ϕ(h, SE) + 2Rk(G) +
√

ln(4/δ)

2k

with probability at least 1− δ over SE , drawn i.i.d. from DX and G = {ϕ(h, ·)|h ∈ H}, k = |SE |.
Although the complexity term Rk(G) is unknown (since ϕ is unknown), we can upper bound this
by the complexity of a class of functions Φ (e.g., neural networks) that is large enough to well-
approximate any ϕ(h, ·) ∈ G, meaning that Rk(G) ≤ Rk(Φ). Comparing to the former case when
C(x) is known for all x ∈ X apriori, the generalization bound has a term that increases from Rk(G)
to Rk(Φ), which may require more explanation-annotated data to guarantee generalization to new
data points. We note that the simpler constraints lead to a simpler surrogate loss, which in turn implies
a less complex upper bound Φ. This means that simpler constraints are easier to learn.

Nonetheless, this is a more realistic setting when explanation constraints are hard to acquire and we
do not have the constraints for all data points in X . For example, Ross et al. [33] considers an image
classification task on MNIST, and imposes an explanation constraint in terms of penalizing the input
gradient of the background of images. In essence, the idea is that the background should be less
important than the foreground for the classification task. In general, this constraint does not have
a closed-form expression, and we do not even have access to the constraint for unseen data points.
However, if we assume that a surrogate loss ϕ(h, ·) can be well-approximated by two layer neural
networks, then our generalization bound allows us to reason about the ability of model to generalize
and ignore background features on new data.

C Goodness of an explanation constraint

Definition 7 (Goodness of an explanation constraint). For a hypothesis class H, a distribution D
and an explanation loss ϕ, the goodness of ϕ with respect to a threshold τ and n labeled examples is:

Gn,τ (ϕ,H) = (Rn(H)−Rn(Hϕ,τ )) + (errD(h
∗)− errD(h

∗
t ))

h∗ = argmin
h∈H

errD(h), h∗
τ = arg min

h∈Hϕ,τ

errD(h).

Here, we assume access to infinite explanation data so that εk → 0. The goodness depends on the
number of labeled examples n and a threshold t. In our definition, a good explanation constraint
leads to a reduction in the complexity of H while still containing a classifier with low error. This
suggests that the benefits from explanation constraints exhibit diminishing returns as n becomes large.
In fact, as n → ∞, we have Rn(H) → 0, Rn(Hϕ,τ ) → 0 which implies Gn(ϕ,H) → errD(h

∗)−
errD(h

∗
τ ) ≤ 0. On the other hand, explanation constraints help when n is small. For t large enough,

we expect errD(h∗)− errD(h
∗
τ ) to be small, so that our notion of goodness is dominated by the first

term: Rn(H)−Rn(Hϕ,τ ), which has the simple interpretation of reduction in model complexity.

D Examples for Generalizable constraints

In this section, we look at the Rademacher complexity of G for different explanation constraints to
characterize how many samples with explanation constraints are required in order to generalize to
satisfying the explanation constraints on unseen data. We remark that this is a different notion of
sample complexity; these unlabeled data require annotations of explanation constraints, not standard
labels. In practice, this can be easier and less expertise might be necessary if define the surrogate loss
ϕ directly. First, we analyze the case where our explanation is given by the gradient of a linear model.
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Proposition D.1 (Learning a gradient constraint for linear models). Let D be a distribution over Rd.
Let H = {h : x 7→ ⟨wh, x⟩ | wh ∈ Rd, ∥wh∥2 ≤ B} be a class of linear models that pass through
the origin. Let ϕ(h, x) = θ(wh, wh′) be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H},
then we have

Rn(G) ≤
π

2
√
m
.

Proof. For a linear separator, ϕ(h, ·) is a constant function over X . The Rademacher complexity is
given by

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi

)
θ(wh, wh′)

]]

= E
x∼D

[
E
σ

[(
1

m

m∑
i=1

σi

)
sup
h∈H

θ(wh, wh′)

]]

=
π

2
E
σ

[∣∣∣∣∣ 1m
m∑
i=1

σi

∣∣∣∣∣
]

≤ π

2
√
m
.

We compare this with the Rademacher complexity of linear models which is given by Rm(H) ≤ B√
m

.
The upper bound does not depend on the upper bound on the weight B. In practice, we know that the
gradient of a linear model is constant for any data point. This implies that knowing a gradient of a
single point is enough to identify the gradient of the linear model.

We consider another type of explanation constraint that is given by a noisy model. Here, we could
observe either a noisy classifier and noisy regressor, and the constraint could be given by having
similar outputs to this noisy model. This is reminiscent of learning with noisy labels [27] or weak
supervision [30, 29, 28]. In this case, our explanation g is simply the hypothesis element h itself, and
our constraint is on the values that h(x) can take. We first analyze this in the classification setting.
Proposition D.2 (Learning a constraint given by a noisy classifier). Let D be a distribution over
Rd. Consider a binary classification task with Y = {−1, 1}. Let H be a hypothesis class. Let
ϕ(h, x) = 1[h(x) ̸= h′(x)] be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H}, then we have

Rn(G) =
1

2
Rn(H).

Proof.

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
1− h(x)h′(x)

2
)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
h(x)h′(x)

2
)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
h(x)

2
)

)]]

=
1

2
Rn(H).
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Here, to learn the restriction of G is on the same order of Rn(H). For a given noisy regressor, we
observe slightly different upper bound.

Proposition D.3 (Learning a constraint given by a noisy regressor). Let D be a distribution over Rd.
Consider a regression task with Y = R. Let H be a hypothesis class that ∀h ∈ H,−h ∈ H. Let
ϕ(h, x) = |h(x)− h′(x)| be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H}, then we have

Rn(G) ≤ 2Rn(H).

Proof.

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi|h(xi)− h′(xi)|

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi)) +
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)]]

≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi))

)]]
+

E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)]]

≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h(xi)− h′(xi))

)]]
+ E

x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h
′(xi)− h(xi))

)]]
,

where in the last line, we apply Talgrand’s lemma A.4 and note that the max function max(0, h(x))
is 1-Lipschitz; in the third line, we note that we break up the supremum as both terms by definition
of the max function are non-negative. Then, noting that we do not optimize over h′(x), we further
simplify this as

Rn(G) ≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σih(xi)

)]]
+ E

x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(−h(xi))

)]]
≤ 2Rn(H).

As mentioned before, knowing apriori surrogate loss ϕ might be too strong. In practice, we may only
have access to the instances ϕ(·, xi) on a set of samples S = {x1, . . . , xk}. We also consider the
case when ϕ(h, x) = |h(x)− h′(x)| when h′ is unknown and h′ belongs to a learnable class C.

Proposition D.4 (Learning a constraint given by a noisy regressor from some learnable class C).
Assume D is a distribution over Rd. Let H and D be hypothesis classes. Let ϕh′(h, x) = |h(x)−
h′(x)| be a surrogate explanation loss of a constraint corresponding to h′. Let GC = {ϕh′(h, ·)|h ∈
H, h′ ∈ C}, then we have

Rn(GC) ≤ 2Rn(H) + 2Rn(C).
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Proof.

Rn(GC) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈GC

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi|h(xi)− h′(xi)|

)


≤ E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi))

)
 +

E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)


≤ E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi(h(xi)− h′(xi))

)
 +

E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi(h
′(xi)− h(xi))

)


where the lasts line again holds by an application of Talgrand’s lemma. In this case, we indeed are
optimizing over h′, so we get that

Rn(GC) ≤ 2 · E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h(xi))

)]]
+ 2 · E

x∼D

[
E
σ

[
sup
h′∈C

(
1

m

m∑
i=1

σi(h
′(xi))

)]]
= 2Rn(H) + 2Rn(C).

We remark that while this value is much larger than that of Rn(H), we only need information about
ϕ(h, x) and not the true label. Therefore, in many cases, this is preferable and not as expensive to
learn.

E Proof of Theorem 3.2

We consider the agnostic setting of Theorem 3.2. Here, we have two notions of deviations; one is
deviation in a model’s ability to satisfy explanations, and the other is a model’s ability to generalize
to correctly produce the target function.

Proof. From Rademacher-based uniform convergence, for any h ∈ H, with probability at least
1− δ/2 over SE

|ϕ(h,D)− ϕ(h, SE)| ≤ 2Rk(G) +
√

ln(4/δ)

2k
= εk

Therefore, with probability at least 1− δ/2, for any h ∈ Hϕ,t−εk we also have ϕ(h, SE) ≤ t and for
any h with ϕ(h, SE) ≤ t, we have h ∈ Hϕ,t+εk . In addition, by a uniform convergence bound, with
probability at least 1− δ/2, for any h ∈ Hϕ,t+εk

|errD(h)− errS(h)| ≤ Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n
.
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Now, let h′ be the minimizer of errS(h) given that ϕ(h, SE) ≤ t. By previous results, with probability
1− δ, we have h′ ∈ Hϕ,t+εk and

errD(h
′) ≤ errS(h

′) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errS(h
∗
t−εk

) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errD(h
∗
t−εk

) + 2Rn(Hϕ,t+εk) + 2

√
ln(4/δ)

2n
.

F EPAC-PAC learnability

We note that in our definition of EPAC learnability, we are only concerned with whether a model
achieves a lower surrogate loss than τ . However, the objective of minimizing the EPAC-ERM
objective is to achieve both low average error and low surrogate loss. We characterize this property
as EPAC-PAC learnability.
Definition 8 (EPAC-PAC learnability). For any δ ∈ (0, 1), τ > 0, the sample complexity of (δ, τ, γ)
- EPAC learning of H with respect to a surrogate loss ϕ, denoted m(δ, τ, γ;H, ϕ) is defined as the
smallest m ∈ N for which there exists a learning rule A such that every data distribution DX over
X , with probability at least 1− δ over S ∼ Dm,

ϕ(A(S),D) ≤ inf
h∈H

ϕ(h,D) + τ

and
errD(A(S)) ≤ inf

h∈H
errD(h) + γ.

If no such m exists, define m(δ, τ, γ;H, ϕ) = ∞. We say that H is EPAC-PAC learnable in the
agnostic setting with respect to a surrogate loss ϕ if ∀δ ∈ (0, 1), τ > 0, m(δ, τ, γ;H, ϕ) is finite.

G A Generalization Bound in the Realizable Setting

In this section, we assume that we are in the doubly realizable [2] setting where there exists h∗ ∈ H
such that errD(h∗) = 0 and ϕ(h∗,D) = 0. The optimal classifier h∗ lies in H and also achieve zero
expected explanation loss. In this case, we want to output a hypothesis h that achieve both zero
empirical risk and empirical explanation risk.
Theorem G.1 (Generalization bound for the doubly realizable setting). For a hypothesis class H,
a distribution D and an explanation loss ϕ. Assume that there exists h∗ ∈ H that errD(h∗) = 0
and ϕ(h∗,D) = 0. Let S = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d. from D and SE = {x′

1, . . . , x
′
k}

drawn i.i.d. from DX . With probability at least 1 − δ, for any h ∈ H that errS(h) = 0 and
ϕ(h, SE) = 0, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n

when

εk = 2Rk(G) +
√

ln(2/δ)

2k

when G = {ϕ(h, x) | h ∈ H, x ∈ X}.

Proof. We first consider only classifiers than has low empirical explanation loss and then perform
standard supervised learning. From Rademacher-based uniform convergence, for any h ∈ H, with
probability at least 1− δ/2 over SE

ϕ(h,D) ≤ ϕ(h, SE) + 2Rk(G) +
√

ln(2/δ)

2k
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when G = {ϕ(h, x) | h ∈ H, x ∈ X}. Therefore, for any h ∈ H with ϕ(h, SE) = 0, we have
h ∈ Hϕ,εk with probability at least 1− δ/2. Now, we can apply the uniform convergence on Hϕ,εk .
For any h ∈ Hϕ,εk with errS(h) = 0, with probability at least 1− δ/2, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n
.

Therefore, for h ∈ H that ϕ(h, SE) = 0, errS(h) = 0, we have our desired guarantee.

We remark that, since our result relies on the underlying techniques of the Rademacher complexity,
our result is on the order of O( 1√

n
). In the (doubly) realizable setting, this is somewhat loose, and

more complicated techniques are required to produce tighter bounds. We leave this as an interesting
direction for future work.

H Rademacher Complexity of Linear Models with a Gradient Constraint

We calculate the empirical Rademacher complexity of a linear model under a gradient constraint.

Figure 7: Illustration of different value of a function f(v).

Theorem H.1 (Empirical Rademacher complexity of linear models with a gradient constraint). Let
X be an instance space in Rd, let DX be a distribution on X , let H = {h : x → ⟨wh, x⟩ | wh ∈
Rd, ||wh||2 ≤ B} be a class of linear model with weights bounded by some constant B > 0 in
ℓ2 norm. Assume that there exists a constant C > 0 such that Ex∼DX [||x||22] ≤ C2. Assume that
we have an explanation constraint in terms of gradient constraint; we want the gradient of our
linear model to be close to the gradient of some linear model h′. Let ϕ(h, x) = θ(wh, wh′) be an
explanation surrogate loss when θ(u, v) is an angle between u, v. For any S = {x1, . . . , xn} is
drawn i.i.d. from DX , we have

RS(Hϕ,τ ) =
B

n
Eσ [∥v∥f(v)] .

when v =
∑n

i=1 xiσi and

f(v) =


1 when θ(v, w′) ≤ τ

cos(θ(v, w′)− τ) when τ ≤ θ(v, w′) ≤ π
2 + τ

0 when θ(v, w′) ≥ π
2 + τ.

For the proof, we refer to Appendix H for full proof. We compare this with the standard bound on
linear models which is given by

RS(H) =
B

n
Eσ[∥v∥].
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Figure 8: Benefits of an explanation constraint also depend on the data distribution. We represent
data points xi with red squares (Left). The possible regions for v =

∑n
i=1 xiσi are the shaded areas

(Right). When the data is highly correlated with w′, v would lie in a region where f(v) is large (Top)
and this implies that the gradient constraints provide less benefits. On the other hand, when the data
is almost orthogonal to w′, v would lie in a region with a small value of f(v) (Bottom) which leads
to more benefits from the gradient constraints

.

The benefits of the explanation constraints depend on the underlying data distribution; in the case of
linear models with a gradient constraint, this depends on an angle between v =

∑n
i=1 xiσi and w′.

The explanation constraint reduces the term inside the expectation by a factor of f(v) depending on
θ(v, w′). When θ(v, w′) ≤ τ then f(v) = 1 which implies that there is no reduction. The value of
f(v) decreases as the angle between θ(v, w′) increases and reaches f(v) = 0 when θ(v, w′) ≥ π

2 +τ .
When the data is concentrated around the area of w′, the possible regions for v would be close to w′

or −w′ (Figure 8 (Top)). The value of f(v) in this region would be either 1 or 0 and the reduction
would be 1

2 on average. In essence, this means that the gradient constraint of being close to w′ does
not actually tell us much information beyond the information from the data distribution. On the other
hand, when the data points are nearly orthogonal to w′, the possible regions for v would lead to a small
f(v) (Figure 8 (Bottom)). This can lead to a large reduction in complexity. Intuitively, when the data
is nearly orthogonal to w′, there are many valid linear models including those not close in angle to w′.
The constraints allows us to effectively shrink down the class of linear models that are close to w′.

Proof. (Proof of Theorem H.1) Recall that Hϕ,τ = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤
B, θ(wh, wh′) ≤ τ}. For a set of sample S, the empirical Rademacher complexity of Hϕ,τ is given by

RS(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

n∑
i=1

⟨wh, xi⟩σi


=

1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

⟨wh,

n∑
i=1

xiσi⟩

 .

For a vector w′ ∈ Rd with ∥w′∥2 = 1, and a vector v ∈ Rd, we will claim the following,
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1. If θ(v, w′) ≤ τ , we have
sup

∥w∥2≤B
θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥.

2. If π
2 + τ ≤ θ(v, w′) ≤ π, we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = 0.

3. If τ ≤ θ(v, w′) ≤ π
2 + τ , we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥ cos(θ(v, w′)− τ)

For the first claim, we can see that if θ(v, w′) ≤ τ , we can pick w = Bv
∥v∥ and achieve the optimum

value. For the second claim, we use the fact that θ(·, ·) satisfies a triangle inequality and for any w
that θ(w,w′) ≤ τ , we have

θ(v, w) + θ(w,w′) ≥ θ(v, w′)

θ(v, w) ≥ θ(v, w′)− θ(w,w′)

θ(v, w) ≥ π

2
+ τ − τ =

π

2
.

This implies that for any w that θ(w,w′) ≤ τ , we have ⟨w, v⟩ = ∥w∥∥v∥ cos(θ(v, w)) ≤ 0 and
the supremum is given by 0 where we can set ∥w∥ = 0. For the third claim, we know that ⟨w, v⟩
is maximum when the angle between v, w is the smallest. From the triangle inequality above, we
must have θ(w,w′) = τ to be the largest possible value so that we have the smallest lower bound
θ(v, w) ≥ θ(v, w′)− θ(w,w′). In addition, the inequality holds when v, w′, w lie on the same plane.
Since we do not have further restrictions on w, there exists such w and we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥ cos(θ(v, w′)− τ)

as required. One can calculate a closed form formula for w by solving a quadratic equation. Let
w = Bw̃

∥w̃∥ when w̃ = v + λw′ for some constant λ > 0 such that θ(w,w′) = τ . With this we have an
equation

⟨w̃, w′⟩
∥w̃∥

= cos(τ)

⟨v + λw′, w′⟩
∥v + λw′∥

= cos(τ)

Let µ = ⟨v, w′⟩, solving for λ, we have

µ+ λ√
∥v∥2 + 2λµ+ λ2

= cos(τ)

µ2 + 2µλ+ λ2 = cos2(τ)(∥v∥2 + 2λµ+ λ2)

sin2(τ)λ2 + 2 sin2(τ)µλ+ µ2 − cos2(τ)∥v∥2 = 0

λ2 + 2µλ+
µ2

sin2(τ)
− cot2(τ)∥v∥2 = 0

Solve this quadratic equation, we have

λ = −µ± cot(τ)
√

∥v∥2 − µ2.
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Since λ > 0, we have λ = −µ+ cot(τ)
√
∥v∥2 − µ2. We have

w̃ = v + λw′

= v + (−µ+ cot(τ)
√
∥v∥2 − µ2)w′

= v − ⟨v, w′⟩w′ + cot(τ)w′
√
∥v∥2 − µ2.

With these claims, we have

RS(Hϕ,τ ) =
1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

⟨wh,

n∑
i=1

xiσi⟩


=

B

n
Eσ

[
∥v∥1{θ(v, w′) ≤ τ}+ ∥v∥1{τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]
=

B

n
Eσ [∥v∥f(v)] .

Theorem H.2 (Rademacher complexity of linear models with gradient constraint, uniform distribution
on a sphere). Let X be an instance space in Rd, let DX be a uniform distribution on a unit sphere
in Rd, let H = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a class of linear model with weights
bounded by some constant B > 0 in ℓ2 norm. Assume that there exists a constant C > 0 such that
Ex∼DX [||x||22] ≤ C2. Assume that we have an explanation constraint in terms of gradient constraint;
we want the gradient of our linear model to be close to the gradient of some linear model h′. Let
ϕ(h, x) = θ(wh, wh′) be an explanation surrogate loss when θ(u, v) is an angle between u, v. We
have

Rn(Hϕ,τ ) =
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where

p = erf

(√
d sin(τ)√

2

)
.

Proof. From Theorem H.1, we have that

Rn(Hϕ,τ ) = E[RS(Hϕ,τ )]

=
B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ τ}+ ∥v∥1{τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
=

B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ π

2
− τ}+ ∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
when v =

∑n
i=1 xiσi. Because xi is drawn uniformly from a unit sphere, in expectation θ(v, w′) has

a uniform distribution over [0, π] and the distribution ∥v∥ for a fixed value of θ(v, w′) are the same
for all θ(v, w′) ∈ [0, π]. From Trigonometry, we note that

cos(
π

2
− 2τ + a) + cos(

π

2
− a) = sin(2τ − a) + sin(a) ≤ 2 sin(τ).
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By the symmetry property and the uniformity of the distribution of θ(v, w′) and ∥v∥.

ED

[
Eσ

[
∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
= ED

[
Eσ

[
∥v∥1{0 ≤ θ(v, w′) ≤ 2τ} cos(π

2
+ θ(v, w′)− τ)

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{τ ≤ θ(v, w′) ≤ 2τ} cos(π

2
+ θ(v, w′)− τ))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ 2τ − θ(v, w′) ≤ τ} cos(π

2
− (2τ − θ(v, w′))))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ θ̃(v, w′) ≤ τ} cos(π

2
− θ̃(v, w′)))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
− θ(v, w′)))

]]
≤ ED

[
Eσ

[
∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} sin(τ)

]]
when θ̃(v, w′) = π

2 − θ(v, w′). We have

Rn(Hϕ,τ ) ≤
B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ π

2
− τ}+ ∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} sin(τ)

]]
=

B

n
ED [Eσ [∥v∥]] (Pr(θ(v, w′) ≤ π

2
− τ) + Pr(

π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ) sin(τ))

The last equation follows from the symmetry and uniformity properties. We can bound the first
expectation

ED[Eσ∥v∥]] = ED[Eσ∥
n∑

i=1

xiσi∥]]

≤ ED[

√√√√Eσ∥
n∑

i=1

xiσi∥2]]

= ED[

√√√√Eσ

n∑
i=1

∥xi∥2σ2
i ]]

≤ C
√
n.

Next, we can simply note that, since our data is distributed over a unit sphere, each data has norm no
greater than 1. Therefore, we know that C = 1 is indeed an upper bound on Ex∼DX [||x||22]. For the
probability term, we note that in expectation v has the same distribution as a random vector u drawn
uniformly from a unit sphere. We let this be some probability p:

p = Pr
(π
2
− τ ≤ θ(v, w′) ≤ π

2
+ τ
)
= Pr (|⟨u,w′⟩| ≤ sin(τ)) .

We know that the projection ⟨u,w′⟩ ∼ N (0, 1
d ). Then, we have that |⟨u,w′⟩| is given by a Folded

Normal Distribution, which has a CDF given by

Pr (|⟨u,w′⟩| ≤ sin(τ)) =
1

2

[
erf

(√
d sin(τ)√

2

)
+ erf

(√
d sin(τ)√

2

)]

= erf

(√
d sin(τ)√

2

)
.

We then observe that

Pr
(
θ(v, w′) ≤ π

2
− τ
)
=

1

2

(
1− Pr

(π
2
− τ ≤ θ(v, w′) ≤ π

2
+ τ
))

=
1− p

2
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Plugging this in yields the following bound

Rn(Hϕ,τ ) =
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where

p = erf

(√
d sin(τ)√

2

)
.

I Rademacher Complexity for Two Layer Neural Networks with a Gradient
Constraint

Here, we present the full proof of the generalization bound for two layer neural networks with gradient
explanations. In our proof, we use two results from Ma [24]. One result is a technical lemma, and the
other is a bound on the Rademacher complexity of two layer neural networks.
Lemma I.1. Consider a set S = {x1, ..., xn} and a hypothesis class F ⊂ {f : Rd → R}. If

sup
f∈F

n∑
i=1

f(xi)σi ≥ 0 for any σi ∈ {±1}, i = 1, ..., n,

then, we have that

Eσ

[
sup
f∈F

|
n∑

i=1

f(xi)σi|

]
≤ 2Eσ

[
sup
f∈F

n∑
i=1

f(xi)σi

]
.

Theorem I.2 (Rademacher complexity for two layer neural networks [24]). Let X be an instance
space and DX be a distribution over X . Let H = {h : x 7→

∑m
i=1 wiσ(u

⊤
i x)|wi ∈ R, ui ∈

Rd,
∑m

i=1 |wi|∥ui∥2 ≤ B} be a class of two layer neural networks with m hidden nodes with a
ReLU activation function σ(x) = max(0, x). Assume that there exists some constant C > 0 such
that Ex∼DX [∥x∥22] ≤ C2. Then, for any S = {x1, . . . , xn} is drawn i.i.d. from DX , we have that

RS(H) ≤ 2B

n

√√√√ n∑
i=1

||xi||22

and
Rn(H) ≤ 2BC√

n
.

We defer interested readers to [24] for the full proof of this result. Here, the only requirement of the
data distribution is that Ex∼DX [∥x∥22] ≤ C2. We now present our result in the setting of two layer
neural networks with one hidden node m = 1 to provide clearer intuition for the overall proof.
Theorem I.3 (Rademacher complexity for two layer neural networks (m = 1) with gradient con-
straints). Let X be an instance space and DX be a distribution over X . Let H = {h : x 7→
wσ(u⊤x)|w ∈ R, u ∈ Rd, |w| ≤ B, ∥u∥ = 1}. Without loss of generality, we assume that ∥u∥ = 1.
Assume that there exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Our explanation con-
straint is given by a constraint on the gradient of our models, where we want the gradient of our
learnt model to be close to a particular target function h′ ∈ H. Let this be represented by an expla-
nation loss given by

ϕ(h, x) = ∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}
for some τ > 0. Let h′(x) = w′σ((u′)⊤x) the target function, then we have

Rn(Hϕ,τ ) ≤
τC√
n

if |w′| > τ,

Rn(Hϕ,τ ) ≤
3τC√

n
if |w′| ≤ τ.
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Figure 9: Visualization of the piecewise constant function of ∇xh(x)−∇xh
′(x) over 4 regions.

Proof. Our choice of ϕ(h, x) guarantees that, for any h ∈ Hϕ,τ , we have that ∥∇xh(x) −
∇xh

′(x)∥ ≤ τ almost everywhere. We note that for h(x) = wσ(u⊤x), the gradient is given
by ∇xh(x) = wu1{u⊤x > 0}, which is a piecewise constant function over two regions (i.e.,
u⊤x > 0, u⊤x ≤ 0), captured by Figure I.

We now consider ∇xh(x)−∇xh
′(x), and we have 3 possible cases.

Case 1: θ(u, u′) > 0
This implies that the boundaries of ∇x(h) and ∇xh

′(x) are different. Then, we have that ∇xh(x)−
∇xh

′(x) is a piecewise constant function with 4 regions, taking on values

∇xh(x)−∇xh
′(x) =


wu− w′u′ when u⊤x > 0, (u′)⊤x > 0

wu when u⊤x > 0, (u′)⊤x < 0

−w′u′ when u⊤x < 0, (u′)⊤x > 0

0 when u⊤x < 0, (u′)⊤x < 0

If we assume that each region has probability mass greater than 0 then our constraint ∥∇xh(x) −
∇xh

′(x)∥2 ≤ τ implies that |w| = |w|∥u∥ ≤ τ, |w′| = |w′|∥u′∥ ≤ τ, ∥wu− w′u′∥ ≤ τ .

Case 2: θ(u, u′) = 0
This implies that the boundary of ∇xh(x) and ∇xh

′(x) are the same. Then, ∇xh(x)−∇xh
′(x) is a

piecewise constant over two regions

∇xh(x)−∇xh
′(x) =

{
wu− w′u′ when u⊤x > 0

0 when u⊤x < 0

This gives us that |w − w′| = ∥wu− w′u′∥ ≤ τ .

Case 3: θ(u, u′) = π
Here, we have that the decision boundaries of ∇xh(x) and ∇xh

′(x) are the same but the gradients
are non-zero on different sides. Then, ∇xh(x)−∇xh

′(x) is a piecewise constant on two regions

∇xh(x)−∇xh
′(x) =

{
wu when u⊤x > 0

−w′u′ when u⊤x < 0

This gives us that |w| ≤ τ and |w′| ≤ τ .

These different cases tell us that the constraint ∥∇xh(x)−∇xh
′(x)∥ ≤ τ reduces H into a class of

models follows either
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1. u = u′ and |w − w′| < τ .

2. u ̸= u′ and |w| < τ . However, this case only possible when |w′| < τ .

If |w′| > τ , we know that we must only have the first case. Now, we can calculate the Rademacher
complexity of our restricted class Hϕ,τ . We will again do this in separate cases.

Case 1: |w′| > τ
For any h ∈ Hϕ,τ , we have that u = u′ and |w − w′| < τ . For a sample S = {x1, ..., xn},

Rs(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

[
sup
w

n∑
i=1

wσ((u′)⊤xi)σi

]
( as u = u′)

=
1

n
Eσ

[
sup
w

w

(
n∑

i=1

σ((u′)⊤xi)σi

)]
.

Since, |w − w′| < τ ,

w′ − τ < w < w′ + τ

Then, we can compute the supremum over w as

w =

{
w′ − τ if

(∑n
i=1 σ((u

′)⊤xi)σi

)
< 0

w′ + τ if
(∑n

i=1 σ((u
′)⊤xi)σi

)
≥ 0

Therefore, we have

sup
w

w

(
n∑

i=1

σ((u′)⊤xi)σi

)
=

(
w′ + τ sign

(
n∑

i=1

σ((u′)⊤xi)σi

))
·

(
n∑

i=1

σ((u′)⊤xi)σi

)
.

Now, we can calculate the Rademacher complexity as

RS(Hϕ,τ ) =
1

n
Eσ

[
w′

(
n∑

i=1

σ((u′)⊤xi)σi

)
+ τ |

n∑
i=1

σ((u′)⊤xi)σi|

]

=
τ

n
Eσ

[
|

n∑
i=1

σ((u′)⊤xi)σi|

]

≤ τ

n

√√√√Eσ

[
∥

n∑
i=1

σ((u′)⊤xi)σi∥2
]

(Jensen’s inequality)

=
τ

n

√√√√Eσ

[
n∑

i=1

σ((u′)⊤xi)2σ2
i

]
(since σi, σj are independent with mean 0)

≤ τ

n

√√√√ n∑
i=1

((u′)⊤xi)2

≤ τ

n

√√√√ n∑
i=1

∥xi∥2.
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Combining this with the fact that E
[
∥x∥2

]
≤ C2, we have

Rn(Hϕ,τ ) = E[RS(Hϕ,τ )]

≤ τ

n
E[

√√√√ n∑
i=1

∥xi∥2]

≤ τ

n

√√√√E[
n∑

i=1

∥xi∥2] (Jensen’s inequality)

≤ τC√
n
.

Case 2: |w′|∥u′∥ < τ .
We know that Hϕ,τ = H(1)

ϕ,τ

⋃
H(2)

ϕ,τ when

H(1)
ϕ,τ = {h ∈ H|h : x → wσ(u⊤x), u = u′, |w − w′| < τ}

H(2)
ϕ,τ = {h ∈ H|h : x → wσ(u⊤x), ∥u∥ = 1, u ̸= u′, |w| < τ}

We have

RS(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

≤ 1

n
Eσ

 sup
h∈H(1)

ϕ,τ

n∑
i=1

h(xi)σi + sup
h∈H(2)

ϕ,τ

n∑
i=1

h(xi)σi


= RS(H(1)

ϕ,τ ) +RS(H(2)
ϕ,τ )

The second line holds as supx∈A∪B f(x) ≤ supx∈A f(x) + supx∈B f(x) when supx∈A f(x) ≥ 0
and supx∈B f(x) ≥ 0. We know that both of these supremums be greater than zero, as we can
recover the value of 0 with w = 0. From Case 1, we know that

Rn(H(1)
ϕ,τ ) ≤

τC√
n
.

We also note that H(2)
ϕ,τ is a class of two layer neural networks with weights with norms bounded by

τ . From Theorem I.2, we have that

Rn(H(2)
ϕ,τ ) ≤

2τC√
n
.

Therefore, in Case 2,

Rn(Hϕ,τ ) ≤
3τC√

n
.

as required.

Now, we consider in the general setting (i.e., no restriction on m).
Theorem I.4 (Rademacher complexity for two layer neural networks with gradient constraints ).
Let X be an instance space and DX be a distribution over X with a large enough support. Let
H = {h : x 7→

∑m
j=1 wjσ(u

⊤
j x)|wj ∈ R, uj ∈ Rd, ∥uj∥2 = 1,

∑m
j=1 |wj | ≤ B}. Assume that

there exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Our explanation constraint is given
by a constraint on the gradient of our models, where we want the gradient of our learnt model to be
close to a particular target function h′ ∈ H. Let this be represented by an explanation loss given by

ϕ(h, x) = ∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}
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for some τ > 0. Then, we have that

Rn(Hϕ,τ ) ≤
3τmC√

n
.

To be precise,

Rn(Hϕ,τ ) ≤
(2m+ q)τC√

n
.

when q is the number of node j of h′ such that |w′
j | < τ .

We note that this result indeed depends on the number of hidden dimensions m; however, we note
that in the general case (Theorem I.2), the value of B is O(m) as it is a sum over the values of each
hidden node. We now present the proof for the more general version of our theorem.

Proof. For simplicity, we first assume that any h ∈ H has that ∥uj∥ = 1,∀j. Consider h ∈ H, we
write h =

∑m
j=1 w

′
jσ((u

′
j)

⊤x) and let h′(x) =
∑m

j=1 w
′
jσ((u

′
j)

⊤x) be a function for our gradient
constraint. The gradient of a hypothesis h is given by

∇xh(x) =

m∑
j=1

wjuj · 1{u⊤
j x > 0},

which is a piecewise constant function over at most 2m regions. Then, we consider that

∇xh(x)−∇xh
′(x) =

m∑
j=1

wjuj · 1{u⊤
j x > 0} −

m∑
j=1

w′
ju

′
j · 1{(u′

j)
⊤x > 0},

which is a piecewise constant function over at most 22m regions. We again make an assumption that
each of these regions has a non-zero probability mass. Our choice of ϕ(h, x) guarantees that the
norm of the gradient in each region is less than τ . Similar to the case with m = 1, we will show
that the gradient constraint leads to a class of functions with the same decision boundary or neural
networks that have weights with a small norm.

Assume that among u1, ..., um there are k vectors that have the same direction as u′
1, ..., u

′
m. Without

loss of generality, let uj = u′
j for j = 1, ..., k. In this case, we have that ∇xh(x) − ∇xh

′(x) is
a piecewise function over 22m−k regions. As each region has non-zero probability mass, for each
j ∈ {1, ..., k}, we know that ∃x such that

u⊤
j x = (u′

j)
⊤x > 0, u⊤

i x < 0 for i ̸= j, (u′
i)

⊤x < 0 for i ̸= j.

In other words, we can observe a data point from each region that uniquely defines the value of a
particular wj , uj . In this case, we have that

∇xh(x)−∇xh
′(x) = wjuj − w′

ju
′
j

= (wj − w′
j)u

′
j .

From our gradient constraint, we know that ||∇xh(x) − ∇xh
′(x)|| ≤ τ,∀x, which implies that

|wj − w′
j | ≤ τ for j = 1, ..., k.

On the other hand, for the remaining j = k + 1, ...,m, we know that there exists x such that

u⊤
j x > 0, u⊤

i x < 0 for i ̸= j, (u′
i)

⊤x < 0 for i = 1, ...,m.

Then, we have that ∇xh(x) = wjuj , and our constraint implies that |wj |∥uj∥ = |wj | ≤ τ . Similarly,
we have that |w′

j |∥u′
j∥ = |w′

j | < τ, for j = k+1, ...,m. We can conclude that Hϕ,τ is a class of two
layer neural networks with m hidden nodes (assuming ∥ui∥ = 1) that for each node wjσ(u

⊤
j x) satisfies

1. There exists l ∈ [m] that uj = u′
l and |wj − w′

l| < τ .
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2. |wj | < τ

We further note that for a node w′
lσ((u

′
l)
⊤x) in h′(x) that has that a high weight |w′

l| > τ , there
must be a node wjσ(u

⊤
j x) in h with the same boundary uj = ul. Otherwise, there is a contradiction

with |w′
l| < τ for all nodes in h′ without a node in h with the same boundary. We can utilize this

characterization of the restricted class Hϕ,τ to bound the Rademacher complexity of the class. Let

H′ = {h : x 7→
m∑
j=1

w′
jσ((u

′
j)

⊤x)aj | aj ∈ {0, 1} and for j that |w′
j | > τ, aj = 1}.

This is a class of two layer neural networks with at most m nodes such that each node is from h′. We
also have a condition that if the weight of the j-th node in h′ is greater than τ , the j-th node must be
present in any member of this class. Let

H(τ) = {h : x 7→
m∑
j=1

wjσ((uj)
⊤x)aj | wj ∈ R, uj ∈ Rd, |wj | < τ, ∥uj∥ = 1}.

be a class of two layer neural networks with m nodes such that the weight of each node is at most
τ . We claim that for any h ∈ Hϕ,τ there exists h1 ∈ H′, h2 ∈ H(τ) that h = h1 + h2. For any
h ∈ Hϕ,τ , let ph : [m] → [m] ∪ {0} be a function that match a node in h with the node with the
same boundary in h′. Formally,

ph(j) =

{
l when uj = u′

l

0 otherwise.

The function ph maps j to 0 if there is no node in h′ with the same boundary. Let w′
0 = 0, u′

0 =
[0, . . . , 0], we can write

h(x) =

m∑
j=1

wjσ(u
⊤
j x)

=

m∑
j=1

wjσ(u
⊤
j x)− w′

ph(j)
σ((u′)⊤ph(j)

x) + w′
ph(j)

σ((u′)⊤ph(j)
x)

=
∑

ph(j)̸=0

(wj − w′
ph(j)

)σ((u′)⊤ph(j)
x) +

∑
ph(j)=0

wjσ(u
⊤
j x)︸ ︷︷ ︸

∈H(τ)

+
∑

p(j)̸=0

w′
ph(j)

σ((u′)⊤ph(j)
x)

︸ ︷︷ ︸
∈H′

.

The first term is a member of H(τ) because we know that |wj − w′
p(j)| < τ or |wj | < τ . The second

term is also a member of H′ since for any l that |w′
l| > τ , there exists j that ph(j) = l. Therefore,

we can write h in terms of a sum between a member of H′ and H(τ). This implies that

Rn(Hϕ,τ ) ≤ Rn(H′) +Rn(H(τ)).

From Theorem I.2, we have that

Rn(H(τ)
ϕ,τ ) ≤

2τmC√
n

.
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Now, we will calculate the Rademacher complexity of H′. For S = {x1, . . . , xn},

RS(H′) =
1

n
Eσ

[
sup
h∈H′

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

 sup
h∈H′

n∑
i=1

(

m∑
j=1

w′
jσ((u

′
j)

⊤xi)aj)σi


=

1

n
Eσ

 sup
h∈H′

n∑
i=1

(
∑

|w′
j |<τ

w′
jσ((u

′
j)

⊤xi)aj +
∑

|w′
j |>τ

w′
jσ((u

′
j)

⊤xi))σi


=

1

n
Eσ

 sup
aj∈{0,1}

n∑
i=1

∑
|w′

j |<τ

w′
jσ((u

′
j)

⊤xi)ajσi


=

1

n
Eσ

 sup
aj∈{0,1}

∑
|w′

j |<τ

aj(w
′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)

 .

To achieve the supremum, if w′
j

∑n
i=1 σ((u

′
j)

⊤xi)σi > 0 we need to set aj = 1, otherwise, we need
to set aj = 0. Therefore,

RS(H′) =
1

n
Eσ

 sup
aj∈{0,1}

∑
|w′

j |<τ

aj(w
′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)


=

1

n
Eσ

 ∑
|w′

j |<τ

σ(w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)


=

1

2n
Eσ

 ∑
|w′

j |<τ

(w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi) + |w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi|

 (σ(x) =
x+ |x|

2
)

=
1

2n
Eσ

 ∑
|w′

j |<τ

|w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi|


≤ 1

2n

 ∑
|w′

j |<τ

|w′
j |

Eσ

[
sup

∥u∥=1

|
n∑

i=1

σ(u⊤xi)σi|

]

≤ 1

n

 ∑
|w′

j |<τ

|w′
j |

Eσ

[
sup

∥u∥=1

n∑
i=1

σ(u⊤xi)σi

]
(Lemma I.1)

≤

 ∑
|w′

j |<τ

|w′
j |

 Eσ

[
1

n
sup

∥u∥=1

n∑
i=1

u⊤xiσi

]
︸ ︷︷ ︸

Empirical Rademacher complexity of a linear model

(Talagrand’s Lemma).

From Theorem 4.1, we can conclude that

Rn(H′) ≤
∑

|w′
j |<τ

|w′
j |

C√
n
≤ qτC√

n
≤ mτC√

n

when q is the number of nodes j of h′ such that |w′
j | < τ . Therefore,

32



Rn(H′) ≤ (2m+ q)τC√
n

≤ 3mτC√
n

.

A tighter bound is given by (2m+q)τC√
n

when q is the number of w′
j that |w′

j | < τ . As τ → 0, we

also have q → 0. This implies that we have an upper bound of 2mτC√
n

if τ is small enough. When

comparing this to the original bound 2BC√
n

, we can do much better if τ ≪ B
m . We would like to point

out that our bound does not depend on the distribution D because we choose a strong explanation loss

ϕ(h, x) = ∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}
which guarantees that ∥∇xh(x)−∇xh

′(x)∥2 ≤ τ almost everywhere. We also assume that we are
in a high-dimensional setting d ≫ m and there exists x with a positive probability density at any
partition created by ∇xh(x).

J Algorithmic Results for Two Layer Neural Networks with a Gradient
Constraint

Now that we have provided generalization bounds for the restricted class of two layer neural networks,
we also present an algorithm that can identify the parameters of a two layer neural network (up to a
permutation of the weights). In practice, we might solve this via our variational objective or other
simpler regularized techniques. However, we also provide a theoretical result for the required amount
of data (given some assumptions about the data distribution) and runtime for an algorithm to exactly
recover the parameters of these networks under gradient constraints.

We again know that the gradient of two layer neural networks with ReLU activations can be written as

∇xfw,U (x) =

m∑
i=1

wiui · 1{uT
i x > 0},

where we consider ||ui|| = 1. Therefore, an exact gradient constraint given of the form of pairs
(x,∇xf(x)) produces a system of equations.
Proposition J.1. If the values of ui’s are known, we can identify the parameters wi with exactly m
fixed samples.

Proof. We can select m datapoints, which each achieve value 1 for the indicator value in the gradient
of the two layer neural network. This would give us m equations, which each are of the form

∇xfw,U (xi) = wiui.

Therefore, we can easily solve for the values of wi, given that ui is known.

To make this more general, we now consider the case where ui’s are not known but are at least
linearly independent.
Proposition J.2. Let the ui’s be linearly independent. Assume that each region of the data (when
partitioned by the values of ui) has non-trivial support > p. Then, with probability 1− δ, we can
identify the parameters wi, ui with O

(
2m +

m+log( 1
δ )

log( 1
1−p )

)
data points and in O(22m) time.

Proof. Let us partition X into regions satisfying unique values of the binary vector (1{uT
1 x >

0}, ..., 1{uT
mx > 0}), which by our assumption each have at least some probability mass p. First,

we calculate the probability that we observe one data point with an explanation from each region
in this partition. This is equivalent to sampling from a multinomial distribution with probabilities
(p1, ..., p2m), where pi ≥ p,∀i. Then,

Pr(observe all regions in n draws) = 1− Pr(∃i s.t. we do not observe region i)

= 1− 2m(1− p)n.
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Algorithm 1 Algorithm for identifying parameters of a two layer neural network, given exact gradient
constraints

1: Input: We are given M = {
∑

x∈C x|C ∈ P({x1, ..., xm})}, with {x1, ..., xm} linearly inde-
pendent

2: Output: The set of basis elements {x1, ..., xm}
3: function
4: B = {}, S = {} {Set for basis vectors and set for a current sum of at least 2 elements}
5: for x ∈ M do
6: if x ∈ S then
7: pass
8: else
9: B = B ∪ {x}

10: if |B| = 2 then
11: S = {y1 + y2}, where B = {y1, y2}
12: else
13: S = S ∪ {y + x|y ∈ S} {Updating sums from adding x}
14: end if
15: O = B ∩ S {Computing overlap between current basis and sums}
16: B = B \O {Removing elements contained in pairwise span}
17: S = {y − yo|y ∈ S, yo ∈ O} {Updating sums S from removing set O}
18: end if
19: end for
20: return B
21: end function

Setting this as no less than 1− δ leads to that n ≥ m+log( 1
δ )

log( 1
1−p )

.

Given O(2m +
m+log( 1

δ )

log( 1
1−p )

) pairs of data and gradients, we will observe at least one pair from each

region of the partition. Then, identifying the values of ui’s and wi’s is equivalent to identifying
the datapoints that correspond to a value of the binary vector where only one indicator value is 1.
These values can be identified in O(23m) time; the algorithm is given in Algorithm J.1. These results
demonstrate that we can indeed learn the parameters (up to a permutation) of a two layer neural
network given exact gradient information.

J.1 Algorithm for Identifying Regions

We first note that identifying the parameters ui’s and wi’s of a two layer neural network is equivalent
to identifying the values {x1, ..., xm} from the set {

∑
x∈C x|C ∈ P({x1, ..., xm})}, where P

denotes the power set. We also assume that x1, ..., xm are linearly independent, so we cannot create
xi from any linear combination of xj’s with j ̸= i. Then, we can identify the set {x1, ..., xm} as in
Algorithm 1. This algorithm runs in O(23m) time as it iterates through each point in M and computes
the overlapping set O and resulting updated sum S, which takes O(22m) time. From the resulting set
B, we can exactly compute values ui and wi up to a permutation.

K Additional Synthetic Experiments

We now present additional synthetic experiments that demonstrate the performance of our approach
under settings with imperfect explanations and compare the benefits of using different types of
explanations.

K.1 Variational Objective is Better with Noisy Gradient Explanations

Here, we present the remainder of the results from the synthetic regression task of ??, under more
settings of noise ϵ added to the gradient explanation.

Again, we observe that our method does better than that of the Lagrangian approach and the self-
training method. Under high levels of noise, the Lagrangian method does poorly. On the contrary,
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Figure 10: Comparison of MSE on regressing a two layer neural network with explanations of noisy
gradients. m = 1000, k = 20, λ = 10. For the iterative methods, T = 10. Results are averaged over
5 seeds.

our method is resistant to this noise and also outperforms self-training significantly in settings with
limited labeled data.

K.2 Comparing Different Types of Explanations

Here, we present synthetic results to compare using different types of explanation constraints. We
focus on comparing noisy gradients as before, as well as noisy classifiers, which are used in the setting
of weak supervision [30]. Here, we generate our noisy classifiers as h∗(x) + ϵ, where ϵ ∼ N (0, σ2).
We omit the results of self-training as it does not use any explanations, and we keep the supervised
method as a baseline. Here, t = 0.25.

We observe different trends in performance as we vary the amount of noise in the noisy gradient
or noisy classifier explanations. With any amount of noise and sufficient regularization (λ), this
influences the overall performance of the methods that incorporate constraints. With few labeled
data, using noisy classifiers helps outperform standard supervised learning. With a larger amount
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Figure 11: Comparison of MSE on regressing a two layer neural network with explanations as a noisy
classifier (top) and noisy gradients (bottom). m = 1000, k = 20. For the iterative methods, T = 10.
Results are averaged over 5 seeds. ϵ represents the variance of the noise added to the noisy classifier
or noisy gradient.

of labeled data, this leads to no benefits (if not worse performance of the Lagrangian approach).
However, with the noisy gradient, under small amounts of noise, the restricted class of hypothesis
will still capture solutions with low error. Therefore, in this case, we observe that the Lagrangian
approach outperforms standard supervised learning in the case with few labeled data and matches it
with sufficient labeled data. Our method outperforms or matches both methods across all settings.

We consider another noisy setting, where noise has been added to the weights of a copy of the target
two layer neural network. Here, we compare how this information impacts learning from the direct
outputs (noisy classifier) or the gradients (noisy gradients) of that noisy copy (Figure 12).
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Figure 12: Comparison of MSE on regressing a two layer neural network with explanations as a noisy
classifier (top) and noisy gradients (bottom). m = 1000, k = 20. For the iterative methods, T = 10.
Results are averaged over 5 seeds. ϵ represents the variance of the noise added to the noisy classifier
or noisy gradient.
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L Additional Baselines

We compare against an additional baseline of a Lagrangian-regularized model + self-training on
unlabeled data. We again note that this is not a standard method in practice and does not naturally
fit into a theoretical framework, although we present it to compare against a method that uses both
explanations and unlabeled data.
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Figure 13: Comparison of MSE on regressing a linear model (top left) and two layer neural network
(top right) with gradient explanations. m = 1000, k = 20. For the iterative methods, T = 2. Results
are averaged over 5 seeds. Comparison of classification accuracy on the YouTube dataset (bottom
left) and the Yelp dataset (bottom right). m = 500, k = 150. Results are averaged over 40 seeds.

We observe that our method outperforms this baseline (Figure 13), again especially in the settings
with limited labeled data. We observe that although this new method indeed satisfies constraints,
when performing only a single round of self-training, it no longer satisfies these constraints as much.
Thus, this supports the use of our method to perform multiple rounds of projections onto a set of
EPAC models.

M Experimental Details

For all of our synthetic and real-world experiments, we use values of m = 1000, k = 20, T = 3, τ =
0, λ = 1, unless otherwise noted. For our synthetic experiments, we use d = 100, σ2 = 5. Our two
layer neural networks have hidden dimensions of size 10. They are trained with a learning rate of
0.01 for 50 epochs. We evaluate all networks on a (synthetic) test set of size 2000.

For our real-world data, our two layer neural networks have a hidden dimension of size 10 and are
trained with a learning rate of 0.1 (YouTube) and 0.1 (Yelp) for 10 epochs. λ = 0.01 and gradient
values computed by the smoothed approximation in [? ] has c = 1. Test splits are used as follows
from the YouTube and Yelp datasets in the WRENCH benchmark [46].

We choose the initialization of our variational algorithm h0 as the standard supervised model, trained
using gradient descent.
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N Ablations

We also perform ablation studies in the same regression setting as Section 6. We vary parameters that
determine either the experimental setting or hyperparameters of our algorithms.

N.1 Number of Explanation-annotated Data

First, we vary the value of k to illustrate the benefits of our method over the existing baselines.
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Figure 14: Comparison of MSE on regressing a two layer neural network over different amounts of
explanation-annotated data k. m = 1000. For the iterative methods, T = 10. Results are averaged
over 5 seeds.

We observe that our variational approach performs much better than a simple augmented Lagrangian
method, which in turn does better than supervised learning with sufficiently large values of k. Our
approach is always better than the standard supervised approach.

We also provide results for how well these methods satisfy these explanations over varying values of k.
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N.2 Simpler Teacher Models Can Maintain Good Performance

As noted before, we can use simpler teacher models to be regularized into the explanation-constrained
subspace. This can lead to overall easier optimization problems, and we synthetically verify the
impacts on the overall performance. In this experimental setup, we are regressing a two layer neural
network with a hidden dimension size of 100, which is much larger than in our other synthetic
experiments. Here, we vary over simpler teacher models by changing their hidden dimension size.
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Figure 15: Comparison of MSE on regressing a two layer neural network over simpler teacher models
(hidden dimension). Here, k = 20,m = 1000, T = 10. Results are averaged over 5 seeds.
We observe no major differences as we shrink the hidden dimension size by a small amount. For
significantly smaller hidden dimensions (e.g., 2 or 4), we observe a large drop in performance as these
simpler teachers can no longer fit the approximate projection onto our class of EPAC models accurately.
However, slightly smaller networks (e.g., 6, 8) can fit this projection as well, if not better in some cases.
This is a useful finding, meaning that our teacher can be a smaller model and get comparable results,
showing that this simpler teacher can help with scalability without much or any drop in performance.

N.3 Number of Unlabeled Data

As a main benefit of our approach is the ability to incorporate large amounts of unlabeled data, we
provide a study as we vary the amount of unlabeled data m that is available. When varying the amount
of unlabeled data, we observe that the performance of self-training and our variational objective
improves at similar rates.
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Figure 16: Comparison of MSE on regressing a two layer neural network over different values of m.
k = 20, T = 10. Results are averaged over 5 seeds.
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N.4 Data Dimension

We also provide ablations as we vary the underlying data dimension d. As we increase the dimension
d, we observe that the methods seem to achieve similar performance, due to the difficulty in modeling
the high-dimensional data. Also, here gradient information is much harder to incorporate, as the input
gradient itself is d-dimensional, so we do not see as much of a benefit of our approach as d grows.
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Figure 17: Comparison of MSE on regressing a two layer neural network over different underlying
data dimensions d. m = 1000, k = 20. For the iterative methods, T = 10. Results are averaged over
5 seeds.
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N.5 Hyperparameters

First, we compare the different approaches over different values of regularization (λ) towards
satisfying the explanation constraints. Here, we compare the augmented Lagrangian approach, the
self-training approach, and our variational approach.
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Figure 18: Comparison of MSE on regressing a two layer neural network over different values of λ.
m = 1000, k = 20. For the iterative methods, T = 10. Results are averaged over 5 seeds.

We observe that there is not a significant trend as we change the value of λ across the different
methods. Since we know that our explanation is perfect (our restricted EPAC class contains the target
classifier), increasing the value of λ should help, until this constraint is met.
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Figure 19: Comparison of MSE on regressing a two layer neural network over different values of T
(left) and τ (right) in our variational approach. m = 1000, k = 20, τ = 10, T = 10, unless noted
otherwise. Results are averaged over 5 seeds.

Next, we compare different hyperparameter settings for our variational approach. Here, we analyze
trends as we vary the values of T (number of iterations) and τ (threshold before adding hinge penalty).

43



We note that the value of τ does not significantly impact the performance of our method while
increasing values of T seems to generally benefit performance on this task.

O Social Impacts

While our proposed method has the potential to improve performance and efficiency in a variety of
applications, our method could introduce new biases or reinforce existing biases in the data used to
train the model. For example, if our explanations constraints are poorly specified and reflect biased
behavior, this could lead to inaccurate or discriminatory predictions, which could have negative
impacts on individuals or groups that are already marginalized. Therefore, it is important to note that
these explanation constraints must be properly analyzed and specified to exhibit the desired behavior
of our model.
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