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Abstract

The widely observed ‘benign overfitting phenomenon’ in the neural network lit-
erature raises the challenge to the ‘bias-variance trade-off’ doctrine in the statis-
tical learning theory. Since the generalization ability of the ‘lazy trained’ over-
parametrized neural network can be well approximated by that of the neural tangent
kernel regression, the curve of the excess risk (namely, the learning curve) of ker-
nel ridge regression attracts increasing attention recently. However, most recent
arguments on the learning curve are heuristic and are based on the ‘Gaussian
design’ assumption. In this paper, under mild and more realistic assumptions, we
rigorously provide a full characterization of the learning curve in the asymptotic
sense under a power-law decay condition of the eigenvalues of the kernel and also
the target function. The learning curve elaborates the effect and the interplay of
the choice of the regularization parameter, the source condition and the noise. In
particular, our results suggest that the ‘benign overfitting phenomenon’ exists in
over-parametrized neural networks only when the noise level is small.

1 Introduction

Kernel methods, in particular kernel ridge regression (KRR), have been one of the most popular
algorithms in machine learning. Its optimality under various settings has been an active topic
since Caponnetto and De Vito [2007], Andreas Christmann [2008]. The renaissance of kernel
methods arising from the neural tangent kernel (NTK) theory [Jacot et al., 2018], which shows that
over-parametrized neural networks can be well approximated by certain kernel regression with the
corresponding NTK, has posed further challenges about the interplay of generalization, regularization
and noise level. For example, it has been observed empirically that over-parametrized neural networks
can fit any data perfectly but also generalize well [Zhang et al., 2017], which contradicts to our
traditional belief of bias-variance trade-off [Vapnik, 1999].

The aforementioned ‘benign overfitting phenomenon’ that overfitted neural networks generalize
well attracts lots of attention recently. Researchers provide various explanations to reconcile the
contradiction between it and the bias-variance trade-off principle. For example, Belkin et al. [2019]
proposed the ‘double descent theory’ to explain why large model can generalize well; some other
works (e.g., Liang and Rakhlin [2020]) argued that kernel interpolating estimators can generalize
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well in high dimensional settings. In contrast to the ‘benign overfitting phenomenon’, several other
works (e.g., Rakhlin and Zhai [2018], Li et al. [2023a]) recently showed that kernel interpolation can
not generalize in traditional fixed dimension setting. In order to understand the ‘benign overfitting
phenomenon’, it would be of great interest to characterize the learning curve: the curve of the exact
order of the generalization error of a certain algorithm (e.g., KRR) varying with respect to different
choices of regularization parameters.

Recently, several works (e.g., Bordelon et al. [2020], Cui et al. [2021]) depicted the learning curve
of KRR under the Gaussian design assumption that the eigenfunctions (see (5)) are i.i.d. Gaussian
random functions. Though it is easy to figure out that the Gaussian design assumption can not be
true in most scenarios, with some heuristic arguments, Cui et al. [2021] provide a description of
the learning curves of KRR with respect to the regularization, source condition and noise levels.
These works offered us some insights on the learning curve of KRR which strongly suggests that
the learning curve should be U-shaped if the observations are noisy or monotone decreasing if the
observations are noiseless.

In this paper, we consider the learning curves of KRR under the usual settings (without the Gaussian
design assumption). Under mild assumptions, we rigorously prove the asymptotic rates of the excess
risk, including both upper and lower bounds. These rates show the interplay of the eigenvalue decay
of the kernel, the relative smoothness of the regression function, the noise and the choice of the
regularization parameter. As a result, we obtain the traditional U-shaped learning curve for the noisy
observation case and a monotone decreasing learning curve for the noiseless case, providing a full
picture of the generalization of KRR in the asymptotic sense. Combined with the NTK theory, our
results may also suggest that ‘the benign overfitting phenomenon’ may not exist if one trains a very
wide neural network.

1.1 Our contributions

The main contribution of this paper is that we remove the unrealistic Gaussian design assumption in
previous non-rigorous works [Bordelon et al., 2020, Cui et al., 2021] and provide mathematically
solid proof of the exact asymptotic rates of KRR with matching upper and lower bounds.

To be precise, let us introduce the quantities λ, the regularization parameter in (1); β, the eigenvalue
decay rate in (6), which characterizes the span of the underlying reproducing kernel Hilbert space
(RKHS); and s, the smoothness index in (12), describes the relative smoothness of the regression
function with respect to the RKHS. Here we note that larger β implies better regularity the RKHS and
also larger s also implies better relative smoothness. Then, the asymptotic rates of the generalization
error (excess risk) R(λ) in the noisy case is roughly

R(λ) =

{
Θ
(
λmin(s,2) + σ2λ−1/β/n

)
, if λ = Ω(n−β);

Ω(σ2), if λ = O(n−β);

where n is the number of the samples and σ2 is the noise level. This result justifies the traditional
U-shaped learning curve (see also Figure 1 on page 6) with respect to the regularization parameter.

For the technical part, we use the bias-variance decomposition and determine the exact rates of the
both terms. Since the variance term was already considered in Li et al. [2023a], the main focus of
this work is the bias term. Our technical contributions include:

• When the regularization parameter λ is not so small, that is, λ = Ω(n−β), we provide sharp
estimates of the asymptotic orders (Lemma 4.1) of the bias term with both upper and lower
bounds. Our result holds for both the well-specified case (s ≥ 1) and the mis-specified case
(s ∈ (0, 1)), which improves the upper bounds given in Zhang et al. [2023a].

• We further show an upper bound (Lemma A.12) of the bias term in the nearly interpolating
case, i.e., λ = O(n−β). The upper bound is tight and matches the information-theoretic
lower bound provided in Proposition 4.4.

• Combining these results, we provide learning curves of KRR for both the noisy case
(Theorem 3.2) and the noiseless case (Theorem 3.4). The results justify our traditional belief
of the bias-variance trade-off principle.

• Our new techniques can also be generalized to other settings and might be of independent
interest.
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1.2 Related works

The optimality of kernel ridge regression has been studied extensively [Caponnetto and De Vito,
2007, Steinwart et al., 2009, Fischer and Steinwart, 2020, Zhang et al., 2023a]. Caponnetto and
De Vito [2007] provided the classical optimality result of KRR in the well-specified case and the
subsequent works further considered the mis-specified case. However, these works only provided an
upper bound and the worst-case (minimax) lower bound, which are not sufficient for determining the
precise learning curve. In order to answer the “benign overfitting” phenomenon [Bartlett et al., 2020,
Liang and Rakhlin, 2020], several works [Rakhlin and Zhai, 2018, Buchholz, 2022, Beaglehole et al.,
2022] tried to provide a lower bound for the kernel interpolation, which is a limiting case of KRR,
but these works only focused on particular kernels and their techniques can hardly be generalized to
provide a lower bound for KRR.

Another line of recent works considered the generalization performance of KRR under the Gaussian
design assumption of the eigenfunctions [Bordelon et al., 2020, Jacot et al., 2020, Cui et al., 2021,
Mallinar et al., 2022]. In particular, the learning curves of KRR was described in Bordelon et al.
[2020], Cui et al. [2021], but heuristic arguments are also made in addition to the unrealistic Gaussian
design assumption. Though the heuristic arguments are inspirational, a rigorous proof is indispensable
if one plans to perform further investigations. In this work, we provide the first rigorous proof for
most scenarios of the smoothness s, eigenvalue decay rate β, noise level σ2 and the regularization
parameter λ based on the most common/realistic assumptions.

Recently, in order to show the so-called “saturation effect” in KRR, Li et al. [2023b] proved the exact
asymptotic order of both the bias and the variance term when the regression function is very smooth
and the regularization parameter λ is relatively large. Inspired by their analysis, Li et al. [2023a]
showed the exact orders of the variance term. Our work further determines the orders of the bias term,
completing the full learning curve or KRR.

KRR is also connected with Gaussian process regression [Kanagawa et al., 2018]. Jin et al. [2021]
claimed to establish the learning curves for Gaussian process regression and thus for KRR. However,
as pointed out in Zhang et al. [2023b], there is a gap in their argument. Moreover, their results are
also more restrictive than ours, see Section 3.3 for a comparison.

Notations We write Lp(X ,dµ) for the Lebesgue space and sometimes abbreviate it as Lp. We
use asymptotic notations O(·), o(·), Ω(·) and Θ(·), and use Θ̃(·) to suppress logarithm terms. We
also write an ≍ bn for an = Θ(bn). We will also use the probability versions of the asymptotic
notations such as OP(·). Moreover, to present the results more clearly, we denote an = Opoly(bn) if
an = O(npbn) for any p > 0, an = Ωpoly(bn) if an = Ω(n−pbn) for any p > 0, an = Θpoly(bn) if
an = Opoly(bn), and an = Ωpoly(bn); and we add a subscript P for their probability versions.

2 Preliminaries

Let X ⊂ Rd be compact and ρ be a probability measure on X × R, whose marginal distribution on
X is denoted by µ. Suppose that we are given n i.i.d. samples (x1, y1), . . . , (xn, yn) from ρ. Let k
be a continuous positive definite kernel k over X and H be the separable reproducing kernel Hilbert
space (RKHS) associated with k. Then, kernel ridge regression (KRR) obtains the regressor f̂λ via
the following convex optimization problem

f̂λ = argmin
f∈H

(
1

n

n∑
i=1

(yi − f(xi))
2 + λ∥f∥2H

)
, (1)

where λ > 0 is the regularization parameter. Let us denoteX = (x1, . . . , xn) and y = (y1, . . . , yn)
T .

A closed form of (1) can be provided by the representer theorem [Andreas Christmann, 2008]:

f̂λ(x) = K(x,X)(K(X,X) + nλ)−1y (2)

where K(x,X) = (k(x, x1), . . . , k(x, xn)) and K(X,X) =
(
k(xi, xj)

)
n×n

.
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In terms of the generalization performance of f̂λ, we consider the excess risk with respect to the
squared loss

Ex∼µ

[
f̂λ(x)− f∗ρ (x)

]2
=
∥∥∥f̂λ − f∗ρ

∥∥∥2
L2(X ,dµ)

, (3)

where f∗ρ (x) := Eρ[y | x] is the conditional expectation and is also referred to as the regression
function. We aim to provide asymptotic orders of (3) with respect to n.

2.1 The integral operator

We will introduce the integral operator, which is crucial for the analysis, as the previous works [Capon-
netto and De Vito, 2007, Lin et al., 2018]. Denote by µ the marginal probability measure of ρ on
X . Since k is continuous and X is compact, let us assume supx∈X k(x, x) ≤ κ2. Then, it is
known [Andreas Christmann, 2008, Steinwart and Scovel, 2012] that we have the natural embedding
Sµ : H → L2, which is a Hilbert-Schmidt operator with Hilbert-Schmidt norm ∥Sµ∥HS ≤ κ. Let
S∗
µ : L2 → H be the adjoint operator of Sµ and T = SµS

∗
µ : L2 → L2. Then, it is easy to show that

T is an integral operator given by

(Tf)(x) =

∫
X
k(x, y)f(y)dµ(y), (4)

and it is self-adjoint, positive and trace-class (thus compact) with trace norm ∥T∥1 ≤ κ2 [Caponnetto
and De Vito, 2007, Steinwart and Scovel, 2012]. Moreover, the spectral theorem of compact self-
adjoint operators and Mercer’s theorem [Steinwart and Scovel, 2012] yield the decompositions

T =
∑
i∈N

λi ⟨·, ei⟩L2 ei, k(x, y) =
∑
i∈N

λiei(x)ei(y), (5)

where N ⊆ N is an index set, {λi}i∈N is the set of positive eigenvalues of T in descending order,
and ei is the corresponding eigenfunction. Furthermore, {ei}i∈N forms an orthonormal basis of

RanSµ ⊆ L2 and
{
λ
1/2
i ei

}
i∈N

forms an orthonormal basis of RanS∗
µ ⊆ H.

The eigenvalues λi actually characterize the span of the RKHS and the interplay between H and
µ. Since we are interested in the infinite-dimensional case, we will assume N = N and assume the
following polynomial eigenvalue decay as in the literature [Caponnetto and De Vito, 2007, Fischer
and Steinwart, 2020, Li et al., 2023b], which is also referred to as the capacity condition or effective
dimension condition. Larger β implies better regularity of the functions in the RKHS.
Assumption 1 (Eigenvalue decay). There is some β > 1 and constants cβ , Cβ > 0 such that

cβi
−β ≤ λi ≤ Cβi

−β (i = 1, 2, . . . ), (6)

where λi is the eigenvalue of T defined in (5).

Such a polynomial decay is satisfied for the well-known Sobolev kernel [Fischer and Steinwart,
2020], Laplace kernel and, of most interest, neural tangent kernels for fully-connected multilayer
neural networks [Bietti and Mairal, 2019, Bietti and Bach, 2020, Lai et al., 2023].

2.2 The embedding index of an RKHS

We will consider the embedding index of an RKHS to sharpen our analysis. Let us first define the
fractional power T s : L2 → L2 for s ≥ 0 by

T s(f) =
∑
i∈N

λsi ⟨f, ei⟩L2 ei. (7)

Then, the interpolation space [Steinwart and Scovel, 2012, Fischer and Steinwart, 2020, Li et al.,
2023b] [H]s is define by

[H]s = RanT s/2 =

{∑
i∈N

aiλ
s/2
i ei

∣∣∣ ∑
i∈N

a2i <∞

}
⊆ L2, (8)
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with the norm
∥∥∥∑i∈N aiλ

s/2
i ei

∥∥∥
[H]s

=
(∑

i∈N a2i
)1/2

. One may easily verify that [H]s is also a

separable Hilbert space with an orthonormal basis
{
λ
s/2
i ei

}
i∈N

. Moreover, it is clear that [H]0 =

RanSµ ⊆ L2 and [H]1 = RanS∗
µ ⊆ H. It can also be shown that if s1 > s2 ≥ 0, the inclusions

[H]s1 ↪→ [H]s2 are compact [Steinwart and Scovel, 2012].

Now, we say H has an embedding property of order α ∈ (0, 1] if [H]α can be continuously embedded
into L∞(X ,dµ), that is, the operator norm

∥[H]α ↪→ L∞(X , µ)∥ =Mα <∞. (9)

Moreover, Fischer and Steinwart [2020, Theorem 9] shows that

∥[H]α ↪→ L∞(X , µ)∥ =
∥∥kαµ∥∥L∞ := ess sup

x∈X , µ

∑
i∈N

λαi ei(x)
2. (10)

Therefore, since supx∈X k(x, x) ≤ κ2, we know that (9) always holds for α = 1. By the inclusion
relation of interpolation spaces, it is clear that if H has the embedding property of order α, then it has
the embedding properties of order α′ for any α′ ≥ α. Consequently, we may introduce the following
definition [Zhang et al., 2023b]:

Definition 2.1. The embedding index α0 of an RKHS H is defined by

α0 = inf {α : ∥[H]α ↪→ L∞(X , µ)∥ =Mα <∞} . (11)

It is shown in Fischer and Steinwart [2020, Lemma 10] that α0 ≥ β and we assume the equality
holds as the following assumption.

Assumption 2 (Embedding index). The embedding index α0 = 1/β, where β is the eigenvalue
decay in (6).

Lots of the usual RKHSs satisfy this embedding index condition. It is shown in Steinwart et al. [2009]
that Assumption 2 holds if the eigenfunctions are uniformly bounded, namely supi∈N ∥ei∥L∞ <∞.
Moreover, Assumption 2 also holds for the Sobolev RKHSs, RKHSs associated with periodic
translation invariant kernels and RKHSs associated with dot-product kernels on spheres, see Zhang
et al. [2023a, Section 4].

3 Main Results

Before presenting our main results, we have to introduce a source condition on the regression function.
Since we will establish both precise learning rates, we have to characterize the exact smoothness
order of f∗ρ rather than merely assume f∗ρ belongs to some interpolation space [H]s.

Assumption 3 (Source condition). There are some s > 0 and a sequence (ai)i≥1 such that

f∗ρ =

∞∑
i=1

aiλ
s/2
i i−1/2ei (12)

and 0 < c ≤ |ai| ≤ C for some constants c, C.

Remark 3.1. Assumption 3 is also considered in Cui et al. [2021, Eq. (8)] and a slightly weaker
version of it is given in Jin et al. [2021, Assumption 5]. We only consider this simple form since there
is no essential difference in the proof to consider the weaker version. From the definition (8) we can
see that Assumption 3 implies f∗ρ ∈ [H]t for any t < s but f∗ρ /∈ [H]s.

3.1 Noisy case

Let us first consider the noisy case with the following assumption:

Assumption 4 (Noise). We assume

E(x,y)∼ρ

[(
y − f∗ρ (x)

)2 ∣∣∣ x] = σ2 > 0, µ-a.e. x ∈ X . (13)

5



0
s + 1

n s

2
n

1

2

er
ro

r r
at

e

( 2)

Bias
Var

0
s + 1

n s

1

2

er
ro

r r
at

e

( 2)

Noiseless case
Noisy case

0 2
s

0

Overfitting
(n (1 / ))

Underfitting
(n s )

Interpolating, (1)

Saturation
(n 2 )

op = s + 1

op = 2 + 1

Optimal 

-1                           0 (constant noise) s

s + 1

Overfitting
( 2n (1 / ))

Underfitting
(n s )

Underfitting
(n s )

Interpolating, (1) (n s )

Effectively
 noisy

Effectively
 noiseless

op = ( + 1)
s + 1

op =

Optimal 

Figure 1: An illustration of the learning curves when choosing λ = n−θ. First row: The bias-variance
plot and the error curves for the noisy and noiseless cases. Second row: Tow phase diagrams of
the asymptotic rates of the excess risk with respect to parameter pairs (θ, s) and (θ, τ), where we
set σ2 = n−τ and s̃ = min(s, 2). In the “underfitting” (“overfitting”) region, bias (variance) is
dominating. The “interpolating” region refers to the extreme cases of overfitting that the excess risk
is lower bounded by a constant. For the first diagram we consider the case of constant noise. For the
second diagram, the red vertical line shows the crossover of the noisy regime to the noiseless regime
and an upper bound for the blank area on the upper-right corner is unknown yet.

For technical reason, we have to further assume the kernel to be Hölder-continuous, which is first in
introduced in Li et al. [2023b]. This assumption is satisfied for the Laplace kernel, Sobolev kernels
and neural tangent kernels.

Assumption 5. The kernel k is Hölder-continuous, that is, there exists some p ∈ (0, 1] and L > 0
such that

|k(x1, x2)− k(y1, y2)| ≤ L∥(x1, x2)− (y1, y2)∥pRd×d , ∀x1, x2, y1, y2 ∈ X . (14)

Theorem 3.2. Under Assumptions 1-5, suppose λ ≍ n−θ for θ > 0. Then,

E
[∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X] = {Θ̃P
(
n−min(s,2)θ + σ2n−(1−θ/β)

)
, if θ < β

Ωpoly
P
(
σ2
)
, if θ ≥ β,

(15)

where Θ̃P can be replaced with ΘP for the first case if s ̸= 2.

Remark 3.3. The two terms in the first case in Theorem 3.2 actually correspond to the bias and
the variance term respectively. Balancing the two terms, we find the optimal regularization is
θop = β

s̃β+1 and the optimal rate is s̃β
s̃β+1 , where s̃ = min(s, 2), which recovers the classical optimal

rate results [Caponnetto and De Vito, 2007]. Moreover, while we treat σ2 as fixed for simplicity, we
can also allow σ2 to vary with n. Then, we can recover the results in Cui et al. [2021].
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3.2 Noiseless case

Theorem 3.4. Under Assumptions 1-3, assume further that the noise is zero, i.e., y = f∗ρ (x). Then,
we have:

• Suppose λ ≍ n−θ for θ ∈ (0, β), we have

E
[∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X] = Θ̃P

(
n−min(s,2)θ

)
, (16)

where Θ̃P can be replaced with ΘP if s ̸= 2.

• Suppose λ ≍ n−θ for θ ≥ β and assume further that s > 1. Then,

E
[∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X] = Opoly
P

(
n−min(s,2)β

)
. (17)

Moreover, we have the information-theoretical lower rate:

sup
∥f∗

ρ∥[H]s
≤R

E
[∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X] = Ω(n−sβ), (18)

where R > 0 is a fixed constant.

Remark 3.5. Theorem 3.4 shows that the generalization error of KRR in the noiseless case is
monotone decreasing when θ increases and reaches the optimal rate n−β when θ ≥ β if s ≤ 2. Since
the case θ → ∞ corresponds to kernel interpolation, our result implies that kernel interpolation is
optimal when there is no noise. In contrast, as shown in Theorem 3.2 (or Li et al. [2023a]), kernel
interpolation can not generalize in the noisy case. For the case s > 2, the KRR method suffers from
saturation and the resulting convergence rate is limited to n−2β , while the possible lower rate is n−sβ .

3.3 Discussion

Our results provide a full picture of the generalization of KRR, which is in accordance with our
traditional belief of the bias-variance trade-off principle: the generalization error is a U-shaped curve
with respect to the regularization parameter λ in the noisy case and is monotone decreasing in the
noiseless case. See Figure 1 on page 6 for an illustration.

Our rates coincide with the upper rates in the traditional KRR literature [Caponnetto and De Vito,
2007, Fischer and Steinwart, 2020]. Moreover, our results also recover the learning curves in Cui
et al. [2021], but we do not need the strong assumption of Gaussian design eigenfunctions as in Cui
et al. [2021], which may not be true in most cases. Our assumptions are mild and hold for a large
class of kernels including the Sobolev kernels and the neural tangent kernels (NTK) on spheres.

Our results are based on the bias-variance decomposition and determining the rates for each term
respectively. In the proof of Li et al. [2023b], they determined the rates of the variance term under the
condition that θ < 1

2 and that of the bias term when s ≥ 2 and θ < 1. The subsequent work Li et al.
[2023a] proved the rates of the variance term when θ < β and provided a near constant lower bound
for θ ≥ β. Considering the counterpart, our works further prove the rates of the bias term, which
finally enables us to determine the complete learning curve of KRR.

The connection between KRR and Gaussian process regression also results in the connection between
their learning curves. Jin et al. [2021] claimed to show learning curves for Gaussian process regression.
However, regardless of the gap in their proof as pointed out in Zhang et al. [2023b], their results
are more restrictive than ours. Considering a boundedness assumption of the eigenfunctions that
∥ei∥∞ ≤ Ciτ for some τ ≥ 0, they could only cover the regime of θ < β/(1 + 2τ). Moreover, to
approach the θ = β regime for the Ω(1) bound in the noisy case or the optimal rate in noiseless case,
they have to require τ = 0, that is, the eigenfunctions are uniformly bounded, but it is not true for
some kernels such as dot-product kernels on spheres (and thus for NTK) since in general spherical
harmonics are not uniformly bounded. In contrast, our embedding index assumption still holds in this
case.
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4 Proof sketch

We first introduce the following sample versions of the auxiliary integral operators, which are
commonly used in the related literature [Caponnetto and De Vito, 2007, Fischer and Steinwart, 2020,
Li et al., 2023b]. We define the sampling operator Kx : R → H by Kxy = yk(x, ·), whose adjoint
K∗

x : H → R is given by K∗
xf = f(x). The sample covariance operator TX : H → H is defined by

TX :=
1

n

n∑
i=1

Kxi
K∗

xi
, (19)

and the sample basis function is gZ := 1
n

∑n
i=1Kxi

yi ∈ H. As shown in Caponnetto and De Vito
[2007], the operator form of KRR writes

f̂λ = (TX + λ)−1gZ . (20)

Let us further define

g̃Z := E (gZ |X) =
1

n

n∑
i=1

Kxif
∗
ρ (xi) ∈ H, (21)

and

f̃λ := E
(
f̂λ|X

)
= (TX + λ)

−1
g̃Z ∈ H. (22)

Then, the traditional bias-variance decomposition [Li et al., 2023b, Zhang et al., 2023a] yields

E
(∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X) = Bias2(λ) +Var(λ), (23)

where

Bias2(λ) :=
∥∥∥f̃λ − f∗ρ

∥∥∥2
L2
, Var(λ) :=

σ2

n2

n∑
i=1

∥∥(TX + λ)−1k(xi, ·)
∥∥2
L2 . (24)

4.1 The noisy case

To prove the desired result, we have to establish the asymptotic orders of both Bias2(λ) and Var(λ).
We first prove the asymptotic order of Bias2(λ) as one of our technical contributions. As far as we
know, we are the first to provide such a lower bound in (25).
Lemma 4.1. Under Assumptions 1,2,3, suppose λ ≍ n−θ for θ ∈ (0, β). Then,

Bias2(λ) = Θ̃P

(
n−min(s,2)θ

)
, (25)

where Θ̃P can be replaced with ΘP if s ̸= 2.

Proof sketch of Lemma 4.1. Denote s̃ = min(s, 2). We first introduce the regularized regression
function fλ := T (T + λ)−1f∗ρ and triangle inequality implies

Bias(λ) =
∥∥∥f̃λ − f∗ρ

∥∥∥
L2

≥
∥∥fλ − f∗ρ

∥∥
L2 −

∥∥∥f̃λ − fλ

∥∥∥
L2
.

There is no randomness in the first term and we can use the expansion (12) and (5) to show that∥∥fλ − f∗ρ
∥∥
L2 = Θ̃

(
n−s̃θ

)
. Then, we have to prove the error term

∥∥∥f̃λ − fλ

∥∥∥
L2

to be infinitesimal
with respect to the main term, which is the main difficulty since it requires a refined analysis. Previous
work only consider the case θ = β

s̃β+1 (corresponding to the optimal regularization) and show an
O(n−s̃θ) bound rather than the o(n−s̃θ) bound that we require. For the proof, we (1) apply the
concentration techniques in Fischer and Steinwart [2020]; (2) consider the Lq-embedding property
in Zhang et al. [2023a] for the mis-specified case when s is small; (3) sharpen the estimation by
exploiting the embedding property α0 = 1/β and θ < β. For the detail, see Section 2.2 in the
supplementary material.
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The variance term has been analyzed in Li et al. [2023a]. We present the following proposition as a
combination of Proposition 5.3 and Theorem 5.10 in Li et al. [2023a].
Proposition 4.2. Under Assumptions 1-5, suppose that λ ≍ n−θ. Then,

Var(λ) =

{
Θpoly

P
(
σ2n−(1−θ/β)

)
, if θ < β;

Ωpoly
P
(
σ2
)
, if θ ≥ β.

(26)

4.2 The noiseless case

For the noiseless case, the variance term vanishes in (23), and thus we only need to consider the bias
term. Since we have already established the estimation for large λ in Lemma 4.1, we focus on the
case of small λ.
Lemma 4.3. Under Assumptions 1,2,3, assume further s > 1. Suppose λ ≍ n−θ for θ ≥ β. Then,

Bias2(λ) = Opoly
P (n−min(s,2)β). (27)

Proof sketch of Lemma A.12. Intuitively, we hope to bound Bias2(λ) with Bias2(λ̃) for λ̃ > λ
such that concentration still works. However, we can not directly derive no monotone property of
Bias(λ). Nevertheless, since f∗ρ ∈ H when s > 1, the bias term can be written as

Bias(λ) =
∥∥λ(TX + λ)−1f∗ρ

∥∥
L2 =

∥∥∥T 1
2λ(TX + λ)−1f∗ρ

∥∥∥
H

≤
∥∥∥T 1

2λ(TX + λ)−1
∥∥∥

B(H)

∥∥f∗ρ∥∥H.
Then, by operator calculus we can show that∥∥T s

[
λ(TX + λ)−1

]∥∥
B(H)

≤
∥∥∥T s

[
λ̃(TX + λ̃)−1

]∥∥∥
B(H)

reducing λ to λ̃. Now, we can replace TX with T using concentration results and derive the desired
upper bound.

The following proposition shows that the upper bound in Lemma A.12 matches the information-
theoretical lower bound. The proof follows idea of the minimax principle [Micchelli and Wahba,
1979] and is deferred to the supplementary material.
Proposition 4.4. Suppose Assumption 1 holds and s ≥ 1. For any X = (x1, . . . , xn), we have

sup
∥f∗

ρ∥[H]s
≤R

Bias2(λ) = Ω
(
n−sβ

)
, (28)

where we note that here Bias(λ) is viewed as a function depending also on f∗ρ and X .

5 Experiments

Lots of numerical experiments on both synthetic data and real data are done to study to learning
curves of KRR [Li et al., 2023b, Cui et al., 2021]. In this section, we consider numerical experiments
on a toy model to verify our theory.

Let us consider the kernel k(x, y) = min(x, y) and x ∼ U [0, 1]. Then, the corresponding RKHS
is [Wainwright, 2019]

H =

{
f : [0, 1] → R

∣∣∣ f is absolutely continuous, f(0) = 0,

∫ 1

0

(f ′(x))2dx <∞
}

and the eigenvalue decay rate β = 2. Moreover, the eigensystem of k is known to be λi =
(
2i−1
2 π

)−2

and ei(x) =
√
2 sin

(
2i−1
2 πx

)
, which allows us to directly compute the smoothness of certain

functions. For some f∗, we generate data from the model y = f∗(x) + ε where ε ∼ N (0, 0.05) and
perform KRR with λ = cn−θ for different θ’s with some fixed constant c. Then, we numerically
compute the variance, bias and excess risk by Simpson’s formula with N ≫ n nodes. Repeating the
experiment for n ranged in 1000 to 5000, we can estimate the convergence rate r by a logarithmic
least-squares log err = r log n + b on the values (variance, bias and excess risk). The results are
collected in Table 1 on page 10. It can be seen that the resulting values basically match the theoretical
values and we conclude that our theory is supported by the experiments. For more experiments and
more details, we refer to the supplementary material.
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f∗(x) = cos 2πx (s = 1
2

) sin 2πx (s = 1.5) sin 3
2
πx (s = ∞)

θ Variance Bias Risk Bias Risk Bias Risk

0.2 0.90 (0.90) 0.13 (0.10) 0.13 (0.10) 0.34 (0.30) 0.34 (0.30) 0.40 (0.40) 0.42 (0.40)

0.4 0.80 (0.80) 0.22 (0.20) 0.22 (0.20) 0.68 (0.60) 0.69 (0.60) 0.82 (0.80) 0.81 (0.80)

0.5 0.75 (0.75) 0.26 (0.25) 0.26 (0.25) 0.84 (0.75) 0.79 (0.75) 1.04 (1.00) 0.77 (0.75)

1.0 0.49 (0.50) 0.54 (0.50) 0.52 (0.50) 1.69 (1.50) 0.49 (0.50) 2.21 (2.00) 0.49 (0.50)

2.0 0.00 (0.00) 1.05 (1.00) 0.09 (0.00) 3.26 (3.00) 0.00 (0.00) 3.99 (4.00) 0.00 (0.00)

3.0 0.00 (0.00) 1.05 (1.00) 0.09 (0.00) 3.26 (3.00) 0.00 (0.00) 3.98 (4.00) 0.00 (0.00)
Table 1: Asymptotic rates of bias, variance and excess risk under three regressions and different
choices of θ. The numbers in parenthess are the theoretical values. The bolded cells correspond to
the best rate over the choices of θ’s.

6 Conclusion

In this paper, we prove rigorously the learning curves of KRR, showing the interplay of the eigenvalue
decay of the kernel, the relative smoothness of the regression function, the noise and the choice of
the regularization parameter. The results justify our traditional bias-variance trade-off principle and
provide a full picture of the generalization performance of KRR. These results will help us better
understand the generalization mystery of neural networks.

As for future works, we notice that for the nearly interpolating regime when θ ≥ β, there are still
some missing parts due to technical limitations. We expect that further analysis will prove the
exact orders of the variance term like that given in Mallinar et al. [2022] under the Gaussian design
assumption. We also hypothesize that Lemma A.12 still holds in the mis-specified case (s < 1).
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A Detailed proofs

The first step of the proof is the traditional bias-variance decomposition. Let us further define

g̃Z := E (gZ |X) =
1

n

n∑
i=1

Kxi
f∗ρ (xi) ∈ H, (29)

and

f̃λ := E
(
f̂λ|X

)
= (TX + λ)

−1
g̃Z ∈ H. (30)

Recalling (20), we have

f̂λ =
1

n
(TX + λ)−1

n∑
i=1

Kxiyi =
1

n
(TX + λ)−1

n∑
i=1

Kxi(f
∗
ρ (xi) + ϵi)

= (TX + λ)−1g̃Z +
1

n

n∑
i=1

(TX + λ)−1Kxiϵi,

so that

f̂λ − f∗ρ =
(
f̃λ − f∗ρ

)
+

1

n

n∑
i=1

(TX + λ)−1Kxi
ϵi.

Taking expectation over the noise ϵ conditioned on X , since ε|x are independent noise with mean 0
and variance σ2, we have

E
(∥∥∥f̂λ − f∗ρ

∥∥∥2
L2

∣∣∣ X) = Bias2(λ) +Var(λ), (31)

where

Bias2(λ) :=
∥∥∥f̃λ − f∗ρ

∥∥∥2
L2
, Var(λ) :=

σ2

n2

n∑
i=1

∥∥(TX + λ)−1k(xi, ·)
∥∥2
L2 . (32)

A.1 The variance term

Theorem A.1. Under Assumptions 1-5, suppose that λ ≍ n−θ. Then,

Var(λ) =

{
Θpoly

P
(
σ2n−(1−θ/β)

)
, if θ < β;

Ωpoly
P
(
σ2
)
, if θ ≥ β.

(33)

The computation in Li et al. [2023b] shows that

Var(λ) =
σ2

n2

∫
X
K(x,X)(K + λ)−2K(X,x)dµ(x).

Then, Theorem A.1 directly follows from Proposition 5.3 and Theorem 5.10 in Li et al. [2023a].

A.2 The bias term

Theorem A.2. Under Assumptions 1,2,3, suppose λ ≍ n−θ for θ ∈ (0, β). Then,

Bias2(λ) = Θ̃P

(
n−min(s,2)θ

)
, (34)

where Θ̃P can be replaced with ΘP if s ̸= 2.

Let us define the regularized version of the regression function

fλ := (T + λ)−1Tf∗ρ . (35)
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Then, the triangle inequality implies that

Bias(λ) =
∥∥∥f̃λ − f∗ρ

∥∥∥
L2

≥
∥∥fλ − f∗ρ

∥∥
L2 −

∥∥∥f̃λ − fλ

∥∥∥
L2

(36)

Then, the proof of Theorem A.2 is the combination of the following Lemma A.3 (with γ = 0) and
Lemma A.4, showing that the main term

∥∥fλ − f∗ρ
∥∥
L2 = Θ̃P

(
n−min(s,2)θ/2

)
and the error term∥∥∥f̃λ − fλ

∥∥∥
L2

= oP
(
n−min(s,2)θ/2

)
.

Lemma A.3. Under Assumptions 1 and 3, for any 0 ≤ γ < s, we have

∥∥fλ − f∗ρ
∥∥2
[H]γ

≍


λs−γ , s− γ < 2;

λ2 ln 1
λ , s− γ = 2;

λ2, s− γ > 2.

(37)

Proof. From the definition of interpolating norms, letting p = (s− γ)/2, we have∥∥fλ − f∗ρ
∥∥2
[H]γ

=

∞∑
i=1

a2i
λ2

(λi + λ)2
(λsi i

−1)λ−γ
i ≍ λ2

∞∑
i=1

(
λpi

λi + λ

)2

i−1. (38)

Then result then follows by applying Proposition B.2 for the last series.

The following lemma shows the error term in (36) is infinitesimal, whose proof relies on fine-grained
concentration results established in Section A.3.
Lemma A.4. Under Assumptions 1-3. Suppose λ ≍ n−θ with θ ∈ (0, β), then∥∥∥f̃λ − fλ

∥∥∥
L2

= oP

(
n−min(s,2)θ/2

)
(39)

Proof. We begin with∥∥∥f̃λ − fλ

∥∥∥
L2

=
∥∥∥T 1

2

(
f̃λ − fλ

)∥∥∥
H

≤
∥∥∥T 1

2T
− 1

2

λ

∥∥∥ · ∥∥∥T 1
2

λ T
−1
XλT

1
2

λ

∥∥∥ · ∥∥∥T− 1
2

λ (g̃Z − TXλfλ)
∥∥∥
H
. (40)

From operator calculus we know
∥∥∥T 1

2T
− 1

2

λ

∥∥∥ ≤ 1. Moreover, since θ < β and the embedding index

α0 = 1/β, by Lemma B.5 we get
∥∥∥T 1

2

λ T
−1
XλT

1
2

λ

∥∥∥ ≤ 3 with high probability as long as n is sufficiently
large. For the last term in (40), we have

T
− 1

2

λ (g̃Z − TXλfλ) = T
− 1

2

λ [(g̃Z − (TX + λ+ T − T ) fλ)]

= T
− 1

2

λ [(g̃Z − TXfλ)− (T + λ) fλ + Tfλ]

= T
− 1

2

λ [(g̃Z − TXfλ)− (g − Tfλ)] .

Therefore, Lemma A.5 and Lemma A.10 show that∥∥∥T− 1
2

λ (g̃Z − TXλfλ)
∥∥∥
H

=
∥∥∥T− 1

2

λ [(g̃Z − TXfλ)− (g − Tfλ)]
∥∥∥
H

= oP

(
n−min(s,2)θ/2

)
for both s > α0 and s ≤ α0 cases.

A.3 Approximation results

Let us further denote

ξ(x) = T
− 1

2

λ (Kxf
∗
ρ (x)− Txfλ). (41)

Then, it is easy to check that

T
− 1

2

λ [(g̃Z − TXfλ)− (g − Tfλ)] =
1

n

n∑
i=1

ξ(xi)− Ex∼µξ(x).

The following lemma deals with the easy case when s > α0.
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Lemma A.5. Suppose Assumptions 1-3 hold and s > α0. Let λ ≍ n−θ with θ ∈ (0, β) and
δ ∈ (0, 1). Then, for α > α0 = β−1 being sufficiently close, it holds with probability at least 1− δ
that∥∥∥T− 1

2

λ [(g̃Z − TXfλ)− (g − Tfλ)]
∥∥∥
H

≤ C ln
2

δ
·

(
M2

α

λ−α

n
+Mα

√
λ−α lnn

n

)
λs̃/2, (42)

where s̃ = min(s, 2). Consequently,∥∥∥T− 1
2

λ [(g̃Z − TXfλ)− (g − Tfλ)]
∥∥∥ = oP(λ

s̃/2) = oP(n
−s̃θ/2). (43)

Before proving Lemma A.5, we have to introduce the following proposition bounding the RKHS
norm of the regularized basis function, which is a part of Li et al. [2023a, Corollary 5.6].
Proposition A.6. Suppose H has embedding index α0. Then for any α > α0,∥∥∥T−1/2

λ k(x, ·)
∥∥∥
H

≤Mαλ
−α/2, µ-a.e. x ∈ X . (44)

Proof of Lemma A.5. To use Bernstein inequality in Lemma B.4, let us bound the m-th moment of
ξ(x):

E∥ξ(x)∥mH = E
∥∥∥T− 1

2

λ Kx(f
∗
ρ (x)− fλ(x))

∥∥∥m
H

≤ E
[∥∥∥T− 1

2

λ k(x, ·)
∥∥∥m
H
· E
(∣∣f∗ρ (x)− fλ(x)

∣∣m ∣∣ x)] . (45)

The first term in (45) is bounded through (44). For the second term, since s > α0, using the
embedding condition and Lemma A.3, we have∥∥fλ − f∗ρ

∥∥
L∞ ≤Mα

∥∥fλ − f∗ρ
∥∥
[H]α

≤ CMαλ
min(s−α,2)/2 ≤ CMαλ

(s̃−α)/2,

where we notice that min(s− α, 2) = min(s, 2 + α)− α ≥ s̃− α for the last inequality. Moreover,
Lemma A.3 also implies

E
∣∣fλ(x)− f∗ρ (x)

∣∣2 =
∥∥fλ(x)− f∗ρ (x)

∥∥2
L2 ≤ Cλs̃ ln

1

λ
≤ Cλs̃ lnn.

Plugging in these estimations in (45), we get

(45) ≤ (Mαλ
−α/2)m ·

∥∥fλ − f∗ρ
∥∥m−2

L∞ · E
∣∣fλ(x)− f∗ρ (x)

∣∣2
≤ (Mαλ

−α/2)m ·
(
CMαλ

(s̃−α)/2
)m−2

· (Cλs̃ lnn)

≤ 1

2
m!
(
CM2

αλ
s̃−α lnn

)
·
(
CM2

αλ
−α+s̃/2

)m−2

. (46)

The proof is then complete by Lemma B.4.

The case of s ≤ α0 is more difficult. We will use the truncation technique introduced in Zhang et al.
[2023a]. The following lemma can be proven similarly to Lemma A.3.
Lemma A.7. Under Assumptions 1 and 3, for any 0 ≤ γ < s+ 2, we have

∥fλ∥2[H]γ ≍


λs−γ , s < γ;

ln 1
λ , s = γ;

1, s > γ.

(47)

Proof. Simply notice that

∥fλ∥2[H]γ =

∞∑
i=1

a2i
λ2i

(λi + λ)2
(λsi i

−1)λ−γ
i ≍

∞∑
i=1

(
λpi

λi + λ

)2

i−1,

where p = (s+ 2− γ)/2. Then we can apply Proposition B.2.
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Then, we are able to show the following concentration result about the truncated ξi’s, whose proof
resembles that of Lemma A.5.

Lemma A.8. Suppose Assumptions 1-3 hold and s ≤ α0. Let λ ≍ n−θ with θ ∈ (0, β) and
δ ∈ (0, 1). For any t > 0, denote Ωt = {x ∈ X :

∣∣f∗ρ (x)∣∣ ≤ t} and ξ̄(x) = ξ(x)1{x∈Ωt}. Then, for
α > α0 = β−1 being sufficiently close, it holds with probability at least 1− δ that∥∥∥∥∥ 1n

n∑
i=1

ξ̄(xi)− Eξ̄(x)

∥∥∥∥∥ ≤ C ln
2

δ
·

[
Mα

n

(
Mαλ

−α + tλ−
α+s
2

)
+Mα

√
λ−α lnn

n

]
λs/2. (48)

Consequently, if t ≍ nl with l < 1− α+s
2 θ, we have∥∥∥∥∥ 1n

n∑
i=1

ξ̄(xi)− Eξ̄(x)

∥∥∥∥∥ = oP(λ
s/2). (49)

Proof. We follow the same routine of the proof of Lemma A.5 and obtain (45) with ξ replaced with
ξ̄. The only difference is that we have to control∥∥1{x ∈ Ωt}(fλ − f∗ρ )

∥∥
L∞ ≤ ∥fλ∥L∞ +

∥∥1{x ∈ Ωt}f∗ρ
∥∥
L∞

≤Mα∥fλ∥[H]α + t

≤ CMαλ
(s−α)/2 + t,

where we apply Lemma A.7 at the second inequality. Then, (46) changes to

1

2
m!
(
CM2

αλ
s̃−α lnn

)
·
(
CM2

αλ
−α+s̃/2 +Mαλ

−α/2t
)m−2

and the rest follows.

To bound the extra error terms caused by truncation, we have to use the following proposition about
the Lq embedding of the RKHS [Zhang et al., 2023a, Theorem 5].

Proposition A.9. Under Assumption 2, for any 0 < s ≤ α0 and α > α0, we have embedding

[H]s ↪→ Lqs(X ,dµ), qs =
2α

α− s
. (50)

Lemma A.10. Suppose Assumptions 1-3 hold and s ≤ α0. Let λ ≍ n−θ with θ ∈ (0, β) and
δ ∈ (0, 1). Then ∥∥∥T− 1

2

λ [(g̃Z − TXfλ)− (g − Tfλ)]
∥∥∥ = oP(λ

s/2) = oP(n
−sθ/2). (51)

Proof. We will choose t = nl for some l that will be determined later and choose some α > α0

being sufficiently close. Using the same notations as in (49), we decompose∥∥∥∥∥ 1n
n∑

i=1

ξ(xi)− Eξ(x)

∥∥∥∥∥
H

≤

∥∥∥∥∥ 1n
n∑

i=1

ξ̄(xi)− Eξ̄(x)

∥∥∥∥∥
H

+

∥∥∥∥∥ 1n
n∑

i=1

ξ(xi)1{xi /∈Ωt}

∥∥∥∥∥
H

+
∥∥Eξ(x)1{x/∈Ωt}

∥∥
H.

(52)

The first term in (49) is already bounded by (49) if l < 1− α+s
2 θ. To bound the second term in (52),

we notice that

xi ∈ Ωt, ∀i = 1, . . . , n implies
1

n

n∑
i=1

ξ(xi)1{xi /∈Ωt} = 0.

Since Markov’s inequality yields

Px∼µ {x /∈ Ωt} ≤ t−q
∥∥f∗ρ∥∥qLq , (53)
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where q = 2α
α−s , we get

P {xi ∈ Ωt, ∀i} = (Px∼µ {x ∈ Ωt})n = (1− Px∼µ {x /∈ Ωt})n ≥ (1− t−q
∥∥f∗ρ∥∥qLq )

n.

So the second term vanishes with high probability as long as l > 1/q.

For the third term in (52), using (44), we get∥∥Eξ(x)1{x/∈Ωt}
∥∥
H ≤ E

∥∥ξ(x)1{x/∈Ωt}
∥∥
H

= E
[
1{x/∈Ωt}(f

∗
ρ (x)− fλ(x))

∥∥∥(Tλ)−1/2k(x, ·)
∥∥∥
H

]
≤Mαλ

−α/2E
[
1{x/∈Ωt}(f

∗
ρ (x)− fλ(x))

]
≤Mαλ

−α/2
[
E(f∗ρ (x)− fλ(x))

2
] 1

2 [P{x /∈ Ωt}]
1
2

≤Mαλ
−α/2λs/2t−q/2

∥∥f∗ρ∥∥q/2Lq .

Consequently, if l > αθ
q , then ∥∥Eξ(x)1{x/∈Ωt}

∥∥
H = o(λs/2).

Finally, the three requirements of l are

l < 1− α+ s

2
θ, l >

1

q
, and l >

θα

q
,

where q = 2α
α−s . Since θ < β = α−1

0 , we can choose α sufficiently close to α0 such that θα < 1.
Then,

(1− α+ s

2
θ)− 1

q
= (1− θα)

(
α+ s

2α

)
> 0,

and thus
θα

q
<

1

q
< 1− α+ s

2
θ,

showing that we can choose some l satisfying all the requirements and the proof is finish.

A.4 The noiseless case

The case when λ = n−θ for θ < β is already covered in Theorem A.2. For the case θ ≥ β, the
approximation Lemma B.5 no longer holds, and we must reduce it to the former case. However, there
is no direct monotone property of Bias(λ). Nevertheless, we have the following monotone relation
about the operator norms, whose proof utilizes the idea in Lin et al. [2021, Proposition 6.1] with
modification.
Proposition A.11. Let ψλ = λ(TX + λ)−1 ∈ B(H). Suppose λ1 ≤ λ2, then for any s, p ≥ 0,∥∥T sψp

λ1

∥∥
B(H)

=
∥∥ψp

λ1
T s
∥∥

B(H)
≤
∥∥T sψp

λ2

∥∥
B(H)

=
∥∥ψp

λ2
T s
∥∥

B(H)
. (54)

Proof. Let us denote by ⪯ the partial order induced by positive operators. Since the function
λ 7→ λ

z+λ is monotone decreasing with λ, we obtain ψ2p
λ1

⪯ ψ2p
λ2

, which further implies

T sψ2p
λ1
T s ⪯ T sψ2p

λ2
T s.

Then, since ∥A∥2 = ∥AA∗∥, we have∥∥T sψp
λ1

∥∥2
B(H)

=
∥∥∥T sψ2p

λ1
T s
∥∥∥

B(H)
≤
∥∥∥T sψ2p

λ2
T s
∥∥∥

B(H)
=
∥∥T sψp

λ2

∥∥2
B(H)

,

and the equality in (54) is proven by ∥A∥ = ∥A∗∥.

Lemma A.12. Under Assumption 1,2,3, assume further s > 1. Suppose λ ≍ n−θ for θ ≥ β. Then,

Bias2(λ) = Opoly
P (n−min(s,2)β). (55)
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Proof. Since f∗ρ is given in (12) and s > 1, we have f∗ρ ∈ [H]t for 1 ≤ t < s. In particular, f∗ρ ∈ H,
so the bias term can also be written as

Bias(λ) =
∥∥λ(TX + λ)−1f∗ρ

∥∥
L2 . (56)

Moreover, from the construction (8) of [H]t, we may assume f∗ρ = T t/2g for some g ∈ L2 with
∥g∥L2 ≤ C, and restrict further that t ≤ 2. Let λ̃ ≍ n−l for l ∈ (0, β). Then, using the same notation
in Proposition A.11, we have

Bias(λ) =
∥∥ψλf

∗
ρ

∥∥
L2 =

∥∥∥T 1/2ψλT
t−1
2 · T 1/2g

∥∥∥
H

≤
∥∥∥T 1/2ψλT

(t−1)/2
∥∥∥ · ∥∥∥T 1/2g

∥∥∥
H

≤ C
∥∥∥T 1/2ψ

1/2
λ

∥∥∥ · ∥∥∥ψ1/2
λ T

t−1
2

∥∥∥
≤ C

∥∥∥T 1/2ψ
1/2

λ̃

∥∥∥ · ∥∥∥ψ1/2

λ̃
T

t−1
2

∥∥∥
≤ C

∥∥∥T 1/2ψ
1/2

λ̃

∥∥∥ · ∥∥∥ψ(2−t)/2

λ̃

∥∥∥ · ∥∥∥ψ t−1
2

λ̃
T

t−1
2

∥∥∥
= Cλ̃t/2

∥∥∥ψ(2−t)/2

λ̃

∥∥∥ · ∥∥∥T 1/2T
−1/2

Xλ̃

∥∥∥ · ∥∥∥T t−1
2 T

− t−1
2

Xλ̃

∥∥∥
≤ Cλ̃t/2

∥∥∥T 1/2T
−1/2

Xλ̃

∥∥∥t,
where we use Lemma B.6 for the last inequality. Finally, since λ̃ ≍ n−l for l < β, Lemma B.5
implies that with high probability we have∥∥∥T 1

2T
− 1

2

Xλ̃

∥∥∥ =
∥∥∥T 1

2T
− 1

2

λ T
1
2

λ T
− 1

2

Xλ̃

∥∥∥ ≤
∥∥∥T 1

2T
− 1

2

λ

∥∥∥∥∥∥T 1
2

λ T
− 1

2

Xλ̃

∥∥∥ ≤ 1 ·
√
3 =

√
3.

Therefore, we obtain
Bias(λ) = OP(λ̃

t/2) = OP(n
−tl/2).

Since t < min(s, 2) and l < β can arbitrarily close, we conclude (55).

Proof of Proposition 4.4. Let us denote F =
{
f :
∥∥f∗ρ∥∥[H]s

≤ R
}

for convenience. Since f∗ρ ∈ H,
the bias term can be given by

Bias(λ) =
∥∥f∗ρ − TX(TX + λ)−1f∗ρ

∥∥
L2 =

∥∥(I − LX)f∗ρ
∥∥
L2

for a linear operator LX = TX(TX + λ)−1 on H. Then,

sup
f∗
ρ∈F

Bias(λ) = sup
f∗
ρ∈F

∥∥(I − LX)f∗ρ
∥∥
L2

(a)
= sup

∥g∥H≤R

∥∥∥T 1
2 (I − LX)T

s−1
2 g
∥∥∥
H

= sup
∥g∥H≤R

∥∥∥(T s
2 − T

s
2LXT

s−1
2 )g

∥∥∥
H

=
∥∥∥T s

2 − T
s
2LXT

s−1
2

∥∥∥
B(H)

(b)

≥ λ
s/2
n+1 = (n+ 1)−sβ/2 = Ω(n−sβ/2),

where in (a) we use the relation between the interpolation spaces and in (b) we use the fact that
and ∥A−B∥ ≥ λn+1(A) for any operator B with rank at most n (see, for example, Simon [2015,
Section 3.5]).

B Auxiliary results

Proposition B.1. Let

f(z) =
zα

z + λ
.

Then,
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(1) If α = 0, then f(z) is monotone decreasing.

(2) If α ∈ (0, 1), then f(z) is monotone increasing in [0, αλ
1−α ], and decreasing in [ αλ

1−α ,+∞).
Consequently, f(z) ≤ λα−1.

(3) If α ≥ 1, then f(z) monotone increasing on [0,+∞).

Proof. We simply notice that

f ′(z) =
zα−1

(z + λ)2
(αλ− (1− α)z).

Proposition B.2. Suppose cβi−β ≤ λi ≤ Cβi
−β and p > 0, then as λ→ 0, we have

∞∑
i=1

(
λpi

λi + λ

)2

i−1 ≍


λ2(p−1), p < 1;

ln 1
λ , p = 1;

1, p > 1.

(57)

Proof. We first consider the case when p < 1. Since cβi−β ≤ λi ≤ Cβi
−β , from Proposition B.1,

letting q = p
1−p , we have

λpi
λi + λ

≤

{
Cp

βi
−pβ

Cβi−β+λ
, if Cβi

−β ≤ qλ;

λpi /λi ≤ Cp
βi

−(p−1)β , if Cβi
−β > qλ;

Therefore,
∞∑
i=1

(
λpi

λi + λ

)2

i−1 ≤ C
∑

i:Cβi−β>qλ

i−2(p−1)β−1 + C
∑

i:Cβi−β≤qλ

i−2pβ

(Cβi−β + λ)2
i−1

=: S1 + S2.

For S1, noticing Cβi
−β > qλ implies i < (qλ/Cβ)

−1/β , we have

S1 ≤ C

⌊(qλ/Cβ)
−1/β⌋∑

i=1

i−2(p−1)β−1 ≤ Cλ2(p−1).

For S2, using Proposition B.1 again we have

S2 ≤ C

∫ ∞

(qλ/Cβ)−1/β−1

x−2pβ

(Cβx−β + λ)2
x−1dx

= Cλ2p−2

∫ ∞

(Cβ/q)1/β−λ1/β

y−2pβ

(Cβy−β + 1)2
y−1dy (x = λ−1/βy)

≤ Cλ2p−2,

where we note that the last integral is bounded above by a constant. Therefore, we conclude that∥∥fλ − f∗ρ
∥∥2
[H]γ

≤ Cλ2p−2. For the lower bound, if Cβi
−β ≤ qλ, we have

λpi
λi + λ

≥
cpβi

−pβ

cβi−β + λ
,

and hence
∞∑
i=1

(
λpi

λi + λ

)2

i−1 ≥ C

∫ ∞

(qλ/Cβ)−1/β

x−2pβ

(Cβx−β + λ)2
x−1dx

= Cλ2p−2

∫ ∞

(Cβ/p)1/β

y−2pβ

(Cβy−β + 1)2
y−1dy

≥ Cλ2p−2,
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where we note that the last integral is independent of λ.

For the case p = 1, by Proposition B.1, we have

∞∑
i=1

(
λi

λi + λ

)2

i−1 ≤ C

∞∑
i=1

(
i−β

Cβi−β + λ

)2

i−1

≤ C

⌊2λ−1/β⌋∑
i=1

(
i−β

Cβi−β + λ

)2

i−1 + C

∞∑
i=⌊2λ−1/β⌋+1

(
i−β

Cβi−β + λ

)2

i−1

≤ C

⌊2λ−1/β⌋∑
i=1

i−1 + C

∫ ∞

2λ−1/β

(
x−β

Cβx−β + λ

)2

x−1dx

≤ C ln
1

λ
+ C

∫ ∞

2

(
y−β

Cβy−β + 1

)2

y−1dy

≤ C ln
1

λ
.

For the lower bound, we have

∞∑
i=1

(
λi

λi + λ

)2

i−1 ≥ c

⌊λ−1/β⌋∑
i=1

(
i−β

cβi−β + λ

)2

i−1

≥ c

⌊λ−1/β⌋∑
i=1

i−1 ≥ c ln
1

λ
.

For the case p > 1, by Proposition B.1, we have

∞∑
i=1

(
λpi

λi + λ

)2

i−1 ≤ C

∞∑
i=1

i−2pβ

(Cβi−β + λ)2
i−1 ≤ C

∞∑
i=1

i−2(p−1)β−1 ≤ C,

since the last series is summable. The lower bound is derived by

∞∑
i=1

(
λpi

λi + λ

)2

i−1 ≥ λp1
λ1 + λ

≥ c.

Proposition B.3. Under Assumption 1, for any p ≥ 1, we have

Np(λ) = tr
(
TT−1

λ

)p
=

∞∑
i=1

(
λi

λ+ λi

)p

≍ λ−1/β . (58)

Proof. Since c i−β ≤ λi ≤ Ci−β , we have

Np(λ) =

∞∑
i=1

(
λi

λi + λ

)p

≤
∞∑
i=1

(
Ci−β

Ci−β + λ

)p

=

∞∑
i=1

(
C

C + λiβ

)p

≤
∫ ∞

0

(
C

λxβ + C

)p

dx = λ−1/β

∫ ∞

0

(
C

yβ + C

)p

dy ≤ C̃λ−1/β .

for some constant C. The lower bound is similar.

The following inequality about vector-valued random variables is well-known in the literature [Capon-
netto and De Vito, 2007].
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Lemma B.4. Let H be a real separable Hilbert space. Let ξ, ξ1, . . . , ξn be i.i.d. random variables
taking values in H . Assume that

E∥ξ − Eξ∥mH ≤ 1

2
m!σ2Lm−2, ∀m = 2, 3, . . . . (59)

Then for fixed δ ∈ (0, 1), one has

P

{∥∥∥∥∥ 1n
n∑

i=1

ξi − Eξ

∥∥∥∥∥
H

≤ 2

(
L

n
+

σ√
n

)
ln

2

δ

}
≥ 1− δ. (60)

Particularly, a sufficient condition for (59) is

∥ξ∥H ≤ L

2
a.s., and E∥ξ∥2H ≤ σ2.

The following concentration result has been shown in Fischer and Steinwart [2020], Zhang et al.
[2023a]. We use the form in Li et al. [2023a, Proposition 5.8] for convenience, see also Zhang et al.
[2023a, Lemma 12].
Lemma B.5. Suppose H has embedding index α0 and Assumption 1 holds. Let λ = λ(n) → 0 satisfy
λ = Ω

(
n−1/α0+p

)
for some p > 0 and fix arbitrary α ∈ (α0, α0+p). Then, for all δ ∈ (0, 1), when

n is sufficiently large, with probability at least 1− δ,∥∥∥T− 1
2

λ (T − TX)T
− 1

2

λ

∥∥∥
H

≤ C

(
λ−α

n
lnn

)1/2

, (61)

where C > 0 is a constant no depending on δ, n, α, and we also have∥∥∥T 1/2
λ T

−1/2
Xλ

∥∥∥
B(H)

,
∥∥∥T−1/2

λ T
1/2
Xλ

∥∥∥
B(H)

≤
√
3. (62)

The following operator inequality[Fujii et al., 1993] will be used in our proofs.
Lemma B.6 (Cordes’ Inequality). Let A,B be two positive semi-definite bounded linear operators
on separable Hilbert space H . Then

∥AsBs∥B(H) ≤ ∥AB∥sB(H), ∀s ∈ [0, 1]. (63)

The following lemma is a consequence of the fact that xr is operator monotone when r ∈ (0, 1] and
is Lipschitz when r > 1, see Zhang et al. [2023a, Lemma 35] or Lin et al. [2018, Lemma 5.8].
Lemma B.7. Suppose that A and B are two positive self-adjoint operators on some Hilbert space,
then

• for r ∈ (0, 1], we have
∥Ar −Br∥ ≤ ∥A−B∥r.

• for r ≥ 1, denote c = max(∥A∥, ∥B∥), we have
∥Ar −Br∥ ≤ rcr−1∥A−B∥.

C Experiments

C.1 Details of experiments in the main text

Recall that in the experiments section of the main text, we considered the kernel k(x, y) = min(x, y)

and x ∼ U [0, 1]. We know the eigensystem of k that λi =
(
2i−1
2 π

)−2
and ei(x) =

√
2 sin

(
2i−1
2 πx

)
.

For the three target functions used in the experiments, simple calculation shows that the relative
smoothness (source condition) of cos(2πx), sin(2πx), sin

(
3
2πx

)
are 0.5, 1.5,∞ respectively.

For some f∗, we generate data from the model y = f∗(x) + ε where ε ∼ N (0, 0.05) and perform
KRR with λ = cn−θ for different θ’s with some fixed constant c. Then, we numerically compute the
variance, bias and excess risk by Simpson’s formula with N ≫ n nodes. Repeating the experiment
for n ranged in 1000 to 5000 with an increment of 100, we can estimate the convergence rate r by
a logarithmic least-squares log err = r log n+ b on the resulting values (variance, bias and excess
risk). Figure 2 on page 22 shows the corresponding curves of the results in Table 1 in the main text.
Note that for each setting, we tried different c’s in the regularization parameter λ = cn−θ and show
the curves under the best choice of c (c = 0.005).
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Figure 2: Decay curves of the variance; the bias and excess risk of three target functions. Both axes
are logarithmic. The curves show the average bias over 100 trials; and the regions within one standard
deviation are shown in the corresponding colors.
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C.2 Learning curves with different noises

Cui et al. [2021] discussed the ‘crossover from the noiseless to noisy regime’ and shown the interaction
between the magnitude of noise and the sample size. As discussed in Remark 3.2 in the main text, our
theory can also reflect this interaction. In Figure 3 on page 23, we exhibit the learning curves with
different magnitudes of noises and visualize this interaction. Note that in the following the sample
size is chosen as 10, 20, · · · , 100, 120, · · · , 1000, 1100, · · · , 5000, and we use the same kernel and
data generation process as before. We repeat the experiments for 100 times for each sample size and
present the average excess risk.
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Figure 3: Learning curves of three target functions with different noises when choosing λ = cn−θ,
θ = 1.0, 2.0. Both axes are logarithmic. The black dashed lines represent the theoretical slopes under
each choice of θ.

In the above settings, the bias decays faster than variance. Figure 3 on page 23 shows that the
excess risk decays fast when n is relatively small and coincides the theoretical asymptotic rate in
Theorem 3.2 when n is large. The crossover happens for smaller n when the magnitude of noise is
larger. Similar phenomenon has also been reported by Cui et al. [2021, FIG.2, FIG.3]. In addition,
comparing the sample size when crossover happens for three target functions, our results show that
the crossover happens for smaller n when the function is smoother, which is also consistent with
Theorem 3.2.
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Theorem 3.2 shows that when θ ≥ β, the excess risk is a constant asymptotically. Figure 4 on page
24 shows the curves of kernel interpolation (λ = 0). It can be seen that they are similar to the curves
in the second column of Figure 3 on page 23, where we choose θ = β = 2.
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Figure 4: Learning curves of three target functions with different noises when choosing λ = 0. Both
axes are logarithmic. The black dashed lines represent the theoretical slopes.
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