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Abstract

The adversarial attacks have attracted increasing attention in various fields includ-
ing natural language processing. The current textual attacking models primarily
focus on fooling models by adding character-/word-/sentence-level perturbations,
ignoring their influence on human perception. In this paper, for the first time in the
community, we propose a novel mode of textual attack, punctuation-level attack.
With various types of perturbations, including insertion, displacement, deletion,
and replacement, the punctuation-level attack achieves promising fooling rates
against SOTA models on typical textual tasks and maintains minimal influence on
human perception and understanding of the text by mere perturbation of single-shot
single punctuation. Furthermore, we propose a search method named Text Posi-
tion Punctuation Embedding and Paraphrase (TPPEP) to accelerate the pursuit of
optimal position to deploy the attack, without exhaustive search, and we present a
mathematical interpretation of TPPEP. Thanks to the integrated Text Position Punc-
tuation Embedding (TPPE), the punctuation attack can be applied at a constant cost
of time. Experimental results on public datasets and SOTA models demonstrate the
effectiveness of the punctuation attack and the proposed TPPE. We additionally
apply the single punctuation attack to summarization, semantic-similarity-scoring,
and text-to-image tasks, and achieve encouraging results.

1 Introduction

Deep Neural Networks (DNNs) have achieved tremendous success in the NLP community and have
spawned a series of well-known applications such as ChatGPT [13]. However, more attention should
be paid to the vulnerability of NLP models under adversarial attacks to protect them. Adversarial
examples have been shown to have a devastating impact in the image domain [39, 12, 38]. Unlike
the image domain, text is a discrete domain [45], which means that any small perturbations, such
as sentence, word, or even character perturbations in text, would be easily perceived by humans.
It is difficult to achieve imperceptible perturbations. Additionally, the text is a non-differentiable
domain, which results in traditional optimization-based methods being ineffective in the NLP domain.
Recent research on textual adversarial attacks can be mainly classified into character-level, word-
level, sentence-level, and multi-level attacks [41]. Character-level attacks modify words by inserting,
deleting, misspelling, replacing, or swapping characters. These attacks are easily detectable by
humans and some apps can correct them automatically. However, character-level attacks require
multiple queries to determine which characters to attack based on function gradient or score. Word-
level attacks modify words by adding, deleting, or replacing important words in a text. Similar to
character-level attacks, word-level attacks also require multiple queries to determine which words to
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Most people probably consider, even though the courts didn't actually find, Klaus guilty, of murder.  (Unacceptable:96.6%)  

Most people probably, consider even though the courts didn't actually find, Klaus guilty of murder.   (Unacceptable:93.0%)  

Most people probably consider even though the courts didn't actually find, Klaus guilty of murder.    (Unacceptable:84.4%)  

Most people probably consider, even though the courts didn't actually find， Klaus guilty of murder.(Unacceptable:98.8%)  

Most people probably consider, even though the courts didn't actually find, Klaus guilty of murder.    (Acceptable:99.7%)  Original text
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Figure 1: The examples of punctuation-level attacks. The text model is fooled by inserting, displacing,
deleting, and replacing punctuation from the original text. The predicted label of the input text is
either acceptable or unacceptable. A single punctuation attack can significantly change the score of
the predicted label.

attack. Both character- and word-level attacks are iterative and thus may be time-consuming in real
NLP applications due to multiple queries required for each attack iteration. Sentence-level attacks
modify entire texts by paraphrasing or adding meaningless sentences to input texts. The significant
perturbations caused by sentence-level attacks may sometimes change the ground truth of input text.
Perturbations in character-, word-, and sentence-levels can cause semantic gaps from the original text
and are easily detectable by humans.

Considering the issues mentioned above, we propose punctuation-level attacks as a new method of
textual adversarial attack. Compared with other attack methods, perturbations on punctuations are
less perceivable than character- and word-level attacks, more difficult to detect than character-level
attacks, and cause less impact on ground truth than other types of attacks. In previous research, little
attention has been paid to punctuation; several researchers have inserted punctuations into words to
create out-of-vocabulary (OOV) words, which is a specific method of character-level attacks. On the
contrary, we first propose punctuation-level attacks that regard punctuation perturbations as a new
level of attack similar to character-, word-, and sentence-level attacks. We define basic attacking
methods and analyze why these methods can fool text functions. Unlike other types of attacks,
punctuation-level attacks only modify punctuations by inserting, displacing, deleting, or replacing
them without perturbing characters, words, and sentences. Punctuation-level attacks can deceive
text functions by inserting, displacing, deleting, or replacing punctuations. Specific examples are
presented in Fig. 1, showing that the single punctuation attack results in a dramatic change in the
score of the predicted label. To deploy punctuation-level attacks, we need to consider which positions
in the input text should be modified and which punctuations should be modified. For example, if
there are k candidate punctuations and n tokens in the input text, there will be kn candidate attack
texts when we insert one punctuation, k2n(n + 1) candidate attack projects when we insert two
punctuations, and k3n(n+ 1)(n+ 2) candidate attack projects when we insert three punctuations.
The time complexity of multiple punctuation attacks can be reduced using a greedy algorithm or a
beam search. However, even considering only a single punctuation attack is still time-consuming.

To address this problem, we propose a method called Text Position Punctuation Embedding (TPPE)
to reduce search cost. The feature extraction processing of input text x is also the embedding
processing of text x, which is time-consuming for multiple queries. Therefore, we propose Text
Position Punctuation Embedding (TPPE) to quickly and reasonably embed adversarial candidate text
xadv. Let us illustrate it with the Insertion attack mode. When we apply Insertion attack to
punctuation p into the i-th position of the input text, we query the text function f(x) or the substitute
function fsub(x) and gain the ffe(x) as the embedding of text Etext and ffe(p) as the embedding
of punctuation p. The embedding of punctuation p only needs to be queried once and can be used
repeatedly. As for the embedding of position, we adopt the embedding of the static position based
on the calculation of sine and cosine from Transformer [40]. And we define the embedding of the
adversarial candidate text xadv by concatenating or adding the embedding of text x, punctuation p
and position i. We can iteratively attack the input text x and quickly obtain the adversarial text xadv

after training the classification model from the TTPE of xadv to the prediction of xadv by f(x). In
addition, we propose a search method Text Position Punctuation Embedding and Paraphrase (TPPEP)
to achieve a single-shot attack. We analyze the most information-lacking scenario for TPPEP: zero
query, black-box text function, hard-label output, single punctuation limitation, and single-shot attack.
To achieve the goal of zero query and gain more information, we train a substitute function fsub
to fit the text function f . Then, we query the substitute function fsub to obtain the embedding of
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text Etext. We apply the TPPE method to obtain the embedding of the adversarial candidate text 
xadv , denoted as Exadv . We then transform the attacking task into the paraphrasing task. Exadv and 
Etext are concatenated as input data, and the result of attack (successfully attack, donated as label 1, 
otherwise, donated as label 0) is the predicting label. We choose the adversarial candidate text with 
the highest paraphrasing score calculated by the TPPEP method and deploy the single punctuation 
attack in a single-shot manner accordingly.

The contributions can be summarized as follows. (1) Punctuation-level attacks: We first 
propose punctuation-level attacks, which regard the perturbations of punctuation as a systematic 
attack like character-level, word-level, and sentence-level attacks. We propose four primary modes 
of punctuation-level attacks and explain punctuation-level attacks from the perspective of optimal 
perturbations. (2) TPPE: We first p ropose t he T PPE e mbedding m ethod t o d ecrease t he search 
cost. We reduce the query time complexity from O (kn) of Insertion, O (nt) of Displacement, 
O (t) of Deletion, and O (kt) of Replacement, to O (1) under single punctuation attack. It can 
quickly and reasonably embed the adversarial candidate text xadv using a single-shot query. (3) 
Single-shot and Single Punctuation Attack: To make our punctuation-level attack more 
imperceptible, we modify only one punctuation. Besides, we discuss single-punctuation attacks in 
the most challenging scenario: zero query, black-box function, hard-label output, one-punctuation 
limitation, and single-shot attack, which is the closest to the real-world scenarios. We correspondingly 
propose the TPPEP method and achieve promising experimental results.

2 Related Works
Textual adversarial attack. Text adversarial attack methods in the literature can be broadly cat-
egorized into two classes: white-box attacks and black-box attacks. In white-box attacks, some 
methods [23, 35, 34, 1, 6] employ FGSM [12] to identify the words or characters with the most 
significant impact on text-related tasks. For example, TextFool [23] introduces a gradient loss function 
within the model to assess the influence of specific words or characters on task performance. Suran-
jana et al. [35] consider firstly trying to remove the adverb as a word-level attack, and use a gradient 
loss function in the model to achieve the attack. AdvGen [1] focuses on the similarity between the 
original words and their substituted counterparts to target neural machine translation (NMT) models. 
Moreover, some methods rely on directional derivatives [9, 8]. For instance, Hot-flip [9] manipulates 
text function by altering characters based on directional derivative gradients. Ebrahimi et al. propose 
controlled attacks, an extension of HotFlip that enables targeted attacks [8]. In black-box attacks, 
specific methods aim to insert nonsensical sentences into the input text with the intention of deceiving 
the text model [19, 42, 4]. Notable approaches include AddSent [19] and AddSentDiverse [42]. 
AddSent incorporates meaningless sentences into the input text to confound comprehension system 
models [19]. Meanwhile, AddSentDiverse broadens the pool of adversarial candidate texts by varying 
the placements of inserted sentences [42]. Other strategies involve the manipulation of words and 
sentences [3, 29, 11, 22, 28, 2, 5, 44, 31]. For example, Textbugger [22] alters words by substituting, 
removing, adding, or rearranging them to deceive the text model. Furthermore, certain methods 
are centered on paraphrasing the input text [18, 32]. SCPNs [18] employs an encoder-decoder 
architecture to generate new paraphrased versions of the input text.

Punctuation attacks. To the best of our knowledge, there is a scarcity of research in the existing 
literatures on punctuation attacks. Most related studies primarily concentrate on punctuation pertur-
bation, specifically the placement of punctuation marks within or at the end of words. This approach 
can be classified as a character-level a ttack. For example, Hosseini et a l. insert punctuation into 
words to transform them into OOV words [17]. In another work by Hofer et al. [15], they also regard 
inserting a single comma as a special character-level attack, and they insert a comma at the end of the 
important word to translate this important word into an OOV word. In addition, a special symbol text 
attacks (SSTA) method is proposed in [23], which is viewed as an adjunct of TextFool [10] by adding 
fifty tildes behind the text. 

3 Methodology

3.1 Punctuation-level Attacking

The Proposed Punctuation-level Attacks. We propose four modes of attacking at the punctuation-
level and analyze their time complexity for traversal search. These modes are as follows:
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Table 1: Punctuation-level attack modes and Complexity. k is the number of candidate punctuations,
t is the number of punctuations in the input text and n is the number of input tokens.

mode single punctuation m times of punctuation attacks m times of attacks by greedy algorithm

Insertion O (kn) O
(
km

m−1∏
i=0

(n+ i)

)
O(0.5k(2n+m− 1))

Displacement O (nt) O (nmtm) O (mnt)

Deletion O(t) O
(

m−1∏
i=0

(t− i)

)
O(0.5m(2t+ 1−m))

Replacement O(kt) O((kt)m) O(mkt)

• Insertion: Punctuation p is inserted into the target text to fool the text model.

• Displacement: Punctuation p is moved from position i to position j in the target text.

• Deletion: Punctuation p is removed from the target text.

• Replacement: Punctuation pi is replaced by pj in the target text.

We denote the number of candidate punctuations by k, the number of punctuations in the input text
by t, and the number of input tokens by n. In Insertion attack, there are n candidate positions,
and each position can be inserted by k candidate punctuations. So the complexity of Insertion by
traversal search is O (kn). Regarding the m times of Insertion attacks, one text will generate kn
candidate texts after a single punctuation attack, and the complexity of Insertion to each candidate

is k(n + 1), thus the complexity of multiple Insertion attacks is O
(
km

m−1∏
i=0

(n+ i)

)
. If the

greedy algorithm is applied for the m times of Insertion attacks, the generated kn candidate texts
after the single punctuation attack will be selected with the greatest change in predicted score, and
the number of positions is increased to n+ 1. Thus, the complexity of Insertion to this selected
candidate is O(0.5k(2n+m− 1)). The complexity of Displacement by traversal search is O (nt)
because there are t candidate punctuations and each position can be displaced by n candidate positions.
As for the m times of Displacement attacks, one text will generate nt candidate texts after the
single-shot attack, and the complexity of Displacement to each candidate is nt. So the complexity
of m times of Displacement attacks is O ((nt)m). If the greedy algorithm is applied for m times
of displacement attacks, there are still t candidate punctuations and n candidate positions. So the
complexity of m times of Displacement by the greedy algorithm is O(mnt). The complexity of
Deletion by traversal search is O (t) because there are t candidate punctuations that can be deleted.
In the context of multiple occurrences of Deletion attacks, each attack leads to the removal of a
candidate punctuation. Consequently, the complexity of m consecutive Deletion attacks can be

expressed as O
(

m−1∏
i=0

(t− i)

)
, where t represents the total number of possible candidates. If the

greedy algorithm is applied for m times of Deletion attacks, due to every Deletion attack, the
text will lose one punctuation, thus the complexity of m times of Deletion by the greedy algorithm
is O (0.5m(2t+ 1−m)). The complexity of Replacement by traversal search is O (kt) because
there are t candidate punctuations and each punctuation can be replaced by k candidate punctuations.
Regarding the m times of replacement attacks, there are still k candidate punctuations and
t punctuations in the input text after a single-shot attack. Thus, the complexity of m times of
Replacement attacks is O ((kt)m). If the greedy algorithm is applied for m times of Deletion
attacks, the complexity of m times of Replacement by the greedy algorithm is O (mkt). All
complexity is shown in Table 1.

Single punctuation Attack. The target text x consists of n tokens, noted as x = [x1, · · · , xn].
According to the Universal Approximation Theorem [16], we can define a function F (x) to fit the
text function f(x) by a continuous nonconstant, bounded, and monotonically increasing function
ϕ(·) as

F (x) =

M∑
m=1

vmϕ
(
w⊤

mx+ bm
)
, |F (x)− f(x)| < ϵ, (1)

where vm, bm ∈ R and wm ∈ RD. Universal Approximation Theorem demonstrates the fact that
if our attack can result in vicious impact in f(x), it will also fool the text function F (x). In the
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Table 2: The number of tokens affected by a single attack. k is the number of candidate punctuations,
i is the position of attacking punctuation in the input text, and n is the number of input tokens.

Mode Perturbed tokens Perturbed words Perturbed level

character-level attack 1 1 value of token
word-level attack 1 1 value of token

Insertion n− i+ 2 0 value and position of token
Displacement j − i+ 1 0 value and position of token

Deletion n− i 0 value and position of token
Replacement 1 0 value of token

following, we will analyze how punctuation-level attacks influence the text function F (x) based on
the basic linear unit w⊤

mx+ bm of f(x) as

w⊤
mx+ bm = w1x1 + w2x2 + · · ·+ wmxm + bm. (2)

We compare character-level, word-level, and punctuation-level attacks under the constraint of a
single-element attack, i.e., perturbing one character, one word, or one punctuation. In character-level
attacks, a single-character attack impacts only one token xi, making it OOV. In many text functions,
the OOV token is embedded as an identical token xoov . In this scenery, w⊤

mx+ bm can be written as

w⊤
mx+ bm = w1x1 + w2x2 + · · ·+ wixoov + · · ·+ wmxm + bm. (3)

Similar to character-level attacks, a single-word attack impacts only one token xi. Since there are few
candidate tokens xcan that are semantically similar to the token xi when considering the similarity of
input text with and without a word-level attack, w⊤

mx+ bm can be rewritten as

w1x1 + w2x2 + · · ·+ wixcan + · · ·+ wmxm + bm. (4)

Regarding the proposed punctuation attacks, we discuss single punctuation attacks in terms of
Insertion, Displacement, Deletion, and Replacement respectively. Taking Insertion as an
example, when we insert punctuation p into position i of the target text, w⊤

mx+ bm will change to

w1x1 + w2x2 + · · ·+ wip+ wi+1xi + · · ·++wmxm−1 + wm+1xm + bm. (5)

According to Eq. (3) and (4), the character-level and word-level attacks only perturb one token
and one word by the single punctuation attack. According to Eq. (5), the single Insertion attack
does not perturb any words but perturbs the i-th token by substituting xi with punctuation p and all
tokens after the (i− 1)-th position of the input text by moving them one bit backward, which totally
perturbs n− i+ 2 tokens. The result of Displacement, Deletion, and Replacement is presented
in Table 2. According to Table 2, the punctuation-level attack can impact more tokens, indicating
that it can cause greater perturbation than character- and word-level attacks. If we insert, displace,
or delete punctuation in the appropriate position, it will result in a more significant impact on the
basic linear w⊤

mx + bm of f(x) compared to character-level and word-level attacks. Meanwhile,
a single punctuation attack may apply a more vicious impact to f(x) and F (x). Compared to
words, punctuation is thinner, smaller, and more imperceptible. Due to the nature that punctuation-
level attack does not perturb any word, semantically, the adversarial text is more imperceptible for
human beings. Furthermore, the Insertion, Displacement, Deletion, and Replacement of the
punctuation produces less impact on the semantic information by human beings understanding.

The Ultimate Effectiveness of Punctuation-level Attacks. According to Eq. (3), (4), (5), character-
and word-level attacks under a single-element limitation may focus on perturbing token values.
However, Insertion, Displacement, and Replacement attacks can not only perturb token values
but also token positions which may result in a vicious impact on f(x). This position perturbation
almost has no impact on semantic information for human beings.

We discuss why multiple punctuation-level attacks can fool the text model by taking Insertion
attacks as an example. In the text model, there exists the maximum length of the input text, and we
denote it as N . If the length of the input text is greater than N , the text model f considers only the
first N tokens. If we apply N Insertion attacks, there will be kN candidate texts. The probability
of fooling the text model is equal to 1 minus the probability of all kN candidate texts failing to fool
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Table 3: Text embedding in punctuation-level attack.

Mode Concat mathematical operation

Insertion Eall Etext +Epos +Epunc

Displacement Eall Etext −Ei
pos +Ej

pos +Epunc

Deletion Eall Etext −Ei
pos −Epunc

Replacement Eall Etext +Epos −Ei
punc +Ej

punc

the text model. We denote the probability of fooling the text model as pfool and the probability
of failing to fool the text model by the i-th candidate text as pi, i ∈ [1,KN ]. And we denote the
maximum value of pi as pmax. We make an assumption about pmax here. Due to the fact that pi is
the probability of the i-th candidate text before querying the text model f , and the attacking result is
unknown, we have 0 < pmax < 1. Correspondingly, we have

pfool = 1−
kN∏
i=1

Pi ≥ 1− pk
N

max. (6)

According to Eq. (6), 1− pk
N

max will approach 1 as k increases. As a probability, we have 1− pk
N

max ≤
pfool ≤ 1. Consequently, pfool will tend to 1 when k increases, which means multiple Insertion
attacks can ultimately fool the text model with k increasing.

3.2 Embedding and Search Methods

According to Table 1, punctuation-level attacks require considerable cost to deploy. Even considering
only the single punctuation attack, it is still time-consuming. Taking the mode of Insertion as
an example, its original time complexity is O (kn). Therefore, it is essential to decrease the search
cost. If we have reduced the search cost of a single punctuation attack, the time complexity of
multiple-punctuation attacks can be reduced by using either a greedy algorithm or a beam search.
The n is determined by the target text x, which is not feasible to optimize. As k increases, the search
space expands, resulting in a higher fooling rate of Insertion attacking. Therefore, to achieve a
higher fooling rate, we should not reduce the value of k.

As we cannot decrease k and n, we focus on a specific process: text function f(x). For example, in a
text classification task, function f(x) = softmax ffe(x), where the processing of feature extraction
is denoted by the function ffe and softmax is used as the final classification layer. The classification
cost t0 can be divided into two parts: the feature extraction consumption t1 and the final classification
consumption t2. The classification time t2 is transient compared to t1 and therefore can be ignored.
Consequently, we have t0 ≈ t1.

Embedding the adversarial candidate text xadv perturbed by various configurations requires multiple
queries, and thus it is time-consuming. Therefore, we propose TPPE to quickly and reasonably embed
the adversarial candidate text xadv. According to Eq. (5), a single punctuation attack consists of
three components: input text x, perturbed position, and candidate punctuation. To reduce the cost
of embedding processing for adversarial text xadv, we refine its embedding process by combining
the embeddings of text, position, and punctuation. Again, we take the Insertion attack mode
as an example. When we insert punctuations p into the i-th position of the target text, we query
text function f(x) (white-box) or substitute function fsub(x) (black-box), obtaining Etext as the
embedding of text and ffe(p) as the embedding of punctuation p. The embedding of punctuation p
only needs to be queried once. For the embedding of the position, we adopt the embedding of the
static position based on the calculation of sine and cosine from the Transformer [40], present in Eq.
(7). The variable pos represents the position and the variable i represents the dimension.

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
, PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
. (7)

After calculating embeddings of input text, punctuation, and position, we calculate candidate at-
tacking text embeddings using two steps: 1) concatenating three embeddings as candidate attacking
text embedding Eall = Concat(Etext,Epos,Epunc) and, 2) calculating candidate attacking text
embedding using mathematical operations presented in Table 3.
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Table 4: The quantitative results of single punctuation attack in the T2I task. “Ori-text0” indicates
the original text “a professional photograph of an astronaut riding a triceratops”, and “Ori-text1”
indicates the original text “a corgi is playing piano, oil on canvas” .

dataset pokemon-blip-captions
all train test Ori-image Adv-image Ori-text Adv-text

Ori-text 0.3273 0.3272 0.3278 Ori-text0 0.3281 0.2484 1 0.9782
Adv-text 0.2591 0.2586 0.2610 Ori-text1 0.4040 0.3468 1 0.9843

The Insertion mode inserts punctuation p into the i-th position of input text, so we regard Etext +
Epos +Epunc as the embedding of xadv. The Displacement mode displaces punctuation p from
position i to position j in the input text, so we regard Etext−Ei

pos+Ej
pos+Epunc as the embedding

of xadv. The Deletion mode deletes punctuation p from the i th position of the input text, so we
compute Etext + Epos − Ei

punc + Ej
punc as the embedding of xadv. The Replacement mode

replaces punctuation pi with pj in the input text, so we take Etext +Epos −Ei
punc +Ej

punc. TPPE
requires only single-shot embedding of the input text x, which means we decrease the query time
complexity from O (kn) of Insertion, O (nt) of Displacement, O (t) of Deletion, and O (kt)
of Replacement, to O (1) under single punctuation attack.

In our study, we assume the worst-case of applying punctuation-level attacks: the victim model is a
black-box model where only prediction labels are available instead of scores from the function. In this
scenery, we train a substitute function fsub [30] to transform the black-box scenario into a white-box
scenario by collecting part of training datasets X . Specifically, we query the text function and derive
the prediction labels ypre, then train the substitute function fsub using the input text and the label ypre
as paired data. After training fsub, we transform the black-box scenario into a white-box scenario.

Directly querying fsub to determine which punctuation should be used is also time-consuming for
multiple queries. We iteratively attack the input text x and quickly gain the adversarial text xadv after
training the classification model from the TPPE of xadv to the label of xadv by f(x). Additionally,
we propose a search method called TPPEP to achieve a single-shot attack. We analyze the worst-case
scenario for TPPEP: zero query, black-box function, hard-label output, single punctuation limitation,
and single-shot attack. The specific pseudo code of TPPE and TPPEP are presented in Alg. 1 and
Alg. 2 in the Appendix.

To achieve the goal of zero query and gain more information, we train a substitute function fsub to fit
the text function f . Then, we query the substitute function fsub to gain the embedding of text Etext.
We apply the TPPE method to gain the embedding of adversarial candidate text xadv, denoted as
Exadv

. We transform the attacking task into a paraphrasing task. Specifically, Exadv
and Etext are

concatenated as input data, and the result of the attack (the successful attack denotes label 1; else the
label 0) is the predicting label. The adversarial candidate text with the highest paraphrasing score
calculated by the TPPEP method is chosen to deploy the attack.

3.3 Analysis of TPPEP

In this section, we discuss a specific and practical form of classification function that can de-
ceive the text model. We assume that there is a function f(x) in hypothesis space F . Since
f(x) = softmax (ffe(x)), we hypothesize that there exists a function f1 that fits the function
softmax and satisfies |f1(x) − ŷx| < ϵ1. A simple functional form of f1 is a function of
argmax softmax . Furthermore, we propose the hypothesis that there exists a function f2, which can
predict ŷxadv

from TPPE(xadv) and satisfy |f2(xadv)− ŷxadv
| < ϵ2. We also define a function f3,

f3 (xadv,x) =

{
1 if |f2 (xadv)− f1(x)| ≥ 1

0 otherwise
. This means we can predict the result of an attack

by |f2(x)− f1(x)|. We calculate the absolute difference between f2(xadv) and f1(x) and compare
the absolute difference between |f2(xadv)− ŷxadv

| and |ŷxadv
− ŷx| in Eq. (8) as

|f2 (xadv)− f1(x)| = |f2 (xadv)− ŷxadv
+ ŷxadv

− f1(x) + ŷx − ŷx|
= |[f2 (xadv)− ŷxadv

] + [ŷxadv
− ŷx] + [ŷx − f1(x)]|

≤ ε1 + ε2 + |ŷxadv
− ŷx| .

(8)
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According to Eq. (8), when ŷxadv
= ŷx, the actual label of TPPEP is 0 and | f2(xadv)− f1((x)) ≤

ε1 + ε2. Since ε1 and ε2 are sufficiently small, f3(f2(xadv), f1(x)) will be 0, allowing us to clas-
sify them correctly. As f1(x) and f2(x) fit well ŷxadv

and ŷx, when ŷxadv
and ŷx are not equal,

f3(f2(xadv), f1(x)) will be 1. Thus, we have found a specific fooling function f3(f2(xadv), f1(x)),
which implies that there is at least one fooling function in the hypothesis space F . Moreover,
we discuss that f3(f2(xadv), f1(x)) can be learned based on the Universal Approximation The-
orem [16]. According to Eq. (1), we can train F1 and F2 to fit f1 and f2, which satisfy
|F1(x) − f1(x)| < ϵ3 and |F2(xadv) − f2(xadv)| < ϵ4. We analyze the difference between
|f2 (xadv)− f1(x)| and |F2(xadv)− F1(x)| in Eq. (9). If the difference between them is less than
1, then f3(F2(xadv), F1(x)) and f3(f2(xadv), f1(x)) will predict the same label.

|[F2 (xadv)− F1(x)]− [f2 (xadv)− f1(x)]| =| [F1(x)− f1(x)] + [f2 (xadv)− F2 (xadv)]) |
≤ |F1(x)− f1(x)|+ |F2 (xadv)− f2 (xadv)| ≤ ε3 + ε4.

(9)

According to Eq. (9), we compare the difference between |f2(xadv)− f1(x)| and
|F2(xadv)− F1(x)|. As ε3 and ε4 are sufficiently small, |F2(x)− F1(x)| will approximate
|f2(x)− f1(x)|, suggesting that we can fit |ŷxadv

− ŷx| by |f2(x)− f1(x)|. Based on the above
analysis, we prove that a feasible solution exists in the hypothesis space and can be trained.

4 Experiment

4.1 Experimental Setting

Tasks and Datasets. We have implemented punctuation-level attacks and TPPEP in the context of
three distinct text-to-label tasks, utilizing three diverse datasets. Furthermore, we have reported the
outcomes of these experiments concerning text summarization, semantic-similarity-scoring, and text-
to-image tasks, focusing particularly on the single-shot punctuation attack. The tasks that underwent
single-shot attacks and TPPEP perturbations encompassed text classification (TC), paraphrasing,
and natural language inference (NLI) tasks. The TC task takes a text as input, and the text model
generates a predicted label for the input text. For our TC task, we have opted to utilize the CoLA
dataset [43]. CoLA is the dataset of a binary classification task that aims to predict whether the input
sentence is “correct” from a linguistic perspective. As for the paraphrase task, the input consists of
a pair of texts, and the objective of the text model is to ascertain the semantic similarity between
the two texts. Our choice for the paraphrasing task is the QQP dataset [21]. Furthermore, the NLI
task involves predicting the relationship between pairs of input sentences and we employ the Wanli
dataset [25].

Experiment Setup. We have applied both punctuation-level attacks and TPPEP to target pre-
trained SOTA models, including ELECTRA [7], XLMR [37], DistilBERT1 [36], RoBERTa [27],
and DeBERTa [14]. In numerous real-world text API application scenarios, the API solely provides
the predicted label for the input text. Therefore, our experiments are tailored for black-box attacks,
where the text model exclusively generates categorical labels in response to queries. The conventional
perturbation budget of character-/word-/sentence-level attacks is typically assessed based on the
number of altered words. In contrast, our punctuation-level attacks perturb zero word, and we define
the perturbation budget as the number of perturbed tokens. In the experiment, we set the strictest
perturbation limit, specifically focusing on the perturbation of a single punctuation. Thus, we discuss
the results in the case of a single punctuation attack. In addition, to make our TPPEP work in
hard-label attacks, we first train a substitute function fsub [30] by querying the text function and
deriving the prediction labels ypre. Then, we apply the proposed TPPEP method to search for the
most vulnerable candidate text.

4.2 Experimental Results

Text classification task, paraphrase task, and natural language inference task. The result of
the TC task is presented in Table 5. Our punctuation-level attack shows encouraging results on
ELECTRA [7] model and Cola dataset with 90.80% and 93.67% fool rates respectively by single-
shot Insertion attack. On all three datasets, Insertion consistently obtains the highest fool
rate due to the largest search space compared to other attacks such as Deletion, which has the
smallest search space and thus obtains the lowest fool rate. The fool rate of Displacement and
Replacement depends more on the specific datasets and text models. The results of the traversal
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Table 5: The results on Cola, QQP, and Wanli datasets. Top-1 is the fool rate of single-shot and
single punctuation attack. The Top-3 and Top-5 are the fool rates of three and five single punctuation
attacking candidate texts. Traversal is the fool rate of a single punctuation attack by traversal, which
is the maximum value of a single punctuation attack. p1 is the ratio of TOP-1 to traversal. Average
search space (ASP) is the mean of candidate texts.

Cola ELECTRA [7] XLMR [37]
mode Top-1 Top-3 Top-5 Traversal p1 Top-1 Top-3 Top-5 Traversal p1 ASP

Insertion 67.40% 73.06% 73.83% 90.80% 74.23% 28.76% 52.64% 63.57% 93.67% 30.70% 362.62
Displacement 36.05% 66.35% 73.44% 80.44% 44.82% 43.05% 60.12% 76.03% 80.73% 53.33% 11.59

Deletion 5.18% 5.85% 5.94% 5.94% 87.21% 4.89% 5.85% 5.85% 5.85% 83.59% 1.15
Replacement 24.64% 36.82% 44.77% 74.59% 33.03% 6.62% 9.88% 12.37% 20.23% 32.72% 41.49

QQP DistilBERT1 [36] DistilBERT2 [36]
Insertion 14.72% 18.76% 22.68% 47.18% 31.20% 8.67% 10.43% 11.73% 48.23% 17.98% 957.72

Displacement 8.52% 15.05% 18.86% 26.78% 31.81% 7.21% 12.43% 15.57% 23.44% 30.76% 36.57
Deletion 3.94% 5.93% 6.02% 6.03% 65.34% 5.06% 6.86% 6.95% 6.96% 72.70% 2.53

Replacement 7.59% 10.04% 12.18% 19.70% 38.53% 16.70% 20.97% 22.65% 29.65% 56.32% 90.91
Wanli RoBERTa [27] DeBERTa [14]

Insertion 8.44% 19.22% 26.20% 66.74% 12.65% 15.28% 29.20% 37.40% 80.14% 19.07% 1161.12
Displacement 5.12% 9.14% 12.26% 26.14% 19.59% 10.28% 16.60% 20.34% 38.40% 26.77% 53.94

Deletion 3.22% 5.84% 6.14% 6.16% 52.27% 5.74% 8.58% 8.96% 8.98% 63.92% 2.94
Replacement 8.48% 15.96% 19.80% 45.82% 18.51% 6.92% 13.08% 16.88% 54.76% 12.64% 105.88

Table 6: The results of the semantic-similarity-scoring task

Sentence-BERT Distilbert
STS-B Pearson Spearman Pearson Spearman

Without Attack 0.7990 0.6988 0.8056 0.7257
TOP-1 0.7874 0.6862 0.7902 0.7035
TOP-3 0.7760 0.6738 0.7759 0.6990
TOP-5 0.7654 0.6626 0.7649 0.6745

Traversal 0.6992 0.5832 0.6994 0.6048

search imply that a single punctuation attack can fool those text models. The results of Top-1 present
the result of single-shot and single punctuation attack. Our experiments show that single-shot and
single punctuation attacks are more effective for datasets with small average search space (ASP)
such as the CoLA dataset. In the case of ELECTRA model and CoLA dataset, single-shot and single
punctuation attack obtains 67.40%, 36.05%, 5.18%, and 24.64% respective fool rate by Insertion,
Displacement, Deletion, and Replacement attack. The fool rate of the single-shot and single
punctuation attack decreases with increasing search space but still achieves a fool rate of 8.44% when
the ASP is 1161.12 in the Wanli dataset.

Semantic-similarity-scoring task, summarization task, and text-to-image task. In addition, we
have expanded the scope of single punctuation attacks to encompass semantic-similarity-scoring
(sss), summarization, and text-to-image tasks (T2I). Datasets from STS-B [26] and gigaword [20]
datasets were chosen for the sss and summarization tasks. Results of single punctuation attacks are
tabulated in Tables 6 and 7. In the sss task, the Insertion punctuation attack leads to reductions
of Pearson and Spearman correlations for Sentence-BERT and Distilbert, resulting in reductions
of 0.0998, 0.1156, 0.1062, and 0.1209, respectively. For the summarization task, we utilize the
ROUGE-1 metric as the dependent variable, denoted as y. Then we formulate a predictive model to
estimate the ROUGE-1 score for the test set. Subsequently, we select the candidate attack text with
the lowest predicted ROUGE-1 value. The Insertion punctuation attack decreases the ROUGE-1
score [24] of gigaword [20] by 6.47. In the sss task, y represents the semantic similarity between
the text before and after the attack. To model this, we have developed a predictive model to estimate
semantic similarity values for the test set. This significant decline demonstrates the susceptibility of
sss and summarization models to single punctuation attack.

In the T2I task, we determine the CLIP score denoted as y and select the candidate attack text with the
lowest predicted CLIP score. Stable Diffusion V2 [33] is selected as the victim model, and the results
are illustrated in Fig. 2. When we input the sentence “a professional photograph of an astronaut
riding a triceratops”, the Stable Diffusion V2 generates the “correct” image containing both the
astronaut and triceratops. However, after inserting a period into the input text, Stable Diffusion V2
generates an image without triceratops. This dramatic change also happens in another input sentence.
Furthermore, we have expanded the section dedicated to quantitative experiments in T2I applications,
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Table 7: The results of text to image and summarization task

Task Metric Without Attack TOP-1 TOP-3 TOP-5 Traversal
Text to image CLIP score 0.3278 0.3176 0.3069 0.3022 0.2610

Summarization ROUGE-1 11.69 10.91 9.65 9.11 5.22

Adv-text: a professional photograph of an astronaut. riding a triceratops Adv-text: a corgi is playing, piano, oil on canvas
Ori-text: a professional photograph of an astronaut riding a triceratops Ori-text: a corgi is playing piano, oil on canvas

Ori-output Adv-output Ori-output Adv-output

Figure 2: The results of single punctuation attack in the text-to-image task. “Ori-text” indicates the
original text and “Adv-text” indicates the adversarial text under a single punctuation attack. “Ori-
output” and and “Adv-output” indicate the images generated by the original text and the adversarial
text respectively. The results reveal that the text-to-image model is fooled by inserting a comma or
period into the input text.

utilizing the CLIP score as our evaluation metric. The experimental results are displayed in Table 4,
with “ori-text1” denoting the sentence “a corgi is playing the piano, oil on canvas.” By inserting a
comma as a punctuation-level attack, “adv-text1” is derived from “ori-text1”. Significantly, despite a
high semantic similarity of 0.9843 between “ori-text1” and “adv-text1”, the CLIP score decreases
from 0.4040 to 0.3468 after the attack. Furthermore, to evaluate the resilience of the Stable Diffusion
model against punctuation-level attacks, we utilize the “pokemon-blip-captions” dataset. Following
the punctuation insertion attacks, the overall CLIP score decreases from 0.3273 to 0.2591. This
reduction is consistently observed in both the training and testing subsets, highlighting the model’s
susceptibility. In the present the results of our endeavor to extend punctuation-level attacks, TPPE,
and TPPEP algorithms to encompass three distinct tasks: summarization, semantic similarity scoring,
and text-to-image generation show the effectiveness of TPPE and TPPEP.

5 Conclusion

In this work, we propose a punctuation-level attack based entirely on inserting, displacing, deleting,
and replacing punctuation to fool text models. Our punctuation-level attack is more imperceptible to
human beings and has less semantic impact compared to character-/word-/sentence-level attack. We
introduce TPPE and TPPEP methods to reduce the search cost and achieve the time complexity of
the query as O (1). Furthermore, we discuss the ultimate effectiveness of punctuation-level attacks
and present the analysis of the TPPEP method. Experimental studies on representative datasets of
SOTA victim models demonstrate the effectiveness of our proposed methods.
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