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Abstract

3D visual grounding, the task of identifying visual objects in 3D scenes based on
natural language inputs, plays a critical role in enabling machines to understand and
engage with the real-world environment. However, this task is challenging due to
the necessity to capture 3D contextual information to distinguish target objects from
complex 3D scenes. The absence of annotations for contextual objects and relations
further exacerbates the difficulties. In this paper, we propose a novel model,
CORE-3DVG, to address these challenges by explicitly learning about contextual
objects and relations. Our method accomplishes 3D visual grounding via three
sequential modular networks, including a text-guided object detection network, a
relation matching network, and a target identification network. During training, we
introduce a pseudo-label self-generation strategy and a weakly-supervised method
to facilitate the learning of contextual objects and relations, respectively. The
proposed techniques allow the networks to focus more effectively on referred
objects within 3D scenes by understanding their context better. We validate our
model on the challenging Nr3D, Sr3D, and ScanRefer datasets and demonstrate
state-of-the-art performance. Our code will be public at https://github.com/
yangli18/CORE-3DVG.

1 Introduction

Teaching machines to interpret and interact with the real world through vision and language has
been a long-standing pursuit in artificial intelligence research. An important and fundamental task
towards this goal is visual grounding, which involves detecting the referred visual object based on
natural language input. While previous works have largely focused on visual grounding within 2D
images [1, 2, 3, 4, 5], there has been a growing interest in extending this task to point clouds of 3D
scenes, giving rise to 3D visual grounding [6, 7].

In 3D scenes, objects exhibit diverse spatial distributions, and it is common for objects of the same
category to coexist. To clearly describe the target object, language descriptions often provide the
contextual information, i.e. the contextual objects as well as their relations to the target object within
the environment. For instance, in Figure 1(a), the text describes the target chair by specifying its
relative position to the door and table. The interpretation of such contextual information from textual
descriptions to visual representations is crucial for 3D visual grounding.
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Figure 1: (a) Language descriptions often provide the necessary contextual information to accurately
depict the target objects. (b) Our proposed framework for 3D visual grounding.

Existing methods for 3D visual grounding typically involve matching a large set of object proposals
with the textual description. These methods either use graph networks [6, 8, 9] or transformer
architectures [10, 11, 12, 13, 14] to implicitly model contextual information between object proposals
while performing cross-modal fusion with the text. Despite the effectiveness, their optimization
objectives mainly focus on the final matching of object proposals with the textual description, without
paying special attention to the alignment with the contextual information in the text. Consequently,
important contextual cues may be overlooked during target inference, resulting in less reliable results.

In contrast, humans naturally possess a remarkable ability to infer the target object based on a
language description. We can easily capture the relevant contextual information in the 3D scene to
reason about the target indicated by the description in a two-step manner: Firstly, we locate all the
objects mentioned in the text. Then we figure out the relations between these objects and compare
them with the textual description, which enables us to ultimately identify the target referred to in the
description. Motivated by this, we improve 3D visual grounding by mimicking this human reasoning
process. Specifically, (1) we explicitly detect all mentioned contextual objects in addition to the target
object, focusing the network on these objects to capture contextual information for target inference.
As most current datasets do not have annotations for contextual objects, we propose a pseudo-label
self-generation strategy, which leverages object semantics learned at the phrase level to generate
learning labels for contextual objects. (2) We explicitly model the contextual relations between the
candidate targets and the contextual objects as features of an adjacency matrix, which initially encode
various spatial relations of objects. To facilitate the learning of contextual relations, we introduce a
weakly-supervised learning loss that explicitly distinguishes related and unrelated relations for the
target object.

The above ideas are embodied as a novel transformer-based framework that explicitly exploits
Contextual Objects and RElations for 3D Visual Grounding (CORE-3DVG). Our framework, illus-
trated in Figure 1(b), comprises three modular networks that divide the 3D visual grounding process
into three inference steps. Firstly, a text-guided object detection network performs joint detection of
both the target and contextual objects. Next, a relation matching network models the representations
of their contextual relations. Finally, the target identification network pinpoints the referred object
based on the modeled contextual relations.

To summarize, our contributions are threefold:

• We propose to explicitly model and learn the objects and relations mentioned in the context
to focus the network on contextual information for 3D visual grounding.

• We introduce a novel framework for 3D visual grounding, dubbed CORE-3DVG, which
tackles the task of 3D visual grounding through three sequential modules. Our framework
first detects all mentioned objects in the scene, then models their contextual relations, and
finally performs context-based target inference.

• We evaluate our method on the challenging benchmarks including Nr3D, Sr3D, and Scan-
Refer. Our method outperforms the previous state-of-the-art counterparts by significant
margins. Extensive experiments validate the efficacy of our proposed techniques.
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2 Related Work

2D/3D Visual Grounding. Visual grounding aims to locate target objects in 2D images or 3D
point clouds based on the language input. Existing methods are generally categorized as one-stage
methods [15, 16, 17, 4, 18] and two-stage methods [1, 19, 3, 20, 21, 22, 23, 24, 25, 26, 6, 7]. One-
stage approaches fuse textual features with visual representations to generate target predictions in
one shot. Two-stage methods follow a two-step detection and matching process: they first leverage
the off-the-shelf detectors [27, 28, 29, 30] to generate object proposals, which are then matched with
language input to select the best match as the estimated target.

The prevalent methods in 3D visual grounding adopt a two-stage scheme. Early works [6, 8, 9]
use graph-based methods to model spatial relations among object proposals. With the rise of
transformers [31], recent works [10, 12, 13, 14, 18] have adopted transformers for feature fusion
and cross-modal fusion. Among them, SAT [12] incorporates 2D visual grounding to improve the
performance of 3D visual grounding. Multi-view transformer [14] models different views in visual
feature modeling.

Context Modeling for Visual Grounding. Modeling contextual information is important for visual
grounding, especially for 3D visual grounding. While early works use graph neural networks or
transformers to model contextual information, they fall short in encoding various spatial relations
between objects. Recent 3DVG-transformer [11] and ViL3DRel [32] explicitly encode the objects’
distances or orientations into their self-attention computation to better model 3D spatial relations.
In contrast to prior works, our method focuses on the explicit learning of contextual objects and
relations and exploiting this information for target inference.

3 Method

3.1 Framework

Our method focuses on the learning of contextual objects and relations, and exploits such information
to achieve reliable 3D visual grounding. Figure 2 illustrates the overall framework. Given a 3D
scene’s point cloud and a language description, we initially encode their features into Fv ∈ RM×C

and Fl ∈ RL×C , respectively, where M and L represent the number of features and C denotes the
feature dimension. Based on these encoded features, 1) A text-guided object detection network first
detects semantically related objects in the 3D scene, including target and contextual objects. 2) Then,
we construct the spatial relation features in a pairwise manner for these detected objects and input
them into the relation matching network for modeling contextual relations. 3) Finally, utilizing the
modeled contextual features, the target identification network can effectively match the detected
objects with the textual information to find the referred object.

3.1.1 Text-Guided Object Detection Network

The object detection network, as illustrated in Figure 2(a), consists of Nd transformer decoder layers.
The network is initiated with a set of K object queries [o1, o2, · · · , oK ]T ∈ RK×C , which are
generated from the point cloud features Fv based on their correlation with the textual features Fl (see
the supplementary material for more details). In each decoder layer, the initial object queries are first
input to a self-attention layer to enable feature interaction between candidate objects. The queries
are then passed through two cascaded cross-attention layers to gather textual and visual features
successively. Next, a feed-forward network (FFN) updates the object queries. For the resulting K

object queries, two FFNs are applied to predict their object bounding boxes [b̂1, b̂2, · · · , b̂K ]T ∈
RK×6 and confidence scores [p̂1, p̂2, · · · , p̂K ]T ∈ RK×1, respectively.

To avoid duplicate object detections, we employ non-maximum suppression (NMS) and retain
the top T scoring detections. We represent the bounding boxes of the retained detections as
[b̄1, b̄2, · · · , b̄T ]T ∈ RT×4 and their corresponding object queries as [ō1, ō2, · · · , ōT ]T ∈ RT×C .
These detections correspond to the most relevant objects detected for the language description, in-
cluding both target and contextual objects. For the training of this detection network, we propose a
pseudo-label self-generation strategy to facilitate learning of unlabeled contextual objects, which is
detailed in Section 3.2.
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Figure 2: The overview of our framework. Our framework comprises three modular networks that
divide the 3D visual grounding process into three inference steps.

3.1.2 Relation Matching Network

The relation matching network is developed to model the target object’s contextual relations that
match the textual description. Specifically, for each pair of detected objects (b̄i, b̄j), we devise
multiple spatial relation features that consider different aspects, including distance & orientation,
volume & dimension, and perspective (see the supplementary material for details). This results in
T × T spatial relation features [rsi,j ]1≤i,j≤T for the T detected objects, where rsi,j ∈ RC1 represents
the relation feature with b̄i as the candidate target and b̄j as the contextual object. We perform linear
projection on each feature rsi,j and its corresponding contextual object query ōj , and then concatenate
them as the initial contextual relation feature:

r0i,j = Concat(W1 · rsi,j ,W2 · ōj), (1)

where W1 ∈ RC/2×C1 and W2 ∈ RC/2×C are the linear projection weights.

As depicted in Figure 2(b), the relation matching network takes the contextual relation features
[r0i,j ]1≤i,j≤T as input and applies Nr transformer decoder layers to model contextual relations that
match the textual description. To achieve this, each decoder layer contains a self-attention layer
for intra-modal information interaction among relation features, a cross-attention layer on textual
features for cross-modal fusion, and an FFN to transform the relation features. The relation matching
network outputs the updated relation features [ri,j ]1≤i,j≤T , and we apply a two-layer FFN to generate
their respective matching scores w.r.t. the textual information, denoted as [mi,j ]1≤i,j≤T . A weakly-
supervised learning approach is proposed to supervise these matching scores and thereby learn the
contextual relations associated with the referred object (detailed in Section 3.3).

3.1.3 Target Identification Network

We propose the target identification network to find the referred object with fine-grained alignment
to the textual description by leveraging the information of the detected objects and their contextual
relations. As shown in Figure 2(c), with the detected objects as candidates, we input their object
queries [ō1, ō2, · · · , ōT ]T ∈ RT×C into the target identification network. This network aligns the
object queries with the textual features via Ng transformer decoder layers. Each decoder layer
includes a self-attention layer and a cross-attention layer to enable intra-modal and cross-modal
feature fusion, followed by an FFN layer to refine the object query representations. We take the output
object queries from the last decoder layer and apply a two-layer FFN to estimate their confidence
scores as the target object, denoted as [p⋆1, p

⋆
2, · · · , p⋆T ]T ∈ RT×1.

To exploit contextual relations for target discrimination, we propose a context-aware self-attention
mechanism incorporating relation features to better model contextual information among candidate
objects. Specifically, the self-attention layer contains multiple attention heads to process the input
object queries. In each attention head, the object queries are first linearly projected as the query, key,
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and value embeddings, represented by Q,K, V ∈ RT×dk , respectively (dk is the dimension of the
embeddings). The conventional self-attention method computes the attention of the i-th object to the
j-th object by correlating their query and key embeddings, i.e. softmaxj(Q(i)K(j)T/

√
dk). Our

self-attention mechanism extends this attention computation by considering the modeled contextual
relations between objects. To accomplish this, we calculate an additional query embedding of the
object queries as Qr ∈ RT×dk , and perform linear projection on the contextual relation features
[ri,j ]1≤i,j≤T to obtain their key and value embeddings as Rk, Rv ∈ RT×T×dk , respectively. The
attention of the i-th object to the j-th object is then computed as follows:

attni,j = softmaxj
(Q(i)K(j)T +Qr(i)Rk(i, j)

T

√
2 · dk

)
. (2)

The resulting self-attention matrix allows each object to focus more on the objects that have important
contextual relations between them. Moreover, we aggregate the value embeddings of both the object
queries and their associated relation features for attention-based feature fusion:

outi =
∑

j
attni,j · (V (j) +Rv(i, j)). (3)

In this manner, each attention head of the self-attention layer achieves context-based feature aggre-
gation, and the outputs from all attention heads are concatenated to update the input object queries.
Consequently, the updated object queries can explicitly encode information about related contextual
objects and relations. We incorporate the context-aware self-attention layer in each decoder layer of
the target identification network, enabling a more effective comparison of modeled object queries
with textual information to discern the referred object.

3.2 Pseudo-Label Self-Generation for Contextual Object Learning

Our method starts with a text-guided detection network to detect all the objects mentioned in the
textual description. However, since the contextual objects associated with the referred targets are
typically unlabeled, the object detection network lacks the requisite supervision for effective training.
To address this issue, we propose a pseudo-label self-generation strategy that facilitates the learning
of contextual objects within the network.

As shown in Figure 2(a), we first extract the noun phrases for physical objects from the input text and
divide them into the labeled noun phrase (of the target object) and the unlabeled noun phrases (of
the other contextual objects). We input these extracted noun phrases into the object detection network
along with the same initial object queries and point cloud features. For the labeled noun phrase,
the network produces K detected bounding boxes [b̃1, b̃2, · · · b̃K ]T ∈ RK×6 and confidence scores
[p̃1, p̃2, · · · , p̃K ]T ∈ RK×1. Given the ground-truth bounding box of the target object as bgt ∈ R6,
we find the best matching detection result {b̃η, p̃η} (with index η) as the positive sample. Then we
define the following losses to supervise the detection results of the labeled noun phrase:

Lnloc = Lbox(bgt, b̃η),

Lncls = −log(p̃η)−
∑
k ̸=η

λn · log(1− p̃k),
(4)

where the loss function Lbox consists of the GIoU loss [33] and the L1 loss, i.e. Lbox(·, ·) =
λgiouLgiou(·, ·) + λL1LL1(·, ·) (λgiou and λL1 are hyper-parameters to balance the two losses).

During training, based on the supervised learning for labeled noun phrases, we develop the network’s
ability to detect objects for various noun phrases. We thereby apply the detection network to the
unlabeled noun phrases and utilize the output detection results to create pseudo labels for contextual
objects. In particular, for each of the U unlabeled noun phrases, we process the detection results
with NMS and select the H detections with the highest scores. We use b∗i,j ∈ R6 and p∗i,j ∈ R to
denote the bounding box and unnormalized score of the j-th detection for the i-th unlabeled noun
phrase. This gives U ×H object detections {(b∗i,j , p∗i,j)}1≤i≤U,1≤j≤H to serve as the pseudo labels
for contextual objects. As shown in Figure 2(a), we combine these pseudo labels with the target’s
ground-truth label bgt to supervise the network’s detection results {(b̂i, p̂i)} for the entire sentence
(see Section 3.1.1). Similar to DETR [34], we use the Hungarian algorithm to find the best matching
detections for the combined labels, where τ and σi,j denote the matching indexes for the target label
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and each pseudo label, respectively. Then the supervision losses on the detection results are computed
as:

Lloc = Lbox(bgt, b̂τ ) +

U∑
i=1

H∑
j=1

wi,j · Lbox(b
∗
i,j , b̂σi,j

),

Lcls = −log(p̂τ )−
U∑
i=1

H∑
j=1

wi,j · log(p̂σi,j
)−

∑
k ̸=τ

k/∈{σi,j}

λn · log(1− p̂k),

(5)

where wi,j =
exp(p∗

i,j)∑H
j=1 exp(p∗

i,j)
· sigmoid(p∗i,j) denotes the learning weight for each pseudo label. We

use wi,j to encourage learning pseudo labels of higher scores under each unlabeled noun phrase while
also considering the individual confidence of each pseudo label to mitigate the impact of learning
unreliable pseudo labels. With Equation (5), the network learns to understand the object phrases
within the input text for associated object detection. During inference, the network detects target and
contextual objects based on the input text without the need to manually extract their noun phrases.

3.3 Weakly-Supervised Contextual Relation Learning

Our relation matching network outputs a score matrix [mi,j ]1≤i,j≤T for all pairs of T detected objects,
representing the matching scores between their contextual relations and the textual description.
However, since there are no explicit labels for contextual relation learning, we propose a weakly-
supervised method to find the contextual relations associated with the referred object. The overall
optimization objectives for contextual relation learning are:

1. For the target object, there exists at least one contextual relation with a high matching score.

2. For the related contextual object, its contextual relations should have lower matching scores
when paired with objects that are not the target.

To accomplish this, we first match the T detected objects with the ground truth target bgt and find
the best matching detection as b̄α (indexed by α), which the model shall later infer as the detected
target. Then we take the α-th row from the score matrix [mi,j ]1≤i,j≤T , obtaining [mα,j ]j ̸=α as
the contextual relation matching scores between the detected target b̄α and other objects. From
these scores, we find the maximum score mα,β with column index β = argmaxj([mα,j ]j ̸=α). We
thereby consider the object b̄β as the most related contextual object for the target b̄α. Following the
optimization objectives 1 and 2, we devise the following losses to supervise the matching scores of
the α-th row and β-th column:

Lrel1 =

T∑
j=1
j ̸=α

max(0, ∆+mα,j −mα,β),

Lrel2 =

T∑
i=1

max(0, ∆+mi,β −mα,β),

(6)

where the hyper-parameter ∆ defines the score margin. The losses Lrel1 and Lrel2 ensure that the
contextual relation rα,β (between objects b̄α and b̄β) has a matching score surpassing the scores of
other contextual relations (with target b̄α or contextual object b̄β) by a margin of ∆. This encourages
the network to explicitly differentiate related and unrelated contextual relations for the target object.
We utilize the learned contextual relation features for target inference, as detailed in Section 3.1.3.

3.4 Training

In addition to the previous losses for learning contextual objects and relations, we also supervise the
target identification network on its estimated grounding scores [p⋆1, p

⋆
2, · · · , p⋆T ] for the T candidate

object detections. We take the α-th detected object that best matches the ground-truth label bgt
as the positive sample, and we treat other detections as negative samples. We compute the binary
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cross-entropy loss on their grounding scores as follows:

Lvg = − log(p⋆α) +

T∑
k=1
k ̸=α

λn · log(1− p⋆k). (7)

We take the sum of losses for all the modular networks to train the entire model. Following the
previous works [6, 7], we apply auxiliary losses to the predictions from every decoder layer of the
modular networks. The overall training loss is:

L =
1

Nd

Nd∑
k=1

(
Lk
nloc + Lk

ncls + Lk
loc + Lk

cls

)
+

1

Nr

Nr∑
k=1

(
Lk
rel1 + Lk

rel2

)
+

1

Ng

Ng∑
k=1

Lk
vg, (8)

where the superscript k indexes the losses of predictions from multiple decoder layers.

4 Experiments

4.1 Datasets

Nr3D [6] is built on 3D indoor scene dataset ScanNet [35]. It contains 41,503 human-annotated
text descriptions, covering 76 object categories and 707 indoor scenes. The dataset is divided into
“Easy” and “Hard” subsets depending on whether there are objects that share the same category as the
target in the scene. Based on whether a specific viewpoint is required to infer the target, the dataset is
divided into "View-dep." and "View-indep." subsets.

Sr3D [6] contains 83,572 descriptions that are automatically generated using specific templates.
Similar to the Nr3D dataset, the Sr3D dataset is divided into multiple subsets for evaluation.

ScanRefer [7] provides 51,583 text descriptions of 11,046 objects in 800 3D scenes from the ScanNet.
On average, there are 13.81 objects and 64.48 text descriptions per scene. The official division takes
36,665 samples as the training set and 9,508 as the test set. According to whether the target object
category is unique in the scene, the dataset is divided into "Unique" and "Multiple" subsets.

4.2 Implementation Details

We utilize the AdamW optimizer [36] to train our model with a batch size of 24. For visual feature
encoding, we utilize the PointNet++ network [37] with an initial learning rate of 10−3. The rest of
the model has an initial learning rate of 10−4, and the weight decay value is set to 5 × 10−4. We
employ the first three layers of the RoBERTa [38] to extract text features. We train our model for
120 epochs on the Nr3D dataset, 60 epochs on the Sr3D dataset, and 100 epochs on the ScanRefer
dataset. The hyper-parameter ∆ in Equation 6 is set to 0.4, and we set the weight hyper-parameters
λgiou = 1 and λL1 = 5 for the Lbox loss. The numbers of decoder layers for the text-guided object
detection, relation matching, and target identification networks are set to Nd = 3, Nr = 2, and
Ng = 3, respectively. Following the previous work [39], we apply rotation data augmentation for the
3D point cloud scenes and augment supervision with detection prompts during training. We measure
accuracy using Acc@0.25 for both Nr3D and Sr3D datasets, where a predicted bounding box is
considered correct if its IoU with the ground truth target exceeds 0.25. For the ScanRefer dataset [7],
we employ two metrics: Acc@0.25 and Acc@0.5.

4.3 Comparison with State-of-the-Art Methods

Table 1 presents the comparative results of our method with the current state-of-the-art methods
on the Nr3D, Sr3D, and ScanRefer datasets. Our method consistently outperforms the previous
methods. For the Nr3D and Sr3D datasets, it is standard practice to use ground-truth object boxes
as object proposals to infer the referred object. However, considering that ground-truth boxes are
usually unavailable in practical scenarios, our model is designed to locate objects of interest using
a dedicated detection network. Thus, for a fair comparison, we quote the evaluation results from
BUTD-DETR [39], where previous methods are evaluated with detected object proposals by a pre-
trained 3D object detector [40]. The quoted results are marked with † and we denote this evaluation
setup as “det” in Table 1. On the Nr3D and Sr3D datasets, as shown in Table 1, our method exhibits
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Table 1: Comparison with the state-of-the-art methods on Nr3D, Sr3D, and ScanRefer.

Method Nr3D Sr3D ScanRefer
Acc@0.25 (det) Acc@0.25 (det) Acc@0.25 Acc@0.5

ReferIt3DNet [6] 24.0† 27.7† 26.4 16.9
ScanRefer [7] - - 35.5 22.4

TGNN [8] - - 37.4 29.7
InstanceRefer [9] 29.9† 31.5† 40.2 32.9
FFL-3DOG [41] - - 41.3 34.0

LanguageRefer [13] 28.6† 39.5† - -
3DVG-Transformer [11] - - 45.9 34.5

SAT 2D [12] 31.7† 35.4† 44.5 30.1
BUTD-DETR [39] 43.3 52.1 52.2 39.8

CORE-3DVG 49.57 54.30 56.77 43.84

Table 2: Comparison with the state-of-the-art methods on different subsets of ScanRefer.

Method Unique Multiple Overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ReferIt3DNet[6] 53.8 37.5 21.0 12.8 26.4 16.9
ScanRefer[7] 63.0 40.0 28.9 18.2 35.5 22.4

TGNN[8] 68.6 56.8 29.8 23.2 37.4 29.7
InstanceRefer[9] 77.5 66.8 31.3 24.8 40.2 32.9
FFL-3DOG[41] 78.8 67.9 35.2 25.7 41.3 34.0

3DVG-Transformer[11] 77.2 58.5 38.4 28.7 45.9 34.5
SAT 2D[12] - - - - 44.5 30.1

BUTD-DETR[39] 84.2 66.3 46.6 35.1 52.2 39.8

CORE-3DVG 84.99 67.09 51.82 39.76 56.77 43.84

significant performance advantages over the previous methods. Compared with the recent BUTD-
DETR, which employs a larger transformer encoder and decoder network, our method achieves
absolute improvements of 6.27% and 2.20% on the Nr3D and Sr3D datasets, respectively.

Table 2 provides a detailed performance comparison between our method and previous approaches
on the ScanRefer dataset. Our method shows superior performance across various test settings and
evaluation metrics. Notably, on the challenging “Multiple” subset, where multiple objects share
the same category as the target objects, our method achieves 51.82% in Acc@0.25, surpassing the
leading BUTD-DETR [39] by an appreciable margin 5.22%. Our explicit modeling of contextual
information enables better handling of such challenging scenarios. For the simpler "Unique" subset,
where the target object is unique, we also achieve higher or comparable results compared to previous
methods. Our overall accuracy on the ScanRefer dataset reaches 56.77% (Acc@0.25) and 43.84%
(Acc@0.5), respectively, outperforming all the previous methods.

4.4 Ablation Studies

In this section, we conduct the ablation studies on the Nr3D [6] dataset to validate our method.

Learning Contextual Objects and Relations. Table 3 presents the ablation study on the proposed
explicit learning of contextual objects and relations. The first row of Table 3 represents the baseline
model, which achieves an overall accuracy of 34.66% (Acc@0.25). Based on this baseline, we
first introduce the learning of contextual objects, resulting in a significant improvement of 9.76% in
overall accuracy. The improvements are consistently observed across all test subsets, as shown in the
second row of Table 3. While the contextual relations are not modeled, the contextual objects alone
provide crucial contextual information for target inference. In the third row of the table, we separately
introduce the learning of contextual relations and observe an improvement of 2.67%. The "View-dep"
subset exhibits the largest improvement of 6.14%, highlighting the effectiveness of relation learning
for context modeling. Finally, by incorporating the learning of both contextual objects and relations,
we achieve an overall accuracy of 49.57%. This surpasses the baseline model by 14.91% and achieves
the best performance among these ablation variants, as shown in the last row of Table 3.
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Table 3: The ablation study of learning contextual objects and relations.

Learning
context. objects

Learning
context. relations Easy Hard View-

dep.
View-
indep. Overall

40.50 29.04 32.13 35.59 34.66
✓ 49.85 39.20 40.75 45.78 44.42

✓ 43.34 31.55 38.27 36.98 37.33
✓ ✓ 53.91 45.39 48.19 50.07 49.57

Table 4: The ablation study of pseudo-label self-generation strategy.

Method Easy Hard View-
dep.

View-
indep. Overall

− 40.50 29.04 32.13 35.59 34.66
+ Supervised learning on labeled noun phrases 45.05 31.87 33.17 40.23 38.33

+ Learning pseudo labels for unlabeled noun phrases 49.85 39.20 40.75 45.78 44.42

Table 5: The ablation study of initial spatial relation features.

Distance &
Orientation

Volume &
Dimension

Perspective-
related relations Easy Hard View-

dep.
View-
indep. Overall

49.85 39.20 40.75 45.78 44.42
✓ 52.38 40.99 43.53 47.70 46.57

✓ 51.62 40.70 42.94 47.20 46.05
✓ 52.49 42.58 46.46 47.81 47.44

✓ ✓ ✓ 52.55 43.42 46.85 48.28 47.90

Pseudo-Label Self-Generation Strategy for Contextual Object Learning. In Table 4, we in-
vestigate the pseudo-label generation strategy used for contextual object learning. First, we only
employ the detection loss defined in Equation 4 to learn the objects corresponding to labeled noun
phrases. The second row of Table 4 shows an overall accuracy improvement of 3.67% compared to
the baseline model in the first row. This suggests that augmenting the textual diversity for object
detection training also contributes to improved visual grounding. After that, we utilize the pseudo
labels generated for unlabeled noun phrases to guide the learning of contextual objects. The third
row of Table 4 demonstrates that this technique boosts the model’s accuracy from 38.33% to 44.42%
(+ 6.09%) and exhibits significant performance enhancements across all test subsets. These results
further emphasize the importance of learning contextual objects, as it allows the model to effectively
capture contextual information for target inference.

Initial Spatial Relation Features. We develop a diverse set of spatial relations between objects
as initial features for modeling contextual relations. Table 5 presents an ablation study of these
relation features. The first row of Table 5 shows an overall accuracy of 44.42% when the initial
spatial relation features are not used. Then, we individually incorporate the relation features related
to “Distance & Orientation”, “Volume & Dimension”, and “Perspective-related relations”, improving
the overall accuracy by 2.15%, 1.63%, and 3.35%, respectively. Notably, the perspective-related
relation feature achieves the greatest improvement, especially in the "View-dep." test subset (from
40.75% to 46.46%), highlighting its effectiveness in reasoning textual descriptions associated with
specific viewpoints. Finally, combining all these relation features in the last row of Table 5 yields the
highest accuracy of 47.90%.

Weakly-Supervised Contextual Relation Learning. In Table 6, we conduct an ablation study
on the learning of contextual relations. The first two rows of Table 6 show an overall accuracy
improvement of 3.48% when directly using the initial spatial relation features. However, as shown in
the third row of Table 6, the relation matching network alone fails to improve performance without
the inclusion of the weakly-supervised losses in Equation 6. By incorporating weakly-supervised
learning of contextual relations, we achieve an overall accuracy improvement of 1.77% and observe
appreciable performance advancements across all test subsets, as depicted in the last row of Table 6.
These results clearly demonstrate the necessity of the weakly-supervised learning in effectively
modeling contextual relations.
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Table 6: The ablation study of contextual relation learning.

Initial spatial
relation features

Relation matching
network

Weakly-supervised
learning losses Easy Hard View-

dep.
View-
indep. Overall

49.85 39.20 40.75 45.78 44.42
✓ 52.55 43.42 46.85 48.28 47.90
✓ ✓ 52.55 43.24 46.90 48.13 47.80
✓ ✓ ✓ 53.91 45.39 48.19 50.07 49.57

(d) The table is white with 
two monitors on it.

(a) The lamp next to the red curtains. (b) Choose the monitor on the desk that 
is close to the coats hanging up.

(c) Blue empty kid chair by green table 
right underneath the animals curtains

Figure 3: 3D visual grounding results with associated contextual objects and relations.

4.5 Visualization

In Figure 3, we visualize the visual grounding results of our method for various descriptions and 3D
scenes. We use green bounding boxes to represent the detected target objects and red bounding boxes
to indicate the contextual objects that exhibit relation matching scores greater than 0.4. The results
illustrate the efficacy of our method in comprehending contextual information within the text to infer
the referred target object. For example, in Figure 3(a), when given the description “The lamp next
to the red curtains”, our model successfully locates the correct lamp and the adjacent red curtains,
thereby avoiding misclassification of the lamp near the bed. This explicit utilization of contextual
information enables a more reliable inference of the target object.

5 Conclusion

In this paper, we presented a 3D visual grounding framework that focuses on learning contextual
objects and relations. The proposed framework consists of three sequential modules: text-guided
object detection, relation matching, and target identification networks. The innovative techniques
of pseudo-label self-generation and weakly-supervised learning facilitate the learning of contextual
objects and relations. We verify the effectiveness of contextual objects and relations learning through
extensive experiments and achieve leading performances on multiple benchmarks, including Nr3D,
Sr3D, and ScanRefer.

Despite the remarkable performance achieved, the generalization ability of our method is still limited
since our model has been only trained on datasets with limited object semantics and corpus. The
performance of our algorithms could be influenced by the types of devices used to capture the point
clouds and the types of 3D scenes. In the future, we plan to further dig into the generalization ability
of 3D visual grounding frameworks and extend our method to more practical and realistic scenarios.

Acknowledgements. This work is supported by the National Key R&D Program of China (No.
2022ZD0118501), the Beijing Natural Science Foundation (JQ21017, L223003, M22005, 4224091),
the Natural Science Foundation of China (Grant No. 61972397, 62222206, 62036011, 62192782,
61721004, U2033210, 62372451, 62192785, 62372082, 62202469), the Major Projects of Guang-
dong Education Department for Foundation Research and Applied Research (2018KZDXM066),
Guangdong Provincial University Innovation Team Project (2020KCXTD045).

10



References
[1] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context in

referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 69–85. Springer, 2016.

[2] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 11–20, 2016.

[3] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Mohit Bansal, and Tamara L Berg. Mattnet:
Modular attention network for referring expression comprehension. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1307–1315, 2018.

[4] Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and Jiebo Luo. A fast and
accurate one-stage approach to visual grounding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4683–4693, 2019.

[5] Li Yang, Yan Xu, Chunfeng Yuan, Wei Liu, Bing Li, and Weiming Hu. Improving visual grounding with
visual-linguistic verification and iterative reasoning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9499–9508, 2022.

[6] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas. Referit3d:
Neural listeners for fine-grained 3d object identification in real-world scenes. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages
422–440. Springer, 2020.

[7] Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in rgb-d
scans using natural language. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XX, pages 202–221. Springer, 2020.

[8] Pin-Hao Huang, Han-Hung Lee, Hwann-Tzong Chen, and Tyng-Luh Liu. Text-guided graph neural
networks for referring 3d instance segmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 1610–1618, 2021.

[9] Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Sheng Wang, Zhen Li, and Shuguang Cui. In-
stancerefer: Cooperative holistic understanding for visual grounding on point clouds through instance
multi-level contextual referring. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1791–1800, 2021.

[10] Dailan He, Yusheng Zhao, Junyu Luo, Tianrui Hui, Shaofei Huang, Aixi Zhang, and Si Liu. Transrefer3d:
Entity-and-relation aware transformer for fine-grained 3d visual grounding. In Proceedings of the 29th
ACM International Conference on Multimedia, pages 2344–2352, 2021.

[11] Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3dvg-transformer: Relation modeling for visual
grounding on point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2928–2937, 2021.

[12] Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo. Sat: 2d semantics assisted training for 3d
visual grounding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1856–1866, 2021.

[13] Junha Roh, Karthik Desingh, Ali Farhadi, and Dieter Fox. Languagerefer: Spatial-language model for 3d
visual grounding. In Conference on Robot Learning, pages 1046–1056. PMLR, 2022.

[14] Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-view transformer for 3d visual grounding.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15524–
15533, 2022.

[15] Xinpeng Chen, Lin Ma, Jingyuan Chen, Zequn Jie, Wei Liu, and Jiebo Luo. Real-time referring expression
comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426, 2018.

[16] Yue Liao, Si Liu, Guanbin Li, Fei Wang, Yanjie Chen, Chen Qian, and Bo Li. A real-time cross-modality
correlation filtering method for referring expression comprehension. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10880–10889, 2020.

[17] Zhengyuan Yang, Tianlang Chen, Liwei Wang, and Jiebo Luo. Improving one-stage visual grounding by
recursive sub-query construction. In European Conference on Computer Vision, pages 387–404. Springer,
2020.

11



[18] Junyu Luo, Jiahui Fu, Xianghao Kong, Chen Gao, Haibing Ren, Hao Shen, Huaxia Xia, and Si Liu. 3d-sps:
Single-stage 3d visual grounding via referred point progressive selection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16454–16463, 2022.

[19] Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. Modeling relationships
in referential expressions with compositional modular networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1115–1124, 2017.

[20] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. Learning two-branch neural networks for image-
text matching tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):394–407,
2018.

[21] Bohan Zhuang, Qi Wu, Chunhua Shen, Ian Reid, and Anton Van Den Hengel. Parallel attention: A unified
framework for visual object discovery through dialogs and queries. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4252–4261, 2018.

[22] Hanwang Zhang, Yulei Niu, and Shih-Fu Chang. Grounding referring expressions in images by variational
context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4158–4166, 2018.

[23] Peng Wang, Qi Wu, Jiewei Cao, Chunhua Shen, Lianli Gao, and Anton van den Hengel. Neighbourhood
watch: Referring expression comprehension via language-guided graph attention networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1960–1968, 2019.

[24] Richang Hong, Daqing Liu, Xiaoyu Mo, Xiangnan He, and Hanwang Zhang. Learning to compose and
reason with language tree structures for visual grounding. IEEE transactions on pattern analysis and
machine intelligence, 2019.

[25] Daqing Liu, Hanwang Zhang, Feng Wu, and Zheng-Jun Zha. Learning to assemble neural module tree
networks for visual grounding. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4673–4682, 2019.

[26] Sibei Yang, Guanbin Li, and Yizhou Yu. Dynamic graph attention for referring expression comprehension.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4644–4653, 2019.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6):1137–1149, 2016.

[28] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018.

[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969, 2017.

[30] Li Yang, Yan Xu, Shaoru Wang, Chunfeng Yuan, Ziqi Zhang, Bing Li, and Weiming Hu. Pdnet: Toward
better one-stage object detection with prediction decoupling. IEEE Transactions on Image Processing,
31:5121–5133, 2022.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[32] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Language
conditioned spatial relation reasoning for 3d object grounding. In Advances in Neural Information
Processing Systems, volume 35, pages 20522–20535, 2022.

[33] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 658–666, 2019.

[34] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 213–229. Springer,
2020.

[35] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5828–5839, 2017.

12



[36] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2017.

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[39] Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom up top down
detection transformers for language grounding in images and point clouds. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVI, pages
417–433. Springer, 2022.

[40] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free 3d object detection via transformers.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2949–2958, 2021.

[41] Mingtao Feng, Zhen Li, Qi Li, Liang Zhang, XiangDong Zhang, Guangming Zhu, Hui Zhang, Yaonan
Wang, and Ajmal Mian. Free-form description guided 3d visual graph network for object grounding
in point cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
3722–3731, 2021.

13


	Introduction
	Related Work
	Method
	Framework
	Text-Guided Object Detection Network
	Relation Matching Network
	Target Identification Network

	Pseudo-Label Self-Generation for Contextual Object Learning
	Weakly-Supervised Contextual Relation Learning
	Training

	Experiments
	Datasets
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation Studies
	Visualization

	Conclusion

