
A Notations

Notations Descriptions

DG = {G}Tt=1 Dynamic graph (a set of T discrete graph snapshots)
G = (V, E) Graph with the node set V and edge set E
Gt = (Vt, Et) Graph snapshot at time t

Xt, At Node features matrix and adjacency matrix of a graph at time t
xt
v , At

(u,v),k Node features and edge weights of (u, v) under ek
G1:t, Y t, G1:t, Yt Graph trajectory, labels and their corresponding random variables

e, ei, E Latent environments and their support
ztv,k, ze,tv , zev Node representations under ek, at time t and at overall time slices

z, y Observed environment sample with its label
d, d′ Dimension for xt

v and ztv,k, respectively
K Number of underlying environments (number of convolution channel)

f(·), w(·), g(·) Model, encoder, and the link predictor
ℓ(·) The loss function

qϕ, pω The prior distribution and variational distribution of environments
I⋆(·), I(·) Invariant pattern recognition function and its implementation

PI
e , PV

e , PI
e (v), PV

e (v) Summary of spatio-temporal invariant/variant patterns for each node
Z1:t, Z1:t

I , Z1:t
V Summary of node representations, and their variants under PI

e and PV
e

Sob, Sge Observed and generated environments sample libraries
s, sv Intervention samples from Sob ∪ Sge and their summary for node v
do(·) do-caculus for causal interventions

Ltask, Lrisk, LECVAE Task loss, the invariance loss and the ECVAE loss
α, β Hyperparameters for loss trade-off

B Algorithm and Complexity Analysis

Algorithm 1: Overall training process of EAGLE.

Input: Dynamic graph DG = ({G}Tt=1) with labels Y1:T of link occurrence; Number of
training epochs E; Number of intervention times S; Hyperparameters α and β.

Output: Optimized model f⋆
θ ; Predicted label Y T of link occurrence at time T + 1.

1 Initialize parameters randomly;
2 for i = 1, 2, · · · , E do

// Environments Modeling and Inferring
3 Obtain representations for each node at each time with the support of e, as ze,tv ← Eq. (6);
4 Establish the observed environment samples library Sob ← Eq. (7);
5 Infer the distribution pω(e) with LECVAE ← Eq. (8) and generate samples library Sge;

// Environments Extrapolating
6 Learn the invariance threshold δv ← Eq. (10) by function I(·)← Eq. (9);
7 Recognize the invariant/variant patterns for each node, as PI

e (v), PV
e (v)← Eq. (11);

8 Calculate task loss depending on the invariant patterns, as Ltask ← Eq. (13);

// Environments Generalizing
9 for j = 1, 2, · · · , S do

10 Sample items from Sob ∪ Sge and perform intervention for each node, as Eq. (15);
11 Calculate intervention loss, as Lrisk ← Eq. (14);
12 end

// Optimize
13 Calculate the overall loss, as L ← Eq. (16);
14 Update model parameters by minimizing L.
15 end

The overall training process of our EAGLE is shown in Algorithm 1.
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Computational Complexity Analysis. We analyze the computational complexity of each part in
EAGLE as follows. Denote |V| and |E| as the total number of nodes and edges in each graph snapshot.

In Section 3.1, operations of the EAConv layer in EA-DGNN can be parallelized across all nodes,
which is highly efficient. Thus, the computation complexity of EA-DGNN is:

O

(
|E|

L∑
l=0

d(l) + V

(
L∑

l=1

d(l−1)d(l) + (d(L))2

))
, (B.1)

where d(l) denotes the dimension of the l-th layer. As L is a small number, and d(l) is a constant, the
Eq. (B.1) can be rewritten as O(|E|d+ |V|d2), where d is the universal notation of all d(l).

In Section 3.2, the computation complexity of the ECVAE is a compound of the encoder and decoder,
with the same computation complexity as O(|z|L′d), where |z| is the number of the observed
environment samples, L′ is the number of layers in the encoder and decoder. Also, as L′ is a small
number, we omit it for brevity. Thus, the computation complexity of ECVAE is O(|z|d).
In Section 3.3, we recognize the invariant/variant patterns for all nodes by the function I(·) in parallel,
with the computation complexity O(K log |V|).
In Section 3.4, we perform sampling and replacing as an implementation of causal interventions.
Denote |E|p as the number of edges to predict and |S| as the size of the intervention set, which
is usually set as a small constant. The spatio-temporal causal intervention mechanism owns a
computation complexity compounding of sampling and replacing as O(|S|d) + O(|Ep||S|d) in
training, and no extra computation complexity in the inference stage.

Therefore, the overall computation complexity of EAGLE is:
O(|E|d+ |V|d2) +O(|z|d) +O(K log |V|) +O(|S|d) +O(|Ep||S|d). (B.2)

In summary, EAGLE has a linear computation complexity with respect to the number of nodes
and edges, which is on par with DIDA [94] and other existing dynamic GNNs. We believe that
the computational complexity bottleneck of EAGLE lies in the spatio-temporal causal intervention
mechanism. We further analyze the intervention efficiency in Appendix D.5.

Space Complexity Analysis. We analyze the space complexity of each part in EAGLE as follows.
Denote |V| and |E| as the number of nodes and edges, respectively, K as the number of environments,
T as the number of time slices, L as the number of layers in EA-DGNN, L′ as the number of layers
in ECVAE, d as the dimension of input node features, d′ = Kd as the hidden dimension of EAConv
layers in EA-DGNN, d′′ as the hidden dimension of the encoder and decoder networks layer of
ECVAE,

∑
v∈V Var(ze′v ) as the variance of K environment-aware representations.

Here we provide a rough analysis of EAGLE’s space complexity. Note that, as the space complexity
analysis of deep learning models is complicated, we omit some less important terms, such as
intermediate activations, etc.

• storing the dynamic graph: O(KT (|V|+ |E|)).
• storing the node input features: O(|V|KTd).
• the EAConv layer: O(Ld′2).
• the encoder and decoder networks of ECVAE: O(L′d′′).
• storing generated environment samples (the number set to be the same with the observed ones):
O(|V|KTd′′).

• storing the states for function I(·, ·): O(K
∑

v∈V Var(ze′v )).

Then the overall space complexity of EAGLE can be roughly calculated as:

O(KT (|V|+ |E|)) +O(|V|KTd) +O(Ld′2) +O(L′d′′) +O(|V|KTd′′) +O(K
∑
v∈V

Var(ze′v )).

(B.3)

However, it is hard to intuitively draw conclusions about memory requirements from the space
complexity analysis. Based on our experiments experience, EAGLE can be trained and tested under
the hardware configurations (including memory requirements) listed in Appendix E.3, which is on
par with the related works’ requirements.
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C Proofs

C.1 Proof of Proposition 1

Proposition 1. Given observed environment samples from the dynamic graph G1:T denoted as

z =
⋃
v∈V

K⋃
k=1

T⋃
t=1

{ztv,k} ∈ R(|V|×K×T )×d′ def
==== Sob (C.1)

with their corresponding one-hot multi-labels y, the environment variable e is drawn from the prior
distribution pω(e | y) across T time slices, and z is generated from the distribution pω(z | y, e).
Maximizing the conditional log-likelihood log pω(z | y) leads to an optimal ECVAE by minimizing:

LECVAE = KL[qϕ(e | z,y)∥pω(e | y)]−
1

|z|

|z|∑
i=1

log pω(z | y, e(i)), (C.2)

where KL[·∥·] is the Kullback-Leibler (KL) divergence [37], |z| is the number of observed environ-
ment samples, e(i) is the i-th sampling by the reparameterization trick.

Proof. The distribution distance between qϕ(e | z,y) and pω(e | z,y) can be calculated by the
KL-divergence:

KL[qϕ(e | z,y)∥pω(e | z,y)] =
∫

qϕ(e | z,y) log
qϕ(e | z,y)
pω(e | z,y)

dϕ

=

∫
qϕ(e | z,y) log

qϕ(e | z,y)pω(z | y)pω(y)
pω(e, z,y)

dϕ

=

∫
qϕ(e | z,y) log qϕ(e | z,y) dϕ+

∫
qϕ(e | z,y) log pω(z | y) dϕ︸ ︷︷ ︸

log pω(z|y)

+

∫
qϕ(e | z,y) log pω(y) dϕ−

∫
qϕ(e | z,y) log pω(e, z,y) dϕ

= log pω(z | y) +
∫

qϕ(e | z,y) log
qϕ(e | z,y)

pω(z | y, e)pω(e | y)
dϕ

= log pω(z | y) + Eqϕ(e|z,y)[log qϕ(e | z,y)− log pω(e, z | y)]
= log pω(z | y)− Eqϕ(e|z,y)[− log qϕ(e | z,y) + log pω(e, z | y)].

(C.3)

Thus the conditional log-likelihood log pω(z | y) can be rewritten as:

log pω(z | y) = KL[qϕ(e | z,y)∥pω(e | z,y)] + Eqϕ(e|z,y)[− log qϕ(e | z,y) + log pω(e, z | y)].
(C.4)

Since this KL-divergence is non-negative, we then provide an Evidence Lower Bound (ELBO) for
log pω(y | z):
log pω(z | y) ≥ Eqϕ(e|z,y)[− log qϕ(e | z,y) + log pω(e, z | y)]

= Eqϕ(e|z,y)[− log qϕ(e | z,y) + log pω(e | y)] + Eqϕ(e|z,y)[log pω(z | y, e)]
= −KL[qϕ(e | z,y)∥pω(e | y)] + Eqϕ(e|z,y)[log pω(z | y, e)].

(C.5)

We can maximize log pω(z | y) by maximizing the ELBO, or minimizing:

LECVAE = −ELBO = KL[qϕ(e | z,y)∥pω(e | y)]− Eqϕ(e|z,y)[log pω(z | y, e)]. (C.6)

While the second term in LECVAE is the maximum likelihood estimation, which is infeasible to
calculate directly under the expectation of the latent environment variable e ∼ pϕ(e | z,y) across T
time slices. Inspired by Markov Chain Monte Carlo (MCMC) sampling [23], it can be estimated as:

LECVAE = KL[qϕ(e | z,y)∥pω(e | y)]−
1

|z|

|z|∑
i=1

log pω(z | y, e(i)). (C.7)
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In implementations, we assume qϕ(e | z,y) and pω(e | y) follow the multivariate normal distribution
N (µ;σ) parameterized by µ and σ, so that the KL-divergence can be easily calculated. In order to
optimize the ECVAE by back-propagation, we utilize a reparameterization trick: e(i) = eω(z,y, ϵ

(i)),
where ϵ(i) ∼ N (0; I). Here eω(·, ·, ·) is some vector-valued functions parameterized by ϕ.

C.2 Proof of Proposition 2

Proposition 2 (A Solution for I⋆(·)). Denote ze′v = [z′v,1, z
′
v,2, · · · , z′v,K ], where z′v,k =

⋃T
t=1 z

t
v,k.

Let Var(ze′v ) ∈ RK represents the variance of K environment-aware representations. The Boolean
function I(·) is a solution for I⋆(·) with the following state update equation:

I(i, j) =
{
I(i− 1, j) ∨ I(i− 1, j −Var(ze′v )[i− 1]), j ≥ Var(ze′v )[i− 1]

I(i− 1, j), otherwise
, (C.8)

I(i, j) indicates whether it is feasible to select from the first i elements in Var(ze′v ) so that their sum
is j. Traversing j in reverse order from ⌊

∑
Var(ze′v )/2⌋ until satisfying I(K, j) is True, we reach:

δv =
∑

Var(ze′v )− 2j, (C.9)

PI
e (v) =

{
ek | Var(ze′v )[k] ≤

1

K

∑
Var(ze′v )−

δv
2

}
, PV

e (v) = PI
e (v), (C.10)

where δv is the optimal spatio-temporal invariance threshold of node v.

Proof. In order to prove the boolean function I(·) is a solution for I⋆(·) in Assumption 1, the
problem I(·) solves should satisfies: (a) Optimal substructure; (b) Non-aftereffect property; (c)
Overlapping sub-problems.

Next, we prove the above three conditions are valid.

(a) Optimal substructure. It is said that the problem has the optimal substructure property when the
optimal solution of the problem covers the optimal solutions of its subproblems. Now we prove the
optimal solution of determining the spatio-temporal invariant patterns PI

e (v) for node v is constructed
from the optimal solutions of the sub-problems with the bottom-up approach by using the optimal
substructure property of the problem.

As I(i, j) indicates whether it is feasible to select some elements from the first i elements in Var(ze′v )
so that their sum is j,

∑
Var(ze′v ) means the sum of elements in Var(ze′v ), the target of the problem

is to find δv that denotes the optimal threshold for invariance of node v. We reduce this problem by
dividing Var(ze′v ) into two subsets Var(ze′v )I and Var(ze′v )V , where δv represents the value when the
difference between the sum of two subsets is the smallest, i.e.,

δv = min
(∑

Var(ze′v )− 2j
)
, where I(K, j) == True. (C.11)

Let II(i, j) and IV (i, j) represent whether it is feasible to select some elements from the first i
elements in Var(ze′v )I and Var(ze′v )V respectively, so that their sum is j. Suppose the sum of
Var(ze′v )I and Var(ze′v )V are

∑
(Var(ze′v )I) and

∑
(Var(ze′v )V ), we have:∑

(Var(ze′v )I) +
∑

(Var(ze′v )V ) =
∑

Var(ze′v ). (C.12)

Then, the target of the original problem is transformed into finding an optimal solution for i and j,
satisfying: {

II(i, j) == True,

IV (K − i,
∑

(Var(ze′v )I)− j) == True,
(C.13)

s.t. min
(∑

(Var(ze′v )I)− j −
(∑

(Var(ze′v )V )−
(∑

(Var(ze′v )I)− j
)))

. (C.14)

According to the definition of I(i, j), we can draw a conclusion the II(i, j) and IV (i, j) both are the
subproblems of the original problem, which similarly target at figuring out whether it is feasible to
select some elements from the first i elements that satisfy their sum is j. So, function II(i, j) and
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IV (i, j) is the same with I(i, j) in Eq. (C.8). Assuming that when the difference in the subsets is
maximized, II(i, j) and IV (i, j) return jI and jV , respectively, that satisfy:{

II(i, jI) == True,

IV (K − i, jV ) == True.
(C.15)

We have:{∑
(Var(ze′v )I)− jI = δI , II(i, jI) == True,∑
(Var(ze′v )V )− jV = δV , IV (K − i,

∑
(Var(ze′v )I)− jI) == True.

(C.16)

As II(i, jI) and IV (K − i,
∑

(Var(ze′v )I)− jI) are both the optimal solutions, so we reach:

|δI − δV | =
∣∣∣∑(Var(ze′v )I)− jI −

(∑
(Var(ze′v )V )− jV

)∣∣∣ ≤ δv. (C.17)

The optimal substructure property is proven.

(b) Non-aftereffect property. This property implies that once the state of a certain stage is determined
by I(·), it is not affected by future decision-making. In other words, the subsequent process will
not affect the previous state, but only be related to the current state. Eq. (C.8) implies that, when
j ≥ Var(ze′v )[i− 1], the state is decided by previous state I(i− 1, j) or I(i− 1, j −Var(ze′v )[i− 1]);
accordingly, when j < Var(ze′v )[i− 1], the state is solely decided by previous state I(i− 1, j). All
state transition processes are based on historical states and executed in a one-way transition mode,
meeting the requirements of the non-aftereffect property. Generally speaking, the non-aftereffect
property is a relaxation condition, that is, as long as the properties of the optimal substructure property
are satisfied, the non-aftereffect property will be basically satisfied.

(c) Overlapping sub-problems. I(·) solve the problem from top to bottom in a recursive way, each
sub-problem is not always a new problem, but a large number of repeated sub-problems, that is,
when different decision sequences reach a certain stage, they will generate duplicate problems. When
figuring out I(·), we consider two situations:

• Not select the i-th element in Var(ze′v ), i.e., I(i, j) = I(i− 1, j);

• Select the i-th element in Var(ze′v ), i.e., I(i, j) = I(i− 1, j −Var(ze′v )[i− 1]).

As we can observe, we need the solution of the sub-problem I(i−1, j) and I(i−1, j−Var(ze′v )[i−1])
when figuring out I(i, j), which are already calculated by I(i−1, ·). So we can prove that the problem
I(·) solved has overlapping sub-problems.

We then have proven the function I(·) is a solution for the function I⋆(·) in Assumption 1, from which
we can obtain the optimal spatio-temporal invariance threshold δv of node v. Then the spatio-temporal
invariant/variant patterns for node v can be exploited by Eq. (C.10), and their unions constitute the
overall PI

e and PV
e . We conclude the proof for Proposition 2.

C.3 Proof of Proposition 3

Proposition 3 (Achievable Assumption). Minimizing Eq. (12) can encourage the model to satisfy
the Invariance Property and Sufficient Condition in Assumption 1.

Proof. We first propose the following lemma to rewrite the Sufficient Condition and the Invariance
Property in Assumption 1 using the information theory [43].

Lemma 1 (Mutual Information Equivalence). The Invariance Property and Sufficient Condition in
Assumption 1 can be equivalently represented with the Mutual Information I(·; ·):
(a) Invariance Property: p(YT | PI

e , e) = p(YT | PI
e )⇔ I(YT ; e | PI

e ) = 0;

(b) Sufficient Condition: YT ⊥⊥ PV
e | PI

e ⇔ I(YT ;PI
e ) is maximized.

Proof. We prove Lemma 1 by respectively proving the above two conditions are valid.
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(a) Invariance Property. According to the definition of the Mutual Information, we can easily get
the following equation:

I(YT ; e | PI
e ) = KL

[
p(YT | e,PI

e ) ∥ p(YT | PI
e )
]
= 0, (C.18)

where KL[·∥·] is the Kullback-Leibler (KL) divergence [37]. Thus we have proved the equivalence in
Invariance Property.

(b) Sufficient Condition. We demonstrate sufficiency and necessity through the following two steps.

First, we prove that for YT ,PI
e and ϵ satisfying YT = g(Z1:T

I )+ϵ would also satisfyPI
e = argmax

PI
e
I(YT ;PI

e ). We perform proving by contradiction. Suppose PI
e ̸= argmaxPI

e
I(YT ;PI

e ) and
there exists PI′

e = argmaxPI
e

where PI′
e ̸= PI

e . We can always find a mapping functionM so that
PI′
e =M(PI

e , π) where π is a random variable. Then we reach:

I(YT ;PI′
e ) = I(YT ;PI

e , π) = I(g(Z1:T
I );PI

e , π) = I(g(Z1:T
I );PI

e ) = I(YT ;PI
e ), (C.19)

which leads to a contradiction.

Next, we prove that for YT , PI
e and ϵ satisfying PI

e = argmaxPI
e
I(YT ;PI

e ) would also satisfy
YT = g(Z1:T

I ) + ϵ . We also perform proving by contradiction. Suppose that YT ̸= g(Z1:T
I ) + ϵ

and YT = g(Z1:T
I′ ) + ϵ where PI′

e ̸= PI
e . We then have the following inequality:

I(g(Z1:T
I′ );PI

e ) ≤ I(g(Z1:T
I′ );PI′

e ), (C.20)

from which we can obtain that PI′
e = argmaxPI

e
I(YT ;PI

e ), leading to a contradiction.

Now, we prove Proposition 3 in the following two perspectives.

First, we prove that minimizing the expectation term (Ltask) in Eq. (12) can enforce the model to
satisfy the Sufficient Condition in Assumption 1 (note that we omit the subscript PI

e in Z1:T
I for

brevity in the rest of this subsection if there are no special declarations).

From the SCM model in Figure 1(b), we can analyze that maxq(Z1:T |G1:T ) I(Y
T ;Z1:T ) is equivalent

to minq(Z1:T |G1:T ) I(Y
T ;G1:T | Z1:T ), as we filter out the spurious correlations that contain in the

dependencies between YT and G1:T . Treating q(Z1:T | G1:T ) as the variational distribution, we
have the following upper bound:

I(YT ;G1:T | Z1:T ) = KL
[
p(YT | G1:T , e) ∥ p(YT | Z1:T , e)

]
= KL

[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
−KL

[
p(YT | Z1:T , e) ∥ q(YT | Z1:T )

]
≤ KL

[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
≤ min

q(YT |Z1:T )
KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
.

(C.21)

In addition, we have:

KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
= EeE(G1:T ,Y T )∼p(G1:T ,YT |e)EZ1:T∼q(Z1:T |G1:T=G1:T )

[
log

p(YT = Y T | G1:T = G1:T , e)
q(YT = Y T | Z1:T )

]
≤ EeE(G1:T ,Y T )∼p(G1:T ,YT |e)

[
log

(YT = Y T | G1:T = G1:T , e)
EZ1:T∼q(Z1:T |G1:T=G1:T ) [q(YT = Y T | Z1:T )]

]
.

(C.22)
The inequality in Eq. (C.22) is derived from Jensen’s Inequality [34] and [86], while the EA-DGNN
w(·) ensures q(Z1:T | G1:T ) is a Dirac delta distribution (δ-distribution). Then we reach:

min
q(YT |Z1:T )

KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
⇔ min

θ
Ee∼qϕ(e),(G1:T ,Y T )∼p(G1:T ,YT |e)

[
ℓ
(
g(Z1:T

I ), Y T
)]

.
(C.23)
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We thus have proven that, minimizing the expectation term (Ltask) in Eq. (12) is to minimize the upper
bound of I(YT ;G1:T | Z1:T ) (maximize the lower bound of maxq(Z1:T |G1:T ) I(Y

T ;Z1:T )), which
leads to maximizing I(YT ;PI

e ). This helps enforce the model to satisfy the Sufficient Condition.

Then, we prove that minimizing the variance term (Lrisk) in Eq. (12) can enforce the model to satisfy
the Invariance Property in Assumption 1.

We have:

I(YT ; e | Z1:T ) = KL
[
p(YT | Z1:T , e) ∥ p(YT | Z1:T )

]
= KL

[
p(YT | Z1:T , e) ∥ Ee

[
p(YT | Z1:T , e)

]]
= KL

[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

−KL
[
q(YT | Z1:T ) ∥ p(YT | Z1:T , e)

]
−KL

[
Ee

[
p(YT | Z1:T , e)

]
∥ Ee

[
q(YT | Z1:T )

]]
≤ KL

[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

≤ min
q(YT |Z1:T )

KL
[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]
.

(C.24)

In addition, we have:

KL
[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

= EeE(G1:T ,Y T )∼p(G1:T ,YT |e)EZ1:T∼q(Z1:T |G1:T=G1:T )

[
log

q(YT = Y T | Z1:T )

Eeq(YT = Y T | Z1:T )

]
.

(C.25)

Derived from Jensen’s Inequality, the upper bound for KL
[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

is:

KL
[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

≤ Ee

[∣∣ℓ (fθ (G1:T ) , Y T
)
− Ee

[
ℓ
(
fθ
(
G1:T

)
, Y T

)]∣∣] . (C.26)

Finally, we reach:

min
q(YT |Z1:T )

KL
[
q(YT | Z1:T ) ∥ Eeq(Y

T | Z1:T )
]

⇔ min
θ

Vars∈S
{
Ee∼qϕ(e),(G1:T ,Y T )∼p(G1:T ,YT |e)

[
ℓ
(
fθ
(
G1:T

)
, Y T | do(Z1:T

V = s)
)]}

.

(C.27)

We thus have proven that, minimizing the variance term (Lrisk) in Eq. (12) is to minimize the upper
bound of I(YT ; e | Z1:T ), which leads to minimizing I(YT ; e | PI

e ). This helps enforce the model
to satisfy the Invariance Property.

We conclude the proof for Proposition 3.

C.4 Proof of Proposition 4

Proposition 4 (Equivalent Optimization). Optimizing Eq. (12) is equivalent to minimizing the upper
bound of the OOD generalization error in Eq. (2).

Proof. As we defined in Eq. (2), the generation of dynamic graph data (G1:T , Y T ) is drawn from
the distribution p(G1:T ,YT | e), while the difference of e during training and testing causes the
out-of-distribution shifts. Let q(YT | G1:T ) be the inferred variational distribution of the ground-
truth distribution p(YT | G1:T , e), then the OOD generalization error can be measured by the
KL-divergence of the two distributions:

KL
[
p(YT | G1:T , e) ∥ q(YT | G1:T )

]
= EeE(G1:T ,Y T )∼p(G1:T ,YT |e)

[
log

p(YT = Y T | G1:T = G1:T , e)
q(YT = Y T | G1:T = G1:T )

]
.

(C.28)

Inspired by [19, 86], we apply an information-theoretic approach to our scenarios. First, we propose
the following lemma in order to rewrite the OOD generalization error.
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Lemma 2 (OOD Generalization Upper Bound). The OOD generalization error is upper bounded by:
KL
[
p(YT | G1:T , e) ∥ q(YT | G1:T )

]
≤ KL

[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
, (C.29)

where q(YT | Z1:T ) can be seen as the inferred variational distribution of the edge predictor.

Proof. We prove Lemma 2 by continue investigating on Eq. (C.28):

KL
[
p(YT | G1:T , e) ∥ q(YT | G1:T )

]
= EeE(G1:T ,Y T )∼p(G1:T ,YT |e)

[
log

p(YT = Y T | G1:T = G1:T , e)
q(YT = Y T | G1:T = G1:T )

]
= EeE(G1:T ,Y T )∼p(G1:T ,YT |e)

[
log

p(YT = Y T | G1:T = G1:T , e)
EZ1:T∼q(Z1:T |G1:T=G1:T ) [q(YT = Y T | Z1:T )]

]
≤ EeE(G1:T ,Y T )∼p(G1:T ,YT |e)EZ1:T∼q(Z1:T |G1:T=G1:T )

[
log

p(YT = Y T | G1:T = G1:T , e)
q(YT = Y T | Z1:T )

]
= KL

[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
. (upper bound for OOD generalization error)

(C.30)
Again, the inequality in Eq. (C.22) is derived from Jensen’s Inequality, while the EA-DGNN w(·)
ensures q(Z1:T | G1:T ) is a Dirac delta distribution (δ-distribution).

Based on Lemma 1, we can adapt the Eq. (12) as:

min
q(Z1:T |G1:T ),q(YT ,Z1:T )

KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
+ I(YT ; e | Z1:T ). (C.31)

Thus, based on Lemma 2, we validate that minimizing Eq. (12) is equivalent to minimizing the upper
bound of the OOD generalization error in Eq. (2), i.e.,

min
θ
Ltask + αLrisk ⇔ min

q(Z1:T |G1:T ),q(YT ,Z1:T )
KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
+ I(YT ; e | Z1:T )

≥ min
q(Z1:T |G1:T ),q(YT ,Z1:T )

KL
[
p(YT | G1:T , e) ∥ q(YT | Z1:T )

]
≥ KL

[
p(YT | G1:T , e) ∥ q(YT | G1:T )

]
. (I(YT ; e | Z1:T ) is non-negative)

(C.32)
We conclude the proof for Proposition 4.

D Experiment Details and Additional Results

D.1 Datasets Details

We use three real-world datasets to evaluate EAGLE on the challenging future link prediction task.

• COLLAB1 [81] is an academic collaboration dataset with papers that were published during 1990-
2006 (16 graph snapshots). Nodes and edges represent authors and co-authorship, respectively.
Based on the co-authored publication, there are five attributes in edges, including “Data Mining”,
“Database”, “Medical Informatics”, “Theory” and “Visualization”. We pick “Data Mining” as
the shifted attribute. We apply word2vec [59] to extract 32-dimensional node features from
paper abstracts. We use 10/1/5 chronological graph snapshots for training, validation, and testing,
respectively. The dataset includes 23,035 nodes and 151,790 links in total.

• Yelp2 [75] contains customer reviews on business. Nodes and edges represent customer/business
and review behaviors, respectively. Considering categories of business, there are five attributes
in edges, including “Pizza”, “American (New) Food”, “Coffee & Tea”, “Sushi Bars” and “Fast
Food” from January 2019 to December 2020 (24 graph snapshots). We pick “Pizza” as the shifted
attribute. We apply word2vec [59] to extract 32-dimensional node features from reviews. We
use 15/1/8 chronological graph snapshots for training, validation, and testing, respectively. The
dataset includes 13,095 nodes and 65,375 links in total.

1https://www.aminer.cn/collaboration
2https://www.yelp.com/dataset
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• ACT3 [45] describes student actions on a MOOC platform within a month (30 graph snapshots).
Nodes represent students or targets of actions, edges represent actions. Considering the attributes
of different actions, we apply K-Means [29] to cluster the action features into five categories and
randomly select a certain category (the 5th cluster) of edges as the shifted attribute. We assign the
features of actions to each student or target and expand the original 4-dimensional features to
32 dimensions by a linear function. We use 20/2/8 chronological graph snapshots for training,
validation, and testing, respectively. The dataset includes 20,408 nodes and 202,339 links in total.

Statistics of the three datasets are concluded in Table D.1. These three datasets have different
time spans and temporal granularity (16 years, 24 months, and 30 days), covering most real-world
scenarios. The most challenging dataset for the future link prediction task is the COLLAB. In addition
to having the longest time span and the coarsest temporal granularity, it also has the largest difference
in the properties of its links.

Table D.1: Statistics of the real-world datasets.

Dataset # Nodes # Links # Graph
Snapshots

Temporal
Granularity In-distribution Attributes Shifted

Attribute

COLLAB 23,035 151,790 16 year Database, Medical Informatics,
Theory, Visualization Data Mining

Yelp 13,095 65,375 24 month American (New) Food, Fast Food
Sushi Bars, Coffee & Tea Pizza

ACT 20,408 202,339 30 day Attributes 1-4 Attribute 5

We visualize the distribution shifts in the three real-world dataset with respect to the average neighbor
degree (Figure D.1) and the number of interactions (Figure D.2) in training and testing sets. We
observe that, there exists a huge difference in terms of the values, trends, etc., between the training
set and the testing set, which demonstrates the distribution shifts are heavy. Interestingly, COLLAB
has less testing data than its training data, which is common in real-world scenarios, such as not all
the co-authorship was established from the beginning. In addition, we notice a drastic drop in Yelp
after January 2019 when the COVID-19 outbreak. The sudden change in predictive patterns increases
the difficulty of the task. A similar abnormal steep upward trend can also be witnessed in ACT after
Day 20, which may be caused by an unknown out-of-distribution event.

1990 1992 1994 1996 1998 2000 2002 2004
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

N
ei

gh
bo

r D
eg

re
e

Test

Time (year)

Train

(a) COLLAB

'19.1 '19.4 '19.7 '19.10 '20.1 '20.4 '20.7 '20.10
Time (month)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Av
er

ag
e 

N
ei

gh
bo

r D
eg

re
e

Train Test

(b) Yelp

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (day)

4

6

8

10

12

14

16

Av
er

ag
e 

N
ei

gh
bo

r D
eg

re
e

Train Test

(c) ACT

Figure D.1: Visualizations of the average neighbor degree in each graph snapshot.

D.2 Baseline Details

We compare EAGLE with representative GNNs and OOD generalization methods.

• Static GNNs: GAE [42] is a representative static GNN as the GCN [41] based graph autoencoder;
VGAE [42] further introduces variational variables into GAE, possessing better generative ability.

• Dynamic GNNs: GCRN [76] is a representative dynamic GNN following “spatial first, temporal
second” convolution mechanism, which firstly adopts GCNs to obtain node embeddings and
then a GRU [13] to capture temporal relations; EvolveGCN [62] applies an LSTM [31] or GRU

3https://snap.stanford.edu/data/act-mooc.html
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Figure D.2: Visualizations of the number of interactions in each graph snapshot.

to flexibly evolve the parameters of GCNs instead of modeling the dynamics after deriving
node embeddings; DySAT [75] models dynamic graph through self-attentions in both structural
neighborhoods and temporal dynamics.

• OOD generalization methods: IRM [3] minimizes the empirical risk to learn an optimal
invariant predictor under potential environments; V-REx [44] extends the IRM by reweighting the
empirical risk to emphasize more on training samples with larger errors; GroupDRO [74] reduces
the empirical risk gap across training distributions to enhance the robustness when encountering
heavy OOD shifts; DIDA [94] tackles OOD generalization problem on dynamic graphs for the
first time by discovering and utilizing invariant patterns. It is worth noting that, DIDA [94] is the
most relative work as our main baseline for comparison.

D.3 Experiment Setting Details

Detailed Settings for Section 4.1.1. Each of the three real-world datasets can be split into several
partial dynamic graphs based on their link properties, which demonstrates the multi-attribute relations
under the impact of their surrounding environments. We filter out one certain attribute links as the
variables under the future shifted environment as the OOD data, and the left links are further divided
into training, validation, and testing sets chronologically. The shifted attribute links will only be
accessible during the OOD testing stage, which is more practical and challenging in real-world
scenarios as the model cannot capture any information about the filtered links during training and
validation. Note that, all attribute-related features have been removed after the above operations
before feeding to EAGLE. Take the COLLAB dataset for example. There are five attribute links in
COLLAB as summarized in Table D.1. We filter out all the links with the attribute “Data Mining”,
and split the rest of the links into training, validation, and testing sets by positive and negative edge
sampling. Then we add the “Data Mining” links into testing sets to make the distribution shifts.
Finally, we remove all link attribute information to avoid data leakage.

Detailed Settings for Section 4.1.2. Denote original node features and structures as Xt ∈ RN×d

and At ∈ {0, 1}N×N . For each time t, we uniformly sample p(t)|Et+1| positive links and (1 −
p(t))|Et+1| negative links, which are then factorized into shifted features Xt′ ∈ RN×d while
preserving structural property. Original node features and synthesized node features are concatenated
as [Xt∥Xt′] as the input. In details, Xt′ is obtained by training the embeddings with reconstruction
loss ℓ(Xt′Xt′⊤,At+1), where ℓ(·) refers to the cross-entropy loss function [16]. In this way, we find
that the link predictor can achieve satisfying results by using Xt′ to predict the links in At+1, which
demonstrates that the generated node features have strong correlations with the future underlying
environments. The sampling probability p(t) = p̄+ σ cos(t), where Xt′ with higher p(t) will have
stronger spurious correlations with future underlying environments. Note that, we apply the clip(·)
function to limit the probability to between 0 and 1. We set p̄ to be 0.4, 0.6, and 0.8 for training and
0.1 for testing; set σ = 0.05 in training and σ = 0 in testing.

Detailed Settings for Section 4.2. We set the number of nodes N = 2,000 with 10 graph snapshots,
where 6/2/2 chronological snapshots are used for training, validation, and testing, respectively. We
set K = 5 and let σe represent the proportion of the environments in which the invariant patterns
are learned, where higher σe means more reliable invariant patterns. Node features with respect to
different environments are drawn from five multivariate normal distributions N (µk;σk). Features
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with respect to the invariant patterns will be perturbed slightly, while features with respect to the
variant patterns will be perturbed significantly. Here we perturb features by adding Gaussian noise
with different degrees. We then construct graph structures based on node feature similarity. Links
generated by the node-pair representations under the e5 are filtered out during the training and
validation stages, which is similar to the setting of Section 4.1.1, and they only appear in the testing
stage following the proportion constraint q̄. Higher q̄ means more heavier distribution shifts. IACC

denotes the prediction accuracy of the invariant patterns by I(·). As the environments e = {ek}5k=1
do not satisfy the permutation invariance property, thus the predicted invariant patterns with respect
to e is hard to evaluate. May wish to set the IACC reports the highest results as we shift the orders of
environments in e to satisfy the predicted invariant patterns better.

D.4 Hyperparameter Sensitivity Analysis

We analyze the sensitivity of the hyperparameters α and β, which act as the trade-off for loss in
Eq. (16). The hyperparameter α is chosen from {10−3, 10−2, 10−1, 100, 101}, and β is chosen from
{10−6, 10−5, 10−4, 10−3, 10−2}. We conduct analysis on three real-world datasets and report results
in Figure D.3 and Figure D.4. Results demonstrate that the task performance experiences a significant
decline in most datasets when the values of α and β are too large or too small. We can draw a
conclusion that α acts as a balance factor between exploiting the spatio-temporal invariant patterns for
out-of-distribution prediction and generalizing to diverse latent environments with respect to variant
patterns. β plays a role in balancing the trade-off between modeling the environment and inferring
the environment distribution as a bi-level optimization. In conclusion, different combinations of
hyperparameters lead to varying task performance, and we follow the tradition of reporting the best
task performance with standard deviations.
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Figure D.3: Sensitivity analysis of the hyperparameter α on three real-world datasets. The solid line
shows the average AUC (%) in the testing stage and the light blue area represents standard deviations.
The dashed line represents the average AUC (%) of the best-performed baseline.
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Figure D.4: Sensitivity analysis of the hyperparameter β on three real-world datasets. The solid line
shows the average AUC (%) in the testing stage and the light blue area represents standard deviations.
The dashed line represents the average AUC (%) of the best-performed baseline.
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D.5 Intervention Efficiency Analysis

From the results of complexity analysis in Appendix B, we believe the computational complexity
bottleneck of EAGLE lies in the spatio-temporal causal intervention mechanism. In this case, we
analyze the intervention efficiency in the following two aspects.

Intervention Ratio. We perform node-wisely causal interventions as in Eq. (15). However, executing
interventions for all nodes in each epoch is time-consuming. Thus, we propose randomly selecting
nodes and performing interventions according to a certain ratio. Let the intervention ratio represent
the ratio of the number of intervened nodes to the total number of nodes |V|. Figure D.5 shows the
changes in task performance (AUC %) and the training time as the intervention ratio increases. We
observe the AUC increases, proving that the spatio-temporal causal intervention mechanism is more
effective in solving the OOD generalization problem with more intervened nodes. In addition, we
notice a jump in the growth rate of AUC on three datasets at the ratio of 0.6, which indicates the most
suitable intervention ratio while maintaining an acceptable training time cost.

Mixing Ratio. The intervention set sv is sampled from Sob ∪ Sge. While Sob has been already
prepared after we model the environments in Section 3.1, the Sge requires instantly generating, which
may be a burden on the intervention efficiency. Let the maxing ratio represent the ratio of the number
of observed environment samples to the number of generated environment samples. Figure D.6
shows the changes in task performance (AUC %) and the training time as the mixing ratio increases.
Different from the trend in Figure D.5, AUC reached the maximum value at different ratios on the
three datasets, and when the ratio is too large or small, the model performs poorly, indicating that
different datasets have varying preferences for mixing ratio settings. In addition, we observe the
variation in training time is not significant, verifying that although Sob needs to be generated instantly,
its time cost is acceptable still, and we should pay more attention on the optimal mixing ratio.
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Figure D.5: Intervention efficiency analysis on the intervention ratio. The vertical dashed line
indicates the most suitable intervention ratio while maintaining an acceptable training time cost.
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Figure D.6: Intervention efficiency analysis on the mixing ratio. The vertical dashed line indicates
the ratio when AUC reaches the maximum value.

D.6 Additional Analysis of Section 4.1

We visualize Table 1 and Table 2 in Section 4.1 to provide additional analysis. We have concluded
in Section 4.1 that the baselines own a strong fitting ability but weak generalization ability between
the distribution shifts settings. In addition to visualizing the task performance (AUC %), Figure D.7
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annotates the decrease of AUC under each baseline method, where the horizontal dashed line
represents the AUC decrease of our EAGLE. The smaller the decrease, the stronger the control ability
under the impact of out-of-distribution shifts. We can observe that on the vast majority of datasets,
our method can improve task performance in both w/o OOD and w/ OOD scenarios while minimizing
AUC decrease. Our control over AUC decrease exceeds the baseline except for GAE and GCRN in
the vast majority of cases. For the above two baseline methods, although they have better control
ability over AUC decrease than our method, the premise is that their task performance is inherently
poor. In addition, our method achieves the most excellent task performance on the ACT dataset,
which can explain the unsatisfying but acceptable AUC decrease control. In summary, in addition
to evaluating the advantages of our EAGLE in terms of task performance and generalization ability,
which is the most topic-relative and common, our EAGLE also maintains the ability to reduce the
impact of OOD on task performance.
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Figure D.7: Additional analysis of the performance on future link prediction.

D.7 Additional Results of Section 4.2

Section 4.2 reports the results when q̄ = 0.8. Here we report the additional results when q̄ = 0.4 and
0.6 in Figure D.8. All detailed results are summarized in Table D.2. A similar trend can be observed
as we report in Section 4.2 that as σe increases, the performance of EAGLE shows a significant
increase while narrowing the gap between w/o OOD and w/ OOD scenarios. Although DIDA [94]
also shows an upward trend, its growth rate is much more gradual, which indicates that DIDA [94] is
difficult to perceive changes in the underlying environments caused by different σe as it is incapable
of modeling the environments, thus cannot achieve satisfying generalization performance. In addition,
we also notice a positive correlation between IACC and the AUC, which verifies the improvements
are attributed to the proper recognition of the invariant patterns by I(·). In conclusion, our EAGLE can
exploit more reliable invariant patterns, thus performing high-quality invariant learning and efficient
causal interventions, and achieving better generalization ability.

E Implementation Details

E.1 Training and Evaluation

Training Settings. The number of training epochs for optimizing our proposed method and all
baselines is set to 1000. We adopt the early stopping strategy, i.e., stop training if the performance
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Figure D.8: Additional results on the effects of invariant pattern recognition.

Table D.2: AUC score (% ± standard deviation) of future link prediction task on synthetic datasets.
w/o OOD and w/ OOD denote testing without and with distribution shifts. IACC is reported in the
accuracy score). The best results are shown in bold and the runner-ups are underlined.

Shift Degree — q̄ = 0.4 q̄ = 0.6 q̄ = 0.8
σe Model w/o OOD w/ OOD IACC w/ OOD IACC w/ OOD IACC

0.2
DIDA [94] 63.29±0.35 54.62±0.92 — 53.33±1.01 — 52.87±1.28 —

EAGLE 67.10±0.23 59.91±1.18 69.28±1.59 54.71±1.29 63.36±1.74 54.26±1.31 59.79±1.37

0.4
DIDA [94] 64.31±0.34 56.36±0.98 — 56.04±1.13 — 55.89±1.24 —

EAGLE 70.32±0.27 63.97±0.82 72.04±1.34 61.08±1.02 69.95±1.30 58.40±1.12 63.88±1.36

0.6
DIDA [94] 65.27±0.41 59.37±0.87 — 58.79±0.97 — 57.35±1.19 —

EAGLE 71.77±0.38 66.01±0.74 80.31±1.52 63.26±0.64 73.62±1.41 63.11±0.78 69.30±1.50

0.8
DIDA [94] 66.56±0.39 60.07±0.89 — 59.82±1.05 — 59.20±1.03 —

EAGLE 74.33±0.29 68.41±0.72 83.95±1.66 66.15±0.69 77.08±1.73 65.82±0.81 72.59±1.46

1.0
DIDA [94] 66.93±0.18 62.55±0.85 — 61.05±0.93 — 60.33±1.17 —

EAGLE 75.58±0.40 70.12±0.91 85.83±1.54 69.83±0.93 79.56±1.65 68.09±0.97 74.16±1.21

on the validation set does not improve for 50 epochs. For our EAGLE, the hyperparameter α is
chosen from {10−3, 10−2, 10−1, 100, 101}, and β is chosen from {10−6, 10−5, 10−4, 10−3, 10−2}.
The intervention ratio and the mixing ratio are carefully tuned for each dataset. For other parameters,
we adopt the Adam optimizer [40] with an appropriate learning rate and weight decay for each dataset
and adopt the grid search for the best performance using the validation split. All parameters are
randomly initiated, which is especially important for Wk in Eq. (3) that ensures the difference in each
environment embedding space. The K channels will still remain orthogonal during training as we
conduct discrete environment disentangling iteratively. This helps the recognition of invariant/variant
patterns mainly because we guarantee there is no overlap between environments.

Evaluation. According to respective experiment settings, we randomly split the dynamic datasets
into training, validation, and testing chronological sets. We sample negative links from nodes that
do not have links, and the negative links for validation and testing sets are kept the same for all
baseline methods and ours. We set the number of positive links to the same as the negative links. We
use the Area under the ROC Curve (AUC) [7] as the evaluation metric. As we focus on the future
link prediction task, we use the inner product of a pair of learned node representations to predict
the occurrence of links, i.e., we implement the link predictor g(·) as the inner product of hidden
embeddings, which is commonly applied in classic future link prediction tasks. The biased training
technique is adopted following [9]. We use the cross-entropy loss as the loss function ℓ(·). The
activation function is LeakyReLU [1]. We randomly run all the experiments five times, and report the
average results with standard deviations.

E.2 Baseline Implementation Details

We provide the baseline methods implementations with respective licenses as follows.
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• GAE [42]: https://github.com/DaehanKim/vgae_pytorch with MIT License.
• VGAE [42]: https://github.com/DaehanKim/vgae_pytorch with MIT License.
• GCRN [76]: https://github.com/youngjoo-epfl/gconvRNN with MIT License.
• EvolveGCN [62]: https://github.com/IBM/EvolveGCN with Apache-2.0 License.
• DySAT [75]: https://github.com/FeiGSSS/DySAT_pytorch with license unspecified.
• IRM [3]: https://github.com/facebookresearch/InvariantRiskMinimization with

CC BY-NC 4.0 License.
• V-REx [44]: https://github.com/capybaralet/REx_code_release with license unspeci-

fied.
• GroupDRO [74]: https://github.com/kohpangwei/group_DRO with MIT License.
• DIDA [94]: https://github.com/wondergo2017/DIDA with license unspecified.

The parameters of baseline methods are set as the suggested value in their papers or carefully tuned
for fairness.

E.3 Configurations

We conduct the experiments with:

• Operating System: Ubuntu 20.04 LTS.
• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.
• GPU: NVIDIA Tesla A100 SMX4 with 40GB of Memory.
• Software: CUDA 10.1, Python 3.8.12, PyTorch [63] 1.9.1, PyTorch Geometric [20] 2.0.1.

F Further Discussions

F.1 Further Analysis on SCM Model

We provide further analysis of the intrinsic cause of the out-of-distribution shifts. From the causal-
based theories [64, 65, 66], we formulate the generation process of static graphs and dynamic graphs
with the Structural Causal Model (SCM) [64] in Figure F.1, where the arrow between variables denotes
causal dependencies. It is widely accepted in the OOD generalization works [22, 3, 72, 87, 11, 2, 60]
that the correlations between labels and certain parts of the latent features are invariant across data
distributions in training and testing, while the other parts of the features are variant. The invariant
part is also called the causal part (C) and the variant part is also called the spurious part (S).

Qualitative Analysis. In the SCM model on static graphs, C G S demonstrates that the
invariant part and variant part jointly decide the generation of the graphs, while C Y denotes the
label is solely determined by the causal part. However, there exists the spurious correlation C S
in certain distributions that would lead to a backdoor causal path S C Y so that the variant part
and the label are correlated statistically. As the variant part changes in the testing distributions caused
by different environments e, the predictive patterns built on the spurious correlations expired. For the
same reason, similar spurious correlation Ct St exists on dynamic graphs within a single graph
snapshot, which opens the backdoor causal path St Ct Yt. Especially, as we have captured
the temporal dynamics between each graph snapshot, the variant part in the previous time slice may
also establish spurious correlations with the invariant part at present time, i.e., Ct−1 St, leading
to St−1 Ct Yt, which is a unique phenomenon in the dynamic scenarios. Hence, we propose
to get rid of the spurious correlations within and between graph snapshots by investigating the latent
environment variable e, encouraging the model to rely on the spatio-temporal invariant patterns to
make predictions, and thus handle the distribution shifts.

Further Analysis of Assumption 1. The causal inference theories [64, 65, 66] propose to get rid of
the spurious correlations by blocking the backdoor path with do-calculus, which would remove all
causal dependencies on the intervened variables. Particularly, we intervene in the variant parts on all
graph snapshots, i.e., do(St), and thus the spurious correlations within and between graph snapshots
can be filtered out. This encourages the two conditions in Assumption 1 to be satisfied: the Invariance
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Property will be satisfied if the spurious correlations St−1 Ct St are removed and the label
will be solely decided by the invariant part Ct Yt, which also satisfies the Sufficient Condition. In
this case, we can minimize the variance of the empirical risks under diverse potential environments,
while encouraging the model to make predictions of the spatio-temporal invariant patterns.

Further Explanations of the Toy Example. From the above analysis, we can further explain the toy
example in Figure 1(a). The prediction model has captured the spurious correlations between “coffee”
and the “cold drink”, which caused the false prediction of buying an Iced Americano in the winter.
By applying our environment-ware EAGLE, the prediction model can perceive the environments of
seasons through the neighbors around the central node, i.e., perceiving the winter season by learning
the observed interactions between the user and the thick clothing. Thus encouraging the model to rely
on the exploited spatio-temporal invariant patterns, i.e., “the user buys coffee”, to make the correct
prediction on the Hot Latte by considering underlying environments.

Causal Part (invariant) Spurious Part (variant)

Observations Latent FactorsEnvironments

SCM on Static Graphs SCM on Dynamic Graphs

Figure F.1: The SCM model on static graphs and dynamic graphs.

F.2 Further Understanding of Environments

Environments on dynamic graphs are latent factors, where there are no accessible ground-truth
environment labels in the real world, leading to the lack of explainability. In order to improve the
explainability of the environment, and patterns the EA-DGNN learns, we have provided some real-
world examples to make explanations (Section 3.1). The key insight lies that, the formation of real-
world dynamic graphs typically follows a complex process under the impact of latent environments,
causing the relationships to be multi-attribute. To model diverse spatio-temporal environments, the
ego-graphs of each node need to be disentangled and processed in different embedding spaces.

An Easy-to-Understand Example: the Social Networks. The relationships between the central
node and its neighbor nodes, which may be classmates, colleagues, etc., are formed under the
influence of different surrounding environments. For example, the relationship between classmates
is formed in the “school” environment, which is a compound of “classmates”, “teachers”, “staff”,
etc., and the relationship between colleagues is formed in the “working” environment, etc. Multiple
relationships are compounded into a single edge and change over time. In order to model such
multiple environments, we propose multi-channel environments disentangling to represent different
semantic relationships in K embedding spaces. For example, the 1-st embedding represents the
“classmate” relationship, and the 2-nd embedding space represents the “colleague” relationship,
etc. Thus, EA-DGNN realizes the perception of multiple surrounding environments and encodes
spatio-temporal environment information into node representations.

F.3 Further Understanding of the Multi-Label

Understanding. We do not require ground-truth environment labels in our EAGLE. The environments
on dynamic graphs are latent factors, where there are no accessible ground-truth environment labels
that have practical meanings in the real world. This is also why conventional OOD generalization
baselines on images, text, etc. have poor performance (Section 4.1) in graphs as they must rely on the
ground-truth environment labels to generalize. In our work, the multi-label y in Section 3.2 is mixed
up with time index t and environment index k, indicating which environment index under which time
index z belongs. It can be seen as our inferred label of environments.
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Example. If there exist K environments and T graph snapshots, we first initialize a zero matrix of
the shape K × T . Then we mark the value in position (k, t) to be 1 and reshape the matrix into the
1-dimension vector y, indicating the multi-label of z for the k-th environment at time t.

Role. The multi-labels are used with z to infer environments by ECVAE, where the multi-label
is concatenated with its corresponding z to realize conditional variational inference. We can then
instantiate environments by generating samples from the inferred distribution with a given one-hot
multi-label. This can be regarded as the data augmentation of the environment samples under the
guidance of the inferred prior distribution qϕ(e | z,y), which helps improve the generalization ability.

F.4 Further Understanding of Proposition 2

Targets and Principles. Proposition 2 provides a solution to obtain the optimal I⋆(·) in Assumption 1
with theoretical proof in Appendix C.2. In fact, Proposition 2 solves a dynamic programming problem
by optimizing the state transition equation I(i, j). Given Var(ze′v ) ∈ RK as the representation
variance of node v in each environment across times, the target is to find a partition dividing all
environment patterns into invariant and variant types, so as to maximize the difference between the
variance means.

A Conceptual Example. If Var(ze′v ) of node v is [0.1, 0.2, 0.3, 0.4, 0.9], then the optimal partition
is [0.1, 0.2, 0.3, 0,4] and [0.9] (with a larger mean difference) rather than [0.1, 0.2, 0.3] and [0.4,
0.9]. An optimal partition can always be found for each node, which greatly helps the patterns
discrimination and fine-grained causal interventions, improving the generalization ability, and is one
of our main advantages compared with DIDA [94].

Proposition 2 intuitively illustrates a feasible implementation for the optimal I⋆(·), providing an ideal
optimizing start point. Note that, Proposition 2 itself cannot fully guarantee the global accuracy
of identifying the I⋆(·), but should optimize along with the Lrisk loss (Eq.(14)), which provides
theoretical ensure.

F.5 Further Discussions Compared with DIDA

The difference between our EAGLEand DIDA [94], and EAGLE’s main advantages are:

• Modeling Environments. EAGLE is the first to explicitly model latent environments on dynamic
graphs by variational inference. DIDA [94] neglects to model complex environments, which
weakens its ability to identify invariant patterns.

• Representation Learning. EAGLE learns node embeddings by K-channel environments disen-
tangling and spatio-temporal convolutions, which helps better understand multi-attribute relations.
DIDA [94] learns with single channel convolutions with an attention mechanism.

• Invariant Learning. EAGLE discriminates spatio-temporal invariant patterns by the theoretically
supported I⋆(·) for each node individually, leading to better removal of spurious correlations.
DIDA [94] divides invariant/variant parts heuristicly with a minus operation for all nodes.

• Causal Intervention. EAGLE performs fine-grained causal interventions with both observed
and generated environment samples, better minimizing the variance of extrapolation risks, and
generalizing to unseen distributions better. DIDA [94] intervenes coarse-grainedly with only
observed samples.

F.6 Further Related Work

Dynamic Graph Learning. Extensive research [70, 4] address the challenges of learning on dynamic
graphs, which consist of multiple graph snapshots at different times. Dynamic graph neural networks
(DGNNs) are widely adopted to learn dynamic graphs by intrinsically modeling both spatial and
temporal patterns, which can be divided into two main categories: spatial-first methods and temporal-
first methods. The spatial-first methods [88, 28, 76] first adopt vanilla GNNs to model spatial patterns
for each graph snapshot, followed by sequential-based models like RNNs [58] or LSTMs [31],
to capture temporal relations. In comparison, temporal-first DGNNs [84, 73] model dynamics in
advance with temporal encoding mechanisms [32], and then conduct convolutions of message-passing
and aggregating on each single graph with GNNs. Dynamic graph learning has been widely utilized
for prediction tasks like disease transmission prediction [38], dynamic recommender system [90],
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social relation prediction [85], etc. However, most existing works fail to generalize under distribution
shifts. DIDA [94] is the sole prior work that addresses distribution shifts on dynamic graphs with an
intervention mechanism. But DIDA [94] neglects to model the complex environments on dynamic
graphs, which is crucial in tackling distribution shifts. We also experimentally validate the advantage
of our method compared with DIDA [94].

Out-of-Distribution Generalization. Most machine learning methods are built on the I.I.D. hy-
pothesis, i.e., training and testing data follow the independent and identical distribution, which
can hardly be satisfied in real-world scenarios [77], as the generation and collection process of
data are affected by many latent factors [71, 3]. The non-I.I.D. distribution results in a significant
decline of model performance, highlighting the urgency to investigate generalized learning meth-
ods for out-of-distribution (OOD) shifts, especially for high-stake downstream applications, like
autonomous driving [15], financial system [62], etc. OOD generalization has been extensively studied
in both academia and industry covering various areas [77, 92, 30] and we mainly focus on OOD
generalization on graphs [50]. Most graph-targeted works concentrate on node-level or graph-level
tasks on static graphs [98, 18, 49, 86, 52, 12, 87], targeting at solving the problems of graph OOD
generalization for drugs, molecules, etc., which is identified as one key challenge in AI for science
(AI4Science). Another main category of works elaborates systematic benchmarks for graph OOD
generalization evaluation [26, 17, 36]. However, there lack of further research on dynamic graphs
with more complicated shift patterns caused by spatio-temporal varying latent environments, which
is our main concern.

Invariant Learning. Deep learning models tend to capture predictive correlations behind observed
samples, while the learned patterns are not always consistent with in-the-wild extrapolation. Invariant
learning aims to exploit the less variant patterns that lead to informative and discriminative represen-
tations for stable prediction [14, 46, 95]. Supporting by disentangled learning theories and causal
learning theories, invariant learning tackles the OOD generalization problem from a more theoretical
perspective, revealing a promising power. Disentangle-based methods [5, 55] learn representations
by separating semantic factors of variations in data, making it easier to distinguish invariant factors
and establish reliable correlations. Causal-based methods [22, 3, 72, 87, 11, 2, 60] utilize Structural
Causal Model (SCM) [64] to filter out spurious correlations by intervention or counterfactual with
do-calculus [65, 66] and strengthen the invariant causal patterns. However, the invariant learning
method of node-level tasks on dynamic graphs is underexplored, mainly due to its complexity in
analyzing both spatial and temporal invariant patterns.

Disentangled Representation Learning. Disentangled Representation Learning (DRL) is a paradigm
that inspires a model with the capability to discriminate and disentangle latent factors intrinsic to
the observable data. The fundamental objective of DRL is to separate latent factors of variation
into distinct variables endowed with semantic significance. This helps to improve the generalization
capacity, explainability, and robustness, etc. in a wide range of scenarios. Following [83], we
categorize existing DRL works into traditional statistical approaches, VAE-based approaches, GAN-
based approaches, hierarchical approaches, and other methods. Specifically, applying DRL to graphs
results in benefits and advantages in graph tasks. DisenGCN [56], FactorGCN [89], DGCL [48],
etc. decompose the input graph into segments for disentangled representations, which inspire our
work on environment disentangling.

I love LJN.
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