
Coop: Memory is not a Commodity

Jianhao Zhang∗

OneFlow Research
daquexian566@gmail.com

Shihan Ma∗
OneFlow Research

mmasss1205@gmail.com

Peihong Liu
OneFlow Research

peihong.l@outlook.com

Jinhui Yuan
OneFlow Research

yuanjinhui@oneflow.org

Abstract

Tensor rematerialization allows the training of deep neural networks (DNNs) under
limited memory budgets by checkpointing the models and recomputing the evicted
tensors as needed. However, the existing tensor rematerialization techniques
overlook the memory system in deep learning frameworks and implicitly assume
that free memory blocks at different addresses are identical. Under this flawed
assumption, discontiguous tensors are evicted, among which some are not used to
allocate the new tensor. This leads to severe memory fragmentation and increases
the cost of potential rematerializations. To address this issue, we propose to
evict tensors within a sliding window to ensure all evictions are contiguous and
are immediately used. Furthermore, we proposed cheap tensor partitioning and
recomputable in-place to further reduce the rematerialization cost by optimizing
the tensor allocation. We named our method Coop as it is a co-optimization
of tensor allocation and tensor rematerialization. We evaluated Coop on eight
representative DNNs. The experimental results demonstrate that Coop achieves up
to 2× memory saving and hugely reduces compute overhead, search latency, and
memory fragmentation compared to the state-of-the-art baselines.

1 Introduction

Recent development of deep neural networks (DNNs) shows a continuous rage on increasing the scale
of the network structures, which dramatically improves the capability of the neural network [1, 2, 3, 4].
Training such gigantic models with billions of parameters, however, requires huge on-device memory
[5]. Tensor rematerialization, also known as activation checkpointing, is one technique that allows
the training of large DNNs under a limited GPU memory budget without compromising the model’s
accuracy. This technique has been widely applied in the training of large language models such as
GPT-3 [1, 6] and LLaMa [3].

The key idea of tensor rematerialization is to evict some intermediate tensors during forward propaga-
tion and recompute them as needed during backward propagation, essentially trading recomputing
time for memory. Tensor rematerialization can be traced back to checkpointing in reverse-mode
automatic differentiation [7, 8, 9], and was first applied to DNN training as a global optimization
technique for static computation graphs (SCGs) [10, 11, 12, 13]. Chen et al. ([10]) reduced the
memory cost of training a neural network with n layers to O(

√
n) by dividing the network into

segments and dropping the intermediate results within each segment. Checkmate [11] further for-
malized tensor rematerialization as a mixed integer linear program and used numerical solvers to
find an optimal solution. Tensor rematerialization methods that support dynamic computational

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



graphs (DCGs) emerge with the advancement of frameworks that utilize DCGs (e.g. Pytorch [14]).
Megatron-LM [15] uses selective activation recomputation to drop activations that take up large
memories but are cheap to recompute in Transformer layers. Dynamic tensor rematerialization (DTR)
[16] automatically optimizes memory usage during the training of DCGs by repeatedly searching for
and evicting an optimal tensor until the next tensor can be successfully allocated.

However, all of the above tensor rematerialization methods have a similar problem, that is, they
assume the memory in deep learning (DL) system is a fungible commodity where free memory blocks
at different addresses are identical. Under this assumption, evicting tensors with size x is sufficient
for allocating a tensor with size x, which is incorrect unless all of the evicted tensors are contiguous.
Evicting tensors that do not contribute to a contiguous memory will lead to memory fragmentation,
subsequently increasing the cost associated with any potential rematerializations. This motivates
us to ask the question: is it possible to release a contiguous memory block that is large enough for
allocating a new tensor while the recomputing cost is the minimum?

To answer this question, we proposed Coop, a gradient checkpointing scheme that co-optimizes
tensor rematerialization and tensor allocation. To the best of our knowledge, Coop is the only tensor
rematerialization scheme that fully bypasses the incorrect assumption of DL memory system. We
propose that a straightforward solution to evicting a set of contiguous tensors is to use a sliding
window algorithm. The window is moved within the memory pool until an optimal solution is found.
Evicting the tensors in the optimal window will free enough memory while the recomputing cost is
the minimum. In addition, unlike prior works that do not optimize tensor allocations, we introduce
a smart memory allocator to further reduce the cost of evicting tensors in the sliding window. The
smart memory allocator (1) groups “cheap” tensors together and (2) enables recomputable in-place
to prevent the disruption of contiguous memory blocks. We show that by co-optimizing tensor
rematerialization and memory allocation, Coop reduces memory fragmentation and supports training
large-scale DNNs under the most limited memory budget with less compute overhead and lower
search latency. For example, when training a 2.7B-parameter GPT-3 style model, Coop reduces the
memory fragmentation rate and compute overhead by up to ∼ 5×, the search latency by ∼ 10×, and
the minimum memory budget by 25% compared with DTR. The proposed strategy is model-agnostic
and can be universally used to checkpoint any dynamic models in real time. In summary, Coop makes
the following contributions:

• We argued for the first time that existing tensor rematerialization methods overlook the
memory system during optimization and wrongly assume that the memory in DL systems is
a fungible commodity. We addressed this problem by co-optimizing tensor rematerialization
and tensor allocation, which opens up a new perspective on improving checkpointing
techniques in DL frameworks.

• Coop allows the tensor rematerialization scheme and memory allocator to facilitate each
other. The heuristic of tensor rematerialization is reduced by taking into account the
properties of memory allocators, and the memory allocators are improved by considering
the efficiency of different operations in tensor rematerialization.

• We demonstrated that Coop enables the training of the most widely-used DNNs with less
compute overhead, lower minimum memory budget, and smaller search latency.

• Coop has been implemented in OneFlow framework and it can be easily integrated into any
other deep learning framework.

2 Background and Motivation
2.1 Memory Allocator in DL Systems

Memory allocator is an important component of deep learning systems. All known DL systems
(e.g. PyTorch [14], TensorFlow [17], and MXNet [18]) have their own memory allocators to enable
fine-grained memory management and avoid the overhead of communication with the operating
system (OS). Compared to advanced CPU memory allocators, e.g. mimalloc [19] and jemalloc [20],
memory allocators in DL frameworks are simpler. Typically, in DL frameworks, when a tensor is
destructed, its memory is not returned to the OS but inserted into the free list of the allocator and
merged with other chunks with adjacent memory addresses. When the user requests memory for a
tensor with size S, the allocator tries to place the tensor at the leftmost side of a free chunk with a
size equal to or larger than S. If the sizes of the free chunks are all less than S, the allocator will

2



… Cheap tensor partitioning

(b)

(c)

(d)

Sliding window

Recomputable in-place

(a)

Repeat until enough free memory

Evict an optimal tensor

Evict an optimal tensor

emptyunevictable tensor“cheap” tensor “expensive” tensor evictions

DTR Coop

Figure 1: Comparison between DTR and Coop. DTR overlooks the underlying memory system,
which leads to redundant evictions. In contrast, Coop co-optimizes tensor rematerialization and tensor
allocation to find the best tensors to evict. (a) A typical memory layout given by the conventional
tensor allocator, where all tensors are mixed together. Tensors are classified by their cost densities
(computational cost divided by memory size). The “cheap” and “expensive” tensors denote the tensors
with low and high cost densities, respectively. Unevictable tensors, including network parameters
and buffers, cannot be evicted. (b) Coop uses the sliding window algorithm to find the optimal set of
tensors under a given memory layout. (c) Coop uses recomputable in-place operations to optimize
memory layout by ensuring that the unevictable tensors remain in the same place even after being
updated. This optimization reduces the cost of the tensors in the sliding window compared to (b). (d)
With cheap tensor partitioning, “cheap” and “expensive” tensors are separately allocated to the two
sides of the memory pool. The memory layout is further optimized with the eviction cost reduced.

request new memory from the OS, even though the total size of the free chunks might be greater
than S. These unused free chunks are called memory fragments. During training, all intermediate
activations and gradients are released at the end of each iteration, which produces large free memory
chunks. Therefore, tensors generated by sequential operations tend to be allocated to contiguous
spaces from the leftmost of the memory pool in each iteration.

Besides, it is possible for memory allocators to leverage the page table of the hardware and re-compose
discontinuous memory chunks into a chunk continuous from the virtual memory’s view. Studies have
proven that memory fragmentation in CPU can be reduced in this way [21, 22]. However, the driver
of NVIDIA GPUs is a proprietary NVIDIA-controlled black box, making it almost impossible for
community researchers to apply similar ideas to GPUs.

2.2 Tensor Rematerialization and Memory Fragmentation

Tensor rematerialization in DNN training is first introduced by Chen et al. [10]. They divide the
network into segments, evict all intermediate features within each segment, and recompute them
during backpropagation. Subsequent studies enhance this method by intelligently selecting tensors
to evict. Dynamic Tensor Rematerialization (DTR) [16] devises a heuristic to guide the eviction of
tensors during runtime. The heuristic leverages the metadata of each tensor (staleness, memory, and
computational cost) to select the stalest, largest, and cheapest tensor to evict when the memory runs
out. This process runs several times until the released memory is sufficient for the new tensor. Recent
work MegTaiChi [23] proposed Dynamic Tensor Evicting (DTE) based on DTR. DTE modifies
DTR’s heuristic by considering the adjacent free memory blocks of each tensor.

These tensor rematerialization methods enable the training of large DNNs with limited memory
budgets and low overhead. However, their performance is inhibited by large memory fragmentations.
As a real-world example, DELTA [24] implements DTR in Parrots framework [25] and reports that the
memory fragmentation hugely affects the maximum capacity of the model. Memory fragmentation
is the small and sparsely scattered memory chunks that are unusable for tensor allocation. This
problem affects all DNN training but is exaggerated by tensor rematerialization, which incurs
a more frequent rearrangement of the memory. A fundamental reason why the existing tensor
rematerialization methods cannot address this problem is that they do not emphasize producing a

3



contiguous chunk of free memory. Additionally, their heuristics render the condition worse. Most
rematerialization methods penalize evicting tensors generated by sequential operations to reduce
recursive rematerializations. For example, the projected cost of a tensor in DTR’s heuristic is
calculated over the tensor’s neighborhood (tensors that depend on or are relied on recomputing the
current tensor). Penalizing evictions of sequential tensors often results in discontiguous free memory
chunks, as the sequential tensors tend to locate contiguously (see 2.1). To address the memory
fragmentation in tensor rematerialization, Coop proposes to evict a set of contiguous tensors by using
a sliding window algorithm, which is hugely different from the modification of heuristic as in DTE.

2.3 In-place Mutation in DL Systems

In-place mutation is a common and important feature in deep learning frameworks. For ex-
ample, PyTorch users often construct their networks with in-place mutating operations like
nn.ReLU(inplace=True), tensor.zero_(), torch.add(a, b, out=c), to avoid allocating
memory for the output tensor by directly overwriting the existing tensor. In-place operations are more
cache-friendly and use less memory than their out-of-place counterparts. The in-place operations
produce correct results as long as the original values are not used in the future. In deep learning
frameworks, this requirement is met by not capturing the original value during backward propagation.
However, in frameworks with tensor rematerialization, the original value is likely to be used during
recomputation, which leads to incorrect results. For example, if the user runs two operations y = x
+ 1 and x.relu_() in sequence and y needs to be rematerialized afterward, the operation x + 1
will run again but the original value of x has already been discarded by x.relu_().

DTR solves this problem by introducing a copy-on-write layer, which copies the tensor and mutates
the copied one. This actually transforms the in-place operations into out-of-place operations, which
negates the advantages of in-place mutations and may cause potential problems (explained in Section
3.5). Recently, Koka [26], a functional programming language, proposed a novel programming
paradigm called functional but in-place (FBIP) in their new memory management system Perceus
[27]. FBIP enables in-place mutation in a purely functional manner by allocating new objects to the
memory of known unused objects. Inspired by FBIP, we proposed a recomputable in-place module in
Coop to prevent unnecessary evictions and reduce memory fragmentation.

2.4 Other Memory-saving Techniques

In addition to tensor rematerialization, several other techniques can be used to reduce the mem-
ory requirements for training large models, such as model parallelism [28], gradient accumulation,
reversible operations [29, 30], quantization [31], and offloading [6, 32]. These methods are com-
plementary to tensor rematerialization. The combined use of these techniques can result in more
significant memory savings [33], as demonstrated in Turing-NLG, GPT-3, and LLaMa [6, 3].

Nonetheless, each of these techniques comes with its own limitations. Model parallelism generates
additional communication overhead [34]. Gradient accumulation necessitates a reduction in batch
size, which can adversely affect training accuracy, particularly for models with batch normalizations
[35, 36]. Reversible operations do not possess universal applicability. Quantization may entail lossy
compression [37]. Offloading is typically slower than rematerialization and requires prefetching for
satisfactory performance [33], making it challenging to implement in DCGs.

3 Methods

3.1 Problem Formulation

Coop is a runtime memory manager that allows the training of dynamic DNNs under a preset memory
budget by manipulating the state of the memory pool. The state of the memory pool is denoted as
memory layout, including the position and the size of each tensor. Coop manipulates the memory
layout by intercepting tensor allocation, eviction, and rematerialization.

Assume that there are N tensors in the memory pool after several operations in the forward process.
Each tensor t has memory size m(t) and heuristic h(t). Heuristic is the cost of evicting a tensor
(defined in 3.3), the less the better. Coop aims to find an optimal set of tensors to evict when the
memory meets the budget, such that (1) evicting the set of tensors is sufficient for allocating the new

4



tensor and (2) the evictions bring in the minimum potential rematerialization cost. Guided by this
target, we introduce the cost function of Coop as follows:

argmin
S,L

∑
t∈S

h(t), subject to M(S,L) ≥MR (1)

where L denotes a memory layout, S denotes a set of tensors, M(S,L) is the largest available
contiguous memory under memory layout L after evicting all tensors in S, and MR is the required
memory size.

3.2 Method Overview

We observed two desiderata from the cost function, which inspired us to propose the three modules in
Coop. First, free but not contiguous memory blocks in S do not contribute to the largest contiguous
memory M(S,L) and thus will not be used for allocating new tensors. In other words, it is more
efficient to evict tensors that produce a single contiguous block. We used a sliding window algorithm
to address this problem in O(N) time complexity (3.3). Second, memory layout L affects the cost of
evicting tensors in S, and L is related to tensor allocation in DCGs. Given that a contiguous block
can be produced by the sliding window algorithm, we further introduced two modules to reduce the
cost of evicting tensors in this block by managing the memory layout: (1) we proposed cheap tensor
partitioning in 3.4 to cluster tensors that are computationally “cheap” to the same place. (2) we
introduced recomputable in-place in 3.5 to avoid the random reordering of the memory layout that
splits contiguous memory. An overview of Coop is displayed in Figure 1, and the algorithm of Coop
is shown in Algorithm 1.

Algorithm 1 The algorithm of Coop
procedure ALLOCATE(op, size)

if op is an in-place operation then
addr ← input.addr

else
block ← find_free_block_not_less_than(size)
if block is None then

evict(sliding_window_search(size))
block ← find_free_block_not_less_than(size)
if op is expensive then

addr ← block.left_addr
else

addr ← block.right_addr − size
end if

end if
end if
return addr

end procedure

3.3 Sliding Window Algorithm

A brute-force approach to solving Equation 1 is to traverse the combinations of all tensors and find a
valid combination with the minimum cost. It requires a total of 2N enumerations (N is the number
of tensors in the memory pool), which is computationally unfeasible. To circumvent this issue, we
used the sliding window algorithm to find the optimal solution and reduced the time complexity from
O(2N ) to O(N).

We track the states of all tensors by storing them in a list, sorted by the memory addresses. The
free memory chunks are included as “special tensors” of which the heuristics are zero (no cost to
recompute them). In this way, finding a set of tensors that produce a single contiguous block is equal
to finding a subsequence of the list. We use two pointers to denote the start and the end of the sliding
window. Tensors in the window are supposed to be evicted. By moving the window within the list
and continuously comparing the summed heuristics of the tensors in the window, a set of contiguous
tensors of which the summed memory is larger than required and the cost minimum can be found.

5



To calculate the eviction cost, we need to choose a heuristic that is consistent with our sliding window
algorithm. We define the heuristic as h(t) = c(t)

s(t) , where c(t) is the projected cost (the sum of the
computational cost of tensor t and t’s evicted neighborhood) and s(t) is the staleness. Different from
DTR’s heuristic (h(t) = c(t)

m(t)·s(t) , where m(t) is the memory size of t), our heuristic does not need the
information of tensor’s memory size. The reason is that the information of tensor memory has been
embedded into the layout S, thus the list maintained by Coop. The sliding window algorithm utilizes
this information and searches for an exact set of contiguous tensors to evict rather than repeatedly
and blindly looking for tensors that might be large enough to cover the new tensor.

One benefit of the proposed sliding window algorithm is that traversing for one time gives the best
tensors to evict. Therefore, the time complexity for searching is O(N). Another particular advantage
is that no tensors are “innocently” evicted, as the freed memory after each eviction is contiguous
and meets the required memory exactly in the value. By contrast, DTR evicts one tensor each time,
resulting in sparsely distributed free memory blocks that cause the memory fragmentation issue.

3.4 Cheap Tensor Partitioning

Given that a contiguous free memory chunk can be produced by the proposed sliding window
algorithm and the overall heuristic is the minimum under the current memory layout, we ask whether
it is possible to optimize the memory layout as well to further reduce the overall heuristic. We propose
an approach called cheap tensor partitioning to address this problem. Instead of allocating tensors
contiguously as in the traditional DL systems, we group tensors with the same magnitude of eviction
cost to the same place. Clustering tensors with the same magnitude reduces the overall heuristic in
two ways: (1) it breaks the pattern that tensors generated by sequential operations are also allocated
contiguously in memory, thereby reducing the projected cost c(t) in the heuristic; (2) it increases the
chance to evict a set of contiguous “cheap” tensors. In this way, a proper memory layout is prepared
before tensor eviction.

1×1, 64

3×3, 64

1×1, 128

relu

relu

𝒙𝟎

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒

𝒙𝟑 𝒙𝟒𝒙𝟓 allocate 𝒙𝟓

𝒙𝟏 𝒙𝟑 𝒙𝟒 evict 𝒙𝟎, 𝒙𝟐

𝒙𝟑 𝒙𝟒 evict 𝒙𝟏

DTR

𝒙𝟑 𝒙𝟏𝒙𝟒 evict 𝒙𝟎, 𝒙𝟐

Coop

(a) (b)

allocate 𝒙𝟓𝒙𝟑 𝒙𝟏𝒙𝟓 𝒙𝟒

𝒙𝟎 𝒙𝟐 𝒙𝟒 𝒙𝟑 𝒙𝟏

(c)

relu

Figure 2: Illustration of cheap tensor partitioning in Coop. (a) Layers of a representative
convolutional neural network, with convolutions followed by activation layers. (b) Tensor eviction
under DTR with tensors allocated in sequence. (c) Tensor eviction under Coop with cheap tensor
partitioning. Tensors are allocated from both sides of the memory pool.

We implemented cheap tensor partitioning by allocating tensors from the leftmost and rightmost of
the memory pool (Figure 2(c)), which is feasible because the memory budget is given by the user
before training. Cost density (computational cost divided by memory size) is used to evaluate the
magnitude of eviction cost. Tensors with the same magnitude of cost density are allocated to the
same end of memory pool during the forward propagation of the model. We observed that most of
the operators in NN can be simply classified into two categories by their complexity: super-linear
(e.g. matmul and conv, denoted as C1) and linear/sub-linear (e.g. element-wise ops, denoted as C2).
For most cases, the cost density of super-linear operations is larger than the other operators by one
order of magnitude. Cost densities of major operators in DNNs on NVIDIA GeForce RTX 2080 Ti
are summarized in Table 1.

Figure 2(a) shows an example of a typical convolutional neural network, in which each convolution
layer is followed by an activation function. Here we did not include Batch Normalization as it has a

6



Table 1: Cost density of major operations in DNNs (µs/MB).

Operation ResNet-50⋆ GPT-2† U-Net⋆ Swin-T†

C1 Conv/MatMul 35.6 33.5 89.3 32.7
C2 Batch/LayerNorm 5.0 4.2 5.3 4.1
C2 ReLU/GELU 3.9 3.8 3.9 3.9

⋆ Model with Conv, BatchNorm and ReLU
† Model with MatMul, LayerNorm and GELU.

similar computational cost density with the activation layers (Table 1), and is not necessarily included
in all neural networks. Suppose the tensors x0, ..., x4 are generated at the start of training, thus stored
sequentially in memory. If the memory is full and another 100 MB for x5 is required, the two tensors
generated by the two activation layers (x0 and x2, each 50 MB) will be first evicted under DTR’s
strategy (x0 is the stalest and cheapest tensor in the memory and its eviction increases the heuristic of
x1). However, as the freed chunks are not contiguous, extra tensors are required to be freed, e.g. x1,
bringing in useless evictions and leading to memory fragmentation (Figure 2(b)).

3.5 Recomputable In-place

When dealing with operations that directly mutate the content of the input tensor, i.e., in-place
operations, DTR introduces a copy-on-write layer to replace the in-place operation with three separate
operations: copying the input tensor, mutating the copied tensor, and evicting the input tensor (Figure
3 (c)). Allocating new memory for the copied tensor has two detrimental effects: (1) if the memory
pool is full, additional tensors are required to be evicted for allocating the newly copied tensor, which
takes time and brings extra recomputation cost; (2) more critically, if this tensor is unevictable, such
as the parameter that is updated in-place after each iteration, a random allocation of this tensor will
partition the memory into non-contiguous parts, preventing the creation of contiguous free memory.

(a) Initial State

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

−𝟏𝟏 𝟎𝟎
𝟏𝟏 𝟐𝟐

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

Op: x.relu_()

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟐𝟐

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

(b) Naive

×

×

(c) DTR (copy-on-write)

−𝟏𝟏 𝟎𝟎
𝟏𝟏 𝟐𝟐

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

𝑥𝑥𝑥 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟐𝟐

relu

new mem

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

𝑥𝑥𝑥 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟐𝟐

relu

new mem

evicted 

(d) Coop (recomputable in-place) 

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

𝑥𝑥𝑥

𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟐𝟐

relu

shared mem

𝑝𝑝

𝑥𝑥

𝑦𝑦

𝟏𝟏 𝟐𝟐
𝟑𝟑 𝟒𝟒

𝟎𝟎 𝟏𝟏
𝟐𝟐 𝟑𝟑

-2

+1

𝑥𝑥𝑥 𝟎𝟎 𝟎𝟎
𝟏𝟏 𝟐𝟐

relu

reused mem

evicted 

Figure 3: Illustration of different in-place mechanisms on relu_ (in-place ReLU). (a) Initial state
of the operations. (b) Unrecomputable naive in-place operations. The dependencies between adjacent
variables are incorrect. (c) Copy-on-write mutation in DTR. (d) Recomputable in-place in Coop that
avoids allocation of new tensors.

Inspired by the functional but in-place paradigm in Perceus [27], Coop proposes a memory-reuse
mechanism named recomputable in-place to handle in-place operations and further optimize the
memory layout. Instead of copying the input tensor to a new one, we reuse the memory of the input
tensor and directly allocate the new tensor to its original place such that the input tensor and the
new output tensor share the same memory (Figure 3 (d)). As the input tensor is evicted after the
in-place operation, recomputing tensors that rely on it requires recomputing the input tensor itself
first. Therefore, the value of the input tensor is always the same as its initial version.

Besides, we observed that the in-place operations mostly happen during the updates of model
parameters that are unevictable. To prevent these tensors from partitioning the whole memory pool
into discontiguous chunks, Coop first allocates the tensors of parameters to the two ends of the
memory pool, and then reuses their memory during the updates (Figure 1(c)). In this way, the rate of
memory fragmentation can be reduced to the least.

7



4 Evaluation

4.1 Evaluation Setup

We compared our proposed method, Coop, with two state-of-the-art DCG-based automatic rema-
terialization methods, DTR [16] and DTE (the rematerialization method introduced in MegTaichi
[23]), across eight representative DNNs. The eight DNNs include a 2.7B parameter GPT-3 style
large language model, Swin-Transformer, ResNet-50, etc. Additionally, we compared our method
with selective activation recomputation [38] (the rematerialization method designed for Transformer
models in Megatron-LM[28]) on Transformer models. Comparisons with static graph methods are
beyond the scope of this paper due to the distinct prerequisites and use cases.

Table 2: Rematerialization methods compared in evaluation.

Method Description Automatic MS∗-aware MS-optimized Traversal Count

Coop The proposed tensor rematerial-
ization method.

✓ ✓ ✓ Single

DTE Our impl. of Dynamic Tensor
Evicting [23] in OneFlow.

✓ ∼⋆ X Multiple

DTR Our impl. of Dynamic Tensor Re-
materialization [16] in OneFlow.

✓ X X Multiple

SAR Our impl. of Selective Activation
Recomputation [38] in OneFlow.

X X X -

∗
MS is the abbreviation of the memory system.

⋆

DTE’s heuristic considers adjacent free memory but cannot promise a contiguous memory block is obtained.

Table 2 provides an overview of the methods compared in our evaluation. The baseline methods
(DTR, DTE, and SAR) have been implemented in different frameworks. For a fair comparison, we
re-implemented all baselines in OneFlow [39], which is an open-source deep learning framework
with PyTorch-aligned APIs. In our DTE implementation, we only consider the cost of recomputation,
whereas the original paper also considers the cost of swapping tensors between GPUs and the host
[23]. We set the coefficient of computing times in DTE to 1 to align with DTR and Coop. We also
compared Coop in OneFlow with the official DTR in PyTorch and the official DTE in MegEngine
in Appendix A. The effects of the three proposed modules were examined in Appendix B. All
experiments were conducted on a machine equipped with 4 NVIDIA A100 GPU (80 GB, CUDA
11.7, CuDNN 8.5.0) and 56 Intel(R) Xeon(R) Platinum 8336C CPU cores running Ubuntu 20.04. For
BERT Large and GPT-3 style 2.7B, Adam optimizer was used, while the SGD optimizer was used for
the other experiments. ZeRO stage 2 [40] is used when training the GPT-3 style 2.7B model. Among
the eight DNNs, BiLSTM and SPOS have dynamic network structures that vary based on the input.

4.2 Evaluation Metric

Five metrics are used for evaluating the performance of the methods in Table 2, including compute
overhead, minimum memory budget, search latency, memory fragmentation rate, and cutoff memory
budget. For all of the five metrics, lower is better. Compute overhead is the additional computation
time due to tensor recomputation. Minimum memory budget is the minimum memory that the neural
network can be trained on. Note that it does not include the memory of CUDA context. Search
latency is the time to search for the optimal tensors to evict until the freed memory is sufficient for
allocating the next tensor. Memory fragmentation rate is defined as the size of free memory divided
by the memory held by the memory allocator. Cutoff memory budget is the memory threshold, below
which at least one tensor is evicted during the training process. The experimental results of the cutoff
memory budget are displayed in Appendix C.

4.3 Results and Discussion

Compute Overhead and Memory Budget. Figure 4 displays the compute overhead across various
memory budgets and the lowest memory budget for all methods. Coop presents the lowest compute
overhead and can be trained under the minimum memory budgets on all eight networks. This
improvement is substantial in most networks. For instance, the overhead of training BERT Large

8



1.0

1.1

1.2

1.3

1.4

1.5 BERT Large (16)
Sequence length 512

U-Net (5)
460x608

BiLSTM (2048)
Input dimension 100,
Sequence length 128

Swin-T (40)
224x224

0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25
GPT-3 Style 2.7B (8)

Sequence length 512

0.2 0.4 0.6 0.8 1.0

ResNet-50 (115)
224x224

0.4 0.6 0.8 1.0

Inception V3 (96)
299x299

0.2 0.4 0.6 0.8 1.0

SPOS (70)
224x224

Co
m

pu
te

 O
ve

rh
ea

d 
(x

)

Memory Ratio
Coop (Ours) DTE DTR SAR

Figure 4: Comparison among different tensor rematerialization strategies on eight DNNs, showing
the ratio of compute overhead under different memory budgets (fractions of the original peak memory
usage). Model batch sizes are given in parentheses. SAR (selective activation recomputation) is only
available on transformer models (BERT Large and GPT-3).

under a 50% memory ratio with Coop is 11%, compared with 29% with DTE and 41% with DTR.
Additionally, Coop can save up to 60% of memory usage when training Inception V3, while both
DTR and DTE only save half of that amount.

We observed that the runtime overhead of training ResNet-50, Inception V3, and Swin-T is low for
all three strategies under high memory ratios. However, the overheads of training the other DNNs,
such as U-Net, BiLSTM, and BERT Large, are substantially higher with DTR and DTE than with
Coop even at a 90% memory ratio. The reason is that the memory size of the intermediate feature is
decreasing in ResNet-50, Inception V3, and Swin-T, which is typical for image classification tasks.
Evicting an old single tensor with a large size is often sufficient for allocating a new tensor with a
small size. By contrast, BERT Large and BiLSTM have features with consistent sizes and U-Net has
a unique U-shaped architecture. In these cases, DTR and DTE need to run in loops to release enough
memory, which hugely increases the runtime overhead.

Search Latency. As shown in Figure 5, the search latency of Coop is less than DTR and DTE in
most cases. Moreover, the search latency of DTR and DTE displays considerable variations across
the eight DNNs. The maximum search latency for training BiLSTM exceeds 104µs using DTR,
which is five orders of magnitude slower than the 0.32 µs for training ResNet-50. In contrast, Coop
yields more consistent search latency across different DNNs. This is because Coop only requires a
single search using the efficient sliding window algorithm, and thus the latency remains low and is
not affected by the fluctuations in the size of the intermediate tensors.

0.5 0.6 0.7 0.8 0.9
100

101

102
BERT Large

0.4 0.5 0.6 0.7 0.8 0.9
0.0

2.5

5.0

U-Net

0.5 0.6 0.7 0.8 0.9

101

103

BiLSTM

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

Swin-T

0.6 0.7 0.8 0.9
0

5

10

GPT-3 Style 2.7B

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

ResNet-50

0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

Inception V3

0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

SPOS

Se
ar

ch
 L

at
en

cy
 (

s)

Memory Ratio
Coop (Ours) DTE DTR

Figure 5: Search latency of Coop, DTR, and DTE under different memory ratios and networks. The
bars with slashes represent the OOM error. The y-axes of GPT-2, BERT Large, and BiLSTM are in a
logarithmic scale.

9



We observed that Coop’s search latency is larger than DTR and DTE on ResNet-50 under high
memory ratios. We surmise this is the result of different engineering implementations rather than
the strategies. During the training of ResNet-50, evicting a single resident tensor is sufficient for
allocating a new one. Therefore, the search latencies of ResNet-50 are already very low (less than 0.4
µs), and thus the influence of the implementation is more obvious.

Memory Fragmentation. As shown in Figure 6, training the eight DNNs using DTR leads to
considerable memory fragmentation rates. Although DTE mitigates memory fragmentation compared
to DTR in most cases, its highest memory fragmentation rate remains considerably high. In contrast,
Coop significantly reduces the memory fragmentation rate to less than 5% across all DNNs and
memory budgets. The performance of Coop is substantially better than DTR and DTE, particularly
for BiLSTM and BERT Large models. This demonstrates that Coop utilizes the memory resources
more efficiently and explains why the same DNNs can be trained with less compute overhead and
lower memory budgets with Coop (Figure 4).

0.5 0.6 0.7 0.8 0.9
0

20

BERT Large

0.4 0.5 0.6 0.7 0.8 0.9
0

20

U-Net

0.5 0.6 0.7 0.8 0.9

100

101

102 BiLSTM

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

Swin-T

0.6 0.7 0.8 0.9
0

5

10
GPT-3 Style 2.7B

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

ResNet-50

0.4 0.5 0.6 0.7 0.8 0.9
0

5

Inception V3

0.4 0.5 0.6 0.7 0.8 0.9
0

10

SPOS

Av
g 

M
em

 F
ra

g 
Ra

te
 (

%
)

Memory Ratio
Coop (Ours) DTE DTR

Figure 6: Averaged memory fragmentation rate under Coop, DTR, and DTE. A lower rate denotes
more efficient utilization of the runtime memory. The bars with slashes represent the OOM error.

5 Limitation

Coop comes with its own memory pool, so it cannot be simultaneously used with CUDA’s built-in
memory pool (stream-ordered memory allocator). The advantage of using the stream-ordered memory
allocator is that multiple programs that use the stream-ordered memory allocator can share the same
memory pool. However, all existing deep learning frameworks use their own memory pools instead
of CUDA’s built-in memory pool in default to achieve better efficiency and flexibility.

Additionally, Coop is an online method so it inherits the pros and cons of online methods. It can
provide an efficient solution to finding the best tensors to evict within negligible time. However, the
solutions may not match the optimal solutions as solved by the offline methods such as Checkmate,
even though these offline methods usually require additional solvers and take several hours or multiple
days.

6 Conclusion

We proposed Coop to address the challenge of training large dynamic DNNs under restricted memory
budgets. We argued for the first time that the memory system in DL frameworks should not be
ignored in tensor rematerialization and the conventional checkpointing algorithms on DCGs can be
hugely improved by co-optimizing tensor allocation and tensor rematerialization. Leveraging the
contributions of the sliding window algorithm, cheap tensor partitioning, and recomputable in-place,
Coop demonstrates consistent and superior performance over the state-of-the-art checkpointing
algorithms on most of the commonly used models, with the lowest memory budgets, least runtime
overhead, and minimum memory fragmentation rate.

10



Acknowledgement

The authors thank Marisa Kirisame for discussing with us the idea and paper-writing of Coop,
and thank Kan Wu, Qiaoling Chen, and Yipeng Li for their helpful advice. Jianhao Zhang would
like to express heartfelt appreciation to his wife, Xingzi Yao, for her unwavering support and
companionship. This work was supported by the Major Scientific Research Project of Zhejiang
Lab (No.2019KD0AD01) and National Natural Science Foundation of China under Grant No.
U20A20226.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821–8831. PMLR, 2021.

[3] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[4] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[5] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, and Kurt Keutzer. Ai and
memory wall, Mar 2021.

[6] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity. Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, Nov 2021.

[7] Andreas Griewank. An implementation of checkpointing for the reverse or adjoint model of
differentiation. ACM Trans. Math. Software, 26(1):1–19, 1999.

[8] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software (TOMS), 26(1):19–45, 2000.

[9] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine Learning
Research, 18:1–43, 2018.

[10] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[11] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor
rematerialization. In Proceedings of Machine Learning and Systems 2020, pages 497–511.
2020.

[12] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient rema-
terialization for deep networks. Advances in Neural Information Processing Systems, 32,
2019.

[13] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. Advances in Neural Information Processing Systems,
29, 2016.

11



[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[15] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-
mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. arXiv preprint arXiv:2205.05198, 2022.

[16] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared
Roesch, Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint
arXiv:2006.09616, 2020.

[17] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale
machine learning on heterogeneous systems, 11 2015.

[18] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[19] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc: Free list sharding in action.
In Asian Symposium on Programming Languages and Systems, pages 244–265. Springer, 2019.

[20] Jason Evans. A scalable concurrent malloc (3) implementation for freebsd. In Proc. of the
bsdcan conference, ottawa, canada, 2006.

[21] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S.
McKinley, and Colin Raffel. Learning-based memory allocation for c++ server workloads. In
25th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[22] Chang Hyun Park, Sanghoon Cha, Bokyeong Kim, Youngjin Kwon, David Black-Schaffer, and
Jaehyuk Huh. Perforated page: Supporting fragmented memory allocation for large pages. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture,
ISCA ’20, page 913–925. IEEE Press, 2020.

[23] Zhongzhe Hu, Junmin Xiao, Zheye Deng, Mingyi Li, Kewei Zhang, Xiaoyang Zhang, Ke Meng,
Ninghui Sun, and Guangming Tan. Megtaichi: dynamic tensor-based memory management
optimization for dnn training. In Proceedings of the 36th ACM International Conference on
Supercomputing, pages 1–13, 2022.

[24] Yu Tang, Chenyu Wang, Yufan Zhang, Yuliang Liu, Xingcheng Zhang, Linbo Qiao, Zhiquan Lai,
and Dongsheng Li. Delta: Dynamically optimizing gpu memory beyond tensor recomputation,
2022.

[25] Parrots Team. Parrots framework. https://parrotsdoc.readthedocs.io/en/latest/
overview.html, 2015.

[26] Daan Leijen. Koka: Programming with row polymorphic effect types. Electronic Proceedings
in Theoretical Computer Science, 153:100–126, Jun 2014.

[27] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. Perceus: Garbage free
reference counting with reuse. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 96–111, 2021.

12

https://parrotsdoc.readthedocs.io/en/latest/overview.html
https://parrotsdoc.readthedocs.io/en/latest/overview.html


[28] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[29] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible resid-
ual network: Backpropagation without storing activations. Advances in neural information
processing systems, 30, 2017.

[30] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[31] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 776–789. IEEE, 2018.

[32] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond
the gpu memory limit via smart swapping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[33] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena SHILOVA. Efficient combination of
rematerialization and offloading for training DNNs. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[34] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. Proceedings of Machine Learning and Systems, 1:1–13, 2019.

[35] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[36] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[37] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W Mahoney, and
Joseph E Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning, 2021.

[38] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-
mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. arXiv preprint arXiv:2205.05198, 2022.

[39] Jinhui Yuan, Xinqi Li, Cheng Cheng, Juncheng Liu, Ran Guo, Shenghang Cai, Chi Yao, Fei
Yang, Xiaodong Yi, Chuan Wu, Haoran Zhang, and Jie Zhao. Oneflow: Redesign the distributed
deep learning framework from scratch, 2021.

[40] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models. SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2020.

13


	Introduction
	Background and Motivation
	Memory Allocator in DL Systems
	Tensor Rematerialization and Memory Fragmentation
	In-place Mutation in DL Systems
	Other Memory-saving Techniques

	Methods
	Problem Formulation
	Method Overview
	Sliding Window Algorithm
	Cheap Tensor Partitioning
	Recomputable In-place

	Evaluation
	Evaluation Setup
	Evaluation Metric
	Results and Discussion

	Limitation
	Conclusion

