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Abstract

We propose a scheme for auditing differentially private machine learning systems
with a single training run. This exploits the parallelism of being able to add or remove
multiple training examples independently. We analyze this using the connection be-
tween differential privacy and statistical generalization, which avoids the cost of group
privacy. Our auditing scheme requires minimal assumptions about the algorithm and
can be applied in the black-box or white-box setting.

1 Introduction

Differential privacy (DP) [DMNS06] provides a quantifiable privacy guarantee by ensuring
that no person’s data significantly affects the probability of any outcome. Formally, a ran-
domized algorithm M satisfies (ε, δ)-DP if, for any pair of inputs x, x′ differing only by the
addition or removal of one person’s data and any measurable S, we have

P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S] + δ. (1)

A DP algorithm is accompanied by a mathematical proof giving an upper bound on the
privacy parameters ε and δ. In contrast, a privacy audit provides an empirical lower bound on
the privacy parameters. Privacy audits allow us to assess the tightness of the mathematical
analysis [JUO20; NHSBTJCT23] or, if the lower and upper bounds are contradictory, to
detect errors in the analysis or in the algorithm’s implementation [TTSSJC22].

Typically, privacy audits obtain a lower bound on the privacy parameters directly from
the DP definition (1). That is, we construct a pair of inputs x, x′ and a set of outcomes
S and we estimate the probabilities P [M(x) ∈ S] and P [M(x′) ∈ S]. However, estimating
these probabilities requires running the algorithm M hundreds of times. This approach to
privacy auditing is computationally expensive, which raises the question

Can we perform privacy auditing using a single run of the algorithm M?

This is the question we address in our work.
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1.1 Our Contributions

Our approach (§2): The DP definition (1) considers adding or removing a single person’s
data to or from the dataset. We consider multiple people’s data and the dataset indepen-
dently includes or excludes each person’s data point. Our analysis exploits the parallelism
of multiple independent data points in a single run of the algorithm in lieu of multiple
independent runs.

Our auditing procedure operates as follows. We identify m data points (i.e., training
examples or “canaries”) to either include or exclude and we flip m independent unbiased
coins to decide which of them to include or exclude. We then run the algorithm on the
randomly selected dataset. Based on the output of the algorithm, the auditor “guesses”
whether or not each data point was included or excluded (or it can abstain from guessing for
some data points). We obtain a lower bound on the privacy parameters from the fraction of
guesses that were correct.

Intuitively, if the algorithm is (ε, 0)-DP, then the auditor can correctly guess each inclu-
sion/exclusion coin flip with probability at most eε

eε+1
. Thus DP implies a high-probability

upper bound on the fraction of correct guesses and, conversely, a large fraction of correct
guesses implies a high-probability lower bound on the privacy parameters.

Our analysis (§5): Näıvely, analyzing the addition or removal of multiple data ele-
ments would rely on group privacy; but this does not exploit the fact that the data items
were included or excluded independently. Instead, we leverage the connection between DP
and generalization [DFHPRR15b; DFHPRR15a; BNSSSU16; RRST16; JLNRSMS19; SZ20].
Our main theoretical contribution is an improved analysis of this connection that is tailored
to yield nearly tight bounds in our setting.

Informally, if we run a DP algorithm on i.i.d. samples from some distribution, then,
conditioned on the output of the algorithm, the samples are still “close” to being i.i.d. samples
from that distribution. There is some technicality in making this precise, but, roughly
speaking, we show that including or excluding m data points independently for one run is
essentially as good as having m independent runs (as long as δ is small).

Our results (§6): We implement our new auditing framework to audit DP-SGD training
on a WideResNet model, trained on the CIFAR10 dataset across multiple configurations.
Our approach successfully achieves an empirical lower bound of ε ≥ 1.8, compared to a
theoretical upper bound of ε ≤ 4 in the white-box setting. The m examples we insert for
auditing (known in the literature as “canaries”) do not significantly impact the accuracy
of the final model (less than a 5% decrease in accuracy) and our procedure only requires
a single end-to-end training run. Such results were previously unattainable in the setting
where only one model could be trained.
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Algorithm 1 Auditor with One Training Run

1: Data: x ∈ X n consisting ofm auditing examples (a.k.a. canaries) and n−m non-auditing
examples.

2: Parameters: Algorithm to audit A, number of examples to randomize m, number of
positive k+ and negative k− guesses.

3: For i ∈ [m] sample Si ∈ {−1,+1} independently with E [Si] = 0. Set Si = 1 for all
i ∈ [n] \ [m].

4: Partition x into xIN ∈ X nIN and xOUT ∈ X nOUT according to S, where nIN + nOUT = n.
Namely, if Si = 1, then xi is in xIN; and, if Si = −1, then xi is in xOUT.

5: Run A on input xIN with appropriate parameters, outputting w.
6: Compute the vector of scores Y = (Score(xi, w) : i ∈ [m]) ∈ Rm.
7: Sort the scores Y . Let T ∈ {−1, 0,+1}m be +1 for the largest k+ scores and −1 for the

smallest k− scores.
8: (I.e., T ∈ {−1, 0,+1}m maximizes

∑m
i Ti ·Yi subject to

∑m
i |Ti| = k+ +k− and

∑m
i Ti =

k+ − k−.)
9: Return: The vector S ∈ {−1,+1}m indicating the true selection and the guesses T ∈
{−1, 0,+1}m.

2 Our Auditing Procedure

We now present our auditing procedure in Algorithm 1. We independently include each of the
first m examples with 50% probability and exclude it otherwise.1 Our approach is applicable
to both white-box auditing in the sense that the adversary has access to all intermediate
values of the model weights and black-box auditing in the sense that the adversary only sees
the final model weights (or can only query the final model). In both cases we compute a
“score” for each example and “guess” whether the example is included or excluded based on
these scores. Specifically, we guess that the examples with the k+ highest scores are included
and the examples with the k− lowest scores are excluded, and we abstain from guessing for
the remaining m− k+ − k− auditing examples; the setting of these parameters will depend
on the application.

Note that we only randomize the first m examples x1, · · · , xm (which we refer to as
“auditing examples” or “canaries”); the last n−m examples xm+1, · · · , xn are always included
and, thus, we do not make any guesses about them. To get the strongest auditing results
we would set m = n, but we usually want to set m < n. For example, computing the score
of all n examples may be computationally prohibitive, so we only compute the scores of m
examples. Also we may wish to artificially construct m examples to be easy to identify (i.e.,
canaries), but still include n −m “real” examples to ensure that A still produces a useful
model. (I.e., having more training examples improves the performance of the model.)

1Alternatively, we could also consider a different probability of inclusion; our theoretical results can handle
this (see Proposition 5.7). However, this seems unlikely to be useful, as it intuitively lowers the signal-to-
noise ratio. Another alternative is to non-independently choose which points to include to ensure xIN has a
fixed size; see Appendix A.
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Intuitively, the vector of scores Y should be correlated with the true selection S, but too
strong a correlation would violate DP. This is the basis of our audit. Specifically, the auditor
computes T from Y which is a “guess” at S. By the postprocessing property of DP, the
guesses T are a differentially private function of the true S, which means that they cannot
be too accurate.

To obtain a lower bound on the DP parameters, in Section 5, we show that DP implies
a high-probability upper bound on the number of correct guesses W :=

∑m
i max{0, Ti · Si}.

The observed value of W then yields a high-probability lower bound on the DP parameters.
To be more precise, we have the following guarantee.

Theorem 2.1 (Informal version of Theorem 5.2). Let (S, T ) ∈ {−1,+1}m × {−1, 0,+1}m
be the output of Algorithm 1. Assume the algorithm to audit A satisfies (ε, δ)-DP. Let
r := k+ + k− = ‖T‖1 be the number of guesses. Then, for all v ∈ R,

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ P

W̌←Binomial(r, eε

eε+1)

[
W̌ ≥ v

]
+O(δ). (2)

If we ignore δ for the moment, Theorem 2.1 says that the number of correct guesses is
stochastically dominated by Binomial

(
r, eε

eε+1

)
, where r = k+ + k− is the total number of

guesses. This binomial distribution is precisely the distribution of correct guesses we would
get if T was obtained by independently performing (ε, 0)-DP randomized response on r bits
of S. In other words, the theorem says that (ε, 0)-DP randomized response is the worst-case
algorithm in terms of the number of correct guesses. In particular, this means the theorem
is tight (when δ = 0)

The binomial distribution is well-concentrated. In particular, for all β ∈ (0, 1), we have

P
W̌←Binomial(r, eε

eε+1)

W̌ ≥ r · eε

eε + 1
+

√
1

2
· r · log(1/β)︸ ︷︷ ︸

=v

 ≤ β. (3)

There is an additional O(δ) term in the guarantee (2). The exact expression for this term
is somewhat complex. It is always ≤ 2mδ, but it is much smaller than this for reasonable
parameter values. In particular, for v as in Equation 3 with β ≤ 1/r4, this term is ≤ O(m

r
δ).

Theorem 2.1 gives us a hypothesis test: If A is (ε, δ)-DP, then the number of correct
guesses W is ≤ r·eε

eε+1
+O(

√
r) with high probability. Thus, if the observed number of correct

guesses v is larger than this, we can reject the hypothesis that A satisfies (ε, δ)-DP. We can
convert this hypothesis test into a confidence interval (i.e., a lower bound on ε) by finding
the largest ε that we can reject at a desired level of confidence; see Section 4.3.

3 Related Work

The goal of privacy auditing is to empirically estimate the privacy provided by an algorithm,
typically to accompany a formal privacy guarantee. Early work on auditing has often been
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motivated by trying to identify bugs in the implementations of differentially private data
analysis algorithms [DWWZK18; BGDCTV18].

Techniques for auditing differentially private machine learning typically rely on conduct-
ing some form of membership inference attack [SSSS17];2 these attacks are designed to detect
the presence or absence of an individual example in the training set. Essentially, a member-
ship inference attack which achieves some true positive rate (TPR) and false positive rate
(FPR) gives a lower bound on the privacy parameter ε ≥ loge(TPR/FPR) (after ensuring
statistical validity of the TPR and FPR estimates).

Jayaraman and Evans [JE19] use standard membership inference attacks to evaluate dif-
ferent privacy analysis algorithms. Jagielski, Ullman, and Oprea [JUO20] consider inferring
membership of worst-case “poisoning” examples to conduct stronger membership inference
attacks and understand the tightness of privacy analysis. Nasr, Song, Thakurta, Papernot,
and Carlini [NSTPC21] measure the tightness of privacy analysis under a variety of threat
models, including showing that the DP-SGD analysis is tight in the threat model assumed
by the standard DP-SGD analysis.

Improvements to auditing have been made in a variety of directions. For example, Nasr,
Hayes, Steinke, Balle, Tramèr, Jagielski, Carlini, and Terzis [NHSBTJCT23] and Maddock,
Sablayrolles, and Stock [MSS22] take advantage of the iterative nature of DP-SGD, auditing
individual steps to understand privacy of the end-to-end algorithm. Improvements have also
been made to the basic statistical techniques for estimating the ε parameter, for example
by using Log-Katz confidence intervals [LMFLZWRFT22], Bayesian techniques [ZBWT-
SRPNK22], or auditing algorithms in different privacy definitions [NHSBTJCT23]. Andrew,
Kairouz, Oh, Oprea, McMahan, and Suriyakumar [AKOOMS23] build on the observation
that, when performing membership inference, analyzing the case where the data is not in-
cluded does not require re-running the algorithm; instead we can re-sample the excluded
data point; if the data points are i.i.d. from a nice distribution, this permits closed-form
analysis of the excluded case.

A recent heuristic proposed to improve the efficiency of auditing is performing mem-
bership inference on multiple examples simultaneously. This heuristic was proposed by
Malek Esmaeili, Mironov, Prasad, Shilov, and Tramer [MEMPST21], and evaluated more
rigorously by Zanella-Béguelin, Wutschitz, Tople, Salem, Rühle, Paverd, Naseri, and Köpf
[ZBWTSRPNK22]. However, this heuristic is not theoretically justified, as the TPR and
FPR estimates are not based on independent samples. In our work, we provide a proof of
the validity of this heuristic. In fact, with this proof, we show for the first time that standard
membership inference attacks, which attack multiple examples per training run, can be used
for auditing analysis; prior work using these attacks must make an independence assump-
tion. As a result, auditing can take advantage of progress in the membership inference field
[CCNSTT22; WBKBGGG22].

2Shokri, Stronati, Song, and Shmatikov [SSSS17] coined the term “membership inference attack” and
were the first to apply such attacks to machine learning systems. However, similar attacks were developed
for applications to genetic data [HSRDTMPSNC08; SOJH09; DSSUV15] and in cryptography [BS98; Tar08].
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4 Background

We briefly review some standard background material. Readers may wish to skip to the next
section and revisit this only if necessary.

4.1 Differential Privacy

They We recite the definitions of differential privacy and some relevant relaxations. For
detailed background, see the tutorial by Vadhan [Vad17] or the textbook by Dwork and
Roth [DR14].

Definition 4.1 (Differential Privacy [DMNS06; DKMMN06]). Let M : X ∗ → Y be a ran-
domized algorithm, where X ∗ =

⋃
n≥0X n. We say M is (ε, δ)-differentially private ((ε, δ)-

DP) if, for all x, x′ ∈ X ∗ differing only by the addition or removal of one element, we have

∀S ⊂ Y P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S] + δ.

Definition 4.2 (Rényi Differential Privacy [Mir17]). We say M : X ∗ → Y is (α, ε̌)-Rényi
differentially private ((α, ε̌)-RDP) if, for all x, x′ ∈ X ∗ differing only by the addition or
removal of one element, we have

Dα (M(x)‖M(x′)) ≤ ε̌,

where Dα (P‖Q) := 1
α−1

log E
Y←P

[(
P (Y )
Q(Y )

)α−1
]

denotes the Rényi divergence of order α.

Definition 4.3 (Concentrated Differential Privacy [DR16; BS16]). We say M : X ∗ → Y is
ρ-zero concentrated differentially private (ρ-zCDP) if, for all x, x′ ∈ X ∗ differing only by the
addition or removal of one element, we have

∀α > 1 Dα (M(x)‖M(x′)) ≤ α · ρ.

Remark 4.4. In this paper, we focus on to the addition or removal notion of DP, rather
than replacement. (In Appendix A, we consider replacement.) Note that, in our theoretical
analysis, we consider DP algorithms of the form M : {0, 1}m → Y. In this case, DP is
with respect to flipping one of the input bits, as each bit indicates whether some example is
included or excluded.

The main property of DP that we use is invariance under postprocessing. That is, if
M : X ∗ → Y satisfies DP and F : Y → Z is an arbitrary function, then F ◦M : X ∗ → Z
also satisfies DP with the same parameters.
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Gaussian Mechanism A common method for achieving DP is Gaussian noise addition.
The following gives the optimal DP guarantee for the Gaussian mechanism.

Lemma 4.5 ([BW18, Theorem 8]). Let q : X ∗ → R be a function with sensitivity ∆ :=
supx,x′ |q(x)−q(x′)|. (In the supremum x, x′ ∈ X ∗ are restricted to differ only by the addition
or removal of one element.) Fix σ2 > 0 and let ρ := ∆2/2σ2. Define M : X ∗ → R by
M(x) = N (q(x), σ2). Then, for any ε ≥ 0, the algorithm M satisfies (ε, δ)-DP with

δ = Φ

(
ε− ρ√

2ρ

)
− eε · Φ

(
ε+ ρ√

2ρ

)
,

where Φ(z) := P
Z←N (0,1)

[Z > z] = 1√
2π

∫∞
z

exp(−x2/2)dx. Furthermore, M satisfies ρ-zCDP.

4.2 DP-SGD – Differentially Private Stochastic Gradient Descent

The algorithm whose privacy we are most interested in auditing is Differentially Private
Stochastic Gradient Descent (DP-SGD, Algorithm 2). This is the workhorse of private
machine learning both in theory [BST14] and in practice [ACGMMTZ16].

Algorithm 2 DP-SGD – Differentially Private Stochastic Gradient Descent
1: Input: x ∈ X n

2: Model: Loss function f : Rd ×X → R.
3: Parameters: Number of iterations ` ≥ 1, clipping threshold c > 0, noise multiplier
σ > 0, sampling probability q ∈ (0, 1], learning rate η > 0.

4: Initialize w0 ∈ Rd.
5: for t = 1, · · · ` do
6: Sample St ⊆ [n] where each i ∈ [n] is included independently with probability q.
7: Compute gti = ∇wt−1f(wt−1, xi) ∈ Rd for all i ∈ St.
8: Clip ĝti = min

{
1, c
‖gti‖2

}
· gti ∈ Rd for all i ∈ St.

9: Sample ξt ∈ Rd from N (0, σ2c2I).
10: Sum g̃t = ξt +

∑
i∈St ĝti ∈ Rd.

11: Update wt = wt−1 − η · g̃t ∈ Rd.
12: end for
13: Output: w0, w1, · · · , w`.

DP-SGD satisfies differential privacy. Much ink has been spilled precisely quantifying its
privacy properties [MTZ19; WBK19; KJH20; GLW21; ZDW22, etc.]. A simple guarantee is
the following.

Proposition 4.6 ([MTZ19; Ste22]). DP-SGD (Algorithm 2) satisfies (2, ε̌)-RDP for

ε̌ = ` · log
(
1 + q2 ·

(
exp(1/σ2)− 1

))
≈ ` · q2 · 1

σ2
.
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If ε̌ ≤ 1, then DP-SGD should provide meaningful privacy protection. In particular,
(2, ε̌)-RDP implies that membership inference has a maximum accuracy (in the balanced
case) of

1

2
+

1

2

√
eε̌ − 1

eε̌ + 3
≈ 1

2
+

1

4

√
ε̌. (4)

Our goal is to audit this guarantee.

4.3 Hypothesis Testing & Statistical Estimation

Our goal is to estimate the privacy parameters of the algorithm that we are auditing. As
prior work has noted [DWWZK18; JUO20], this task can be framed as statistical estimation,
with a goal of outputting a statistical lower bound on the privacy parameters. These lower
bounds will have a corresponding confidence level, roughly representing the probability that
the lower bound could have been produced even when analyzing an algorithm with perfect
privacy. As empirical methods, it is impossible to have 100% confidence in our methods, so
we will generally use 95% confidence in our experiments, comparable to the use of p < 0.05
in science literature.

To be precise, our auditor runs the algorithm M and outputs εLB ≥ 0 with the following
guarantee. If M satisfies (εtrue, δ)-DP, then, with probability at least 1− β, we have εLB ≤
εtrue. Here 1 − β is the confidence level and δ ≥ 0 is fixed. Note that this is a frequentist
guarantee, rather than a Bayesian guarantee. That is, the probability is with respect to our
auditing procedure, rather than a statement about our beliefs about M .

We can also view this in terms of hypothesis testing. Here we start with a “null hypothe-
sis” that M satisfies (εnull, δ)-DP and the auditor’s goal is to test this hypothesis by running
M . If the auditor rejects this null hypothesis, then this gives us a lower bound εLB = εnull.

The difference between hypothesis testing and statistical estimation is that a hypothesis
test starts with a given εnull and outputs a binary decision to reject or not, while an estimator
outputs a number εLB. However, we can convert between these:

Lemma 4.7. For each M , let AM ∈ Ω be a random variable and let PM ∈ R be a fixed
number. For each ε, β > 0, let Tε,β ⊂ Ω satisfy

∀M (PM = ε =⇒ P [AM ∈ Tε,β] ≤ β) . (5)

Further suppose that, if ε1 ≤ ε2, then Tε1,β ⊃ Tε2,β. Then, for all M and all β > 0,

P [PM ≥ sup {ε > 0 : AM ∈ Tε,β}] ≥ 1− β. (6)

Proof. Fix a realization of AM and suppose PM < sup {ε > 0 : AM ∈ Tε,β}. Then there exists
some ε ≥ PM with AM ∈ Tε,β and, hence,

AM ∈
⋃
ε≥PM

Tε,β = TPM ,β.

8



The equality above follows from our monotonicity assumption on T . Thus

P [PM < sup {ε > 0 : AM ∈ Tε,β}] ≤ P [AM ∈ TPM ,β] ≤ β,

as required.

To interpret Lemma 4.7, M is an algorithm and PM is the “true” privacy parameter ε
that it satisfies. (We’re considering δ to be fixed.) The random variable AM is the output of
our auditing procedure applied to M . (This is our test statistic in the language of hypothesis
testing.) The hypothesis test’s rejection set is Tε,β and Equation 5 guarantees that, if M is
indeed (ε, δ)-DP (i.e., the null hypothesis is true), then the probability that we reject the null
hypothesis is at most β. Equation 6 then shows how to estimate the true privacy parameter
PM from AM ; we simply take the largest ε for which we can reject the corresponding null
hypothesis.

Note that Lemma 4.7 needs to make a technical monotonicity assumption. In our setting
this simply means that, if a given realization of the test statistic AM allows us to reject the
null hypothesis that M is (ε2, δ)-DP and ε1 ≤ ε2, then we can also reject the null hypothesis
that M is (ε1, δ)-DP.

4.4 Stochastic Dominance

In our theoretical analysis we use the concept of stochastic dominance. Specifically, we use
this to formalize the “worst-case” DP algorithm for auditing.

Definition 4.8 (Stochastic Dominance). Let X, Y ∈ R be random variables. We say X is
stochastically dominated by Y (or Y stochastically dominates X) if P [X > t] ≤ P [Y > t]
for all t ∈ R. Equivalently, X is stochastically dominated by Y if there exists a coupling
(i.e., a joint distribution that matches the marginal distributions of X and Y ) such that
P [X ≤ Y ] = 1.

Stochastic dominance is preserved under sums/convolutions:

Lemma 4.9. Suppose X1 is stochastically dominated by Y1. Suppose that, for all x ∈ R, the
conditional distribution X2|X1 = x is stochastically dominated by Y2. Assume that Y1 and
Y2 are independent. Then X1 +X2 is stochastically dominated by Y1 + Y2.

Proof. For all t ∈ R, we have

P [X1 +X2 > t] = E
X1

[
P
X2

[X2 > t−X1|X1]

]
≤ E

X1

[
P
Y2

[Y2 > t−X1]

]
(Y2 dominates X2|X1)

= E
Y2

[
P
X1

[X1 > t− Y2]

]
≤ E

Y2

[
P
Y1

[Y1 > t− Y2]

]
(Y1 dominates X1 & independence)

= P [Y1 + Y2 > t].
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5 Theoretical Analysis
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Figure 1: Theorem 5.2’s p-value as the number of correct guesses changes for fixed ε = log 3
(i.e., ideally 75% of guesses correct). The total number of examples and guesses is 100.

To analyze the results of our audit, we leverage the connection between DP and general-
ization [DFHPRR15b; DFHPRR15a; BNSSSU16; RRST16; JLNRSMS19; SZ20]. Unfortu-
nately, directly applying the existing results from the literature is unlikely to yield meaningful
results, as the constants are not optimal. Thus we provide an analysis of DP’s generalization
guarantees that is suitable for our application and which has sharp constants.

We consider the following formalism. The algorithm M : {−1,+1}m → Rm takes in
a vector of bits and outputs a vector of “guesses”. Each input bit indicates whether or
not a particular example is included in or excluded from the dataset. In particular, the DP
guarantee ensures that the outputs are indistinguishable if we flip one bit, which corresponds
to adding or removing the corresponding data point. Each coordinate of the output is a guess
for the corresponding input bit; the sign of the score should match the corresponding input
bit, while the magnitude is a reflection of the confidence.

The algorithm M represents both the “real” algorithm (e.g., DP-SGD) and the auditor
which postprocesses the output of the real algorithm into guesses. In this formalism, the
examples themselves are considered fixed and not part of the input – i.e., the examples are
“hardcoded” into M . The algorithm M is an abstraction for our analysis, rather than a
realistic system.
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Figure 2: Lower bound on the privacy parameter ε given by Theorem 5.2 with 95% confidence
as the number of correct guesses changes. The total number of examples and guesses is 100.
For comparison, we plot the ideal ε that gives 100 · eε

eε+1
correct guesses.

We evaluate the quantity

W :=
m∑
i

max{0, Ti · Si},

where S is uniform on {−1,+1}m and T = M(S). If Ti and Si disagree in sign (i.e.,
the guess is wrong), then max{0, Ti · Si} = 0; if they agree (i.e., the guess is right), then
max{0, Ti · Si} = |Ti|. That is, W increases when we guess correctly and the increase is
proportional to how much “weight” we placed on that guess. The auditor seeks to maximize
W and then we compare it to a baseline that is consistent with DP. (The analysis in this
section focuses on computing this baseline.) Incorrect guesses do not increase W , but they
do increase the baseline. Note that we can guess Ti = 0, which amounts to abstaining from
making a guess; this doesn’t increase W , but also doesn’t increase the baseline.

Our formalism is inspired by that of Steinke and Zakynthinou [SZ20], who also restrict
to binary inputs. In contrast, most of the work connecting DP and generalization does not
do this. The benefit of restricting to binary inputs which represent inclusion or exclusion of
a data point is that it simplifies our analysis.

5.1 Pure DP Analysis

We first consider the pure DP (δ = 0) case, as it is considerably simpler than the general
case. We follow the analysis of Jung, Ligett, Neel, Roth, Sharifi-Malvajerdi, and Shenfeld

11



0 1 2 3 4 5 6 7
ideal  -- i.e., exp( )

exp( ) + 1  fraction of guesses correct

0

1

2

3

4

5

6

7

 lo
we

r b
ou

nd
 w

ith
 9

5%
 c

on
fid

en
ce

= 0
= 10 3

= 10 2

ideal

Figure 3: Lower bound on the privacy parameter ε given by Theorem 5.2 with 95% confidence
as the number of correct guesses changes. The total number of examples and guesses is 1000
(with no abstentions). Here we plot the ideal ε on the horizontal axis, so that the number
of correct guesses is 1000 · eε

eε+1
.

[JLNRSMS19] with some refinement. Specifically, rather than relying on a Hoeffding bound,
we show that it is stochastically dominated by a Binomial distribution. This result is tight
– i.e., if M independently performs a randomized response for each input bit, then the
inequality becomes an equality.

Proposition 5.1 (Pure DP Version of Main Result). Let M : {−1,+1}m → Rm satisfy
(ε, 0)-DP. Let S ∈ {−1,+1}m be uniformly random. Let T = M(S) ∈ Rm. Then, for all
v ∈ R and all t ∈ Rm in the support of T ,3

P
S←{−1,1}m
T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

∣∣∣∣∣T = t

]
≤ P

Š←Bernoulli( eε

eε+1)
m

[
m∑
i

Ši · |ti| ≥ v

]
=: β(m, ε, v, t).

Proposition 5.1 is Bayesian: We condition on the output and then consider the probability
that each guess was right. The vector Š should be seen as indicating whether each guess
was right. The proposition says that, in the worst case, each guess is correct independently
with probability eε

eε+1
.

3To be precise, this holds with probability 1, but may fail for t in a set of measure zero under T . Note

that S ← {−1, 1}m denotes that S is uniform on the set {−1, 1}m and Š ← Bernoulli
(

eε

eε+1

)
denotes that

Š ∈ {0, 1}m has a product distribution with each coordinate having expectation eε

eε+1 .
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How do we use this result? Suppose we have conducted an audit and observed s and
t as the output of Algorithm 3. Let v =

∑m
i max{0, si · ti}. Following Lemma 4.7, we

choose a desired confidence 1 − β < 1 (e.g., β = 0.05) and then we choose ε ≥ 0 so that
β(m, ε, v, t) = β. Then this value of ε is our lower bound.

In the language of hypothesis testing, W =
∑m

i max{0, Ti · Si} is the test statistic and
our null hypothesis is that M is ε-DP. Under the null hypothesis we have P [W ≥ v] ≤
β(m, ε, v, t). Thus, if v is the observed value of the test statistic, then β(m, ε, v, t) is our
p-value. And we can reject the null hypothesis if, say, β(m, ε, v) ≤ 0.05.

Proof. Fix some t ∈ Rm. We now analyze the distribution of S conditioned on M(S) = t.
Note that the unconditional distribution of S is uniform on {−1,+1}m and M is (ε, 0)-DP.
We perform the analysis one bit at a time. Fix some i ∈ [m] and s<i ∈ {−1,+1}i−1. By
Bayes’ law and (ε, 0)-DP,

P [Si = 1|M(S) = t, S<i = s<i]

=
P [M(S) = t|Si = 1, S<i = s<i] · P [Si = 1|S<i = s<i]

P [M(S) = t|S<i = s<i]

=
P [M(S) = t|Si = 1, S<i = s<i] · P [Si = 1]

P [M(S) = t|Si = 1, S<i = s<i] · P [Si = 1] + P [M(S) = t|Si = −1, S<i = s<i] · P [Si = −1]

=
P [M(S) = t|Si = 1, S<i = s<i] · 1

2

P [M(S) = t|Si = 1, S<i = s<i] · 1
2

+ P [M(S) = t|Si = −1, S<i = s<i] · 1
2

=
1

1 + P [M(S) = t|Si = −1, S<i = s<i]/P [M(S) = t|Si = 1, S<i = s<i]

∈
[

1

1 + eε
,

1

1 + e−ε

]
.

Thus P [Si = sign(Ti)|T = t, S<i = s<i] ≤ 1
1+e−ε = eε

eε+1
.

With this in hand, we can prove the result by induction. We assume inductively that
Wm−1 :=

∑m−1
i max{0, Ti · Si} is stochatiscally dominated by W̌m−1 :=

∑m−1
i Ši · |ti|

where Š ← Bernoulli
(

eε

eε+1

)m−1
. As above, conditioned on the value of Wm−1, the variable

max{0, Tm·Sm} = |Tm|·I[Sm = sign(Tm)] is stochastically dominated by |Tm|·Bernoulli
(

eε

eε+1

)
.

By Lemma 4.9, Wm = Wm−1 + max{0, Tm · Sm} is stochastically dominated by W̌m :=∑m
i Ši · |ti| where Š ← Bernoulli

(
eε

eε+1

)m
.

5.2 Approximate DP Analysis

We extend the pure DP analysis (§5.1) to approximate DP (δ > 0). This becomes quite
messy. In the pure DP case, we can condition on an arbitrary output t. In the approximate
DP case, some outputs are “bad” in the sense that the privacy loss is unbounded. To handle
this we do two things: First, we require the guesses to be bounded (i.e., T ∈ [−1,+1]m

instead of T ∈ Rm), which ensures that bad outputs cannot skew things too much. Second,
the guarantees we prove have an additional failure probability that depends on δ.
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Our analysis most closely resembles that of Rogers, Roth, Smith, and Thakkar [RRST16].
Essentially, we repeat the analysis for the pure DP case, but add some failure events, and
carefully account for how much they can distort the results.

Theorem 5.2 (Main Result). Let M : {−1,+1}m → [−1,+1]m satisfy (ε, δ)-DP. Let S ∈
{−1,+1}m be uniformly random. Let T = M(S) ∈ [−1,+1]m. Then, for all v ∈ R,

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ β + α · 2m · δ, (7)

where

β = P̌
W ∗

[
W̌ ∗ ≥ v

]
, (8)

α = max

{
1

i

(
P̌
W ∗

[
W̌ ∗ ≥ v − i

]
− β

)
: i ∈ {1, 2, · · · ,m}

}
. (9)

Here W̌ ∗ is any distribution on R that stochastically dominates W̌ (t) :=
∑m

i Ši|ti| for Š ←
Bernoulli

(
eε

eε+1

)m
for all t in the support of T .

To evaluate the bound of Theorem 5.2, we need to identify W̌ ∗ and compute its dis-
tribution. We can set P̌

W ∗

[
W̌ ∗ ≥ v

]
= supt∈support(T ) P̌

W

[
W̌ (t) ≥ v

]
. This can be difficult to

compute, depending on what we know about the support of T . If the support of T is nice,
we can compute this explicitly; e.g., see Corollary 5.4. There are other things we can do.
For example, if we have bounds on supt∈support(T ) ‖t‖2 and supt∈support(T ) ‖t‖1, then we can use

a concentration inequality to bound supt∈support(T ) P̌
W

[
W̌ (t) ≥ v

]
and then use this bound as

the distribution of W̌ ∗. This yields the following corollary.

Corollary 5.3 (Analytic Version of Main Result). Let M : {−1,+1}m → [−1,+1]m satisfy
(ε, δ)-DP. Let S ∈ {−1,+1}m be uniformly random. Let T = M(S) ∈ [−1,+1]m. Suppose
P [‖T‖2 ≤ r2] = 1 and P [‖T‖1 ≤ r1] = 1. Then, for all v ≥ eε

eε+1
· r1 + 2, we have

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ f(v) + 2m · δ ·max

{
f(v − i)− f(v)

i
: i ∈ [m]

}
(10)

≤ f(v) + 2mδ ·max

{
2

v − eε

eε+1
r1

, f

(
1

2

(
v +

eε

eε + 1
r1

))}
,

(11)

where

f(v) :=

{
exp

(
−2
r2
2

(
v − eε

eε+1
r1

)2
)

if v ≥ eε

eε+1
r1

1 if v < eε

eε+1
r1

}
.
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In particular, if we substitute v = eε

eε+1
r1 + r2 ·

√
1
2

log(1/β) into Equation 11, we get

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ β + 2m · δ ·max

 1

r2

√
1
2

log(1/β)
, β1/4

 . (12)

Proof. Fix an arbitrary t the support of T . Define W̌ (t) :=
∑m

i Ši|ti| for Š ← Bernoulli
(

eε

eε+1

)m
.

Then E
[
W̌ (t)

]
= eε

eε+1
‖t‖1. By Hoeffding’s inequality, for all λ ≥ 0,

P
[
W̌ (t) ≥ eε

eε + 1
‖t‖1 + λ

]
≤ exp

(
−2λ2

‖t‖2
2

)
.

Now define W̌ ∗ by

P
[
W̌ ∗ ≥ v

]
:= f(v) :=

{
exp

(
−2
r2
2

(
v − eε

eε+1
r1

)2
)

if v ≥ eε

eε+1
r1

1 if v < eε

eε+1
r1

}
.

Since W̌ ∗ stochastically dominates W̌ (t) for all t in the support of T , we can apply Theorem
5.2 to obtain the first part of the result (10).

Next, for any c ≥ 1, we have

max

{
f(v − i)− f(v)

i
: i ∈ [m]

}
≤ max

{
f(v − x)

x
: x ∈ [1,∞)

}
(f(v) ≥ 0 and [m] ⊂ [1,∞))

= max

{
max

{
f(v − x)

x
: x ∈ [1, c]

}
,max

{
f(v − x)

x
: x ∈ [c,∞)

}}
≤ max

{
max

{
f(v − x)

1
: x ∈ [1, c]

}
,max

{
1

x
: x ∈ [c,∞)

}}
= max

{
f(v − c), 1

c

}
.

Setting c = 1
2

(
v − eε

eε+1
r1

)
yields the second part of the result (11)

In the next corollary we restrict M to ternary outputs, so it must either guess (Ti = ±1)
or abstain (Ti = 0). We bound the number of guesses by r. In this case the dominating
distribution W̌ ∗ is a binomial distribution, which is relatively easy to compute. This is the
form of Theorem 5.2 that we use in all of our experimental results. We provide pseudocode
in Appendix D.

Corollary 5.4 (Ternary Guesses). Let M : {−1,+1}m → {−1, 0,+1}m satisfy (ε, δ)-
DP. Let S ∈ {−1,+1}m be uniformly random. Let T = M(S) ∈ {−1, 0,+1}m. Suppose
P [‖T‖1 ≤ r] = 1. Then, for all v ∈ R,

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ f(v)+2m·δ·max

{
f(v − i)− f(v)

i
: i ∈ {1, 2, · · · ,m}

}
,
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where
f(v) := P

W̌←Binomial(r, eε

eε+1)

[
W̌ ≥ v

]
.

Now we delve into the proof of Theorem 5.2. We use a decomposition result of Kairouz,
Oh, and Viswanath [KOV15] (see also [MV15] & [Ste22, Corollary 24]).

Lemma 5.5. Let P and Q be probability distributions over Y. Fix ε, δ ≥ 0. Suppose that,
for all measurable S ⊂ Y, we have P (S) ≤ eε ·Q(S) + δ and Q(S) ≤ eεP (S) + δ.

Then there exist δ′ ∈ [0, δ] and distributions P ′, Q′, P ′′, and Q′′ over Y such that the
following three properties are all satisfied. First, we can express P and Q as convex combi-
nations:

P = (1− δ′)P ′ + δ′P ′′,

Q = (1− δ′)Q′ + δ′Q′′.

Second, for all measurable S ⊂ Y, we have e−εP ′(S) ≤ Q′(S) ≤ eεP ′(S). Third, there
exist measurable S, T ⊂ Y such that P ′′(S) = 1, Q′′(T ) = 1, ∀S ′ ⊂ S P (S ′) ≥ Q(S ′), and
∀T ′ ⊂ T Q(T ′) ≥ P (T ′).

Proof. This proof follows that of Steinke [Ste22]. We begin with some formalities: Fix
some base measure such that P and Q are absolutely continuous with respect to the base
measure. (If P and Q are discrete distributions, this can be the counting measure. If they
are continuous distributions, this can be the Lebesgue measure. In general, P +Q serves as
such a measure.) For y ∈ Y , let P (y) and Q(y) denote the Radon-Nikodym derivative of P
and, respectively, Q with respect to this base measure.

If e−ε ·Q(S) ≤ P (S) ≤ eε ·Q(S) for all measurable S, then the result follows trivially by
setting δ′ = 0, P ′ = P and Q′ = Q, and choosing P ′′ and Q′′ to be arbitrary distributions
supported on S = {y ∈ Y : P (y) ≥ Q(y)} and T = {y ∈ Y : P (y) ≤ Q(y)} respectively.
Thus we assume that this is not the case and, hence, that δ > 0 and dTV (P,Q) > 0.

Similarly, if δ ≥ 1 and dTV (P,Q) = 1, then the result follows trivially by setting δ′ = 1,
P ′′ = P , Q′′ = Q, and P ′ = Q′ arbitrary. Thus we assume that min{δ, dTV (P,Q)} < 1.

Fix ε1, ε2 ∈ [0, ε] to be determined later. Define distributions P ′, P ′′, Q′, and Q′′ (in
terms of their Radon-Nikodym derivatives) as follows. For all points y ∈ Y ,

P ′(y) =
min{P (y), eε1 ·Q(y)}

1− δ1

,

P ′′(y) =
P (y)− (1− δ1)P ′(y)

δ1

=
max{0, P (y)− eε1 ·Q(y)}

δ1

,

Q′(y) =
min{Q(y), eε2 · P (y)}

1− δ2

,

Q′′(y) =
Q(y)− (1− δ2)Q′(y)

δ2

=
max{0, Q(y)− eε2 · P (y)}

δ2

,
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where δ1, δ2 ∈ (0, 1) are appropriate normalizing constants. (We will choose ε1 to avoid
δ1 ∈ {0, 1} and, likewise, we will choose ε2 to avoid δ2 ∈ {0, 1}.)

By construction, (1−δ1)P ′+δ1P
′′ = P and (1−δ2)Q′+δ2Q

′′ = Q, so the first property is
satisfied. Note that P ′′ is supported on S = {y ∈ Y : P (y) > eε1 ·Q(y)} and Q′′ is supported
on T = {y ∈ Y : Q(y) > eε2 · P (y)}, which implies the third property.

If 0 < δ1 = δ2 ≤ δ, then we have the appropriate decomposition (with δ′ = δ1 = δ2) and,
for all y ∈ Y , we have

e−ε ≤ e−ε2 ≤ P ′(y)

Q′(y)
=

min{P (y), eε1 ·Q(y)}
min{Q(y), eε2 · P (y)}

≤ eε1 ≤ eε,

as required for the second property.
It only remains to show that we can ensure that 0 < δ1 = δ2 ≤ δ by appropriately setting

ε1, ε2 ∈ [0, ε]. We have

δ1 =

∫
Y

max{0, P (y)− eε1 ·Q(y)}dy =

∫
S

P (y)− eε1 ·Q(y)dy = P (S)− eε1Q(S),

where S = {y ∈ Y : P (y) ≥ eε1 · Q(y)}. If ε1 = ε, then δ1 ≤ δ by assumption. If
ε1 = 0, then δ1 = dTV (P,Q) > 0. By decreasing ε1, we continuously increase δ1. Thus, by
starting at ε1 = ε and decreasing ε1 until either ε1 = 0 or δ1 = δ, we can pick ε1 ∈ [0, ε]
such that δ1 = min{δ, dTV (P,Q)} ∈ (0, 1). Similarly, we can pick ε2 ∈ [0, ε], such that
δ2 = min{δ, dTV (P,Q)}.

We need a Bayesian version of this decomposition. I.e., suppose we observe a sample
from either P or Q and we have a prior on these two possibilities, what is the posterior
distribution on possibilities? The following gives such a result. However, it introduces an
event EP,Q. Intuitively, when EP,Q(Y ) = 1, then we get the result we would get under pure
DP. But EP,Q(Y ) = 0 with probability δ, in which case things can fail arbitrarily.

Kasiviswanathan and Smith [KS14, Lemma 3.4] provide a similar result. Ours improves
the constant factors and is also stated slightly differently.

Lemma 5.6. Let P and Q be probability distributions over Y. Fix ε, δ ≥ 0. Suppose that,
for all measurable S ⊂ Y, we have P (S) ≤ eε ·Q(S) + δ and Q(S) ≤ eεP (S) + δ.

Then there exists a randomized function EP,Q : Y → {0, 1} with the following properties.
Fix p ∈ [0, 1] and suppose X ← Bernoulli(p). If X = 1, sample Y ← P ; and, if X = 0,

sample Y ← Q. Then, for all y ∈ Y, we have

P
X←Bernoulli(p)

Y←XP+(1−X)Q

[X = 1 ∧ EP,Q(Y ) = 1|Y = y] ≤ p

p+ (1− p)e−ε
.

Furthermore,

E
Y←P

[EP,Q(Y )] ≥ 1− δ and E
Y←Q

[EP,Q(Y )] ≥ 1− δ.
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Proof. We apply the decomposition from Lemma 5.5: There exist distributions P ′, Q′, P ′′,
and Q′′ over Y and δ′ ∈ [0, δ] such that

P = (1− δ′)P ′ + δ′P ′′,

Q = (1− δ′)Q′ + δ′Q′′,

and, for all y ∈ Y , e−εP ′(y) ≤ Q′(y) ≤ eεP ′(y) and P ′′(y) > 0 =⇒ P (y) ≥ Q(y) and
Q′′(y) > 0 =⇒ P (y) ≤ Q(y). (Here P (·) denotes the Radon-Nikodym derivative of the
distribution P with respect to some appropriate base measure and similarly for the other
distributions.)

We define EP,Q : Y → {0, 1} by

P [EP,Q(y) = 1] = (1− δ′) · P
′(y)

P (y)
= 1− δ′ · P

′′(y)

P (y)
.

Clearly, E
Y←P,EP,Q

[EP,Q(Y )] =
∫
Y P (y)P [EP,Q(Y ) = 1]dy =

∫
Y(1−δ)P ′(y)dy = 1−δ′ ≥ 1−δ.

Also

E
Y←Q

[EP,Q(Y )] = 1− δ′ E
Y←Q

[
P ′′(y)

P (y)

]
= 1− δ′

∫
Y

Q(y)

P (y)
· P ′′(y)dy

≥ 1− δ′
∫
Y
P ′′(y)dy

= 1− δ′ ≥ 1− δ,
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since P ′′(y) > 0 =⇒ P (y) ≥ Q(y). For any y ∈ Y , we have

P [X = 1 ∧ EP,Q(Y ) = 1|Y = y]

= P [X = 1|Y = y] · P [EP,Q(y) = 1]

=
P [Y = y|X = 1] · P [X = 1]

P [Y = y]
· P [EP,Q(y) = 1]

=
P (y) · p

pP (y) + (1− p)Q(y)
· P [EP,Q(y) = 1]

=
p(1− δ′)P ′(y) + pδ′P ′′(y)

p(1− δ′)P ′(y) + pδ′P ′′(y) + (1− p)(1− δ′)Q′(y) + (1− p)δ′Q′′(y)
· P [EP,Q(y) = 1]

=
p+ p δ′P ′′(y)

(1−δ′)P ′(y)

p+ p δ′P ′′(y)
(1−δ′)P ′(y)

+ (1− p)Q′(y)
P ′(y)

+ (1− p) δ′Q′′(y)
(1−δ′)P ′(y)

· P [EP,Q(y) = 1]

=
p+ p δ′

1−δ′
P ′′(y)
P ′(y)

p+ (1− p)Q′(y)
P ′(y)

+ δ′

1−δ′ ·
pP ′′(y)+(1−p)Q′′(y)

P ′(y)

· P [EP,Q(y) = 1]

≤
p+ p δ′

1−δ′
P ′′(y)
P ′(y)

p+ (1− p)e−ε + 0
· P [EP,Q(y) = 1]

=
p

p+ (1− p)e−ε
·
(

1 +
δ′

1− δ′
P ′′(y)

P ′(y)

)
· P [EP,Q(y) = 1]

=
p

p+ (1− p)e−ε
·
(

P (y)

(1− δ′)P ′(y)

)
· P [EP,Q(y) = 1]

=
p

p+ (1− p)e−ε
.

Now we can prove an analog of Proposition 5.1 for the (ε, δ)-DP setting.

Proposition 5.7 (General Form of Main Result). Let M : {−1,+1}m → [−1,+1]m sat-
isfy (ε, δ)-DP. Let S ∈ {−1,+1}m be m independent samples from 2Bernoulli(p)−1 – i.e.,
P [Si = 1] = p independently for each i ∈ [m]. Let T = M(S) ∈ [−1,+1]m. Then, for all
v ∈ R and all t ∈ [−1,+1]m,

P
S←(2Bernoulli(p)−1)m,

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

∣∣∣∣∣T = t

]
≤

P
Š+←Bernoulli( p·eε

p·eε+1−p)
m

Š−←Bernoulli( (1−p)·eε
(1−p)·eε+p)

m
,F

F (t) +
∑

i∈[m]:ti>0

ti · Š+
i +

∑
i∈[m]:ti<0

−ti · Š−i ≥ v

,
where F : [−1, 1]m → {0, 1, · · · ,m} is independent from Š+ and Š− and satisfies E

T,F
[F (T )] ≤

2m · δ.
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Proof. For i ∈ [m] ∪ {0} and s≤i ∈ {−1, 1}i, let M(s≤i) denote the distribution on [−1, 1]m

obtained by conditioning M(S) on S≤i = s≤i. We can express this as a convex combination:

M(s≤i) =
∑

s>i∈{−1,1}m−i

M(s≤i, s>i) · P
S>i←(2Bernoulli(p)−1)m−i

[S>i = s>i].

For distributions P and Q on [−1, 1]m, let EP,Q : [−1, 1]m → {0, 1} be the randomized func-
tion promised by Lemma 5.6. In our analysis, the internal randomness of EP,Q is independent
from everything else – i.e., the only dependence is induced by its input. Specifically, for all
i ∈ [m], all s<i ∈ {−1, 1}i−1, and all t ∈ [−1, 1]m, we have

P
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
Si = 1 ∧ EM(s<i,1),M(s<i,−1)(T ) = 1

∣∣S<i = s<i, T = t
]
≤ p · eε

p · eε + 1− p
,

E
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
EM(s<i,1),M(s<i,−1)(T )

∣∣S≤i = (s<i, 1)
]
≥ 1− δ,

E
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
EM(s<i,1),M(s<i,−1)(T )

∣∣S≤i = (s<i,−1)
]
≥ 1− δ.

Symmetrically, for all i ∈ [m], all s<i ∈ {−1, 1}i−1, and all t ∈ [−1, 1]m, we have

P
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
Si = −1 ∧ EM(s<i,−1),M(s<i,1)(T ) = 1

∣∣S<i = s<i, T = t
]
≤ (1− p) · eε

(1− p) · eε + p
,

E
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
EM(s<i,−1),M(s<i,1)(T )

∣∣S≤i = (s<i,−1)
]
≥ 1− δ,

E
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
EM(s<i,−1),M(s<i,1)(T )

∣∣S≤i = (s<i, 1)
]
≥ 1− δ.

For simplicity, we define a symmetric event: EQ
P (y) = EP

Q(y) := EP,Q(y) ·EQ,P (y), where the
internal randomnesses are again independent. Combining these, we have, for all i ∈ [m], all
s<i ∈ {−1, 1}i−1, and all t ∈ [−1, 1]m,

P
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
Si=sign(Ti)∧EM(s<i,−1)

M(s<i,1) (T )=1
∣∣∣T = t, S<i=s<i

]
≤

{
p·eε

p·eε+1−p if ti > 0
(1−p)·eε

(1−p)·eε+p
if ti < 0

}

and, for b ∈ {−1, 1}, we have

E
S←(2Bernoulli(p)−1)n,

T←M(S),E

[
E
M(s<i,1)
M(s<i,−1)(T )

∣∣∣S≤i = (s<i, b)
]
≥ 1− 2δ.

For k ∈ [m], s ∈ {−1, 1}m, and t ∈ [−1, 1]m, define

W̃k(s, t) :=
∑
i∈[k]

max{0, ti · si} · EM(s<i,−1)
M(s<i,1) (t) =

∑
i∈[k]

|ti| · I[si = sign(ti) ∧ EM(s<i,−1)
M(s<i,1) (t) = 1]
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and
W̌k(t) =

∑
i∈[k]

Ši(t) · |ti|,

where, for each i ∈ [k] independently, Š(t)i ← Bernoulli( p·eε
p·eε+1−p) if ti > 0 and Š(t)i ←

Bernoulli( (1−p)·eε
(1−p)·eε+p

) if ti < 0.

By induction and Lemma 4.9, for any k ∈ [m] and t ∈ [−1, 1]m, the conditional distri-

bution (W̃k(S, t)|M(S) = t) where S ← (2Bernoulli(p)− 1)m is stochastically dominated by
W̌k(t).

For s ∈ {−1, 1}m and t ∈ [−1, 1]m, define

F (s, t) :=
m∑
i

I
[
E
M(s<i,−1)
M(s<i,1) (t) = 0

]
,

so that
Wm(s, t) :=

∑
i∈[m]

max{0, ti · si} ≤ W̃m(s, t) + F (s, t).

Since the conditional distribution (W̃k(S, t)|M(S) = t) where S ← (2Bernoulli(p) − 1)m

is stochastically dominated by W̌k(t), Wm is stochastically dominated by the convolution
W̌m(T ) + F (S, T ).

Finally F (s, t) is supported on {0, 1, · · · ,m} and

E [F (s, t)] =
m∑
i

P
[
E
M(s<i,−1)
M(s<i,1) (T ) = 0

]
≤ 2m · δ.

Since W̌m(T ) does not depend on S, the input S does not contribute to the dependence
between F (S, T ) and W̌m(T ), so we can elide this input in the statement – i.e., F (T ) =
F (S, T ) for S drawn from an appropriate distribution.

Proposition 5.7 is rather unwieldy. It can be simplified by setting p = 1
2

and identifying
the optimal distribution F (T ), which yields Theorem 5.2.

Proof of Theorem 5.2. Let M : {−1, 1}m → [−1, 1]m satisfy (ε, δ)-DP. Let S ∈ {−1, 1}m
be uniformly random. Let T = M(S) ∈ [−1, 1]m. Setting p = 1

2
in Proposition 5.7 and

averaging over T , we have, for all v ∈ Z,

P
S←{−1,1}m
T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ P

S←{−1,1}m,T←M(S),

Š←Bernoulli( eε
eε+1)

m
,F

[
F (T ) +

m∑
i

Ši · |Ti| ≥ v

]
,

where F is arbitrary – but independent from Š – except for the constraints that F (T ) is
supported on {0, 1, · · · ,m} and E [F (T )] ≤ 2m · δ.
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Given these constraints, we can formulate finding the optimal distribution F (t) for a
given t ∈ [−1, 1]m and v ∈ R as a linear program:

maximize P̌
W,F

[
W̌ (t) + F (t) ≥ v

]
=

m∑
i=0

P
F

[F (t) = i] · P̌
W

[
W̌ (t) ≥ v − i

]
subject to E

F
[F (t)] =

m∑
i=0

P
F

[F (t) = i] · i ≤ 2m · δ,

m∑
i=0

P
F

[F (t) = i] = 1, and

P
F

[F (t) = i] ≥ 0 ∀i ∈ {0, 1, · · · ,m},

where W̌ (t) :=
∑m

i Ši|ti| for Š ← Bernoulli
(

eε

eε+1

)m
.

By strong duality, the linear program above has the same value as its dual:

minimize 2mδα + β

subject to α · i+ β ≥ P̌
W

[
W̌ (t) ≥ v − i

]
∀i ∈ {0, 1, · · · ,m},

α ≥ 0.

Any feasible solution to the dual gives an upper bound on the primal. So, in particular, we
can use the solution given by

β = P̌
W ∗

[
W̌ ∗ ≥ v

]
,

α = max

(
{0} ∪

{
1

i

(
P̌
W ∗

[
W̌ ∗ ≥ v − i

]
− β

)
: i ∈ {1, 2, · · · ,m}

})
,

where W̌ ∗ is a distribution on R that satisfies P̌
W ∗

[
W̌ ∗ ≥ v − i

]
≥ P̌

W

[
W̌ (t) ≥ v − i

]
for all

i ∈ {0, 1, · · · ,m} and all t in the support of T .

Theorem 5.2 gives a worst-case bound in terms of T . Specifically, W̌ ∗ must uniformly
bound W̌ (t) for all t in the support of T . Proposition 5.7 is more general than this. Thus
we give another corollary that allows us to have the bound adjust to T . In particular, this
result allows the auditing procedure (Algorithm 1 or 3) to dynamically choose the number
of guesses r = k+ + k−.

Corollary 5.8 (Variant of Main Result). Let M : {−1,+1}m → [−1,+1]m satisfy (ε, δ)-
DP. Let S ∈ {−1,+1}m be uniformly random. Let T = M(S) ∈ [−1,+1]m. Then, for all
γ ∈ [0, 1] and τ > 0,

P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ gm,ε(T, γ) + τ

]
≤ γ +

2mδ

τ
,

22



where gm,ε : [−1,+1]m × [0, 1]→ R is an arbitrary function satisfying

∀t ∈ [−1, 1]m ∀γ ∈ [0, 1] P
Š←Bernoulli( eε

eε+1)
m

[
m∑
i

|ti| · Ši ≥ gm,ε(t, γ)

]
≤ γ.

Proof. Setting p = 1
2

in Proposition 5.7 yields

∀v ∈ R ∀t ∈ [−1,+1]m P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ v

∣∣∣∣∣T = t

]

≤ P
Š←Bernoulli( eε

eε+1),F

[
F (t) +

m∑
i

|ti| · Ši ≥ v

]
,

where F : [−1, 1]m → {0, 1, · · · ,m} satisfies E
S←{−1,+1}m
T←M(S),F

[F (T )] ≤ 2mδ.

By a union bound and Markov’s inequality, we have, for all t ∈ [−1, 1]m, all γ ∈ [0, 1],
and all τ > 0,

P
Š←Bernoulli( eε

eε+1),F

[
F (t) +

m∑
i

|ti| · Ši ≥ gm,ε(t, γ) + τ

]

≤ P
Š←Bernoulli( eε

eε+1),F

[
τ +

m∑
i

|ti| · Ši ≥ gm,ε(t, γ) + τ

]
+ P

F
[F (t) > τ ]

≤ P
Š←Bernoulli( eε

eε+1),F

[
m∑
i

|ti| · Ši ≥ gm,ε(t, γ)

]
+

E
F

[F (t)]

τ

≤ γ +
E
F

[F (t)]

τ
.

We combine inequalities, set v = gm,ε(t, γ) + τ , and average over T to obtain

∀γ ∈ [0, 1] ∀τ > 0 P
S←{−1,+1}m

T←M(S)

[
m∑
i

max{0, Ti · Si} ≥ gm,ε(T, γ) + τ

]

≤ γ +

E
S←{−1,+1}m
T←M(S),F

[F (T )]

τ

≤ γ +
2mδ

τ
.
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Algorithm 3 DP-SGD Auditor (Instantiation of Algorithm 1)
1: Data: x ∈ Xn consisting of m auditing examples (a.k.a. canaries) and n−m non-auditing examples.
2: Parameters: Number of examples to randomize m for audit, number of positive k+ and negative k−

guesses audit-type (either black-box or white-box).
3: For i ∈ [m] sample Si ∈ {−1,+1} independently with E [Si] = 0. Set Si = 1 for all i ∈ [n] \ [m].
4: Split x into xIN ∈ XnIN and xOUT ∈ XnOUT according to S, where nIN + nOUT = n. Namely, if Si = 1,

then xi is in xIN; and, if Si = −1, then xi is in xOUT.
5: Run DP-SGD (Algorithm 2) on input xIN with appropriate parameters.
6: Let ` be the number of iterations and let f : Rd ×X → R be the loss.
7: Let w0, · · · , w` ∈ Rd be the output of DP-SGD.
8: if audit-type = black-box then
9: Define Score(xi, w

`) = `(w0, xi)− `(w`, xi) for all i ∈ [m].
10: Compute the vector of scores Y =

(
Score(xi, w

`) : i ∈ [m]
)
∈ Rm.

11: else if audit-type = white-box then
12: procedure Score(x∗, w

1, · · · , w`)
13: for t = 1, · · · , ` do
14: Compute gt = ∇wt−1`(wt−1, x∗) ∈ Rd.

15: Clip ĝt = min
{

1, c
‖gt‖2

}
· gt ∈ Rd.

16: Let vt =
〈
wt−1 − wt, ĝt

〉
∈ R.

17: end for
18: Return

∑`
t=1 v

t ∈ R.
19: end procedure
20: Compute the vector of scores Y =

(
Score(xi, w

0, w1, · · · , w`) : i ∈ [m]
)
∈ Rm.

21: end if
22: Sort the scores Y . Let T ∈ {−1, 0,+1}m be +1 for the largest k+ scores and −1 for the smallest k−

scores.
23: (I.e., T ∈ {−1, 0,+1}m maximizes

∑m
i Ti · Yi subject to

∑m
i |Ti| = k+ + k− and

∑m
i Ti = k+ − k−.)

24: Return: The vector S ∈ {−1,+1}m indicating the true selection and the guesses T ∈ {−1, 0,+1}m.

6 Experiments

Experiment Setup Our contributions are focused on improved analysis of an existing
privacy attack, and are therefore orthogonal to the design of an attack. As a result, we rely
on the experimental setup of the recent auditing procedure of Nasr, Hayes, Steinke, Balle,
Tramèr, Jagielski, Carlini, and Terzis [NHSBTJCT23].

We run DP-SGD on the CIFAR-10 dataset with Wide ResNet (WRN-16) [ZK16], we
followed the experimental setup from Nasr et al. [NHSBTJCT23]. Our experiments reach
76% test accuracy at (ε = 8, δ = 10−5)-DP, which is comparable with the state-of-the-
art [DBHSB22]. Unless specified otherwise, all lower bounds are presented with 95% con-
fidence. Following Nasr et al. [NHSBTJCT23], we refer to the setting where the adversary
has access to all intermediate steps as “white-box” and when the adversary can only see the
last iteration as “black-box.” We experiment with both settings.

Algorithm 3 summarizes our approach for auditing DP-SGD. The results are converted
into lower bounds on the privacy parameters using Theorem 5.2 / Corollary 5.4.

We also experiment with both the gradient and input attacks proposed by Nasr et al.
[NHSBTJCT23]. In particular, for the gradient attack we use the strongest attack they
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Figure 4: Effect of the number of auditing
examples (m) in the white-box setting.
By increasing the number of the auditing
examples we are able to achieve tighter
empirical lower bounds.
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Figure 5: Effect of the number of addi-
tional examples (n−m) in the white-box
setting. Importantly, adding additional
examples does not impact the auditing re-
sults in the white-box setting.

proposed – the “Dirac canary” approach – which sets all gradients to zero except at a single
random index. In our setting where we need to create multiple auditing examples (canaries)
we make sure the indices selected in our experiments do not have any repetitions. To compute
the score for gradient space attacks, we use the dot product between the gradient update and
auditing gradient. When auditing in input space, we leverage two different types of injected
examples as:

1. Mislabeled example: We select a random subset of the test set and randomly relabel
them (ensuring the new label is not the same as the original label).

2. In-distribution example: We select a random subset of the test set.

For input space audits, we use the loss of the input example as the score. In our experi-
ments we report the attack with the highest lower bound.

In our experiments, we evaluate different values of k+ and k− and only report the highest
auditing results. Since this is doing multiple hypothesis testing on the same data, we are
reducing the confidence value of our results. However, this is commonly used in the previous
works [ZBWTSRPNK22; MSS22] and can be easily improved by using a different set of
observations to select the parameters for the auditing and another set of the data for the
auditing itself (see also Corollary 5.8).

6.1 Gradient Space attacks

We start with the strongest attack: We assume white-box access – i.e., the auditor sees all
intermediate iterates of DP-SGD – and that the auditor can insert examples with arbitrary
gradients into the training procedure. First, we evaluate the effect of the number of the
auditing example on the tightness. Figure 4 demonstrates that as the number of examples
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Figure 7: Auditing CIFAR10 SoTA
in white-box setting using gradient at-
tacks. Our auditing framework can
achieve meaningful empirical privacy
lower bounds for SoTA models.

increases, the auditing becomes tighter. However, the impact of the additional examples
eventually diminishes. Intriguingly, adding more non-auditing training examples (resulting
in a larger n compared to m) does not seem to influence the tightness of the auditing, as
depicted in Figure 5. This can be primarily due to the fact that gradient attacks proposed
in prior studies can generate near-worst-case datasets, irrespective of the presence of other
data points.

Another parameter that might affect the auditing results is the number of iterations `
in the DP-SGD algorithm. As shown in Figure 6 we compare the extreme setting of having
one iteration to multiple iterations and we do not observe any significant difference in the
auditing when auditing for the equivalent privacy guarantees (by increasing the noise). The
results confirm the tightness of composition and that the number of iterations does not have
significant effect on auditing in white-box setting.

Now we directly use the parameters used in the training CIFAR10 models. Figure 7
summarizes results for the CIFAR10 models. We used m = 5000 and all of the training
dataset from CIFAR10 (n = 50, 000) for the attack. We were able to achieve 76% accuracy
for ε = 8 (δ = 10−5, compared to 78% when not auditing). We are able to achieve an
empirical lower bound of 0.7, 1.2, 1.8, 3.5 for theoretical epsilon of 1, 2, 4, 8 respectively. While
our results are not as tight as the prior works, we only require a single run of training which
is not possible using the existing techniques. In the era of exponentially expanding machine
learning models, the computational and financial costs of training these colossal architectures
even once are significant. Expecting any individual or entity to shoulder the burden of
training such models thousands of times for the sake of auditing or experimental purposes
is both unrealistic and economically infeasible. Our method offers a unique advantage by
facilitating the auditing of these models, allowing for an estimation of privacy leakage in a
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white-box setting without significantly affecting performance.

6.2 Input Space Attacks

Now we evaluate the effect of input space attacks in the black-box setting. In this attack,
the auditor can only insert actual images into the training procedure and cannot control any
of the aspects of the training. Then, the adversary can observe the final model as mentioned
in Algorithm 3. This is the weakest attack setting.

For simplicity we start with the setting where m = n; in other words, all of the examples
used to train the model are randomly included or excluded and can be used for auditing.
Figure 8 illustrates the result of this setting. As we see from the figure, unlike the white-box
attack we do not observe a monotonic relationship between the number of auditing examples
and the tightness of the auditing. Intuitively, when the number of auditing examples are low
then we do not have enough observations to have high confidence lower bounds for epsilon.
On the other hand, when the number of auditing examples are high, the model does not have
enough capacity to “memorize” all of the auditing examples which reduces the tightness of
the auditing. However, this can be improved by designing better black-box attacks which
we reiterate in the next section.

We also evaluate the effect of adding additional training data to the auditing in Figure 9.
We see that adding superfluous training data significantly reduces the effectiveness of au-
diting. The observed reduction in auditing effectiveness with the addition of more training
data could be attributed to several factors. One interpretation could be that the theoret-
ical privacy analysis in a black-box setting tends to be considerably more loose when the
adversary is constrained to this setting. This could potentially result in an overestimation
of the privacy bounds. Conversely, it is also plausible that the results are due to the weak
black-box attacks and can be improved in the future.

7 Discussion

Our main contribution is showing that we can audit the differential privacy guarantees of an
algorithm with a single run. In contrast, prior methods require hundreds – if not thousands
– of runs, which is computationally prohibitive for all but the simplest algorithms. Our
experimental results demonstrate that in practical settings our methods are able to give
meaningful lower bounds on the privacy parameter ε.

However, while we win on computational efficiency, we lose on tightness of our lower
bounds. We now illustrate the limitations of our approach and discuss the extent to which
this is inherent, and what lessons we can learn.

But, first, we illustrate that our method can give tight lower bounds. In Figure 10, we
consider an idealized setting where the number of guesses changes and the fraction that are
correct is fixed at eε

eε+1
for ε = 4 – i.e., 98.2% of guesses are correct.4 This is the maximum

expected fraction of correct guesses compatible with (4, 0)-DP. In this setting the lower

4The number of correct guesses is rounded down to an integer (which results in the lines being jagged).
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Figure 8: Effect of the number of audit-
ing examples (m) in the black-box setting.
Black-box auditing is very sensitive to the
number of auditing examples.
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Figure 9: Effect of the number of addi-
tional example on auditing (n−m) in the
black-box setting. By increasing the num-
ber of additional examples, the auditing
results get significantly looser.

bound on ε does indeed come close to 4. With 10,000 guesses we get ε ≥ 3.87 with 95%
confidence.

Note that the lower bound in Figure 10 improves as we increase the number of guesses.
This is simply accounting for sampling error – to get a lower bound with 95% confidence, we
must underestimate to account for the fact that the number of correct guesses may have been
inflated by chance. As we get more guesses, the relative size of chance deviations reduces.

Limitations: Next we consider a different idealized setting – one that is arguably more
realistic – where our method does not give tight lower bounds. Suppose Si ∈ {−1,+1}
indicates whether example i ∈ [n] is included or excluded. In Figure 11, we consider Gaussian
noise addition. That is, we release a sample from N (Si, 4). (In contrast, Figure 10 considers
randomized response on Si.) Lemma 4.5 gives an upper bound of (4.38, 10−5)-DP. Unlike
for randomized response, abstentions matter here. We consider 100,000 examples, each of
which has a score sampled from N (Si, 4), where Si ∈ {−1,+1} is uniformly random. We
pick the largest r/2 scores and guess Si = +1. Similarly we guess Si = −1 for the smallest
r/2 scores. We abstain for the remaining 100, 000 − r examples. If we make more guesses
(i.e., increase r), then the accuracy goes down and so does our lower bound. We must trade
off between more guesses being less accurate on average and more guesses having smaller
relative sampling error.

In Figure 11, the highest value of the lower bound is ε ≥ 2.675 for δ = 10−5, which is
attained by 1439 correct guesses out of 1510. In contrast, the upper bound is ε = 4.38 for
δ = 10−5. To get a matching upper bound of ε ≤ 2.675 we would need to set δ = 0.0039334.
In other words, the gap between the upper and lower bounds is a factor of 393× in δ.

Figure 12 considers the same idealized setting as Figure 11, but we fix the number of
guesses to 1,500 out of 100,000 (of which 1,429 are correct); instead we vary δ and consider

There are no abstentions.
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Figure 10: Comparison of upper and lower bounds for idealized setting with varying number
of guesses. The fraction of correct guesses is always eε

eε+1
for ε = 4 (i.e., 98.2%).

different confidence levels.
Are these limitations inherent? Figures 11 & 12 illustrate the limitations of our

approach. They also hint at the causes: The number of guesses versus abstentions, the δ
parameter, and the confidence all have a large effect on the tightness of our lower bound.

Our theoretical analysis is fairly tight; there is little room to improve Theorem 5.2. We
argue that the inherent problem is a mismatch between “realistic” DP algorithms and the
“pathological” DP algorithms for which our analysis is nearly tight. This mismatch makes
our lower bound much more sensitive to δ than it “should” be.

To be concrete about what we consider pathological, considerM : {−1,+1}m → {−1, 0,+1}m
defined by Algorithm 4. This algorithm satisfies (ε, δ)-DP and makes r guesses with m−r ab-

stentions. In the X = 1 case, the expected fraction of correct guesses is mδ
rβ

+
(

1− mδ
rβ

)
· eε

eε+1
.

This is higher than the average fraction of correct guesses, but if we want confidence 1− β
in our lower bound, we must consider this case, as X = 1 happens with probability β.

Intuitively, the contribution from δ to the fraction of correct guesses should be negligible.
However, we see that δ is multiplied by m/rβ. That is to say, in the settings we consider,
δ is multiplied by a factor on the order of 100× or 1000×, which means δ = 10−5 makes a
non-negligible contribution to the fraction of correct guesses.

It is tempting to try to circumvent this problem by simply setting δ to be very small.
However, as shown in Figure 12, the upper bound on ε also increases as δ → 0.

Unfortunately, there is no obvious general way to rule out algorithms that behave like
Algorithm 4. The fundamental issue is that the privacy losses of the m examples are not
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Figure 11: Comparison of upper and lower bounds for idealized setting with varying number
of guesses. For each example i ∈ [m], we release Si+ξi, where ξi ← N (0, 4) and Si ∈ {−1,+1}
is independently uniformly random and indicates whether the sample is included/excluded.
For the upper bound, we compute the exact (4.38, 10−5)-DP guarantee for the Gaussian
mechanism (Lemma 4.5). For the lower bound, we plot the bound of Theorem 5.2 with 95%
confidence for varying numbers of guesses r. We consider a total of m = 100, 000 randomized
examples; we guess Ti = +1 for the largest r/2 scores and we guess Ti = −1 for the smallest
r/2 scores; we guess Ti = 0 for the remaining m−r examples. The number of correct guesses
is set to dr · P [Si = +1|Si + ξi > c]e, where c is a threshold such that P [Si + ξi > c] = r

2m
.

independent; we shouldn’t expect them to be independent, but we also shouldn’t expect
them to be pathologically dependent in reality.

Directions for further work: Our work highlights several questions for further explo-
ration:

• Improved attacks: Our experimental evaluation uses existing attack methods. Any
improvements to membership inference attacks could be combined with our results to
yield improved privacy auditing.

One limitation of our attacks is that some examples may be “harder” than others and
the scores we compute do not account for this. When we have many runs, we can
account for the hardness of individual examples [CCNSTT22], but in our setting it is
not obvious how to do this.

• Algorithm-specific analyses: Our methods are generic – they can be applied to
essentially any DP algorithm. This is a strength, but there is also the possibility that
we could obtain stronger results by exploiting the structure of specific algorithms. A
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Figure 12: Comparison of upper and lower bounds for idealized setting with varying δ.
For each example i ∈ [m], we release Si + ξi, where ξi ← N (0, 4) and Si ∈ {−1,+1} is
independently uniformly random and indicates whether the sample is included/excluded.
For the upper bound, we compute the exact (4.38, 10−5)-DP guarantee for the Gaussian
mechanism (Lemma 4.5). For the lower bound, we plot the bound of Theorem 5.2 with
75%, 95%, and 99% confidence. We consider m = 100, 000 randomized examples and 1,500
guesses of which 1,429 are correct. This corresponds to guessing Ti = +1 for the largest 750
scores, Ti = −1 for the smallest 750 scores, and Ti = 0 for the remaining 98,500 examples.

natural example of such structure is the iterative nature of DP-SGD. That is, we can
view one run of DP-SGD as the composition of multiple independent DP algorithms
which are run sequentially.

• Multiple runs & multiple examples: Our method performs auditing by including
or excluding multiple examples in a single training run, while most prior work performs
multiple training runs with a single example example included or excluded. Can we
get the best of both worlds? If we use multiple examples and multiple runs, we should
be able to get tighter results with fewer runs.

• Other measures of privacy: Our theoretical analysis is tailored to the standard
definition of differential privacy. But there are other definitions of differential privacy
such as Rényi DP. And, in particular, many of the upper bounds (e.g., Proposition
4.6) are stated in this language. Hence it would make sense for the lower bounds also
to be stated in this language.

• Beyond lower bounds: Privacy auditing produces empirical lower bounds on the
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Algorithm 4 Pathological Algorithm

1: Input: s ∈ {−1,+1}m
2: Parameters: r ∈ [m], ε, δ ≥ 0, β ∈ [0, 1]. Assume 0 < mδ ≤ rβ.
3: Select U ⊂ [m] of size |U | = r uniformly at random.
4: Set Ti = 0 for all i /∈ U .
5: Sample X ← Bernoulli(β).
6: if X = 1 then
7: for i ∈ U do
8: Independently sample Ti ∈ {−1,+1} with P [Ti = si] = mδ

rβ
+
(

1− mδ
rβ

)
· eε

eε+1
.

9: end for
10: else if X = 0 then
11: for i ∈ U do
12: Independently sample Ti ∈ {−1,+1} with P [Ti = si] = eε

eε+1
.

13: end for
14: end if
15: Output: T ∈ {−1, 0,+1}m.

privacy parameters. In contrast, mathematical analysis produces upper bounds. Both
are necessarily conservative, which leaves a large gap between the upper and lower
bounds. A natural question is to find some middle ground – an estimate which is
neither a lower nor upper bound, but provides some meaningful estimate of the “true”
privacy loss. However, it is unclear what kind of guarantee such an estimate should
satisfy, or what interpretation the estimate should permit.
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Recall that our auditing framework starts with m examples x1, · · · , xm and then samples
S ∈ {−1,+1}m uniformly at random. Then each example xi is included in the dataset if
Si = +1 and excluded if Si = −1. Thus flipping Si corresponds to adding or removing xi.

Instead we can start with 2m examples x1, · · · , x2m and then sample S ∈ {−1,+1}m
uniformly. Now, if Si = +1, we include x2i in the dataset and, if Si = −1, we include x2i−1

instead. Thus flipping Si corresponds to replacing x2i with x2i−1 or vice versa.
This alternative approach ensures that we always include m out of the 2m examples – i.e.,

the dataset size is not random. This still fits the formalism of our theoretical analysis (§5).
However, the DP guarantee of the algorithm being audited (e.g., DP-SGD) must now be
with respect to replacement of one example, rather than addition or removal.5 The auditor
also needs to change slightly; rather than being given xi and needing to guess whether or not
it is included in the datsets, the auditor is given both x2i and x2i−1 and must guess which of
the two is included.

B Generalization from Differential Privacy

Our analysis builds on the connection between DP and generalization [DFHPRR15b; DFH-
PRR15a; BNSSSU16; FS17; JLNRSMS19]. We now extend our theoretical results (§5) to
this setting. The main difference between our analysis in Section 5 and the prior work on
DP and generalization is that we restrict to i.i.d. binary inputs with a uniform distribution,
while prior work considers i.i.d. inputs from an arbitrary set with an arbitrary distribution.
Thus the prior work is more general, but, as we now show, we can reduce the general case
to the binary case.

Theorem B.1 (DP implies Generalization). Let A : X n → Y × [0, 1] be (ε, δ)-DP (with
respect to replacement). Let P be a distribution on X . Let q : Y × X → [0, 1]. For x ∈ X n

and y ∈ Y, denote q(y, x) = 1
n

∑n
i q(y, xi) ∈ [0, 1] and q(y, P ) = E

X←P
[q(y,X)] ∈ [0, 1].

Then, for all γ ≥ 3
2
η ≥ 0, we have

P
X←Pn

Y←A(X)

[q(Y,X)− q(Y, P ) ≥ γ] ≤
P
[
W̌ ≥ (1+γ− 3

2
η)n

2

]
+ 2 · e−nη2/2

+ maxi∈[n]
2nδ
i
P
[

(1+γ− 3
2
η)n

2
> W̌ ≥ (1+γ− 3

2
η)n

2
− i
] ,

where W̌ ← Binomial
(
n, eε

eε+1

)
.

The proof of Theorem B.1 relies on the following technical lemma. This is using what is
known as the “ghost samples” symmetrization technique [SZ20, Footnote 2].

Lemma B.2. Let x+, x− ∈ X n. For s ∈ {−1,+1}n, define xs ∈ X n by xsi = x+
i if si = +1

and xsi = x−i if si = −1. Let A : X n → Y be (ε, δ)-DP (for replacement). Let q : Y × X →
[0, 1], and denote q(y, x) = 1

n

∑n
i q(y, xi) ∈ [0, 1] for y ∈ Y and x ∈ X n.

5By group privacy, (ε, δ)-DP for addition or removal implies (2ε, (eε + 1) · δ)-DP for replacement.
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Let S ∈ {−1,+1} be uniform. Then, for all v, r ≥ 0,

P
S←{−1,+1}n
Y←A(xS)

[
q(Y, xS)− q(Y, x−S) ≥ v

n

]
≤ P

[
W̌ ≥ v − r + n

2

]
+ max

i∈[n]

2nδ

i
P
[
v − r + n

2
> W̌ ≥ v − r + n

2
− i
]

+ e−r
2/2n,

where W̌ ← Binomial
(
n, eε

eε+1

)
.

Proof. LetR : [−1,+1]→ {−1,+1} denote the randomized rounding function. I.e., E [R(x)] =
x for all x ∈ [−1, 1]. We define M : {−1,+1}n → {−1,+1}n as follows. The inputs
x+, x− ∈ X n are “hardcoded” into M and, for this analysis, we do not consider them pri-
vate. Instead the input is s ∈ {−1,+1}n. The algorithm M(s) first runs A(xs) and then
postprocesses the output using the hardcoded information. Specifically, given A(s) = y, the
output M(s) ∈ {−1,+1}n has a product distribution with M(s)i = R(q(y, x+

i )− q(y, x−i )) ∈
{−1,+1} for all y ∈ Y and all i ∈ [n]. That is, for each coordinate i ∈ [n], we independently
randomly round q(y, x+

i )− q(y, x−i ) ∈ [−1,+1] to {−1,+1}, where y is the output of A(xs).
By postprocessing, M is (ε, δ)-DP. Thus we can apply Theorem 5.2 to M . We have, for all
r, v ≥ 0,

P
S←{−1,+1}n
Y←A(xS)

[
q(Y, xS)− q(Y, x−S) ≥ v

n

]
= P

S←{−1,+1}n
Y←A(xS)

[
n∑
i

q(Y, xSi )− q(Y, x−Si ) ≥ v

]

= P
S←{−1,+1}n
Y←A(xS)

[
n∑
i

(q(Y, x+
i )− q(Y, x−i )) · Si ≥ v

]

= P
S←{−1,+1}n
Y←A(xS)

[
E
R

[
n∑
i

R(q(Y, x+
i )− q(Y, x−i )) · Si

]
≥ v

]

≤ P
S←{−1,+1}n
Y←A(xS),R

[
n∑
i

R(q(Y, x+
i )− q(Y, x−i )) · Si ≥ v − r

]
+ e−r

2/2n (Hoeffding & union)

= P
S←{−1,+1}n

T←M(S)

[
n∑
i

Ti · Si ≥ v − r

]
+ e−r

2/2n

= P
S←{−1,+1}n

T←M(S)

[
n∑
i

2 max{0, Ti · Si} − |Ti| ≥ v − r

]
+ e−r

2/2n (Si ∈ {−1,+1})

= P
S←{−1,+1}n

T←M(S)

[
n∑
i

max{0, Ti · Si} ≥
v − r + n

2

]
+ e−r

2/2n (|Ti| = 1)

≤ P
[
W̌ ≥ v − r + n

2

]
+ max

i∈[n]

2nδ

i
P
[
v − r + n

2
> W̌ ≥ v − r + n

2
− i
]

+ e−r
2/2n,

39



where W̌ ← Binomial
(
n, eε

eε+1

)
. Note that Theorem 5.2 applies with any distribution W̌ ∗

satisfying

∀v ∈ R P
[
W̌ ∗ > v

]
≥ sup

t∈support(M(s))

P
Š←Bernoulli( eε

eε+1)
n

[
n∑
i

Ši · |ti| > v

]
.

If t ∈ support(M(s)), then |ti| = 1 for all i ∈ [n], which implies W̌ satisfies this requirement.
In the analysis above, we used Hoeffding’s inequality to show that the sum of randomized
roundings is close to (within r of) the unrounded sum with high probability and we carry
this failure probability e−r

2/2n into the final result.

Proposition B.3. Let A : X n → Y be (ε, δ)-DP (with respect to replacement). Let q :
Y × X → [0, 1], and denote q(y, x) = 1

n

∑n
i q(y, xi) ∈ [0, 1] for y ∈ Y and x ∈ X n. Let P be

a distribution on X . Then, for all γ, η ≥ 0, we have

P
X,X̃←Pn

Y←A(X)

[
q(Y,X)− q(Y, X̃) ≥ γ

]
≤ P

[
W̌ ≥ (1 + γ − η)n

2

]
+ max

i∈[n]

2nδ

i
P
[

(1 + γ − η)n

2
> W̌ ≥ (1 + γ − η)n

2
− i
]

+ e−nη
2/2,

where W̌ ← Binomial
(
n, eε

eε+1

)
.

Proof. The proof relies on Lemma B.2, which considers x+, x− ∈ X n to be fixed. We now
average the lemma over these being i.i.d. samples from P , which gives

E
X+,X−←Pn

 P
S←{−1,+1}n
Y←A(XS)

[
q(Y,XS)− q(Y,X−S) ≥ v

n

]
≤ P

[
W̌ ≥ v − r + n

2

]
+ max

i∈[n]

2nδ

i
P
[
v − r + n

2
> W̌ ≥ v − r + n

2
− i
]

+ e−r
2/2n,

where W̌ ← Binomial
(
n, eε

eε+1

)
. Since the samples from P are independent, the coordinates

of X+ and X− are interchangeable, so

P
X,X̃←Pn

Y←A(X)

[
q(Y,X)− q(Y, X̃) ≥ γ

]
= E

X+,X−←Pn

 P
S←{−1,+1}n
Y←A(XS)

[
q(Y,XS)− q(Y,X−S) ≥ v

n

]
for v = γn ≥ 0. Setting r = nη yields the result.

Proof of Theorem B.1. Let X, X̃ ← P n be two independent samples. Let Y ← A(X). Let
W̌ ← Binomial

(
n, eε

eε+1

)
. By Proposition B.3, for all γ, η ≥ 0, we have

P
X,X̃←Pn

Y←A(X)

[
q(Y,X)− q(Y, X̃) ≥ γ

]
≤ P

[
W̌ ≥ (1 + γ − η)n

2

]
+ max

i∈[n]

2nδ

i
P
[

(1 + γ − η)n

2
> W̌ ≥ (1 + γ − η)n

2
− i
]

+ e−nη
2/2,
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By Hoeffding’s inequality, for all η ≥ 0, we have

∀y ∈ Y P
X̃←Pn

[
q(y, X̃)− q(y, P ) ≥ η

2

]
≤ exp(−nη2/2).

By a union bound, for all γ ≥ η ≥ 0, we have

P
X←Pn

Y←A(X)

[q(Y,X)− q(Y, P ) ≥ γ] ≤
P

X,X̃←Pn

Y←A(X)

[
q(Y, X̃)− q(Y, P ) ≥ γ − η/2

]
+ P

X,X̃←Pn

Y←A(X)

[
q(Y,X)− q(Y, X̃) ≥ η/2

] .

Combining inequalities yields the result:

P
X←Pn

Y←A(X)

[q(Y,X)− q(Y, P ) ≥ γ]

≤ P
[
W̌ ≥ (1 + γ − η/2− η)n

2

]
+ 2 · e−nη2/2

+ max
i∈[n]

2nδ

i
P
[

(1 + γ − η/2− η)n

2
> W̌ ≥ (1 + γ − η/2− η)n

2
− i
]
.

B.1 Comparison to Prior Work on DP & Generalization

We now briefly compare our results to the prior work on the connection between DP and
generalization [DFHPRR15b; DFHPRR15a; BNSSSU16; FS17; JLNRSMS19]. We focus on
the work of Jung, Ligett, Neel, Roth, Sharifi-Malvajerdi, and Shenfeld [JLNRSMS19] as it
has the sharpest results in the literature.

Note that the prior work is focused on the setting of adaptive data analysis, while we are
focused on the setting of auditing. This difference is mostly cosmetic, but there is a material
difference when the prior results are applied to our setting: In addition to outputting guesses,
the prior works assume that the algorithm outputs a differentially private estimate of the
number of correct guesses. The guarantee then is that this differentially private estimate is
close to the distributional average (i.e., only half of the guesses being correct). In contrast,
for auditing, we want the true number of correct guesses to be close to the distributional
average and don’t produce a DP estimate. We can convert between these two settings using
the triangle inequality.

Below we state the accuracy guarantee that we compare against, followed by a corollary
of Theorem B.1 that applies the triangle inequality and a union bound to ensure that it is
directly comparable.

Theorem B.4 ([JLNRSMS19, Theorem 3.5]). Let A : X n → Y × [0, 1] be (ε, δ)-DP (with
respect to replacement). Let P be a distribution on X . Let q : Y × X → [0, 1]. For x ∈ X n
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and y ∈ Y, denote q(y, x) = 1
n

∑n
i q(y, xi) ∈ [0, 1] and q(y, P ) = E

X←P
[q(y,X)] ∈ [0, 1].

Suppose
P

X←Pn

(Y,Z)←A(X)

[|Z − q(Y,X)| ≥ α] ≤ β.

Then, for any c, d > 0, we have

P
X←Pn

(Y,Z)←A(X)

[|Z − q(Y, P )| > α + eε − 1 + c+ 2d] ≤ β

c
+
δ

d
. (13)

Corollary B.5 (Theorem B.1, triangle inequality, & union bound). Let A : X n → Y× [0, 1]
be (ε, δ)-DP (with respect to replacement). Let P be a distribution on X . Let q : Y × X →
[0, 1]. For x ∈ X n and y ∈ Y, denote q(y, x) = 1

n

∑n
i q(y, xi) ∈ [0, 1] and q(y, P ) =

E
X←P

[q(y,X)] ∈ [0, 1]. Suppose

P
X←Pn

(Y,Z)←M(X)

[|Z − q(Y,X)| ≥ α] ≤ β.

Then, for all γ ≥ 3
2
η ≥ 0, we have

P
X←Pn

(Y,Z)←A(X)

[|Z − q(Y, P )| ≥ α + γ] ≤ β +
P
[
W̌ ≥ (1+γ− 3

2
η)n

2

]
+ 2 · e−nη2/2

+ maxi∈[n]
2nδ
i
P
[

(1+γ− 3
2
η)n

2
> W̌ ≥ (1+γ− 3

2
η)n

2
− i
] ,

(14)
where W̌ ← Binomial

(
n, eε

eε+1

)
.

Equations 13 and 14 are directly comparable, but it is not immediately obvious how they
compare. By setting δ = 0, γ = eε−1

eε+1
+ c, η = 2

5
c, and applying Hoeffding’s inequality to W̌ ,

we can simplify Equation 14 to

P
X←Pn

(Y,Z)←A(X)

[
|Z − q(Y, P )| ≥ α +

eε − 1

eε + 1
+ c

]
≤ β + 3 · e−n

2
25
c2 (15)

For comparison, setting δ = 0 in Equation 13 gives

P
X←Pn

(Y,Z)←A(X)

[|Z − q(Y, P )| > α + eε − 1 + c] ≤ β

c
. (16)

Now we can compare the results more easily. The eε−1 term in the accuracy bound of Jung,
Ligett, Neel, Roth, Sharifi-Malvajerdi, and Shenfeld [JLNRSMS19] is improved to eε−1

eε+1
in our

result, which is an improvement by a factor of at least two. This is (arguably) the dominant
term, so our result is a significant improvement. In particular, if ε ≥ log 2, then Equation
13 gives a vacuous bound (since the value of q is always in [0, 1] anyway), while our bound
can be non-vacuous for any value of ε (as eε−1

eε+1
< 1).

However, there is another term in the accuracy bound – i.e., c. The failure probability
either has a 1/c multiplicative factor or a 3 · e−n 2

25
c2 additive factor. How these compare

depends on the value of β. To give a concrete comparison, suppose ε = 1/3, n = 2000,
β = δ = 10−5, and we want a final failure probability of 0.05; then Theorem B.4 gives an
error guarantee of α + 0.397, while Corollary B.5 gives α + 0.308.
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C Mutual Information Bounds from DP

Our framework for the theoretical analysis (§5) is inspired by that of Steinke and Zakynthinou
[SZ20]. In this appendix, we use our analysis to also improve one of their results. Specifically,
they show that if M : {−1, 1}m → Y satisfies (ε, δ)-DP and S ∈ {−1, 1}m is uniformly
random, then

I(S;M(S)) ≤ (eε − 1 + δ) ·m · log e, (17)

where I(·; ·) denotes the mutual information.6 Prior work [DFHPRR15a; BS16] showed that,
if M : Xm → Y satisfies (ε, 0)-DP and S ∈ Xm has as product distribution, then

I(S;M(S)) ≤ 1

2
ε2 ·m · log e. (18)

The latter result is numerically better than the former result, but only holds for pure DP.
(The latter result is also not restricted to binary inputs. However, if we do not restrict the
input at all, then it is not possible to prove bounds under approximate DP.)

We improve the bound to the following. If M : {−1, 1}m → Y satisfies (ε, δ)-DP and
S ∈ {−1, 1}m is uniformly random, then

I(S;M(S)) ≤ 1

8
ε2 ·m · log e+ δ ·m · log 2. (19)

Proposition C.1. Let M : {0, 1}n → Y satisfy (ε, δ)-DP. Let S ∈ {0, 1}n be sampled from
Bernoulli(p)n. Then

I(S;M(S)) ≤ nδh(p) + n(1− δ)h
(
p · eε + 1− p

eε + 1

)
− n(1− δ) ·

(
log(1 + e−ε) +

log(eε)

eε + 1

)
,

where h(p) := p log(1/p) + (1− p) log(1/(1− p)) is the binary Entropy function.
In particular, if p = 1

2
, then

I(S;M(S)) ≤ nδ log 2 + n(1− δ) ·
(

log 2− log(1 + e−ε)− log(eε)

eε + 1

)
≤ nδ log 2 + n(1− δ)ε

2

8
log e.

Proof. We apply the chain rule and convexity of KL divergence [FS18, Lemma 3.7]:

I(S;M(S)) =
n∑
i

I(Si;M(S)|S<i) ≤
n∑
i

I(Si;M(S)|S−i).

6Throughout this paper we use natural logarithms (so log e = 1), including when defining information-
theoretic quantities like mutual information. However, it is common to use base-2 logarithms in information
theory (i.e., log2 e ≈ 1.44). To avoid confusion, the statements (outside proofs) in this section are stated in
a redundant way so that they would be correct regardless of the base of the logarithm, as long as we are
consistent.
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Fix i ∈ [n] and fix s−i ∈ {0, 1}n−1. Now we must analyze

I(Si;M(S)|S−i = s−i) = I(Si;M(Si, s−i))

= pD1 (M(1, s−i)‖pM(1, s−i) + (1− p)M(0, s−i))

+ (1− p)D1 (M(1, s−i)‖pM(1, s−i) + (1− p)M(0, s−i))

= pD1 (Q1‖Qp) + (1− p)D1 (Q0‖Qp) ,

where Qt := tM(1, s−i) + (1− t)M(0, s−i) for t ∈ [0, 1].
Since M is (ε, δ)-DP, we have Qt(S) ≤ eε · Q1−t(S) + δ for all measurable S ⊂ Y and

t ∈ {0, 1}. Thus we can apply Lemma 5.5: There exist distributions Q′0, Q
′′
0, Q

′
1, Q

′′
1 on Y such

that Q0 = (1−δ)·Q′0+δ ·Q′′0 and Q1 = (1−δ)·Q′1+δ ·Q′′1 and e−ε ·Q′0(S) ≤ Q′1(S) ≤ eε ·Q′0(S)
for all measurable S ⊂ Y .

Define distributions

R0 :=
eε ·Q′0 −Q′1

eε − 1
and R1 :=

eε ·Q′1 −Q′0
eε − 1

,

so that Q′0 = eε·R0+R1

eε+1
and Q′1 = eε·R1+R0

eε+1
. Hence

Q0 =
eε(1− δ)
eε + 1

·R0 +
1− δ
eε + 1

·R1 + δ ·Q′′0

and

Q1 =
eε(1− δ)
eε + 1

·R1 +
1− δ
eε + 1

·R0 + δ ·Q′′1.

This decomposition (which was first used by Kairouz, Oh, and Viswanath [KOV15])
states that we can view Qsi = M(si, s−i) as a postprocessing of an (ε, δ)-DP randomized
response on the bit si. That is, with probability δ, we output the bit si with a flag indicating
certainty; with probability eε(1−δ)

eε+1
, we output si with an uncertain flag; and, with probability

1−δ
eε+1

, we output 1− si with the uncertain flag. We can postprocess this to generate a sample
from Qsi = M(si, s−i) as follows. If we receive b ∈ {0, 1} with the uncertain flag, then output
a sample from Rb. If we receive b ∈ {0, 1} with the certain flag, then output a sample from
Q′′b .

To be formal, define two distributions on the set [4] = {1, 2, 3, 4} by

Q̃0 =

(
eε(1− δ)
eε + 1

,
1− δ
eε + 1

, δ, 0

)
,

Q̃1 =

(
1− δ
eε + 1

,
eε(1− δ)
eε + 1

, 0, δ

)
.

Define the a randomized postprocessing function F : [4] → Y by F (1) = R0, F (2) = R1,

F (3) = Q′′0, and F (4) = Q′′1. Then we have F (Q̃0) = Q0 and F (Q̃1) = Q1.
Now we use the postprocessing property (a.k.a. the data processing inequality):

I(Si;M(S)|S−i = s−i) = pD1 (Q1‖Qp) + (1− p)D1 (Q0‖Qp)

≤ pD1

(
Q̃1

∥∥∥Q̃p

)
+ (1− p)D1

(
Q̃0

∥∥∥Q̃p

)
.

44



A tedious calculation now yields the bound:

pD1

(
Q̃1

∥∥∥Q̃p)+ (1− p)D1

(
Q̃0

∥∥∥Q̃p)
= p

(
1− δ
eε + 1

log

(
1−δ
eε+1

p 1−δ
eε+1 + (1− p) e

ε(1−δ)
eε+1

)
+
eε(1− δ)
eε + 1

log

(
eε(1−δ)
eε+1

p e
ε(1−δ)
eε+1 + (1− p) 1−δ

eε+1

)
+ δ log

(
δ

pδ

))

+ (1− p)

(
eε(1− δ)
eε + 1

log

(
eε(1−δ)
eε+1

p 1−δ
eε+1 +(1−p) e

ε(1−δ)
eε+1

)
+

1− δ
eε + 1

log

(
1−δ
eε+1

p e
ε(1−δ)
eε+1 +(1−p) 1−δ

eε+1

)
+δ log

(
δ

(1−p)δ

))

= p
1− δ
eε + 1

(
log

(
1

p+ (1− p)eε

)
+ eε log

(
eε

peε + (1− p)

))
+ (1− p) 1− δ

eε + 1

(
eε log

(
eε

p+ (1− p)eε

)
+ log

(
1

peε + (1− p)

))
+ δ (p log(1/p) + (1− p) log(1/(1− p)))

=
1− δ
eε + 1

(
(p+ (1− p)eε) log

(
1

p+ (1− p)eε

)
+ (1− p)eεε+ (peε + 1− p) log

(
1

peε + 1− p

)
+ peεε

)
+ δh(p)

= (1− δ)
(
p+ (1− p)eε

eε + 1
log

(
eε + 1

p+ (1− p)eε

)
+
peε + 1− p
eε + 1

log

(
eε + 1

peε + 1− p

)
− log(eε + 1) +

eεε

eε + 1

)
+ δh(p)

= (1− δ)
(
h

(
p+ (1− p)eε

eε + 1

)
− log(eε + 1) +

eεε

eε + 1

)
+ δh(p)

= (1− δ)
(
h

(
peε + (1− p)

eε + 1

)
− log(1 + e−ε)− ε

eε + 1

)
+ δh(p).

Combining inequalities and summing over i ∈ [n] yields the first part of the result. The
final part of the result is the bound

∀ε ≥ 0 g(ε) := log 2− log(1 + e−ε)− ε

eε + 1
≤ ε2

8
,

which can be verified by showing that g(0) = g′(0) = 0 and ∀ε ≥ 0 g′′(ε) ≤ 1
4

(or by plotting
it).

D Implementation of Theorem 5.2

On the next page is Python pseudocode implementing Corollary 5.4. Some example usage:

• Suppose the auditor correctly guesses v = 75 out of m = r = 100 examples, with no
abstentions. We have 75

100
= 3

4
= elog 3

elog 3+1
. So we would expect this to correspond roughly

to ε = log 3 ≈ 1.09. Theorem 5.2 gives p-value of 0.553 for the null hypothesis ε ≤ log 3
and δ = 0; to obtain this result call p value DP audit(100,100,75,math.log(3),0)

in the code below. If we want 95% confidence, we obtain the lower bound ε ≥ 0.702
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by calling get eps audit(100,100,75,0,0.05). If we set δ = 10−4, we obtain the
weaker lower bound ε ≥ 0.699 by calling get eps audit(100,100,75,1e-4,0.05).

• Suppose the auditor correctly guesses v = 75 out of r = 100 guesses, but with a total
of m = 1000 examples. I.e., the auditor abstains on m − r = 900 examples. We
obtain a lower bound of ε ≥ 0.673 for δ = 10−4 and 95% confidence. (This is slightly
weaker than the ε ≥ 0.699 lower bound we get when there are no abstentions.) This
is obtained by calling get eps audit(1000,100,75,1e-4,0.05).

# m = number of examples, each included independently with probability 0.5

# r = number of guesses (i.e. excluding abstentions)

# v = number of correct guesses by auditor

# eps,delta = DP guarantee of null hypothesis

# output: p-value = probability of >=v correct guesses under null hypothesis

def p_value_DP_audit(m, r, v, eps, delta):

assert 0 <= v <= r <= m

assert eps >= 0

assert 0 <= delta <= 1

q = 1/(1+math.exp(-eps)) # accuracy of eps-DP randomized response

beta = scipy.stats.binom.sf(v-1, r, q) # = P[Binomial(r, q) >= v]

alpha = 0

sum = 0 # = P[v > Binomial(r, q) >= v - i]

for i in range(1, v + 1):

sum = sum + scipy.stats.binom.pmf(v - i, r, q)

if sum > i * alpha:

alpha = sum / i

p = beta + alpha * delta * 2 * m

return min(p, 1)

# m = number of examples, each included independently with probability 0.5

# r = number of guesses (i.e. excluding abstentions)

# v = number of correct guesses by auditor

# p = 1-confidence e.g. p=0.05 corresponds to 95%

# output: lower bound on eps i.e. algorithm is not (eps,delta)-DP

def get_eps_audit(m, r, v, delta, p):

assert 0 <= v <= r <= m

assert 0 <= delta <= 1

assert 0 < p < 1

eps_min = 0 # maintain p_value_DP(eps_min) < p

eps_max = 1 # maintain p_value_DP(eps_max) >= p

while p_value_DP_audit(m, r, v, eps_max, delta) < p: eps_max = eps_max + 1

for _ in range(30): # binary search

eps = (eps_min + eps_max) / 2

if p_value_DP_audit(m, r, v, eps, delta) < p:

eps_min = eps

else:

eps_max = eps

return eps_min
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