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Abstract

Stein Variational Gradient Descent (SVGD) is a popular particle-based variational
inference algorithm with impressive empirical performance across various domains.
Although the population (i.e, infinite-particle) limit dynamics of SVGD is well
characterized, its behavior in the finite-particle regime is far less understood. To
this end, our work introduces the notion of virtual particles to develop novel
stochastic approximations of population-limit SVGD dynamics in the space of
probability measures, that are exactly realizable using finite particles. As a result,
we design two computationally efficient variants of SVGD, namely VP-SVGD and
GB-SVGD, with provably fast finite-particle convergence rates. Our algorithms
can be viewed as specific random-batch approximations of SVGD, which are
computationally more efficient than ordinary SVGD. We show that the n particles
output by VP-SVGD and GB-SVGD, run for T steps with batch-size K, are at-
least as good as i.i.d samples from a distribution whose Kernel Stein Discrepancy
to the target is at most O(d

1/3
/(KT )1/6) under standard assumptions. Our results

also hold under a mild growth condition on the potential function, which is much
weaker than the isoperimetric (e.g. Poincare Inequality) or information-transport
conditions (e.g. Talagrand’s Inequality T1) generally considered in prior works. As
a corollary, we analyze the convergence of the empirical measure (of the particles
output by VP-SVGD and GB-SVGD) to the target distribution and demonstrate
a double exponential improvement over the best known finite-particle analysis of
SVGD. Beyond this, our results present the first known oracle complexities for this
setting with polynomial dimension dependence, thereby completely eliminating the
curse of dimensionality exhibited by previously known finite-particle rates.

1 Introduction

Sampling from a distribution over Rd whose density π⋆(x) ∝ exp(−F (x)) is known only upto a
normalizing constant, is a fundamental problem in machine learning [52, 20], statistics [41, 36],
theoretical computer science [28, 17] and statistical physics [39, 15]. A popular approach to this is
the Stein Variational Gradient Descent (SVGD) algorithm introduced by Liu and Wang [31], which
uses a positive definite kernel k to evolve a set of n interacting particles (x(i)

t )i∈[n],t∈N as follows:

x
(i)
t+1 ← x

(i)
t −

γ

n

n∑
j=1

[
k(x

(i)
t ,x

(j)
t )∇F (x(j)

t )−∇2k(x
(i)
t ,x

(j)
t )
]

(1)

SVGD exhibits remarkable empirical performance in a variety of Bayesian inference, generative
modeling and reinforcement learning tasks [31, 51, 54, 22, 50, 34, 45, 19] and usually converges
rapidly to the target density while using only a few particles, often outperforming Markov Chain
Monte Carlo (MCMC) methods. However, in contrast to its wide practical applicability, theoretical
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analysis of the behavior SVGD is a relatively unexplored problem. Prior works on the analysis
of SVGD [26, 14, 30, 42, 7] mainly consider the population limit, where the number of particles
n→∞. These works assume that the initial distribution of the (infinite number of) particles has a
finite KL divergence to the target π⋆ and subsequently, interpret the dynamics of population-limit
SVGD as projected gradient descent updates for the KL divergence on the space of probability
measures, equipped with the Wasserstein geometry. Under appropriate assumptions on the target
density, one can then use the theory of Wasserstein Gradient Flows to establish non-asymptotic (in
time) convergence of population-limit SVGD to π⋆ in the Kernel Stein Discrepancy (KSD) metric.

While the framework of Wasserstein Gradient Flows suffices to explain the behavior of SVGD in the
population limit, the same techniques are insufficient to effectively analyze SVGD in the finite-particle
regime. This is primarily due to the fact that the empirical measure µ̂(n) of a finite number of particles
does not admit a density with respect to the Lebesgue measure, and thus, its KL divergence to the
target is always infinite (i.e. KL

(
µ̂(n)||||||π⋆

)
=∞). In such a setting, a direct analysis of the dynamics

of finite-particle SVGD becomes prohibitively difficult due to complex inter-particle dependencies.
To the best of our knowledge, the pioneering work of Shi and Mackey [43] is the only result that
obtains an explicit convergence rate of finite-particle SVGD by tracking the deviation between the
law of n-particle SVGD and that of its population-limit. To this end, Shi and Mackey [43] show that
for subgaussian target densities, the empirical measure of n-particle SVGD converges to π⋆ at a rate

of O(
√

poly(d)
log lognΘ(1/d) ) in KSD 1. The obtained convergence rate is quite slow and fails to adequately

explain the impressive practical performance of SVGD.

Our work takes a starkly different approach to this problem and deliberately deviates from tracking
population-limit SVGD using a finite number of particles. Instead, we directly analyze the dynamics
of KL divergence along a carefully constructed trajectory in the space of distributions. To this
end, our proposed algorithm, Virtual Particle SVGD (VP-SVGD) devises an unbiased stochastic
approximation (in the space of measures) of the population-limit dynamics of SVGD. We achieve this
by considering additional particles called virtual particles 2 which evolve in time but aren’t part of
the output (i.e. real particles). These virtual particles are used only to compute information about
the current population-level distribution of the real particles, and enable exact implementation of our
stochastic approximation to population-limit SVGD, while using only a finite number of particles.

Our analysis is similar in spirit to non-asymptotic analyses of stochastic gradient descent (SGD)
that generally do not attempt to track gradient descent (analogous to population-limit SVGD in this
case), but instead directly track the evolution of the objective function along the SGD trajectory
using appropriate stochastic descent lemmas [24, 21, 11]. The key feature of our proposed stochastic
approximation is the fact that it can be implemented using only a finite number of particles. This
allows us to design faster variants of SVGD with provably fast finite-particle convergence.

1.1 Contributions

VP-SVGD and GB-SVGD We propose two variants of SVGD that enjoy provably fast finite-particle
convergence guarantees to the target distribution: Virtual Particle SVGD (VP-SVGD in Algorithm 1)
and Global Batch SVGD (GB-SVGD in Algorithm 2). VP-SVGD is a conceptually elegant stochastic
approximation (in the space of probability measures) of population-limit SVGD, and GB-SVGD is a
practically efficient version of SVGD which achieves good empirical performance. Our analysis of
GB-SVGD builds upon that of VP-SVGD. When the potential F is smooth and satisfies a quadratic
growth condition (which holds under subgaussianity of π⋆, a common assumption in prior works
[42, 43]), we show that the n particles output by T steps of our algorithms, run with batch-size K,
are at least as good as i.i.d draws from a distribution whose Kernel Stein Discrepancy to π⋆ is at most
O(d

1/3
/(KT )1/6). Our results also hold under a mild subquadratic growth condition for F , which is

much weaker than isoperimetric (e.g. Poincare Inequality) or information-transport (e.g. Talagrand’s
Inequality T1) assumptions generally considered in the sampling literature [47, 42, 43, 8, 2].

State-of-the-art Finite Particle Guarantees As corollaries of the above result, we establish that
VP-SVGD and GB-SVGD exhibit the best known finite-particle guarantees in the literature which
significantly outperform that of prior works. Our results are summarized in Table 1. In particular,

1We explicate the dimension dependence in Shi and Mackey [43] by closely following their analysis
2(roughly) analogous to virtual particles in quantum field theory that enable interactions between real particles
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Result Algorithm Assumption Rate
Oracle

Complexity

Korba et al. [26]
Population Limit

SVGD
Uniformly Bounded
KSDπ⋆(µ̄t||π⋆) poly(d)√

T

Not
Implementable

Salim et al. [42]
Population Limit

SVGD Sub-gaussian π⋆ d
3/2
√
T

Not
Implementable

Shi and Mackey [43] SVGD Sub-gaussian π⋆ poly(d)√
log lognΘ(1/d)

poly(d)
ϵ2 eΘ(de

poly(d)/ϵ2 )

Ours, Corollary 1 VP-SVGD Sub-gaussian π⋆ (d/n)1/4 + (d/n)1/2 d4
/ϵ12

Ours, Corollary 1 GB-SVGD Sub-gaussian π⋆ d
1/3
/n1/12 + (d/n)1/2 d6

/ϵ18

Ours, Corollary 1 VP-SVGD Sub-exponential π⋆ d
1/3

n1/6
+ d

n1/2
d6
/ϵ16

Ours, Corollary 1 GB-SVGD Sub-exponential π⋆ d
3/8

n1/16
+ d

n1/2
d9
/ϵ24

Table 1: Comparison of our results with prior works. d, T , and n denote the dimension, no. of
iterations and no. of output particles respectively. Oracle Complexity denotes number of evaluations
of ∇F needed to achieve KSDπ⋆(·||π⋆) ≤ ϵ and Rate denotes convergence rate w.r.t KSD metric.
Note that: 1. Population Limit SVGD is not implementable as it requires infinite particles 2. The
uniformly bounded KSDπ⋆(µ̄t||π⋆) assumption cannot be verified apriori and is much stronger than
subgaussianity (see [42] Lemma C.1)

under subgaussianity of the target distribution π⋆, we show that the empirical measure of the n
particles output by VP-SVGD converges to π⋆ in KSD at a rate of O((d/n)1/4 + (d/n)1/2). Similarly,
the empirical measure of the n output particles of GB-SVGD converges to π⋆ at a KSD rate of
O(d

1/3
/n1/12 + (d/n)1/2). Both these results represent a double exponential improvement over the

O( poly(d)√
log lognΘ(1/d)

) KSD rate of n-particle SVGD obtained by Shi and Mackey [43], which, to our

knowledge, is the best known prior result for SVGD in the finite particle regime. When benchmarked
in terms of gradient oracle complexity, i.e., the number of evaluations of∇F required by an algorithm
to achieve KSDπ⋆(·||π⋆) ≤ ϵ, we demonstrate that for subgaussian π⋆, the oracle complexity of
VP-SVGD is O(d

4
/ϵ12) while that of GB-SVGD is O(d

6
/ϵ18). To the best of our knowledge, our

result presents the first known oracle complexity guarantee with polynomial dimension dependence,
and consequently, does not suffer from a curse of dimensionality unlike prior works. Furthermore,
as discused above, the conditions under which our result holds is far weaker than subgaussianity
of π⋆, and as such, includes sub-exponential targets and beyond. In particular, our guarantees for
sub-exponential target distributions are (to the best of our knowledge) the first of its kind.

Computational Benefits: VP-SVGD and GB-SVGD can be viewed as specific random batch approx-
imations of SVGD. Our experiments (Section 8) show that GB-SVGD obtains similar performance as
SVGD but requires fewer computations. In this context, a different kind of random batch method that
divides the particles into random subsets of interacting particles, has been proposed by Li et al. [29].
However, the objective in Li et al. [29] is to approximate finite-particle SVGD dynamics using the
random batch method, instead of analyzing convergence of the random batch method itself. Beyond
this, their guarantees also suffer from an exponential dependence on the time T . As explained below,
their approach is also conceptually different from our method since we use the same random batch
to evolve every particle, allowing us to interpret this as a stochastic approximation in the space of
distributions instead of in the path space.

1.2 Technical Challenges

We resolve the following important conceptual challenges, which may be of independent interest.

Stochastic Approximation in the Space of Probability Measures Stochastic approximations
are widely used in optimization, control and sampling [27, 52, 23]. In the context of sampling,
stochastic approximations are generally implemented in path space, e.g., Stochastic Gradient Langevin
Dynamics (SGLD) [52] takes a random batch approximation of the drift term via the update xt+1 =

xt− η
K

∑K−1
j=0 ∇f(xt, ξj)+

√
2ηϵt, ϵt ∼ N (0, I) where E[f(xt, ξj)|xt] = F (xt). Such stochastic

approximations are then analyzed using the theory of stochastic processes over Rd [12, 40, 55, 25].
However, when viewed in the space of probability measures (i.e, µt = Law(xt)), the time-evolution
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of these algorithms is deterministic. In contrast, our approach designs stochastic approximations
in the space of probability measures. In particular, the time-evolution of the law of any particle in
VP-SVGD and GB-SVGD are a stochastic approximation of the dynamics of population-limit SVGD.
We ensure that requires only a finite number of particles for exact implementation.

Tracking KL Divergence in the Finite-Particle Regime The population limit (n → ∞) ensures
that the initial empirical distribution (µ0) of SVGD admits a density (w.r.t the Lebesgue measure).
When the KL divergence between µ0 and π⋆ is finite, prior works on population-limit SVGD analyze
the time-evolution of the KL divergence to π⋆. However, this approach cannot be directly used to
analyze finite-particle SVGD since the empirical distribution of a finite number of particles does
not admit a density, and thus its KL divergence to π⋆ is infinite. Our analysis of VP-SVGD and
GB-SVGD circumvents this obstacle by considering the dynamics of an infinite number of particles,
whose empirical measure then admits a density. However, the careful design ensures that the dynamics
of n of these particles can be computed exactly, using only a finite total number of (real + virtual)
particles. When conditioned on the virtual particles, these particles are i.i.d. and their conditional law
is close to the target distribution with high probability.

2 Notation and Problem Setup

We use ∥ · ∥, ⟨·, ·⟩ to denote the Euclidean norm and inner product over Rd respectively. All other
norms and inner products are subscripted to indicate their underlying space. P2(Rd) denotes the
space of probability measures on Rd with finite second moment, with the Wasserstein-2 metric
denoted asW2 (µ, ν) for µ, ν ∈ P2(Rd). For any two probability measures µ, ν, we denote their KL
divergence as KL (µ||||||ν). For any function f : X → Y and any probability measure µ over X , we let
f#µ denote the law of f(x) : x ∼ µ. Given a sigma algebra F over some space Ω, and a measurable
space X , µ(· ; ·) : F ×X → R+ is a probability kernel if for every x ∈ X , µ(· ;x) is a measure over
F and for every A ∈ F , the map x→ µ(A ;x) is measurable. We make use of probability measures
µ(· ;x) where x is a random element of some appropriate space X , resulting in random probability
measures. We use [m] and (m) to denote the sets {1, . . . ,m} and {0, . . . ,m− 1} respectively. For
any finite set A, SA denotes the group of all permutations of A. We use the O notation to characterize
the dependence of our rates on the number of iterations T , dimension d and batch-sizeK, suppressing
numerical and problem-dependent constants. We use ≲ to denote ≤ upto universal constants.

We fix a symmetric positive definite reproducing kernel k : Rd × Rd → R and let the corresponding
reproducing kernel Hilbert space (RKHS) [44] be denoted as H0. We denote the product RKHS
as H =

∏d
i=1H0, equipped with the standard inner product for product spaces. We assume k is

differentiable in both its arguments and let ∇2k(x,y) denote the gradient of k(·, ·) with respect
to the second argument. For any µ ∈ P2(Rd), we assume H ⊂ L2(µ) and the inclusion map
iµ : H → L2(µ) is continuous. We use Pµ : L2(µ)→ H to denote the adjoint of iµ, i.e., the unique
operator which satisfies ⟨f, iµg⟩L2(µ) = ⟨Pµf, g⟩H for any f ∈ L2(µ), g ∈ H. Carmeli et al. [6]
shows that Pµ can be expressed as a kernel convolution, i.e., (Pµf)(x) =

∫
k(x,y)f(y)dµ(y)

We define the function h : Rd × Rd → R as h(x,y) = k(x,y)∇F (y) −∇2k(x,y) and hµ ∈ H
as hµ = Pµ(∇x log(

dµ
dπ⋆ (x))) for any µ ∈ P2(Rd). Integration by parts shows that hµ(x) =∫

h(x,y)dµ(y). The convergence metric we use is the Kernel Stein Discrepancy (KSD) metric,
which is widely used for comparing probability distributions [32, 9] and analyzing SVGD [42, 26].
Definition 1 (Kernel Stein Discrepancy). Define the Langevin Stein Operator of π⋆ acting on any
differentiable g : Rd → Rd:

(Tπ⋆g)(x) = ∇ · g(x)− ⟨∇F (x), g(x)⟩
For any two probability measures µ, ν, the Kernel Stein Discrepancy between µ and ν (with respect
to π⋆), denoted as KSDπ⋆(µ||ν) is defined as

KSDπ⋆(µ||ν) = sup
∥g∥H≤1

Eµ[Tπ⋆g]− Eν [Tπ⋆g]

Using integration by parts (see Chwialkowski et al. [9]), it follows that KSDπ⋆(µ||ν) = ∥hµ− hν∥H

Organization: We review population-limit SVGD in Section 3 and derive VP-SVGD and GB-
SVGD in Section 4. We state our technical assumptions in Section 5, main results in Section 6 and
provide a proof sketch in Section 7. We present empirical evaluation in Section 8.
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3 Background on Population-Limit SVGD

We briefly introduce the analysis of population-limit SVGD using the theory of Wasserstein Gradient
Flows and refer the readers to Korba et al. [26] and Salim et al. [42] for a detailed treatment.

The space P2(Rd) equipped with the 2-Wasserstein metricW2 is known as the Wasserstein space,
which admits the following Riemannian structure : For any µ ∈ P2(Rd), the tangent space TµP2(Rd)
can be identified with the Hilbert space L2(µ). We can then define differentiable functionals
L : P2(Rd)→ R and compute their Wasserstein gradients, denoted as∇W2L. Note that the target π⋆

is the unique minimizer over P2(Rd) for the functional L[µ] = KL (µ||||||π⋆). The Wasserstein Gradient
of L[µ] is ∇W2

L[µ] = ∇x log(
dµ
dπ⋆ (x)) [1]. This powerful machinery has served as a backbone for

the analysis of algorithms such as LMC [53, 3, 2] and population-limit SVGD [14, 26, 42, 45, 7].

The updates of population-limit SVGD can be viewed as Projected Gradient Descent in the Wasser-
stein space. Recall from Section 2 that the function hµ(x) = Pµ(∇ log( dµ

dπ⋆ ))(x) =
∫
h(x,y)dµ(y).

Let µ̂n
t denote the empirical measures of the SVGD particles (x

(i)
t )i∈[n] at timestep t. We note

that the SVGD updates in (1) can be recast as µ̂n
t+1 = (I − γhµ̂n

t
)#µ̂

t
n. In the limit of infinite

particles n→∞, suppose the empirical measure µ̂n
t converges to the population measure µ̄t. In this

population limit, the updates of SVGD can be expressed as,

µ̄t+1 = (I − hµ̄t)# µ̄t =
(
I − γPµ̄t

(
∇ log( dµ̄t

dπ⋆ )
))

#
µ̄t = (I − γPµ̄t (∇W2KL (µ̄t||||||π⋆)))# µ̄t

Recall from Section 2 that Pµ̄t
: L2(µ̄t)→ H is the Hilbert adjoint of iµ̄t

. Since H ⊂ L2(µ̄t), the
updates of SVGD in the population limit can be seen as Projected Wasserstein Gradient Descent for
L[µ] = KL (µ||||||π⋆), with the Wasserstein Gradient at each step being projected onto the RKHS H.
Assuming KL (µ̄0||||||π⋆) <∞, convergence of population limit SVGD is then established by tracking
the evolution of KL (µ̄t||||||π⋆) under appropriate structural assumptions (such as subgaussianity) on π⋆.

4 Algorithm and Intuition

In this section, we derive VP-SVGD (Algorithm 1), and build upon it to obtain GB-SVGD. Consider
a countably infinite collection of particles x(l)

0 ∈ Rd, l ∈ N ∪ {0}, sampled i.i.d from a measure
µ0, having a density w.r.t. the Lebesgue measure. By the strong law of large numbers, the empirical
measure of x(l)

0 is almost surely equal to µ0 (see Dudley [13, Theorem 11.4.1]). Let batch sizeK ∈ N
denote the batch size, andFt denote the filtrationFt, t ≥ 0 asFt = σ({x(l)

0 | l ≤ Kt−1}), ∀ t ∈ N,
with F0 being the trivial σ algebra. For ease of exposition, we discuss the case of K = 1 in this
section and present a complete derivation for arbitrary K ≥ 1 in Appendix C. Recall from Section 3
that the updates of population-limit SVGD in P2(Rd) can be expressed as follows:

µ̄t+1 = (I − γhµ̄t
)#µ̄t (2)

We aim to design a stochastic approximation in P2(Rd) for the updates (2), such that it admits a
finite-particle realization. To this end, we propose the following dynamics in Rd

x
(s)
t+1 = x

(s)
t − γh(x

(s)
t ,x

(t)
t ), s ∈ N ∪ {0} (3)

Now, for each time-step t, we focus on the time evolution of the particles (x(l)
t )l≥t (called the lower

triangular evolution). From (3), we observe that for any t ∈ N and l ≥ t, x(l)
t depends only on

x
(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0 . Hence, there exists a deterministic, measurable function Ht such that:

x
(l)
t = Ht(x

(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0 ) ; for every l ≥ t (4)

Since x
(0)
0 , . . . ,x

(t−1)
0 ,x

(l)
0

i.i.d.∼ µ0, we conclude from (4) that (x(l)
t )l≥t are i.i.d when conditioned

on x
(0)
0 , . . . ,x

(t−1)
0 . To this end, we define the random measure µt|Ft as the law of x(t)

t conditioned
on Ft, i.e., µt|Ft is a probability kernel µt(· ;x(0)

0 , . . . ,x
(t−1)
0 ), where µ0|F0 := µ0. By the strong

law of large numbers, µt|Ft is equal to the empirical measure of (x(l)
t )l≥t conditioned on Ft. We

will use µt|Ft and µt(· ;x(0)
0 , . . . ,x

(t−1)
0 ) interchangeably.
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Define the random function gt : Rd → Rd as gt(x) := h(x,x
(t)
t ). From (4), we note that gt is Ft+1

measurable. From (3), we infer that the particles satisfy the following relation:

x
(s)
t+1 = (I − γgt)(x(s)

t ), s ≥ t+ 1

Recall that x(s)
t+1|x

(0)
0 , . . . ,x

(t)
0 ∼ µt+1|Ft+1 for any s ≥ t+ 1. Furthermore, from Equation (4), we

note that for s ≥ t + 1, x(s)
t depends only on x

(0)
0 , . . . ,x

(t−1)
0 and x

(s)
0 . Hence, we conclude that

Law(x
(s)
t |x

(0)
0 , . . . ,x

(t)
0 ) = Law(x

(s)
t |x

(0)
0 , . . . ,x

(t−1)
0 ) = µt|Ft. With this insight, the dynamics

of the lower-triangular evolution in P2(Rd) that the following holds almost surely:

µt+1|Ft+1 = (I − γgt)#µt|Ft (5)

x
(t)
t |Ft ∼ µt|Ft implies E[gt(x)|Ft] = hµt|Ft

(x). Thus lower triangular dynamics (5) is a stochas-
tic approximation in P2(Rd) to the population limit of SVGD (2). Setting the batch size to general
K and tracking the evolution of the first KT + n particles, we obtain VP-SVGD (Algorithm 1).

Algorithm 1 Virtual Particle SVGD (VP-SVGD)
Input: Number of steps T , number of output particles n, batch size K, Initial positions
x
(0)
0 , . . . ,x

(n+KT−1)
0

i.i.d.∼ µ0, Kernel k, step size γ.
1: for t ∈ {0, . . . , T − 1} do
2: for s ∈ {0, . . . ,KT + n− 1} do
3: x

(s)
t+1 = x

(s)
t −

γ
K

∑K−1
l=0 [k(x

(s)
t ,x

(tK+l)
t )∇F (x(tK+l)

t )−∇2k(x
(s)
t ,x

(tK+l)
t )]

4: end for
5: end for
6: Draw S uniformly at random from {0, . . . , T − 1}
7: Output (y(0), . . . ,y(n−1)) = (x

(TK)
S , . . . ,x

(TK+n−1)
S )

Virtual Particles In Algorithm 1, (x(l)
t )KT≤l≤KT+n−1 are the real particles which constitute the

output. (x(l)
t )l<KT are virtual particles which propagate information about the probability measure

µt|Ft to enable computation of gt, an unbiased estimate of the projected Wasserstein gradient hµt|Ft
.

VP-SVGD as SVGD Without Replacement VP-SVGD is a without-replacement random-batch
approximation of SVGD (1), where a different batch is used across timesteps, but the same batch is
across particles given a fixed timestep. With i.i.d. initialization, picking the ‘virtual particles’ in a
fixed order or from a random permutation does not change the evolution of the real particles. With
this insight, we design GB-SVGD (Algorithm 2) where we consider n particles and output n particles
(instead of wasting KT particles as ‘virtual particles’) via a random-batch approximation of SVGD.

Algorithm 2 Global Batch SVGD (GB-SVGD)

Input: # of time steps T , # of particles n, x(0)
0 , . . . ,x

(n−1)
0

i.i.d.∼ µ0, Kernel k, step size γ, Batch
size K, Sampling method ∈ {with replacement,without replacement}

1: for t ∈ {0, . . . , T − 1} do
2: Kt ← random subset of [n] of size K (via. sampling method)
3: for s ∈ {0, . . . , n− 1} do
4: x

(s)
t+1 = x

(s)
t −

γ
K

∑
r∈Kt

[k(x
(s)
t ,x

(r)
t )∇F (x(r)

t )−∇2k(x
(s)
t ,x

(r)
t )]

5: end for
6: end for
7: Draw S uniformly at random from {0, 1, . . . , T − 1}
8: Output (ȳ(0), . . . , ȳ(n−1)) = (x

(0)
S , . . . ,x

(n−1)
S )

In Algorithm 2, with replacement sampling means selecting a batch of K particles i.i.d. from the
uniform distribution over [n]. Without replacement sampling means fixing a random permutation σ
over {0, . . . , n− 1} and selecting the batches in the order specified by the permutation.
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5 Assumptions

In this section, we discuss the key assumptions required for our analysis of VP-SVGD and GB-SVGD.
Our first assumption is smoothness of F , which is standard in optimization and sampling.

Assumption 1 (L-Smoothness). ∇F exists and is L Lipschitz. Moreover ∥∇F (0)∥ ≤
√
L.

It is easy find a point such that ∥∇F (x∗)∥ ≤
√
L (e.g., using Θ(1) gradient descent steps [37]) and

center the initialization at µ0 at x∗. For clarity, we take x∗ = 0 without loss of generality. We now
impose the following growth condition on F .

Assumption 2 (Growth Condition). There exist α, d1, d2 > 0 such that

F (x) ≥ d1∥x∥α − d2 ∀x ∈ Rd

Note that Assumption 1 ensures α ≤ 2. Assumption 2 is essentially a tail decay assumption on the
target density π⋆(x) ∝ e−F (x). In fact, as we shall show in Appendix B, Assumption 2 ensures
that the tails of π⋆ decay as ∝ e−∥x∥α

. Consequently, Assumption 2 holds with α = 2 when π⋆ is
subgaussian and with α = 1 when π⋆ is subexponential. Subgaussianity is equivalent to π⋆ satisfying
the T1 inequality [5, 49], commonly assumed in prior works on SVGD [42, 43]. We also note
that subexponentiality is implied when π⋆ satisfies the Poincare Inequality [4, Section 4], which is
considered a mild condition in the sampling literature [47, 8, 2, 12, 7]. This makes Assumption 1
significantly weaker than the isoperimetric or information-transport assumptions considered in prior
works.

Next, we impose a mild assumption on the RKHS of the kernel k, which has been used by several
prior works [42, 26, 45, 43].

Assumption 3 (Bounded RKHS Norm). For any y ∈ Rd, k(·,y) satisfies ∥k(·,y)∥H0
≤ B.

Furthermore, ∇2k(·,y) ∈ H and ∥∇2k(·,y)∥H ≤ B

Assumption 3 ensures that the adjoint operator Pµ, used in Sections 2 and 3, is well-defined. We
also make the following assumptions on the kernel k, which is satisfied by a large class of standard
kernels such as Radial Basis Function kernels and Matérn kernels of order ≥ 3/2.

Assumption 4 (Kernel Decay). The kernel k satisfies the following for constants A1, A2, A3 > 0.

0 ≤ k(x,y) ≤ A1

1+∥x−y∥2 , ∥∇2k(x,y)∥ ≤ A2, ∥∇2k(x,y)∥2 ≤ A3k(x,y)

Finally, we make the following mild assumption on the initialization.

Assumption 5 (Initialization). The initial distribution µ0 is such that KL (µ0||||||π⋆) <∞. Furthermore,
µ0 is supported in B(R), the ℓ2 ball of radius R

Since prior works usually assume Gaussian initialization [42, 47], Assumption 5 may seem slightly
non-standard. However, this is not a drawback. In fact, whenever R = Θ(

√
d+ polylog(n/δ)), Gaus-

sian initialization can be made indistinguishable from Uniform(B(R)) initialization, with probability
at least 1− δ, via a coupling argument. To this end, we impose Assumption 5 for ease of exposition
and our results can be extended to consider Gaussian initialization. In Appendix B we show that
taking R =

√
d/L and µ0 = Uniform(B(R)) suffices to ensure KL (µ0||||||π⋆) = O(d).

6 Results

6.1 VP-SVGD

Our first result, proved in Appendix C, shows that the law of the real particles of VP-SVGD , when
conditioned on the virtual particles, is close to π⋆ in KSD. As a consequence, it shows that the particles
output by VP-SVGD are i.i.d. samples from a random probability measure µ̄(·;x(0)

0 , . . . ,x
(KT−1)
0 , S)

which is close to π⋆ in KSD. We also present a high-probability version of this result in Appendix C.

Theorem 1 (Convergence of VP-SVGD). Let µt be as defined in Section 4. Let Assumptions 1 2, 3, 4,
and 5 be satisfied and let γ ≤ min{1/2A1L, 1/(4+L)B}. There exist (ζi)0≤i≤3 depending polynomially
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on A1, A2, A3, B, L, d1, d2 for any fixed α ∈ (0, 2], such that whenever γξ ≤ 1
2B , with ξ =

ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )1/α + ζ3R
2/α, the following holds:

1

T

T−1∑
t=0

E
[
KSD2

π⋆(µt|Ft||π⋆)
]
≤ 2KL (µ0||||||π⋆)

γT
+
γB(4 + L)ξ2

K

Define the probability kernel µ̄(· ; ·) as follows: For any xτ ∈ Rd, τ ∈ (KT ) and s ∈ (T ),
µ̄(· ;x0, . . . , xKT−1, s) := µs(· ;x0, . . . , xKs−1) and µ̄(· ;x0, . . . , xKT−1, s = 0) := µ0(·). Con-
ditioned on x

(0)
τ = xτ , S = s for every τ ∈ (KT ), the outputs y(0), . . . ,y(n−1) of VP-SVGD are

i.i.d samples from µ̄(· ;x0, . . . , xKT−1, s). Furthermore,

E[KSD2
π⋆(µ̄(· ;x(0)

0 , . . . ,x
(KT−1)
0 , S)||π⋆)] ≤ 2KL (µ0||||||π⋆)

γT
+
γB(4 + L)ξ2

K

Convergence Rates Taking µ0 = Uniform(B(R)) with R =
√

d/L ensures KL (µ0|F0||||||π⋆) = O(d)

(see Appendix B). Under this setting, choosing γ = O( (Kd)η

T 1−η ) ensures that E[KSD2
π⋆(µ̄||π⋆)] =

O( d1−η

(KT )η ) where η = α
2(1+α) . Thus, for α = 2, (i.e, sub-Gaussian π⋆), KSD2 = O( d

2/3

(KT )1/3
). For

α = 1 (i.e, sub-Exponential π⋆), the rate (in squared KSD) becomes O( d
3/4

(KT )1/4
). To the best of our

knowledge, our convergence guarantee for sub-exponential π⋆ is the first of its kind.

Comparison with Prior Works Salim et al. [42] analyzes population-limit SVGD for subgaussian
π⋆, obtaining KSD2 = O(d

3/2
/T) rate. We note that population-limit SVGD (which requires infinite

particles) is not implementable whereas VP-SVGD is an implementable algorithm whose outputs are
conditionally i.i.d samples from a distribution with guaranteed convergence to π⋆.

6.2 GB-SVGD

We now use VP-SVGD as the basis to analyze GB-SVGD. Assume n > KT . Then, with probability
at least 1− K2T 2

/n (for with-replacement sampling) and 1 (for without-replacement sampling), the
random batches Kt in GB-SVGD (Algorithm 2) are disjoint and contain distinct elements. When
conditioned on this event E , we note that the n−KT particles that were not included in any random
batch Kt evolve exactly like the n real particles of VP-SVGD. With this insight, we show that,
conditioned on E , the outputs of VP-SVGD and GB-SVGD can be coupled such that the first n−KT
particles of both the algorithms are exactly equal. This allows us to derive the following squared
KSD bound between the empirical measures of the outputs of VP-SVGD and GB-SVGD. The proof
of this result is presented in Appendix D.
Theorem 2 (KSD Bounds for GB-SVGD). Let n > KT and let Y = (y(0), . . . ,y(n−1)) and
Ȳ = (ȳ(0), . . . , ȳ(n−1)) denote the outputs of VP-SVGD and GB-SVGD respectively. Moreover, let
µ̂(n) = 1

n

∑n−1
i=0 δy(i) and ν̂(n) = 1

n

∑n−1
i=0 δȳ(i) denote their respective empirical measures. Under

the assumptions and parameter settings of Theorem 1, there exists a coupling of Y and Ȳ such that
the following holds:

E[KSD2
π⋆(ν̂(n)||µ̂(n))] ≤

{
2K2T 2ξ2

n2 (without replacement sampling)
2K2T 2ξ2

n2

(
1− K2T 2

n

)
+ 2K2T 2ξ2

n (with replacement sampling)
(6)

6.3 Convergence of the Empirical Measure to the Target

As a corollary of Theorem 1 and Theorem 2, we show that the empirical measure of the output of
VP-SVGD and GB-SVGD rapidly converges to π⋆ in KSD. We refer to Appendix E for the full
statement and proof.
Corollary 1 (VP-SVGD and GB-SVGD: Fast Finite Particle Rates). Let the assumptions and
parameter settings of Theorem 1 be satisfied. Let µ̂(n) be the empirical measure of the n particles

output by VP-SVGD, run with run with KT = d
α

2+α , R =
√

d/L and appropriately chosen γ. Then:

E[KSD2
π⋆(µ̂(n)||π⋆)] ≤ O( d

2
2+α

n

α
2+α

+
d
2/α

n
)
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Similarly, let ν̂(n) be the empirical measure of the output of GB-SVGD without replacement, run
with KT =

√
n, R =

√
d/L and appropriately chosen γ. Then, the following holds:

E[KSD2
π⋆(ν̂(n)||π⋆)] ≤ O(

d
2/α

n
+

d
1

1+α

n
1+2α
2(1+α)

+
d

2+α
2(1+α)

n
α

4(1+α)

)

Comparison to Prior Work For subgaussian π⋆ (i.e. α = 2), VP-SVGD has a finite-particle rate
of E[KSDπ⋆(µ̂(n)||π⋆)] = O((d/n)1/4 + (d/n)1/2) while that of GB-SVGD is E[KSDπ⋆(ν̂(n)||π⋆)] =

O(d
1/3
/n1/12 + (d/n)1/2). Both these rates are a double exponential improvement over the

Õ( poly(d)√
log lognΘ(1/d)

) KSD rate obtained by Shi and Mackey [43] for SVGD with subgaussian π⋆.

For subexponential π⋆ (i.e. α = 1) the KSD rate of VP-SVGD is O( d
1/3

n1/6
+ d

n1/2
) while that of

GB-SVGD is O( d
3/8

n1/16
+ d

n1/2
). To our knowledge, both these results are the first of their kind.

Oracle Complexity As illustrated in Section E.3, for subgaussian π⋆, the oracle complexity of
VP-SVGD to achieve ϵ-convergence in KSD is O(d

4
/ϵ12) and that of GB-SVGD is O(d

6
/ϵ18). To our

knowledge, these results are the first known oracle complexities for this problem with polynomial

dimension dependence, and significantly improve upon theO( poly(d)ϵ2 eΘ(de
poly(d)/ϵ2 )) oracle complexity

of SVGD as implied by Shi and Mackey [43]. For subexponential π⋆, the oracle complexity of
VP-SVGD is O(d

6
/ϵ16) and that of GB-SVGD is O(d

9
/ϵ24).

7 Proof Sketch

We now present a sketch of our analysis. As shown in Section 4, the particles (x(l)
t )l≥Kt are i.i.d

conditioned on the filtration Ft, and the random measure µt|Ft is the law of (x(Kt)
t ) conditioned on

x
(0)
0 , . . . ,x

(Kt−1)
0 . Moreover, from equation (5), we know that µt|Ft is a stochastic approximation

of population limit SVGD dynamics, i.e., µt+1|Ft+1 = (I − γgt)#µt|Ft. Lemma 1 (similar to
Salim et al. [42, Proposition 3.1] and Korba et al. [26, Proposition 5]) shows that under appropriate
conditions, the KL divergence between µt|Ft and π⋆ satisfies a (stochastic) descent lemma . Hence
µt|Ft admits a density and KL (µt|Ft||||||π⋆) is almost surely finite.
Lemma 1 (Descent Lemma for µt|Ft). Let Assumptions 1, 3 and 5 be satisfied and let β > 1 be an
arbitrary constant. On the event γ∥gt∥H ≤ β−1

βB , the following holds almost surely

KL (µt+1|Ft+1||||||π⋆) ≤ KL (µt|Ft||||||π⋆)− γ
〈
hµt|Ft

, gt
〉
H +

γ2(β2 + L)B

2
∥gt∥2H

Lemma 1 is analogous to the noisy descent lemma which is used in the analysis of SGD for smooth
functions. Notice that E[gt|Ft] = hµt|Ft

(when interpreted as a Gelfand-Pettis integral [46], as
discussed in Appendix B and Appendix C) and hence in expectation, the KL divergence decreases in
time. In order to apply Lemma 1, we establish an almost-sure bound on ∥gt∥H below.
Lemma 2. Let Assumptions 1, 2, 3, 4 and 5 hold. For γ ≤ 1/2A1L, the following holds almost surely,

∥gt∥H ≤ ξ = ζ0 + ζ1(γT )
1/α + ζ2(γ

2T )
1/α + ζ3R

2/α

where ζ0, ζ1, ζ2 and ζ3 which depend polynomially on A1, A2, A3, B, d1, d2, L for any fixed α.

LetK = 1 for clarity. To prove Lemma 2, we first note via smoothness of F (·) and Assumption 3 that
∥gt∥H ≤ C0∥x(t)

t ∥+C1, and then bound ∥x(t)
t ∥. Now, gs(x) = k(x,x

(s)
s )∇F (x(s)

s )−∇2k(x,x
(s)
s ).

When ∥x(s)
s − x∥ is large, ∥gs(x)∥ is small due to decay assumptions on the kernel (Assumption 4)

implying that the particle does not move much. When x(s)
s ≈ x, we have gs(x) ≈ k(x,x(s)

s )∇F (x)−
∇2k(x,x

(s)
s ) and k(x,x(s)

s ) ≥ 0. This is approximately a gradient descent update on F (·) along with
a bounded term ∇2k(x,x

(s)
s ). Thus, the value of F (x(l)

t ) cannot grow too large after T iterations.
By Assumption 2, F (x(l)

t ) being small implies that ∥x(l)
t ∥ is small.

Equipped with Lemma 2, we set the step-size γ to ensure that the descent lemma (Lemma 1) always
holds. The remainder of the proof involves unrolling through Lemma 1 by taking iterated expectations
on both sides. To this end we control

〈
hµt|Ft

, gt
〉
H and ∥gt∥2H in expectation, in Lemma 3.
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Lemma 3. Let Assumptions 1,2,3,4,5 hold and ξ be as defined in Lemma 2. Then, for γ ≤ 1/2A1L,

E
[〈
hµt|Ft

, gt
〉
H |Ft

]
= ∥hµt|Ft

∥2H and E[∥gt∥2H] ≤ ξ2/K + ∥hµt|Ft
∥2H

8 Experiments

We compare the performance of GB-SVGD and SVGD. We take n = 100 and use the Laplace kernel
with h = 1 for both. We pick the stepsize γ by a grid search for each algorithm. Additional details
are presented in Appendix G. We observe that SVGD takes fewer iterations to converge, but the
compute time for GB-SVGD is lower. This is similar to the typical behavior of stochastic optimization
algorithms like SGD.

(a) MMD vs Compute Time (b) MMD vs Iterations

Figure 1: Gaussian Experiment Comparing SVGD and GB-SVGD averaged over 10 experiments.

(a) Accuracy vs Compute Time (b) Accuracy vs Iterations

Figure 2: Covertype Experiment, averaged over 50 runs. The error bars represent 95% CI.

Sampling from Isotropic Gaussian (Figure 1): As a sanity check, we set π⋆ = N (0, I) with d = 5.
We pick K = 10 for GB-SVGD. The metric of convergence is MMD with respect to the empirical
measure of 1000 i.i.d. sampled Gaussians.

Bayesian Logistic Regression (Figure 2) We consider the Covertype dataset which contains ∼
580, 000 data points with d = 54. We consider the same priors suggested in Gershman et al. [16]
and implemented in Liu and Wang [31]. We take K = 40 for GB-SVGD. For both VP-SVGD and
GB-SVGD, we use AdaGrad with momentum to set the step-sizes as per Liu and Wang [31]

9 Conclusion

We develop two computationally efficient variants of SVGD with provably fast convergence guar-
antees in the finite-particle regime, and present a wide range of improvements over prior work.
A promising avenue of future work could be to establish convergence guarantees for SVGD with
general non-logconcave targets, as was considered in recent works on LMC and SGLD [2, 12]. Other
important avenues include establishing minimax lower bounds for SVGD and related particle-based
variational inference algorithms. Beyond this, we also conjecture that the rates of GB-SVGD can be
improved even in the regime n≪ KT . However, we believe this requires new analytic tools.
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