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1 Implementation Details

For all tasks, we adopt a UNet architecture similar to the one described in DvSR [4]. The input
feature map is expanded to 64 channels. There are five stages in both the encoder and decoder, and
each stage contains two diffusion model blocks. Between each encoder stage, the input resolution is
downsampled by a convolution layer with stride 2 and the channels are expanded by a factor of 2. On
the other hand, in each decoder stage, the feature map resolution and the channels are reversed by the
Nearest upsampling and a convolution layer separately.

During training, we use a linear noise schedule with a total of T = 2000 steps. The noise level is
sampled uniformly from the range [1 × 10−6, 1 × 10−2]. For evaluation, we simply use a shorter
noise schedule with T = 50 steps and a noise range of [1× 10−6, 4× 101]. This allows for faster
inference during evaluation.

2 Additional Results

Since the DDRM [2] can only work on a fixed input size of 256× 256, we are unable to present the
high-resolution results in the main text. Here, we provide the comparisons on the low-resolution
images in Fig. 1.

We provide more visualization results in Fig. 2, Fig. 3, Fig. 4, and Fig. 5. As mentioned in the
limitation section of the main text, our method can generate realistic textures in most regions.
However, it may restore incorrect small characters as shown in Fig. 2, which is highly ill-posed. This
has also been observed in previous works such as S3 [3]. Exploring better control mechanisms for
the generation process, such as disabling generation around specific regions, could be an interesting
direction for future research. We also evaluate the generalization of our method on the HIDE dataset
in Tab. 1. Compared with the Uformer, it shows consistent improvements in perceptual quality.

Table 1: Motion deblurring results on HIDE dataset.
Model Perceptual Distortion

LPIPS↓ NIQE↓ FID↓ KID↓ PSNR↑ SSIM↑

Uformer 0.114 5.46 7.56 1.08 30.89 0.940
Ours 0.095 4.59 6.92 0.26 28.69 0.884
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Figure 1: Visualization comparison with DDRM [2] on JPEG restoration.
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Figure 2: Additional extreme low-light denoising results on the SID [1] dataset.
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Figure 3: Additional extreme low-light denoising results on the SID [1] dataset.
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Figure 4: Additional JPEG restoration results on the ImageNet validation dataset.
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Figure 5: Additional JPEG restoration results on the ImageNet validation dataset.
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Noisy image
PSNR / SSIM / LPIPS

JPEG image
PSNR / SSIM / LPIPS

NAFNet
27.10 / 0.837 / 0.484

SwinIR
22.02 / 0.654 / 0.336

Ours
18.02 / 0.576 / 0.155

GT
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25.63 / 0.815 / 0.234

Figure 6: We compare the PSNR-oriented methods and our method. They produce higher PSNR/SSIM but tend
to be blurry. Our method fits the potential distribution for the degraded input and shows significant improvements
on the perception quality. (Zoom in for details.)
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