
Geometry-Aware Adaptation for Pretrained Models

Nicholas Roberts, Xintong Li, Dyah Adila, Sonia Cromp,
Tzu-Heng Huang, Jitian Zhao, Frederic Sala

University of Wisconsin-Madison
{nick11roberts, fredsala}@cs.wisc.edu

{xli2224, adila, cromp, thuang273, jzhao326}@wisc.edu

Abstract

Machine learning models—including prominent zero-shot models—are often
trained on datasets whose labels are only a small proportion of a larger label
space. Such spaces are commonly equipped with a metric that relates the labels
via distances between them. We propose a simple approach to exploit this in-
formation to adapt the trained model to reliably predict new classes—or, in the
case of zero-shot prediction, to improve its performance—without any additional
training. Our technique is a drop-in replacement of the standard prediction rule,
swapping argmax with the Fréchet mean. We provide a comprehensive theoretical
analysis for this approach, studying (i) learning-theoretic results trading off label
space diameter, sample complexity, and model dimension, (ii) characterizations
of the full range of scenarios in which it is possible to predict any unobserved
class, and (iii) an optimal active learning-like next class selection procedure to
obtain optimal training classes for when it is not possible to predict the entire range
of unobserved classes. Empirically, using easily-available external metrics, our
proposed approach, LOKI, gains up to 29.7% relative improvement over SimCLR
on ImageNet and scales to hundreds of thousands of classes. When no such metric
is available, LOKI can use self-derived metrics from class embeddings and obtains
a 10.5% improvement on pretrained zero-shot models such as CLIP.

1 Introduction

The use of pretrained models is perhaps the most significant recent shift in machine learning. Such
models can be used out-of-the-box, either to predict classes observed during pretraining (as in
ImageNet-trained ResNets [14]) or to perform zero-shot classification on any set of classes [32].
While this is exciting, label spaces are often so huge that models are unlikely to have seen even a
single point with a particular label. Without additional modification, pretrained models will simply
fail to reliably predict such classes. Instead, users turn to fine-tuning—which requires additional
labeled data and training cycles and so sacrifices much of the promise of zero-shot usage.

How can we adapt pretrained models to predict new classes, without fine-tuning or retraining? At first
glance, this is challenging: predictive signal comes from labeled training data. However, relational
information between the classes can be exploited to enable predicting a class even when there are no
examples with this label in the training set. Such relational data is commonly available, or can be
constructed with the help of knowledge bases, ontologies, or powerful foundation models [39].

How to best exploit relational structure remains unclear, with a number of key challenges: We might
wish to know what particular subset of classes is rich enough to enable predicting many (or all)
remaining labels. This is crucial in determining whether a training set is usable or, even with the aid
of structure, insufficient. It is also unclear how approaches that use relational information interact
with the statistical properties of learning, such as training sample complexity. Finally, performing
adaptation requires an efficient and scalable algorithm.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem. The probability simplex using argmax prediction can only output one of three classes.
LOKI uses the entire probability vector to navigate the class metric space, leading to more prediction
regions. (Left) regions from argmax prediction. (Centers, Right) classification regions from LOKI.

This work addresses these challenges. It proposes a simple and practical approach to learning in
structured label spaces, with theoretical guarantees. First, we offer a simple way to translate the soft
outputs (i.e., probability vectors) produced by any supervised learning model into a more general
model that can exploit geometric information for label structure. In other words, our approach,
called LOKI,1 is a simple adaptor for pretrained models. LOKI can be applied via a fixed linear
transformation of the model outputs. LOKI’s simplicity makes it applicable to a broad range of
settings while enabling very high-cardinality predictions subject to a potentially small model output
budget—we provide a visualization of this key idea in Figure 1.

Theoretically, we provide a rich set of results for the metric-based adaptation setting. First, we intro-
duce a learning-theoretic result in terms of the sample complexity of the pretrained model. It captures
a key tradeoff between the number of classes and metric structure, the problem dimensionality, and
the number of samples used to train the model prior to adaptation. Next we exhaustively study the
properties of training sets, determining for a wide class of relational structures the minimum number
(and structure) of subsets that enable reliable prediction. Finally we show how to exploit this result in
an active learning-like approach to selecting points that will improve deficient training datasets.

Experimentally, we show that using structural information improves prediction in high-cardinality
settings. We demonstrate the strength of the active learning-based approach to dataset expansion over
random baselines. Finally, and most excitingly, we show that even in zero-shot models like CLIP,
where it is possible to produce probability vectors over any possible class, the use of our adaptor
leads to a 19.53% relative improvement.

2 Background

First, we introduce the problem setting, notation, and mathematical tools that we will use. Afterward,
we discuss how LOKI relates to prior work.

Problem Setting As in conventional supervised learning, we have a dataset (x1, y1), . . . , (xn, yn)
drawn from a distribution on X × Y , where X and Y are the input and label spaces. In our setting,
N := |Y| is finite but large; often N ≫ n—so that many labels will simply not be found in the
training dataset. We let Λ ⊆ Y with |Λ| = K be the set of observed labels. For convenience of
notation, we also define λ := [λi]

K
i=1, y := [yi]

N
j=1 to be the vectors of elements in Λ and Y .

In addition to our dataset, we have access to a relational structure on Y . We assume that Y is a
metric space with metric (distance) d : Y2 → R; d encodes the relational structure of the label space.
Specifically, we model this metric space using a graph, G = (Y, E) where E ⊆ Y2 × R+ is a set
of edges relating the labels and the standard shortest-path distance d : Y2 → R≥0. In addition to
its use in prediction, the metric d can be used for evaluating a model by measuring, for example,
1
n

∑n
i=1 d

2(f(xi), y)—the analogue of the empirical square loss.

Fréchet Mean Estimator Drawing on ideas from structured prediction [5, 35], we use a simple
predictor that exploits the label metric. It relies on computing the Fréchet mean [8], given by

my(w) := argmin
y∈Y

K∑
i=1

wid
2(y,yi), (1)

1Refers to the ‘locus’ (plural: loci) of the Fréchet mean.

2

where w ∈ RK
≥0 is a set of weights. The Fréchet mean generalizes the barycenter to metric spaces

and is often used in geometric machine learning [26].

Locus of the Fréchet mean. The locus of the Fréchet mean is the set of all Fréchet means under
different weights [29]. We write it as Π(y) := ∪w∈∆K−1my(w).

Π(y) can be thought of the set of all labels in Y that are reachable by the Fréchet mean given
{yi}Ki=1 ⊆ Y and different choices of its parameter w. Intuitively, we can think of the locus for a
given dataset as describing how usable it is for predicting beyond the observed labels. Trivially, if
{yi}Ki=1 = Y , then Π(y) = Y . We are primarily interested in the case in which {yi}Ki=1 ⊂ Y yet we
still have Π(y) = Y , or that |Π(y)| is at least sufficiently large.

2.1 Relation to Prior work

LOKI is primarily related to two areas: zero-shot learning and structured prediction.

Zero-Shot Learning Like zero-shot learning (ZSL), LOKI is capable of predicting unobserved
classes. Our framework is most closely related to generalized ZSL, which uses side information
to predict both observed and unobserved classes. Many types of external knowledge are used in
ZSL, including text [28, 38, 9], attributes [22, 23, 7], knowledge graphs [42, 34, 10], ontologies [25],
and logical rules [33]. Our work is most closely related to ZSL approaches that rely on knowledge
graph information. Often, ZSL methods that use knowledge graph information rely on the use of
graph neural network architectures [42, 17, 18]. However, we note that these architectures can be
heavyweight and can be challenging to scale up to extremely large graphs, whereas LOKI does not
have architectural requirements and scales linearly in the size of the graph when K is small.

Structured Prediction Structured prediction (SP) operates in label spaces that are endowed with
algebraic or geometric structure [1, 21]. This includes problems such as predicting permutations
[19], non-Euclidean and manifold regression [31, 36], and learning on graphs [12]. LOKI is the most
immediately related to the latter, however, any finite metric space can be represented as a graph,
which further lends to the flexibility of our approach. Even in discrete structured prediction settings,
the cardinality of the label space may be combinatorially large. As such, LOKI can be viewed as a
simple method for adapting classifiers to structured prediction.

The Fréchet mean has been used in structured prediction—but in approaches requiring training. In
[5], f̂(x) = argminy∈Y

1
n

∑n
i=1 αi(x)d

2(y,yi), where α(x) = (K + nνI)−1Kx. K is the kernel
matrix for a kernel k : X ×X → R, so that Ki,j = k(xi, xj), (Kx)i = k(x, xi). ν is a regularization
parameter. In other words, the weight wi corresponding to yi is the average produced by solving a
kernel regression problem at all points xk in the dataset where yk = yi. It has also used in weak
supervision (WS) for metric-equipped label spaces [41, 37], where the goal is to produce labeled data
for training structured prediction models.

3 Framework

We introduce our framework—LOKI. We show how LOKI can be used to adapt any supervised
classifier over a set of K classes to a much richer set of possible class predictions. It does so by
weighting the Fréchet mean by the classifier’s per-class prediction probabilities or logits, allowing it
to predict any class in the locus of the Fréchet mean—potentially far more classes than the initial
K. Next, we show how LOKI can be expressed as a fixed linear transformation of a model’s outputs.
Finally, we show that LOKI relates to standard classification.

3.1 LOKI: Adapting Pretrained Models

We describe our approach to adapting pretrained classifiers–trained on a set of classes Λ—to the
metric geometry of the label space Y , enabling the prediction of unobserved classes.

We model unobserved classes Y \ Λ using the Fréchet mean among observed classes weighted by
their prediction probabilities P (y = λi|x and y ∈ Λ). We denote the vector of model outputs as

3

Py|x := [Pλi|x]
K
i=1 = [P (y = λi|x and y ∈ Λ)]Ki=1. Then predictions using LOKI are given by

ŷ ∈ mλ(Py|x) = argmin
y∈Y

K∑
i=1

Pλi|xd
2(y, λi).

3.2 LOKI as a linear transformation of model outputs

Most standard classifiers output a vector of prediction probabilities, Py|x, whose entries corre-
spond to the confidence of predicting a specific class. Predictions are typically given by ŷ ∈
argmaxi∈[K](Py|x)i. LOKI generalizes this prediction rule when viewed as a linear transformation
of Py|x. Consider the LOKI prediction rule ŷ ∈ mλ(Py|x) = argminy∈Y

∑K
i=1 Pλi|xd

2(y, λi) =

argmaxj∈[N](DPy|x)j , where Dj,i =
[
−d2(yj , λi)

]
; D ∈ RN×K is the matrix of negative squared

distances between the observed classes and the rest of the label space. Thus LOKI can be used within
standard classification pipelines when the model output Py|x is multiplied by the fixed matrix D.

3.3 Generalizing Standard Classification

We provide a simple intuition for our approach. The fact that LOKI reduces to standard classification
among the observed classes has several implications. This includes the idea that under our frame-
work, forms of few-shot, zero-shot, hierarchical, and partial label learning all reduce to standard
classification when additional metric information is introduced.

Generalizing the arg max prediction rule In the absence of this metric information—a situation
that we model using the complete graph and setting Λ = Y—our framework also recovers standard
classification. Indeed, both in terms of error modeling and in terms of inter-class similarity, the
intuition of standard classification and of the 0-1 loss are captured well by the unweighted complete
graph—simply treat all differences equally. This graph is given as KN := (Y,Y2×{1})—i.e., every
label is equidistant from every other label. Plugging this into LOKI, we obtain the following:

ŷ ∈ mλ(Py|x) = argmin
y∈Y

K∑
i=1

Pλi|xd
2(y, λi) = argmin

y∈Y

K∑
i=1

Pλi|x1{y ̸= λi} = argmax
i∈[K]

Pλi|x,

which is exactly the standard classification prediction rule.

Generalizing the 0-1 loss via the expected squared distance The expected squared distance
E[d2(y, ŷ)] is the standard loss function for many structured prediction problems. Note that accuracy
fails in such settings—since it cannot distinguish between small and large errors. This is most clearly
seen in the extreme case of regression, where test accuracy will virtually always be zero no matter
how good a trained model is. At the other extreme, the complete graph, this loss function becomes
the standard 0-1 loss: E[d2(y, ŷ)] = E[1{y ̸= ŷ}]. As an adaptor for structured label spaces, we
use the empirical version of this loss to evaluate LOKI. Note that the expected squared distance
subsumes other metrics as well. For example, when Y = R, we can derive the standard MSE by
setting d(y, ŷ) = |y − ŷ|, which is just the standard L1 distance metric. Other scores such as recall at
top-k can be similarly obtained at the cost of d(·, ·) being a true metric. In other words, E[d2(y, ŷ)] is
an very general metric that supports any metric space, and we use it throughout this work.

4 Theoretical Results

Challenges and Opportunities The argmax of per-class model probabilities is a ubiquitous
component of classification pipelines in machine learning. In order to predict unobserved classes
using metric space information, LOKI replaces this standard component. As a simple but significant
change to standard pipelines, LOKI opens up a new area for fundamental questions. There are three
main flavors of theoretical questions that arise in this setting:

1. How does the performance of LOKI change as a function of the number of samples?
2. What minimal sets of observed classes are required to predict any class in the metric space?
3. How can we acquire new classes that maximize the total number of classes we can predict?

4

Excitingly, we provide a comprehensive answer to these questions for the most common metric spaces
used in practice. First, we provide a general error bound in terms of the number of samples, observed
classes, problem dimension, and the diameter of the metric space, that holds for any finite metric
space. Second, we characterize the sets of observed classes that are required to enable prediction of
any class, and show how this set differs for various types of metric spaces of interest. Finally, we
provide an active learning algorithm for selecting additional classes to observe so as to maximize the
number of classes that can be predicted and we characterize the types of metric spaces for which the
locus can be computed efficiently. These results provide a strong theoretical grounding for LOKI.

4.1 Sample Complexity

What is the interplay between predicting unobserved classes based on metric space information and
standard learning-theoretic notions like the sample complexity needed to train a model? Our first
result illustrates this tradeoff, and relates it to the squared distance loss. Suppose that we only observe
K ≤ N of the classes at training time, and that we fit a K-class Gaussian mixture model. We use
LOKI to adapt our pretrained classifier to enable classification of any of the N classes. We have that
(a formal statement and interpretation are in the Appendix),

Theorem 4.1 (Informal LOKI sample complexity). Let Y be a set of classes represented by d
dimensional vectors under the Euclidean distance, and let Λ ⊆ Y be the set of K observed classes.
Assume that n training examples are generated by an identity covariance Gaussian mixture model
over classes Λ, and that test examples are generated over all classes Y . Assume that we estimate a
Gaussian mixture model on the training set and obtain probability estimates P̂(yi|x) for i ∈ [K] for
a sample (x, y∗) from the test distribution. Then with high probability, under the following model,

ŷ∗ ∈ mΛ([P̂(yi|x)]i∈[K]) = argmin
y∈Y

∑
i∈[K]

P̂(yi|x)d2(y, yi)

the sample complexity of estimating target y∗ from the test distribution Dtest with prediction ŷ∗ is:

E(x,y∗)∼Dtest [d
2(y∗, ŷ∗)] ≤ O

 d

α

√
logK/δ

n

 1(
R1− 2

d − logR
R

) +
√
d

where α is related to the sensitivity of the Fréchet variance to different node choices.

4.2 Optimal Label Subspaces

Next we characterize the subset of distinct labels required to predict any label using our label model
with respect to various types of metric spaces.

We first consider label spaces whose metric is a tree graph—such metrics are, for example, related to
performing hierarchical classification and weak supervision (where only partial labels are available).
We consider a special type of tree called a phylogenetic tree, in which only the leaves can be designated
as labels—phylogenetic trees are commonly used to relate the labels of image classification datasets.
Afterwards we perform a similar analysis for grid graphs, which are important for label spaces that
encode spatial information. Finally, we discuss the case in which no useful metric information is
available, i.e., the complete graph.

Our goal in this section is to characterize the properties and size of {λi}Ki=1 in each of these metric
spaces such that we still have Π(Λ) = Y . We characterize ‘optimal’ subsets of classes in each of the
spaces under a certain notions of optimality. We provide several relevant definitions pertaining to this
concept, starting with a notion of being able to predict any possible class using observed classes.

Definition 4.2 (Locus cover). Given a set Λ ⊆ Y for which we construct a tuple of its elements Λ, if
it holds that Π(Λ) = Y , then Λ is a locus cover.

Definition 4.2 captures the main idea of LOKI—using some set of observed classes for which we can
train classifiers, we would like to be able to predict additional unobserved classes using the geometry
that relates the observed and unobserved classes. Namely, elements of Π(Λ) are ‘reachable’ using
LOKI. We refine this Definition to describe the trivial case that defaults to standard classification and
the nontrivial case for which LOKI moves beyond standard classification.

5

Definition 4.3 (Trivial locus cover). If Λ = Y , then Λ is the trivial locus cover.

This Definition captures the notion of observing all of the classes in the label space. Here, all of the
elements of Y are trivially reachable using LOKI.

Definition 4.4 (Nontrivial locus cover). A locus cover Λ is nontrivial if Λ ̸= Y .

LOKI is more useful and interesting when faced with a nontrivial locus cover—under Definition 4.4,
we can use some subset of classes Λ to predict any label in Y .

Definition 4.5 (Minimum locus cover). Given a set Λ ⊆ Y , if Λ is the smallest set that is still a locus
cover, then it is a minimum locus cover.

In cases involving an extremely large number of classes, it is desirable to use LOKI on the smallest
possible set of observed classes Λ such that all labels in Y can still be predicted. Definition 4.5
characterizes these situations—later, we obtain the minimum locus covers for all trees and grid graphs.
It is worth noting that the minimum locus cover need not be unique for a fixed graph.

Definition 4.6 (Identifying locus cover). Given a set Λ ⊆ Y , if Λ is a locus cover where ∀ y ∈
Y, ∃w ∈ ∆|Λ|−1 such that mΛ(w) = {y}, then Λ is an identifying locus cover.

The Fréchet mean need not be unique—as an argmin, it returns a set of minimizers. In certain metric
spaces, the minimum locus cover can yield large sets of minimizers—this is undesirable, as it makes
predicting a single class challenging. Definition 4.6 appeals to the idea of finding some set of classes
for which the Fréchet mean always returns a unique minimizer—this is desirable in practice, and in
some cases, moreso than Definition 4.5.

Definition 4.7 (Pairwise decomposable). Given Λ ⊆ Y , Π(Λ) is called pairwise decomposable when
it holds that Π(Λ) = ∪λ1,λ2∈ΛΠ({λ1, λ2}).

In many cases, the locus can be written in a more convenient form—the union of the locus of pairs
of nodes. We refer to this definition as pairwise decomposability. Later, we shall see that pairwise
decomposability is useful in computing the locus in polynomial time.

Trees Many label spaces are endowed with a tree metric in practice: hierarchical classification,
in which the label space includes both classes and superclasses, partial labeling problems in which
internal nodes can represent the prediction of a set of classes, and the approximation of complex or
intractable metrics using a minimum spanning tree. We show that for our purposes, trees have certain
desirable properties that make them easy to use with LOKI—namely that we can easily identify a
locus cover that satisfies both Definition 4.5 and Definition 4.6. Conveniently, we also show that any
locus in any tree satisfies Definition 4.7.

We first note that the leaves of any tree yield the minimum locus cover. This is a convenient property—
any label from any label space endowed with a tree metric can be predicted using LOKI using only
classifiers trained using labels corresponding to the leaves of the metric space. This can be especially
useful if the tree has long branches and few leaves. Additionally, for tree metric spaces, the minimum
locus cover (Definition 4.5) is also an identifying locus cover (Definition 4.6). This follows from the
construction of the weights in the proof of Theorem A.4 (shown in the Appendix) and the property that
all paths in trees are unique. Finally, we note that any locus in any tree is pairwise decomposable—the
proof of this is given in the Appendix (Lemma A.5). We will see later that this property yields an
efficient algorithm for computing the locus.

Phylogenetic Trees Image classification datasets often have a hierarchical tree structure, where
only the leaves are actual classes, and internal nodes are designated as superclasses—examples
include the ImageNet [6] and CIFAR-100 datasets [20]. Tree graphs in which only the leaf nodes
are labeled are referred to as phylogenetic trees [3]. Often, these graphs are weighted, but unless
otherwise mentioned, we assume that the graph is unweighted.

For any arbitrary tree T = (V, E), the set of labels induced by phylogenetic tree graph is Y =
Leaves(T). We provide a heuristic algorithm for obtaining locus covers for arbitrary phylogenetic
trees in Algorithm B.1 (see Appendix). We prioritize adding endpoints of long paths to Λ, and
continue adding nodes in this way until Π(Λ) = Y . Similarly to tree metric spaces, any phylogenetic
tree metric space is pairwise decomposable. We prove the correctness of Algorithm B.1 and pairwise

6

decomposability of phylogenetic trees in the Appendix (Theorem A.6 and Lemma A.7). Later, we
give algorithms for computing the set of nodes in an arbitrary locus in arbitrary graphs—if the locus
is pairwise decomposable, the algorithm for doing so is efficient, and if not, it has time complexity
exponential in K. Due to the pairwise decomposability of phylogenetic trees, this polynomial-time
algorithm to compute Π(Λ) applies.

Grid Graphs Classes often have a spatial relationship. For example, classification on maps or the
discretization of a manifold both have spatial relationships—grid graphs are well suited to these types
of spatial relationships. We obtain minimum locus covers for grid graphs satisfying Definition 4.5,
but we find that these are not generally identifying locus covers. On the other hand, we give an
example of a simple identifying locus cover satisfying Definition 4.6. Again, we find that grid graphs
are in general pairwise decomposable and hence follow Definition 4.7.

We find that the pair of vertices on furthest opposite corners yields the minimum locus cover. While
the set of vertices given by Theorem A.8 (found in the Appendix) satisfies Definition 4.5, this set
does not in general satisfy Definition 4.6. This is because the path between any two vertices is not
unique, so each minimum path of the same length between the pair of vertices can have an equivalent
minimizer. On contrast, the following example set of vertices satisfies Definition 4.6 but it clearly
does not satisfy Definition 4.5. Example: Given a grid graph, the set of all corners is an identifying
locus cover. On the other hand, the vertices given by Theorem A.8 can be useful for other purposes.
Lemma A.9 (provided in the Appendix) shows that subspaces of grid graphs can be formed by the loci
of pairs of vertices in Λ. This in turn helps to show that loci in grid graphs are pairwise decomposable
in general (see Lemma A.10 in the Appendix).

The Complete Graph The standard classification setting does not use relational information
between classes. As before, we model this setting using the complete graph, and we show the
expected result that in the absence of useful relational information, LOKI cannot help, and the
problem once again becomes standard multiclass classification among observed classes. To do so, we
show that there is no nontrivial locus cover for the complete graph (Theorem A.11 in the Appendix).

4.3 Label Subspaces in Practice

While it is desirable for the set of observed classes to form a minimum or identifying locus cover, it
is often not possible to choose the initial set of observed classes a priori—these are often random. In
this section, we describe the more realistic cases in which a random set of classes are observed and
an active learning-based strategy to choose the next observed class. The aim of our active learning
approach is, instead of randomly selecting the next observed class, to actively select the next class
so as to maximize the total size of the locus—i.e., the number of possible classes that can be output
using LOKI. Before maximizing the locus via active learning, we must first address a much more
basic question: can we even efficiently compute the locus?

Computing the Locus We provide algorithms for obtaining the set of all classes in the locus, given
a set of classes Λ. We show that when the locus is pairwise decomposable (Definition 4.7), we can
compute the locus efficiently using a polynomial time algorithm. When the locus is not pairwise
decomposable, we provide a general algorithm that has time complexity exponential in |Λ|—we
are not aware of a more efficient algorithm. We note that any locus for every type of graph that
we consider in Section 4.2 is pairwise decomposable, so our polynomial time algorithm applies.
Algorithms B.2 and B.3 along with their time complexity analyses can be found in the Appendix.

Large Locus via Active Next-Class Selection We now turn to actively selecting the next class to
observe in order to maximize the size of the locus. For this analysis, we focus on the active learning
setting when the class structure is a tree graph, as tree graphs are generic enough to apply to a wide
variety of cases—including approximating other graphs using the minimum spanning tree. Assume
the initial set of K observed classes are sampled at random from some distribution. We would like to
actively select the K + 1st class such that |Π(Λ)| with Λ = {λ}K+1

i=1 is as large as possible.
Theorem 4.8. Let T = (Y, E) be a tree graph and let Λ ⊆ Y with K = |Λ|. Let T ′ be the subgraph
of the locus Π(Λ). The vertex v ∈ Y \Λ that maximizes |Π(Λ∪ {v})| is the solution to the following
optimization problem: argmaxy∈Y\Π(Λ) d(y, b) s.t. b ∈ ∂inT

′ and Γ(y, b) \ {b} ⊆ Y \Π(Λ). where
∂inT

′ is the inner boundary of T ′ (all vertices in T ′ that share an edge with vertices not in T ′).

7

Table 1: CIFAR-100. Improving CLIP predictions using LOKI. Results are reported as E[d2(y, ŷ)]
in the respective metric space. CLIP-like zero-shot models can be improved using LOKI even without
access to an external metric, and internal class embedding distances are used. When an external
metric is available, LOKI outperforms CLIP using the default CIFAR-100 hierarchy and WordNet.

Model Metric Space argmax LOKI Relative Improvement

CLIP-RN50 [32] Internal 0.2922 0.2613 10.57%
CLIP-ViT-L-14 [32] Internal 0.1588 0.1562 1.63%

ALIGN [16] Internal 0.1475 0.1430 3.02%
CLIP-RN50 [32] K100 0.5941∗ 0.5941∗ 0.0%∗

CLIP-RN50 [32] Default tree 7.3528 7.1888 2.23%
CLIP-RN50 [32] WordNet tree 24.3017 19.5549 19.53%

∗ methods equivalent under the complete graph as LOKI reduces to argmax prediction.

This procedure can be computed in polynomial time—solving the optimization problem in Theo-
rem 4.8 simply requires searching over pairs of vertices. Hence we have provided an efficient active
learning-based strategy to maximize the size of the locus for trees.

5 Experimental Results

In this section, we provide experimental results to validate the following claims:

1. LOKI improves performance of zero-shot foundation models even with no external metric.
2. LOKI adapts to label spaces with a large number of unobserved classes.
3. The active approach given in Theorem 4.8 yields a larger locus than the passive baseline.
4. The same active approach yields better performance on ImageNet.
5. With LOKI, calibration can improve accuracy, even with no external metric.

5.1 LOKI Improves Zero-Shot Models

We evaluate the capability of LOKI to improve upon zero-shot models where all classes are observed.

Setup Our experiment compares the zero-shot prediction performance of CLIP [32] on CIFAR-100
[20] to CLIP logits used with LOKI. First, we consider the setting in which no external metric relating
the labels is available, and instead derive internal metric information from Euclidean distances
between text embeddings from the models using their respective text encoders. Second, we consider
three external metric spaces for use with LOKI: the complete graph K100 and two phylogenetic trees:
the default CIFAR-100 superclasses [20] and WordNet [2].

Results The results of this experiment are given in Table 1. When no external metric information is
available, LOKI still outperforms CLIP-like models that use the standard prediction rule—in other
words, LOKI seems to unconditionally improve CLIP. As expected, under the complete graph, our
method becomes equivalent to the standard prediction mechanism used by CLIP. On the other hand,
LOKI outperforms CLIP when using the default CIFAR-100 tree hierarchy and even more so when
using the WordNet geometry, with a 19.53% relative improvement in mean squared distance over
the CLIP baseline. We postulate that the strong performance using WordNet is due to the richer
geometric structure compared to that of the default CIFAR-100 hierarchy.

5.2 LOKI on Partially-Observed Label Spaces

To validate our approach on partially observed label spaces, we evaluate the performance of adapting
a logistic classifier trained on SimCLR embeddings of ImageNet [6], 5-NN models trained on a 9,419
class subset of the PubMed dataset,2 and the 325,056-class LSHTC dataset [30].

2https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification

8

https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification

K

50

100

150

[d
2 (

y,
y)

]

Class sampling under uniform distribution
SimCLR
SimCLR + Loki

0 200 400 600 800 1000
K

50

100

150

[d
2 (

y,
y)

]

Class sampling under Gibbs distribution

SimCLR
SimCLR + Loki

100 101 102

of selections

20

40

60

80

100

Lo
cu

s s
ize

Active next class selection
Active learning
Random

500 510 520 530 540 550
K

34

36

[d
2 (

y,
y)

]

Active next-class selection on ImageNet using SimCLR + Loki
SimCLR + Loki (passive)
SimCLR + Loki (active)

Figure 2: (Top left) ImageNet. Mean squared distances under uniform class sampling and under the
Gibbs distribution—LOKI improves upon the baseline SimCLR one-vs-rest classifier. (Top right)
Synthetic. Active class selection consistently leads to larger loci compared to uniform sampling.
(Bottom) Active selection on ImageNet. Active class selection improves performance on ImageNet.

Table 2: PubMed. LOKI improves
baseline for all settings of K. The
metric space is Euclidean distances
applied to SimCSE embeddings.

K 5-NN 5-NN + LOKI

100 1.68666 1.42591
250 1.52374 1.47801
500 1.64074 1.45921

Table 3: LSHTC. LOKI improves
baseline for all settings of K. We
summarize the metric space graph
by generating 10,000 supernodes.

K 5-NN 5-NN + LOKI

50 1.2519 0.2896
100 1.4476 0.3467
150 1.7225 0.3969
200 1.7092 0.3171
250 1.6465 0.3995
300 1.6465 0.4004

Setup For ImageNet, we use the WordNet phylogenetic tree
as the metric space [2]. In this setting, we sample random
subsets of size K of the 1000 ImageNet classes and compare
a baseline one-vs-rest classifier to the same classifier but us-
ing LOKI to adapt predictions to classes beyond the original
K. We conduct two sets of experiments. In the first, we
sample K classes uniformly, while in the second, we adopt
a more realistic sampler—we sample from a Gibbs distribution:
P (λ|θ) = 1

Z exp(−θd(λ, λc)), where λc = mY(1N) is the
centroid of the metric space, θ is the concentration parameter
around the centroid, and Z is the normalizer. While the Gibbs
distribution sampler is more realistic, it is also the more chal-
lenging setting—classes which have low probability according
to this distribution are less likely to appear in the locus. For
PubMed, we derive our metric from Euclidean distances be-
tween SimCSE class embeddings [11]. Finally for LSHTC, we
summarize the default graph by randomly selecting nodes and
merging them with their neighbors until we obtain a graph with
10,000 supernodes representing sets of classes.

Results Figure 2 shows the mean squared distances compared
to the baseline one-vs-rest classifiers, across various settings
of K. We find that LOKI always significantly outperforms
the baseline, even in the more challenging setting of sampling
according to a Gibbs distribution. Tables 2 and 3 show our improvements when using LOKI over the
baseline 5-NN models. While LOKI consistently yields an improvement on PubMed and LSHTC, the
improvement is more dramatic on LSHTC.

5.3 Large Loci via Active Learning

We evaluate our active next class selection approach on increasing the locus size. We expect that
compared to passive (random) selection, our active approach will lead to larger loci, and in practice,
a larger set of possible classes that can be predicted using LOKI while observing fewer classes during
training.

Setup We compare with a baseline that randomly selects the next class. We first generate a synthetic
random tree with size N and fix an initial K. In active selection, we use the approach described in
Theorem 4.8 to select the next node. As a passive baseline, we randomly sample (without replacement)
the remaining nodes that are not in Λ.

9

0.2 0.4 0.6 0.8 1.0
Confidence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability

ECE optimal
Loki optimal
CLIP default
Perfect calibration

0.26 0.28 0.30 0.32 0.34 0.36
[d2(y, y)]

0.1

0.2

0.3

0.4

0.5

EC
E

ECE vs. Loki perf.
ECE optimal
CLIP default
Loki optimal

0.005

0.010

0.015

0.020

0.025

So
ftm

ax
 te

m
pe

ra
tu

re

0.26 0.27 0.28 0.29
Expected squared distance

0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74

Ze
ro

-o
ne

 e
rro

r

CIFAR-100 CLIP internal metric
 error tradeoff

Argmax prediction
CLIP default

0.002

0.004

0.006

0.008

0.010

0.012

0.014

So
ftm

ax
 te

m
pe

ra
tu

re

Figure 3: CLIP on CIFAR-100 with no external metric. (Left) Reliability diagrams across a
range of Softmax temperatures, highlighting the CLIP default temperature, the optimal temperature
for LOKI, and the minimizer of the Expected Calibration Error (ECE). All three are well-calibrated.
(Center) Tradeoff between optimizing for ECE and the expected squared distance. As with the
reliability diagrams, the CLIP default temperature, the LOKI-optimal temperature, and the ECE-
optimal temperature are similar. (Right) Tradeoff between optimizing for zero-one error and the
expected squared distance. Temperature can be tuned to improve accuracy when using LOKI.

Results The results are shown in Figure 2. We set N = 100 and the initial K = 3, then we average
the result over 10 independent trials. The active approach consistently outperforms the random
baseline as it attains a larger locus with fewer nodes selected.

5.4 Improving Performance via Active Learning

Next, we evaluate the our active next class selection approach on improving error on ImageNet.
While we found that the the active approach indeed leads to an increased locus size compared to the
passive baseline, we expect that this increased locus size will lead to improved performance.

Setup We randomly sample 500 ImageNet classes, and using the WordNet metric space, we use
our active approach to iteratively sample 50 more classes. We compare this to a passive baseline in
which the 50 classes are sampled randomly. We repeat this experiment over 10 independent trials.

Results Figure 2 shows that our active approach yields improved error over the passive baseline.
The gap between the active approach and the passive baseline widens with more selection rounds.

5.5 Improving Accuracy via Calibration

Finally, we evaluate the effect of calibrating the Softmax outputs on the performance of LOKI.

Setup We calibrate via Softmax temperature scaling [13] using CLIP on CIFAR-100. We do not
use an external metric space, and instead use Euclidean distance applied to the CLIP text encoder.

Results The reliability diagram in Figure 3 shows that the optimal Softmax temperature for LOKI
is both close to the default temperature used by CLIP and to the optimally-calibrated temperature. In
Figure 3 (right), we find that appropriate tuning of the temperature parameter can lead to improved
accuracy with CLIP, even when no external metric space is available.

6 Conclusion

In this work, we proposed LOKI—a simple adaptor for pretrained models to enable the prediction
of additional classes that are unobserved during training by using metric space information. We
comprehensively answered the space of new questions that arise under LOKI in terms of learning,
optimal metric space settings, and a practical active selection strategy. Experimentally, we showed
that LOKI can be used to improve CLIP even without external metric space information, can be used
to predict a large number of unobserved classes, and a validation of our active selection strategy.

10

Acknowledgements

We are grateful for the support of the NSF under CCF2106707 (Program Synthesis for Weak
Supervision) and the Wisconsin Alumni Research Foundation (WARF).

References
[1] Gökhan Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and

S.V.N Vishwanathan. Predicting Structured Data. The MIT Press, July 2007.

[2] Björn Barz and Joachim Denzler. Hierarchy-based image embeddings for semantic image
retrieval. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages
638–647. IEEE, 2019.

[3] Louis J. Billera, Susan P. Holmes, and Karen Vogtmann. Geometry of the space of phylogenetic
trees. Advances in Applied Mathematics, 27(4):733–767, 2001.

[4] Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean estimation
with sub-gaussian rates. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the
Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning
Research, pages 786–806. PMLR, 25–28 Jun 2019.

[5] Carlo Ciliberto, Lorenzo Rosasco, and Alessandro Rudi. A consistent regularization approach
for structured prediction. In Advances in Neural Information Processing Systems 30 (NIPS
2016), volume 30, 2016.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[7] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their attributes.
In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 1778–1785,
2009.

[8] Maurice R. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié.
Annales de l’institut Henri Poincaré, 1948.

[9] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc' Aurelio Ranzato,
and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[10] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. I Know the Relationships: Zero-Shot
Action Recognition via Two-Stream Graph Convolutional Networks and Knowledge Graphs.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):8303–8311, July 2019.

[11] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Language Processing (EMNLP), 2021.

[12] Colin Graber and Alexander Schwing. Graph structured prediction energy networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1321–1330. PMLR, 06–11 Aug 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

11

[15] Daniel Hsu and Sivan Sabato. Loss minimization and parameter estimation with heavy tails.
Journal of Machine Learning Research, 17(18):1–40, 2016.

[16] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 4904–4916. PMLR, 18–24 Jul 2021.

[17] Michael C. Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, and Eric P.
Xing. Rethinking knowledge graph propagation for zero-shot learning. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11479–11488, 2018.

[18] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[19] Anna Korba, Alexandre Garcia, and Florence d'Alché-Buc. A structured prediction approach
for label ranking. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[21] Volodymyr Kuleshov and Percy S Liang. Calibrated structured prediction. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.

[22] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 951–958, 2009.

[23] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification
for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(3):453–465, 2014.

[24] M. Lerasle and R. I. Oliveira. Robust empirical mean estimators, 2011.

[25] Juan Li, Ruoxu Wang, Ningyu Zhang, Wen Zhang, Fan Yang, and Huajun Chen. Logic-guided
semantic representation learning for zero-shot relation classification. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 2967–2978, Barcelona, Spain
(Online), December 2020. International Committee on Computational Linguistics.

[26] Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher
De Sa. Differentiating through the fréchet mean. In Proceedings of the 37th International
Conference on Machine Learning, pages 6393–6403, 2020.

[27] Stanislav Minsker. Geometric median and robust estimation in Banach spaces. Bernoulli,
21(4):2308 – 2335, 2015.

[28] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea
Frome, Greg Corrado, and Jeffrey Dean. Zero-shot learning by convex combination of semantic
embeddings. In Yoshua Bengio and Yann LeCun, editors, ICLR, 2014.

[29] Tom M W Nye, Xiaoxian Tang, Grady Weyenberg, and Ruriko Yoshida. Principal component
analysis and the locus of the fréchet mean in the space of phylogenetic trees. Biometrika,
104(4):901–922, Dec 2017.

[30] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artières, Georgios Paliouras,
Éric Gaussier, Ion Androutsopoulos, Massih-Reza Amini, and Patrick Gallinari. Lshtc: A
benchmark for large-scale text classification. ArXiv, abs/1503.08581, 2015.

[31] Alexander Petersen and Hans-Georg Muller. Fréchet regression for random objects with
euclidean predictors. The Annals of Statistics, 2016.

12

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[33] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge
into embeddings for relation extraction. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 1119–1129, Denver, Colorado, May–June 2015. Association for Computational
Linguistics.

[34] Abhinaba Roy, Deepanway Ghosal, Erik Cambria, Navonil Majumder, Rada Mihalcea, and
Soujanya Poria. Improving Zero-Shot Learning Baselines with Commonsense Knowledge.
Cognitive Computation, 14(6):2212–2222, November 2022.

[35] Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, and Lorenzo Rosasco. Manifold
structured prediction. In Advances in Neural Information Processing Systems 32 (NeurIPS
2018), volume 32, 2018.

[36] Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, and Lorenzo Rosasco. Manifold
structured prediction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[37] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Carl Roberts, and Frederic Sala.
Universalizing weak supervision. In International Conference on Learning Representations,
2022.

[38] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[39] Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics
and domain knowledge. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[40] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Com-
pressed Sensing, 2010.

[41] Harit Vishwakarma and Frederic Sala. Lifting weak supervision to structured prediction. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[42] X. Wang, Y. Ye, and A. Gupta. Zero-shot recognition via semantic embeddings and knowledge
graphs. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6857–6866, Los Alamitos, CA, USA, jun 2018. IEEE Computer Society.

13

The appendix is organized as follows: in Appendix A, we provide proofs of the claims made in
the main text. Next, in Appendix B, we provide algorithms and time complexity analyses for the
algorithms referenced in the main text. Appendix C contains additional experimental results. In
Appendix D, we provide additional details about our experimental setup. Then in Appendix E, we
discuss the broader impacts and limitations of LOKI. Finally, in Appendix F, we provide more details
and examples of the locus visualizations shown in Figure 1.

A Deferred Proofs

A.1 Proof of Theorem 4.1 (LOKI sample complexity)

In this section, we provide a formal statement and proof of our sample complexity result for LOKI,
including additional required definitions and assumptions.

First, we define the required tools to prove the sample complexity bound for LOKI. For the purposes
of this proof, we define the Fréchet variance as the function over which the Fréchet mean returns the
minimizer.
Definition A.1 (Fréchet variance). The Fréchet variance is defined as

Ψw(V) :=
∑
i∈[K]

wid
2(V, Vi).

Additionally, we will require a technical assumption related to the sensitivity of the Fréchet variance
to different node choices.
Assumption A.2 (Fréchet variance is 1

α -bi-Lipschitz). For a metric space defined by a graph G =
(V, E), the Fréchet variance is K-bi-Lipschitz if there exists a K ≥ 1 such that

1

K
d2(V, Ṽ) ≤ |Ψw(V)−Ψw(Ṽ)| ≤ Kd2(V, Ṽ)

for all V, Ṽ ∈ V , and a fixed w ∈ ∆K−1. For our purposes, such a K always exists: consider setting
K = diam(G)2 maxV1,V2∈V |Ψw(V1)−Ψw(V2)|. However, this is a very conservative bound that
holds for all graphs that we consider. Instead, we assume access to the largest α = 1

K ≤ 1 such that

αd2(V, Ṽ) ≤ |Ψw(V)−Ψw(Ṽ)|,

which may be problem dependent.
Theorem A.3 (LOKI sample complexity). Let Y be a set of points on the d dimensional 2-norm ball
of radius R, and let Λ ⊆ Y be the set of K observed classes. Assume that Λ forms a 2R/(

√
dK − 1)-

net under the Euclidean distance. Assume that training examples are generated by drawing n
samples from the following process: draw x ∼ N (y, I) where y ∼ Unif(Λ), and at test time, draw
x ∼ N (y, I) where y ∼ Unif(Y). Assume that we estimate a Gaussian mixture model with K
components (each having identity covariance) on the training set and obtain probability estimates
P̂(yi|x) for i ∈ [K] for a sample (x, y∗) from the test distribution. Then with high probability, under
the following model,

ŷ∗ ∈ mΛ([P̂(yi|x)]i∈[K]) = argmin
y∈Y

∑
i∈[K]

P̂(yi|x)d2(y, yi)

the sample complexity of estimating target y∗ from the test distribution Dtest with prediction ŷ∗ is:

E(x,y∗)∼Dtest [d
2(y∗, ŷ∗)] ≤ O

 d

α

√
logK/δ

n

 1(
R1− 2

d − logR
R

) +
√
d

where d is the dimensionality of the input and α is our parameter under Assumption A.2.

Proof. We begin by detailing the data-generating process.

At training time, our underlying data-generating process, Dtrain, is as follows:

14

• We begin with a 2R√
dK−1

-net, Y , on the d dimensional 2-norm ball of radius R under the
Euclidean distance, and let Λ ⊆ Y

• Draw y ∼ Unif(Y).

• Discard draws if y ̸∈ Λ.

• Draw x ∼ N (y, I).

At test time, we do not discard draws and allow for classes not in Λ and use the following data
generating process, Dtest:

• We begin with a 2R√
dK−1

-net, Y , on the d dimensional 2-norm ball of radius R under the
Euclidean distance, and let Λ ⊆ Y

• Draw y ∼ Unif(Y).

• Draw x ∼ N (y, I).

Given a labeled training dataset D = {(xi, yi)}ni=1 containing n points drawn from Dtrain with
|Λ| = K distinct classes, we would like to fit a K-component Gaussian mixture model with identity
covariance. We first perform mean estimation of each of the classes separately using the median-of-
means estimator [15, 27, 24]. Using the estimator yields the following parameter estimation bound
[27, 4]:

||yi − ŷi||2 ≤ O

(√
d logK/δ

n

)
with probability 1− δ.

Next, we consider the relationships between four quantities: ΨP(y∗), ΨP(ŷ∗), ΨP̂(y∗), ΨP̂(ŷ∗), where
P is the vector of probabilities from the true Gaussian mixture, P̂ is the vector of probabilities from
the estimated model, y∗ ∈ mΛ(P) is the target class, and ŷ∗ ∈ mΛ(P̂) is the predicted class. While
it is problem-dependent as to whether ΨP(y∗) ≤ ΨP̂(ŷ∗) or ΨP(y∗) > ΨP̂(ŷ∗), a similar argument
holds for both cases. So without loss of generality, we assume that ΨP(y∗) ≤ ΨP̂(ŷ∗). Then by the
definition of the Fréchet mean, the following inequalities hold:

ΨP(y∗) ≤ ΨP̂(ŷ∗) ≤ ΨP̂(y∗),

and consequently,

ΨP̂(ŷ∗)−ΨP(y∗) ≤ ΨP̂(y∗)−ΨP(y∗). (2)

We proceed by obtaining upper and lower bounds of the existing bounds in Equation 2. First, we will
obtain an upper bound on ΨP̂(y∗)−ΨP(y∗).

|ΨP̂(y∗)−ΨP(y∗)| =

∣∣∣∣∣∣
∑
i∈[K]

(P̂− P)d2(y∗, Vi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[K]

(
P̂(yi|x)− P(yi|x)

)
||y∗ − yi||22

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[K]

(
P̂(x|yi)P(yi)∑

j∈[K] P̂(x|yj)P(yj)
− P(x|yi)P(yi)∑

j∈[K] P(x|yj)P(yj)

)
||y∗ − yi||22

∣∣∣∣∣∣
(3)

15

=

∣∣∣∣∣ ∑
i∈[K]

(
exp{− 1

2 ||x− ŷi||22} 1
K∑

j∈[K] exp{−
1
2 ||x− ŷj ||22} 1

K

−
exp{− 1

2 ||x− yi||22} 1
K∑

j∈[K] exp{−
1
2 ||x− yj ||22} 1

K

)
||y∗ − yi||22

∣∣∣∣∣.
=

∣∣∣∣∣ ∑
i∈[K]

(
exp{− 1

2 ||x− ŷi||22}∑
j∈[K] exp{−

1
2 ||x− ŷj ||22}

−
exp{− 1

2 ||x− yi||22}∑
j∈[K] exp{−

1
2 ||x− yj ||22}

)
||y∗ − yi||22

∣∣∣∣∣. (4)

For notational convenience, we define the following:
ai := exp{− 1

2 ||x− yi||22},
âi := exp{− 1

2 ||x− ŷi||22},
b :=

∑
j∈[K] exp{−

1
2 ||x− yj ||22},

b̂ :=
∑

j∈[K] exp{−
1
2 ||x− ŷj ||22}, and

ci := ||ŷ∗ − yi||22.

Then (4) becomes:∣∣∣∣∣∣
∑
i∈[K]

(
âi

b̂
− ai

b

)
ci

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i∈[K]

(
âi

b̂
− âi

b
+

âi
b
− ai

b

)
ci

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[K]

(
âi − ai

b
+ âi

(
1

b̂
− 1

b

))
ci

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈[K]

(
âi − ai

b

)
ci

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
i∈[K]

(
âi

(
1

b̂
− 1

b

))
ci

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[K]

ai
b

(
âi
ai
− 1

)
ci

∣∣∣∣∣∣+
∣∣∣∣∣∣b− b̂

b

∑
i∈[K]

âi

b̂
ci

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈[K]

ai
b

(
âi
ai
− 1

)
ci

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i∈[K]

ai
b

(
âi
ai
− 1

)∑
i∈[K]

âi

b̂
ci

∣∣∣∣∣∣ . (5)

Now we define the following: L := ||x− yz||22 with z ∈ argminj ||x− yj ||22 is the smallest distance
to a class mean, and L + Ei := ||x − yi||22 with Ei > 0. Similarly, define L̂ := ||x − ŷz||22 with
z ∈ argminj ||x− ŷj ||22 is the smallest distance to an estimated class mean, and L̂+ Êi := ||x− ŷi||22
with Êi > 0. Finally, we define T :=

√
L̂+

√
L̂+ Êi +

√
L+
√
L+ Ei.

Then we can bound the parts separately:

For i ̸= z, we have

ai
b

=

(
exp{− 1

2 ||x− yi||22}∑
j∈[K] exp{−

1
2 ||x− yj ||22}

)

≤
(

exp{− 1
2 (L+ Ei)}

exp{− 1
2L}+ exp{− 1

2 (L+ Ei)}

)
=

1

exp{ 12Ei}
(6)

and in the case of i = z, we bound az

b ≤ 1. So overall, we have ai

b ≤
1

exp{1i̸=z
1
2Ei}

for all i ∈ [K].

16

ci = ||y∗ − yi||22
≤ 2||x− yi||22 + 2||x− y∗||22
= 2(L+ Ei + ||x− y∗||22). (7)

âi
ai
− 1 = exp

{
1

2
||x− yi||22 −

1

2
||x− ŷi||22

}
− 1

≈ 1 +
1

2
||x− yi||22 −

1

2
||x− ŷi||22 − 1

=
1

2
⟨ŷi − yi, 2x− yi − ŷi⟩

(8)

≤ 1

2
||ŷi − yi|| · ||2x− yi − ŷi||

≤ ||ŷi − yi|| (||x− yi||+ ||x− ŷi||)
= ||ŷi − yi|| (||x− yi||+ ||x− yi + yi − ŷi||)
≤ ||ŷi − yi|| (2||x− yi||+ ||yi − ŷi||)

= ||ŷi − yi||
(
2
√
L+ Ei + ||yi − ŷi||

)
. (9)

Next, we must control Ei − Êi in order to obtain the bound for âi

b̂
.

Ei − Êi = (||x− yi||2 − L)− (||x− ŷi||2 − L̂)

= ||x− yi||2 − ||x− ŷi||2 + ||x− ŷz||2 − ||x− yz||2

= ⟨ŷi − yi, 2x− yi − ŷi⟩+ ⟨yz − ŷz, 2x− ŷz − yz⟩
≤ ||ŷi − yi|| · ||2x− yi − ŷi||+ ||yz − ŷz|| · ||2x− ŷz − yz||
≤ ||yi − ŷi|| (||x− ŷi||+ ||x− yi||) + ||ŷz − yz|| (||x− yz||+ ||x− ŷz||)

≤ c

√
d logK/δ

n
(||x− ŷi||+ ||x− yi||+ ||x− yz||+ ||x− ŷz||)

= c

√
d logK/δ

n

(√
L̂+

√
L̂+ Êi +

√
L+

√
L+ Ei

)
Êi ≥ max

{
0, Ei − cT

√
d logK/δ

n

}
.

Using (6), we obtain

âi

b̂
≤ 1

exp{1i ̸=z
1
2 Êi}

≤ 1

exp

{
1i ̸=z max

{
0, 1

2Ei − cT
2

√
d logK/δ

n

}} (10)

Plugging (6), (7), (9), and (10) into (5), we obtain∣∣∣∣∣∣
∑
i∈[K]

ai
b

(
âi
ai
− 1

)
ci

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i∈[K]

ai
b

(
âi
ai
− 1

)∑
i∈[K]

âi

b̂
ci

∣∣∣∣∣∣

17

≤
∑
i∈[K]

||ŷi − yi||
(
2
√
L+ Ei + ||yi − ŷi||

)
exp{1i̸=z

1
2Ei}

2(L+ Ei + ||x− y∗||22)

+

∑
i∈[K]

||ŷi − yi||
(
2
√
L+ Ei + ||yi − ŷi||

)
exp{1i ̸=z

1
2Ei}

·

∑
i∈[K]

2(L+ Ei + ||x− y∗||22)

exp

{
1i ̸=z max

{
0, 1

2Ei − cT
2

√
d logK/δ

n

}}

≤ O

√d logK/δ

n

∑
i∈[K]

L+ Ei + ||x− y∗||22
exp

{
1i ̸=z

1
2Ei

}

Next, recalling the fact that our class means form an ε-net on the radius-R ball, we use Lemma 5.2
from [40] to bound L as L ≤ 2R√

dK−1
.

≤ O

√d logK/δ

n

∑
i∈[K]

R√
dK

+ Ei + ||x− y∗||22
exp

{
1i ̸=z

1
2Ei

}
 . (11)

Next, we will consider cases on Ei. We will consider the cases in which Ei < logR2 and Ei ≥
logR2.

We will begin with the case in which Ei < logR2, then Equation 11 becomes:

≤ O

√d logK/δ

n

∑
i∈[K]

R√
dK

+ ||x− y∗||22

 .

Next, the case in which Ei ≥ logR2, then Equation 11 becomes:

≤ O

√d logK/δ

n

∑
i∈[K]

R√
dK

+ 2 logR+ ||x− y∗||22
R

≤ O

√d logK/δ

n

∑
i∈[K]

1√
dK

+ ||x− y∗||22

 .

Setting M ≤ K to be the number of terms for which Ei < logR2 holds and by combining the two
bounds, we obtain the following:

≤ O

(√
d logK/δ

n

((
MR√
dK

+
K −M√

dK

)
+K||x− y∗||22

))
.

Ultimately, our bound is

|ΨP̂(y∗)−ΨP(y∗)| ≤ O

(√
d logK/δ

n

((
MR√
dK

+
K −M√

dK

)
+K||x− y∗||22

))
. (12)

Next, we will obtain a lower bound on ΨP̂(ŷ∗)−ΨP(y∗).

|ΨP̂(ŷ∗)−ΨP(y∗)| ≥ |ΨP(y∗)−ΨP(ŷ∗)| − |ΨP̂(ŷ∗)−ΨP(ŷ∗)| triangle inequality

≥ αd2(y∗, ŷ∗)− |ΨP̂(y∗)−ΨP(y∗)| Assumption A.2.

18

Combining both of these bounds with Equation 2, we obtain
αd2(y∗, ŷ∗)− |ΨP̂(y∗)−ΨP(y∗)| ≤ ΨP̂(ŷ∗)−ΨP(y∗) ≤ ΨP̂(y∗)−ΨP(y∗)

≤ |ΨP̂(y∗)−ΨP(y∗)|

⇒ αd2(y∗, ŷ∗) ≤ 2|ΨP̂(y∗)−ΨP(y∗)|

⇒ d2(y∗, ŷ∗) ≤ O

(
1

α

√
d logK/δ

n

(
MR√
dK

+
K −M√

dK
+K||x− y∗||22

))

⇒ E(x,y∗)∼Dtest [d
2(y∗, ŷ∗)] ≤ O

(
1

α

√
d logK/δ

n

(
MR√
dK

+
K −M√

dK
+ dK

))
,

Next, we obtain a bound on M . Since M ≤ K is the number of terms for which Ei < logR2, we
have that M = V K, where V ∈ [0, 1] is the ratio of the volumes of the ball for which Ei < logR2,
and the ball containing the entire set of classes Y . We have

Ei = ∥x− yi∥22 − ∥x− yz∥22 < logR2

∥x− yi∥22 < logR2 + L

≤ logR2 +
2R√

dK − 1
≤ R2

⇒

√
logR2 +

2R√
dK − 1

≤ R,

which is an upper bound of the radius of the ball for which Ei < logR2 is true. Now we construct V :

V =

√

logR2 + 2R√
dK−1

R

d

.

Combining this with our error bound, we have
E(x,y∗)∼Dtest [d

2(y∗, ŷ∗)] ≤

O

1

α

√
d logK/δ

n

(√

logR2+ 2R√
dK−1

R

)d

R

√
d

+

1−

(√
logR2+ 2R√

dK−1

R

)d

√
d

+ dK

 .

However, we can choose K to weaken our dependence on R.

V =

√

logR2 + 2R√
dK−1

R

d

≤ 1

R

⇒ K ≥ 2
√
d
(
R1− 2

d − logR
R

) + 1.

Finally, we have

E(x,y∗)∼Dtest [d
2(y∗, ŷ∗)] ≤ O

 1

α

√
d logK/δ

n

 1√
d
+

1− 1
R√
d

+

√
d(

R1− 2
d − logR

R

) + d

≤ O

 1

α

√
d logK/δ

n

 1√
d
+

√
d(

R1− 2
d − logR

R

) + d

≤ O

 d

α

√
logK/δ

n

 1(
R1− 2

d − logR
R

) +
√
d

19

which completes the proof.

Discussion of Theorem A.3. The above bound contains several standard quantities, including the
dimensionality of the inputs d, the radius R of the ball from which labels are drawn, the number
of classes and samples used to estimate the model K and n respectively, and δ, which is used to
control the probability that the bound holds. Naturally, the bound scales up with higher d and K,
and improves with an increased number of samples n. The dependence on R is also related to its
dependence on d — so long as we have that K ≥ 2(

√
d(R1− 2

d − logR/R))−1 + 1 and for d ≥ 2,
R increases, which improves the bound. The bound includes a metric space dependent quantity α,
which is related to the amount that the Fréchet variance can change subject to changes in its argument,
i.e., which node is considered.

A.2 Proof of Theorem A.4 (minimum locus cover for trees)

Theorem A.4 (Minimum locus cover for trees). The minimum locus cover for a tree graph T is
Λ = Leaves(T).

Proof. We would like to show to show two things:

1. any node can be resolved by an appropriate construction of w using only the leaves and

2. removing any leaf makes that leaf node unreachable, no matter what the other nodes are in
y–i.e., we must use at least all of the leaf nodes.

If both of these conditions hold (i.e., that the leaves form a locus cover and that they are the smallest
such set), then the the leaves of any tree form a minimum locus cover. To set up the problem,
we begin with some undirected tree, T , whose nodes are our set of labels: T = (Y, E) where
Λ = Leaves(T) ⊆ Y is the set of leaf nodes. Moreover, let Λ be a tuple of the leaf nodes. We will
start by proving that Λ is a locus cover. We will show this by cases on v ∈ Y , the node that we would
like to resolve:

1. If v ∈ Λ, i.e. v is a leaf node, then setting wi = 1{Λi = v} yields

mΛ(w) = argmin
y∈Y

K∑
i=1

1{Λi = v}d2(y,Λi)

= argmin
y∈Y

d2(y, v) = {v}.

2. If v ̸∈ Λ, we have a bit more work to do. Since v is an internal node, consider any pair of
leaves, l1 ̸= l2 such that v is along the (unique) path between l1 and l2: v ∈ Γ(l1, l2). Then

set wi =

d(v,l2)
d(l1,l2)

if Λi = l1,
d(v,l1)
d(l1,l2)

if Λi = l2,

0 otherwise

yields

mΛ(w) = argmin
y∈Y

d(v, l2)d
2(y, l1) + d(v, l1)d

2(y, l2)

d(l1, l2)

= argmin
y∈Y

d(v, l2)d
2(y, l1) + d(v, l1)d

2(y, l2)

= {v}.

Thus Λ is a locus cover. Next, we will show that it is the smallest such set. Let l ∈ Λ be any leaf
node, and define Λ′ = Λ \ {l}. We must show that Λ′ is not a locus cover. Assume for contradiction
that Λ′ is a locus cover. This means that given some tuple y′ whose entries are the elements of Λ′, we
have Π(Λ′) = Y . This implies that the path between any two nodes in Λ is also contained in Π(Λ′).
Since the leaves form a locus cover and any y ∈ Y can be constructed by the appropriate choice of
w along with a path between two leaf nodes, l must either be one of the entries of Λ′ (one of the
endpoints of the path) or it must be an internal node. Both cases are contradictions–Λ′ cannot include
l by assumption, and l is assumed to be a leaf node. It follows that Λ is a minimum locus cover.

20

A.3 Proof of Lemma A.5 (tree pairwise decomposability)

Lemma A.5 (Tree pairwise decomposability). Let T = (Y, E) be a tree and Λ ⊆ Y . Then Π(Λ) is
pairwise decomposable.

Proof. Assume for contradiction that ∃y∗ ∈ Y where y∗ /∈ Π({λi, λj}), ∀λi, λj ∈ Λ, but y∗ ∈ Π(Λ).
Then, y∗ ∈ mΛ(w) for some w. Note that y∗ /∈ Π({λi, λj}) implies y∗ /∈ Γ(λi, λj), ∀λi, λj ∈ Λ,
because Π({λi, λj}) = Γ(λi, λj) due to the uniqueness of paths in trees. As such, ∩λ∈ΛΓ(y

∗, λ)
must contain an immediate relative y′ of y∗ where

|Λ|∑
i=1

wid
2(y∗, λi) =

|Λ|∑
i=1

wi(d(y
′, λi) + 1)2

>

|Λ|∑
i=1

wid
2(y′, λi).

Therefore, y∗ /∈ Π(Λ) because y∗ is not a minimizer of
∑|Λ|

i=1 wid
2(y, λi). So, it must be that

y∗ ∈ Π({λi, λj}) for some λi, λj ∈ Λ when y ∈ Π(Λ).

A.4 Proof of Theorem A.6 (Algorithm B.1 correctness)

Theorem A.6 (Algorithm B.1 correctness). Algorithm B.1 returns a locus cover for phylogenetic
trees.

Proof. We first prove that Algorithm B.1 will halt, then according to the stopping criterion, it is
guaranteed that Algorithm B.1 returns a locus cover. Suppose the algorithm keeps running until it
reaches the case in which all of the leaf nodes are included in Λ (i.e. Λ = Y), this results in the trivial
locus cover of the phylogenetic tree and the algorithm halts.

A.5 Proof of Lemma A.7 (phylogenetic tree pairwise decomposability)

Lemma A.7 (Phylogenetic tree pairwise decomposability). Let T = (V, E) be a tree with Y =
Leaves(T) and Λ ⊆ Y . Then Π(Λ) is pairwise decomposable.

Proof. Suppose to reach a contradiction that ∃y∗ ∈ Y where y∗ ∈ Π(Λ), but y∗ /∈ Π({λi, λj})
∀λi, λj ∈ Λ. In other words, y∗ is a Fréchet mean for some weighting on Λ, but y∗ is not a Fréchet
mean for any weighting for any two vertices within Λ.

For arbitrary λi, λj ∈ Λ, define the closest vertex to y∗ on the path between λi and λj as

v′(λi, λj) = argmin
v∈Γ(λi,λj)

d(y∗, v).

Also, let
{λ1, λ2} = argmin

λi,λj∈Λ
d(y∗, v′(λi, λj)),

the pair of vertices in Λ whose path Γ(λ1, λ2) passes closest to y∗. To avoid notational clutter, define
v′ = v′(λ1, λ2). Thus, v′ represents the closest vertex to y∗ lying on the path between any two
λi, λj ∈ Λ.

Because v′ lies on the path Γ(λ1, λ2), there exists some weighting w for which

v′ = argmin
v∈Γ(λ1,λ2)

(w1d
2(v, λ1) +w2d

2(v, λ2)).

For this w, we have that m{λ1,λ2}(w) = argminy∈Y d(y, v′), the set of leaf nodes of smallest
distance from v′. By the initial assumption that y∗ ̸∈ Π({λ1, λ2}), we have that y∗ ̸∈ m{λ1,λ2}(w).
Let y′ be a vertex of m{λi,λj}(w) that is closest to y∗. Clearly, d(y′, v′)2 < d(y∗, v′)2.

21

For any v ∈ V , respectively define the sets of vertices (1) shared in common on the two paths Γ(v, y∗)
and Γ(v, y′), (2) on the path Γ(v, y∗) that are not on Γ(v, y′), and (3) on the path Γ(v, y′) that are
not on Γ(v, y∗) as

dC(v) = Γ(v, y∗) ∩ Γ(v, y′),

dy∗(v) = Γ(v, y∗) \ Γ(v, y′), and

dy′(v) = Γ(v, y′) \ Γ(v, y∗).
We have that |dy∗(v)| + |dy∗(v)| + 1 = |Γ(y∗, y′)| (the difference by 1 represents the final vertex
shared in common by both paths) and also that |dy′(v′)| < |dy∗(v′)| since y′ is closer to v′ than y∗ is.

Suppose ∃λ3, λ4 ∈ Λ yielding

u′ = v′(λ3, λ4) ∈ Γ(y∗, y′) such that d2(y∗, u′) ≤ d2(y′, u′).

This is to say that u′ is defined analogously to v′, with the additional restrictions that u′ lie on
the path Γ(y∗, y′) and u′ be at least as close to y∗ as to y′. Then, |dy∗(u′)| < |dy∗(v′)| implying
d2(y∗, u′) < d2(y∗, v′), which contradicts the definition of v′.

Suppose now that ∃λ3, λ4 ∈ Λ yielding

u′ = v′(λ3, λ4) /∈ Γ(y∗, y′) such that d2(y∗, u′) ≤ d2(y′, u′).

This is to say that u′ is again defined analogously to v′, but u′ is not on Γ(y∗, y′) and is at least
as close to y∗ as to y′. Then, either ∩λ∈ΛdC(λ) ̸= ∅ (i.e. all lambdas lie in the same branch off
of Γ(y′, y∗)), in which case the path between any two lambdas will have the same closest node v′

to y∗, or it is possible to choose a λ5 ∈ Λ such that dC(λ3) ∩ dC(λ5) = ∅. In this situation, it
must be that Γ(λ3, λ5) ∩ Γ(y′, y∗) ̸= ∅, which implies there exists a vertex t ∈ Γ(λ3, λ5) such that
d2(y∗, t) < d2(y∗, u′) which violates the definition of u′.

Altogether, for all v ∈ Γ(λi, λj) with arbitrary λi, λj ∈ Λ, we have that d2(y′, v) < d2(y∗, v). This
implies that for all λ ∈ Λ, there exists a y′ ∈ Y such that d2(y′, λ) < d2(y∗, λ) and therefore that
y∗ /∈ Π(Λ) which contradicts that y∗ ∈ Π(Λ). It must be that ∀y∗ ∈ Y where y∗ ∈ Π(Λ), we have
y∗ ∈ Π({λi, λj}) ∀λi, λj ∈ Λ.

A.6 Proof of Theorem A.8 (minimum locus cover for grid graphs)

Theorem A.8 (Minimum locus cover for the grid graphs). The minimum locus cover for a grid graph
is the pair of vertices in the furthest opposite corners.

Proof. We would like to show two things:

1. any vertex can be resolved by construction of w using the furthest pair of two vertices (i.e.
opposite corners) and

2. there does not exist a locus cover of size one for grid graphs with more than one vertex.

Let G = (V, E) be a grid graph and let Λ = {λ1, λ2} be a set of two vertices who are on opposite
corners of G (i.e., perhipheral vertices achieving the diameter of G). For notational convenience,
set Λ = (λ1, λ2) We can reach any interior vertex by an appropriate setting the weight vector
w = [w1,w2]. Then set w =

(
d(v,λ2)
d(λ1,λ2)

, d(v,λ1)
d(λ1,λ2)

)
. Finally, the Fréchet mean is given by

mΛ(w) = argmin
y∈Y

d(v, λ2)d
2(y, λ1) + d(v, λ1)d

2(y, λ2)

d(λ1, λ2)

= argmin
y∈Y

d(v, λ2)d
2(y, λ1) + d(v, λ1)d

2(y, λ2)

∋ v.

Hence Λ is a locus cover. We can clearly see that Λ is a minimum locus cover—the only way to
obtain a smaller set Λ′ is for it to include only a single vertex. However, if Λ′ = {v′} contains only a
single vertex, it cannot be a locus cover so long as G contains more than one vertex—v′ is always
guaranteed to be a unique minimizer of the Fréchet mean under Λ′ which misses all other vertices in
G. Thus Λ is a minimum locus cover.

22

A.7 Proof of Lemma A.9 (loci of grid subspaces)

Lemma A.9 (Locus of grid subspaces). Given any pair of vertices in Λ, we can find a subset G′ of
the original grid graph G = (Y, E) which takes the given pair as two corner. Π(Λ) equals to all the
points inside G′.

Proof. The result follows from application of Theorem A.8 to the choice of metric subspace.

A.8 Proof of Lemma A.10 (grid pairwise decomposability)

Lemma A.10 (Grid pairwise decomposability). Let G = (Y, E) be a grid graph and Λ ⊆ Y . Then
Π(Λ) is pairwise decomposable.

Proof. Suppose we have a grid graph G = (Y, E) and a vertex ŷ ∈ Π(Λ) with Λ ⊆ Y . Due to
the fact that ŷ ∈ Π(Λ) and the fact that G is a grid graph, we have that ŷ ∈ Γ(λα, λβ) for some
λα, λβ ∈ Λ. Then by Lemma A.10,

ŷ ∈ Π({λα, λβ}) ⊆ ∪λi,λj∈ΛΠ({λi, λj}).

Therefore loci on grid graphs are pairwise decomposable.

A.9 Proof of Theorem A.11 (no nontrivial locus covers for complete graphs)

Theorem A.11 (Trivial locus cover for the complete graph). There is no non-trivial locus cover for
the complete graph.

Proof. We show that there is no nontrivial locus cover for complete graphs by showing that removing
any vertex from the trivial locus cover renders that vertex unreachable. We proceed by strong
induction on the number of vertices, n.
Base case We first set n = 3. Let K3 = (V,V2) be the complete graph with three vertices:
V = {v1, v2, v3}, and without loss of generality, let Λ = {v2, v3} be our set of observed classes.
There are two cases on the weight vector w = [w2, w3]:
Case 1: Suppose w ̸∈ int∆2. This means that either w2 = 1 or w3 = 1—which leads to the
Fréchet mean being either v2 or v3, respectively. Neither of these instances correspond to v1 being a
minimizer.
Case 2: Suppose w ∈ int∆2. Then the Fréchet mean is given by

mλ(w) = argmin
y∈Y

w2d
2(y, v2) + w3d

2(y, v3)

Assume for contradiction that v1 ∈ Π(Λ):

w2d
2(v1, v2) + w3d

2(v1, v3) = w2 + w3

> w3 because w ∈ int∆2

= w2d
2(v2, v2) + w3d

2(v2, v3).

Therefore, v1 /∈ Π(Λ). This is a contradiction. Thus there is no nontrivial locus cover for K3.

Inductive step: Let Kn−1 = (V,V2) be the complete graph with n − 1 vertices. Assume that
there is no nontrivial locus cover for Kn−1. We will show that there is no nontrivial locus cover for
Kn. Let the weight vector be w = [w1, ...wn−1] corresponding to vertices v1, ..., vn−1 ∈ V with
Λ = {v1, ..., vn−1}. We want to show that vn ̸∈ Π(Λ). We proceed by cases on w.
Case 1: Suppose w ̸∈ int∆n−2 where m entries of w are zero, then by strong induction we know
that vn ̸∈ Π(Λ) = {vi}n−m

i=1 , i.e., there is no nontrivial locus cover for Kn−m.
Case 2: Suppose w ∈ int∆n−2.

23

Assume for contradiction that vn ∈ Π(Λ). Using this assumption, we obtain the following

n−1∑
i=1

wid
2(vn, vi) =

n−1∑
i=1

wi

>

n−2∑
i=1

wi because w ∈ int∆n−2

=

n−1∑
i=1

wid
2(vn−1, vi).

Therefore, vn is not a minimizer, so vn /∈ Π(Λ). This is a contradiction, hence Kn has no nontrivial
locus cover.

A.10 Proof of Theorem 4.8 (active next-class selection for trees)

Proof. We will prove the result by showing that the two optimization problems are equivalent. Let v
be a solution to the following optimization problem:

arg max
y ∈ Y \Π(Λ)

d(y, b)

s.t. b ∈ ∂inT
′,

Γ(b, y) \ {b} ⊆ Y \Π(Λ),

where ∂inT
′ is the inner boundary of T ′, the subgraph of T whose vertices are Π(Λ). This optimization

problem can be equivalently rewritten as

arg max
y ∈ Y \Π(Λ)

|Γ(y, b)|

s.t. b ∈ ∂inT
′,

Γ(b, y) \ {b} ⊆ Y \Π(Λ),

and we can furthermore introduce additional terms that do not change the maximizer

arg max
y ∈ Y \Π(Λ)

| ∪λi,λj∈Λ Γ(λi, λj) ∪ Γ(b, y)|

s.t. b ∈ ∂inT
′,

Γ(b, y) \ {b} ⊆ Y \Π(Λ).

Equivalently, we can also connect b to one of the elements of Λ

arg max
y ∈ Y \Π(Λ)

| ∪λi,λj∈Λ Γ(λi, λj) ∪ Γ(λi, b) ∪ Γ(b, y)|

s.t. b ∈ ∂inT
′,

Γ(b, y) \ {b} ⊆ Y \Π(Λ).

Due to the uniqueness of paths in trees, this optimization problem also has the following equivalent
form without any dependence on b:

v ∈ argmax
y∈Y\Λ

| ∪λi,λj∈Λ Γ(λi, λj) ∪ Γ(λi, y)| = argmax
y∈Y\Λ

| ∪λi,λj∈Λ Π({λi, λj}) ∪Π({λi, y})|

= argmax
y∈Y\Λ

| ∪λi,λj∈Λ∪{y} Π({λi, λj})|

= argmax
y∈Y\Λ

|Π(Λ ∪ {y})|

using Lemma A.5.

Therefore v is a maximizer of |Π(Λ ∪ {v})|, as required.

24

B Algorithms and Time Complexity Analyses

We provide time complexity analyses for Algorithms B.1, B.2, and B.3.

B.1 Analysis of Algorithm B.1 (locus cover for phylogenetic trees)

We provide Algorithm B.1 with comments corresponding to the time complexity of each step.

Algorithm 1 Locus cover for phylogenetic trees
Require: phylogenetic tree T = (V, E), Y = Leaves(T)
N ← |Y|
P ← sortbylength([Γ(yi, yj)]i,j∈[N]) ▷ N |E|+N2 logN

P ← reverse(P) ▷ O(N2)
Λ← ∅
for Γ(yi, yj) in P do ▷ O(N2)

if Π(Λ) = Y then ▷ O(K2Dmax{N |E|, N2 logN})
return Λ

else
Λ← Λ ∪ {yi, yj}

end if
end for

Combining these, we obtain the following time complexity:
O(N |E|+N2 logN+N2+N2K2Dmax{N |E|, N2 logN}) = O(N2K2Dmax{N |E|, N2 logN}).

B.2 Analysis of Algorithm B.2 (computing a pairwise decomposable locus)

We first provide Algorithm B.2 here, with comments corresponding to the time complexity of each
step.

Algorithm 2 Computing a pairwise decomposable locus
Require: Λ, Y , G = (V, E)
Π← ∅
D ← diam(G) ▷ O(N |E|+N2 logN)
for λi, λj ∈ Λ do ▷ O(K2)

for w1 in
{

0
D , 1

D , ..., D
D

}
do ▷ O(D)

w← [w1, 1− w1]
Π← Π ∪m{λi,λj}(w) ▷ O(N |E|+N2 logN)

end for
end for
return Π

We first compute the diameter of the graph G = (Y, E) with N = |Y|, which is done in
O(N |E| + N2 logN) time using Dijkstra’s algorithm to compute the shortest paths between all
pairs of vertices. We then iterate over all pairs of elements in Λ with K = |Λ|, which amounts to
O(K2) iterations. Within this, we perform O(D) computations of the Fréchet mean, for which each
iteration requires O(N |E|+N2 logN) arithmetic operations or comparisons. Combining these, the
final time complexity is

O(N |E|+N2 logN +K2D(N |E|+N2 logN)) = O(K2Dmax{N |E|, N2 logN}).

B.3 Analysis of Algorithm B.3 (computing a generic locus)

We provide Algorithm B.3 with comments corresponding to the time complexity of each step.

Following a similar argument from the analysis of Algorithm B.2, the time complexity is

O(N |E|+N2 logN +DK(N |E|+N2 logN)) = O(DK),

25

Algorithm 3 Computing a generic locus
Require: Λ, Y , G = (V, E)
Π← ∅
D ← diam(G) ▷ O(N |E|+N2 logN)

for w in
{

0
D , 1

D , ..., D
D

}|Λ| do ▷ O(DK)

Π← Π ∪mΛ(w) ▷ O(N |E|+N2 logN)
end for
return Π

0.2 0.4 0.6 0.8 1.0
Confidence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability

ECE optimal
CLIP default
Loki optimal
Perfect calibration

7.20 7.25 7.30 7.35
[d2(y, y)]

0.1

0.2

0.3

0.4

0.5

EC
E

ECE vs. Loki perf.
ECE optimal
CLIP default
Loki optimal

0.005

0.010

0.015

0.020

0.025

So
ftm

ax
 te

m
pe

ra
tu

re

7.20 7.25 7.30 7.35
Expected squared distance

0.592

0.593

0.594

0.595

0.596

0.597

0.598

Ze
ro

-o
ne

 e
rro

r

CIFAR-100 default tree
 error tradeoff

Argmax prediction
CLIP default

0.002

0.004

0.006

0.008

0.010

0.012

0.014

So
ftm

ax
 te

m
pe

ra
tu

re

0.2 0.4 0.6 0.8 1.0
Confidence

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reliability

ECE optimal
Loki optimal
CLIP default
Perfect calibration

20.0 22.5 25.0 27.5 30.0
[d2(y, y)]

0.1

0.2

0.3

0.4

0.5

EC
E

ECE vs. Loki perf.
ECE optimal
CLIP default
Loki optimal

0.005

0.010

0.015

0.020

0.025

So
ftm

ax
 te

m
pe

ra
tu

re

20 22 24
Expected squared distance

0.60

0.65

0.70

0.75

0.80

Ze
ro

-o
ne

 e
rro

r

CIFAR-100 WordNet tree
 error tradeoff

Argmax prediction
CLIP default

0.002

0.004

0.006

0.008

0.010

0.012

0.014

So
ftm

ax
 te

m
pe

ra
tu

re

Figure 4: CLIP on CIFAR-100 with the WordNet hierarchy. (Left) Reliability diagrams across a
range of Softmax temperatures, highlighting the CLIP default temperature, the optimal temperature
for LOKI, and the minimizer of the Expected Calibration Error (ECE). All three are well-calibrated.
(Center) Tradeoff between optimizing for ECE and the expected squared distance. As with the
reliability diagrams, the CLIP default temperature, the LOKI-optimal temperature, and the ECE-
optimal temperature are similar. (Right) Tradeoff between optimizing for zero-one error and the
expected squared distance. Depending on the metric space, temperature scaling can improve accuracy.

where K is the number of observed classes.

C Additional Experiments

C.1 Additional calibration experiments

In the main text, we evaluated the effect of calibrating the Softmax outputs on the performance of
LOKI using a metric space based on the internal features of the CLIP model. Here, we perform the
same analysis using two external metric spaces.

Setup We perform our calibration analysis using the default and WordNet tree.

Results Our results are shown in Figure 4. Like our experiment using an internally-derived metric,
we find that the optimal Softmax temperature is close to the CLIP default and the optimal temperature
for calibration. For the default tree, we again found that temperature scaling can be used to improve
accuracy using LOKI.

Setup We calibrate via Softmax temperature scaling [13] using CLIP on CIFAR-100. We do not
use an external metric space, and instead use Euclidean distance applied to the CLIP text encoder.

26

Results The reliability diagram in Figure 3 shows that the optimal Softmax temperature for LOKI
is both close to the default temperature used by CLIP and to the optimally-calibrated temperature. In
Figure 3 (right), we find that appropriate tuning of the temperature parameter can lead to improved
accuracy with CLIP, even when no external metric space is available.

C.2 Ablation of LOKI formulation

LOKI is based on the Fréchet mean, which is defined as argminy∈Y
∑K

i=1 Pλi|xd
2(y, λi). However,

this is not the only approach that can be considered. For example, the Fréchet median, often used in
robust statistics, is defined as argminy∈Y

∑K
i=1 Pλi|xd(y, λi), without squaring the distances. More

generally, we define argminy∈Y
∑K

i=1 Pλi|xd
β(y, λi) and evaluate different choices of β.

Setup We conduct this experiment on ImageNet using SimCLR as our pretrained classifier with
K = 250, 500, and 750 randomly selected classes.

Results From this analysis, we conclude that using the Fréchet mean is the optimal formulation for
Loki, as it achieved the lowest mean squared distance for all settings of K.

Table 4: Expected squared distances of SimCLR+Loki alternatives on ImageNet. We ablate over the
choice of distance exponent in LOKI (where β = 2, corresponding to the Fréchet mean), including
the Fréchet median (β = 1). That is, we tune β : ŷ ∈ arg miny∈Y

∑K
i=1 Pλi|xd

β(y, λi) and find that
the optimal setting is β = 2, corresponding to LOKI.

β = K = 250 K = 500 K = 750

0.5 61.28 46.57 36.31
1 52.98 41.06 33.14
2 (Loki) 46.78 37.76 29.88
4 47.99 39.58 34.65
8 65.29 58.42 54.90

C.3 Comparison across metric spaces

Expected squared distances cannot be directly compared across metric spaces, as they may be on
different scales. Our solution is to use a form of normalization: we divide the expected squared
distance by the square of the graph diameter. This brings all of the values to the 0-1 range, and since
E[d2(y, ŷ)]/diam(G)2 indeed also generalizes the 0-1 error, this enables comparison between 0-1
errors and those from different metric spaces. We provide these results in Table 1, again for our CLIP
experiments on CIFAR-100. This evaluation metric enables us to determine which metric spaces
have geometry best ‘fit’ to our pretrained models.

Setup Using E[d2(y, ŷ)]/diam(G)2, we re-evaluate our CLIP results on CIFAR-100 shown in
Table 1 for the ResNet-50 architecture.

Results For CIFAR-100, we observe that the WordNet metric space resulted in the lowest error and
therefore has the best geometry.

Table 5: Comparison across metric spaces for CLIP on CIFAR-100 by normalizing by the squared
diameter of the metric space: E[d2(y, ŷ)]/diam(G)2.

Metric space G diam(G)2 E[d2(y, ŷ)]/diam(G)2

Complete graph 1 0.5941 (0-1 error)
Default tree 16 0.4493
WordNet tree 169 0.1157
CLIP features 0.9726 0.2686

27

D Experimental Details

In this section, we provide additional details about our experimental setup.3

D.1 CLIP experiments

All experiments are carried out using CLIP frozen weights. There are no training and hyperparameters
involved in experiments involving CLIP, except for the Softmax temperature in the calibration
analysis. We evaluted using the default CIFAR-100 test set. The label prompt we use is "a photo of a
[class_name]."

D.2 ImageNet experiments

To construct our datasets, we randomly sample 50 images for each class from ImageNet as our
training dataset then use the validation dataset in ImageNet to evaluate LOKI’s performance. We
extract the image embeddings by using SimCLRv14 and train a baseline one-vs-rest classifier. We
use WordNet phylogenetic tree as the metric space. The structure of phylogenetic tree can be found
at here5. We test different numbers of observed classes, K, from 1000 classes. Observed classes are
sampled in two ways, uniformly and Gibbs distribution with the concentration parameter 0.5.

D.3 LSHTC experiments

We generate a summary graph of the LSHTC class graph (resulting in supernodes representing many
classes) by iteratively:

1. randomly selecting a node or supernode
2. merging its neighbors into the node to create a supernode

until the graph contains at most 10,000 supernodes. In the LSHTC dataset, each datapoint is assigned
to multiple classes. We push each class to its supernode, then apply majority vote to determine
the final class. We test different numbers of observed classes, K, from 10,000 classes. We collect
datapoints which are in the observed classes. Then split half of dataset as training dataset and make
the rest as testing dataset, including those datapoints which are not in the observed classes. We train
a baseline classifier using a 5-NN model and compare its performance with LOKI.

E Broader Impacts and Limitations

As a simple adaptor of existing classifiers, it is possible for our method to inherit biases and failure
modes that might be present in existing pretrained models. On the other hand, if the possibility of
harmful mis-classifications are known a priori, information to mitigate these harms can be baked into
the metric space used by LOKI. Finally, while we have found that LOKI often works well in practice,
it is possible for the per-class probabilities that are output by a pretrained model to be sufficiently
mis-specified relative to the metric over the label space, or for the metric itself to be mis-specified.
Nonetheless, we have found that off-the-shelf or self-derived metric spaces to work well in practice.

F Random Locus Visualizations

In Figures 1, 5, 6, 7, 8, and 9, we provide visualizations of classification regions of the probability
simplex when using LOKI with only three observed classes out of 100 total classes, and different
types of random metric spaces. The first example in Figure 1 shows the prediction regions on
the probability simplex when using standard argmax prediction—the three regions correspond to
predicting one of the three classes (0, 39, and 99) and no regions corresponding to any of the other
classes {1, ..., 38, 40, ..., 98}. We compute these regions using a version of Algorithm B.3, and while

3Code implementing all of our experiments is available here: https://github.com/SprocketLab/loki.
4Embeddings are extracted from the checkpoints stored at: https://github.com/tonylins/

simclr-converter
5https://github.com/cvjena/semantic-embeddings/tree/master/ILSVRC

28

https://github.com/SprocketLab/loki
https://github.com/tonylins/simclr-converter
https://github.com/tonylins/simclr-converter
https://github.com/cvjena/semantic-embeddings/tree/master/ILSVRC

it does have exponential time complexity, the exponent is only three in this case since we consider
only three observed classes.

On the other hand, the other three examples in Figure 1 and Figures 5, 6, 7, 8, and 9 all show the
prediction regions on the probability simplex when using LOKI. Figure 5 shows this for random
tree graphs. Here, the prediction regions are striped or contain a single triangle-shaped region in the
center—these correspond, respectively, to intermediate classes along branches of the tree leading
up from the observed class and the prediction region formed by the common-most parent node.
Figure 6 shows similar regions, although these are more complex and are thus more difficult to
interpret, as phylogenetic trees are metric subspaces equipped with the induced metric from trees.
Furthermore, in order to generate phylogenetic trees with 100 leaves, we needed to create much larger
trees than the ones used for Figure 5, which led to narrower prediction regions due to the higher
graph diameter. Finally, Figures 7, 8, and 9 each show the prediction regions using LOKI when the
metric space is a random graph produced using Watts-Strogatz, Erdős-Rényi, and Barabási–Albert,
models respectively. These prediction regions are more complex and represent complex relationships
between the classes.

Figure 5: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem where the classes are related by random trees graphs.

Figure 6: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem where the classes are related by random phylogenetic trees graphs.

29

Figure 7: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem where the classes are related by random small-world graphs generated by a Watts–Strogatz
model.

Figure 8: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem where the classes are related by random Erdős-Rényi graphs.

30

Figure 9: Classification regions in the probability simplex of 3-class classifiers faced with a 100-class
problem where the classes are related by random Barabási–Albert graphs.

31

	Introduction
	Background
	Relation to Prior work

	Framework
	Loki: Adapting Pretrained Models
	Loki as a linear transformation of model outputs
	Generalizing Standard Classification

	Theoretical Results
	Sample Complexity
	Optimal Label Subspaces
	Label Subspaces in Practice

	Experimental Results
	Loki Improves Zero-Shot Models
	Loki on Partially-Observed Label Spaces
	Large Loci via Active Learning
	Improving Performance via Active Learning
	Improving Accuracy via Calibration

	Conclusion
	Deferred Proofs
	Proof of Theorem 4.1 (Loki sample complexity)
	Proof of Theorem A.4 (minimum locus cover for trees)
	Proof of Lemma A.5 (tree pairwise decomposability)
	Proof of Theorem A.6 (Algorithm B.1 correctness)
	Proof of Lemma A.7 (phylogenetic tree pairwise decomposability)
	Proof of Theorem A.8 (minimum locus cover for grid graphs)
	Proof of Lemma A.9 (loci of grid subspaces)
	Proof of Lemma A.10 (grid pairwise decomposability)
	Proof of Theorem A.11 (no nontrivial locus covers for complete graphs)
	Proof of Theorem 4.8 (active next-class selection for trees)

	Algorithms and Time Complexity Analyses
	Analysis of Algorithm B.1 (locus cover for phylogenetic trees)
	Analysis of Algorithm B.2 (computing a pairwise decomposable locus)
	Analysis of Algorithm B.3 (computing a generic locus)

	Additional Experiments
	Additional calibration experiments
	Ablation of Loki formulation
	Comparison across metric spaces

	Experimental Details
	CLIP experiments
	ImageNet experiments
	LSHTC experiments

	Broader Impacts and Limitations
	Random Locus Visualizations

