
A Method details476

A.1 Categorical attention477

As described in Section 3.2, we implement categorical attention by associating each attention head478

with a boolean predicate matrix, Wpredicate 2 {0, 1}k⇥k, where k is the variable cardinality, with479

the constraint that each row Wpredicate,i sums to one. The self-attention pattern is then defined by a480

score matrix S 2 {0, 1}N⇥N , with S = xWQWpredicate(xWK)>. To ensure that each query token481

attends to a single key token, we use hard attention, defining the attention pattern at position i as482

Ai = One-hot
�
argmaxj Si,j

�
.483

Defaulting to the beginning of sequence. We implement hard attention so that, in the event that484

there is no matching key for a query, the model defaults to attend to the first token in the sequence.485

Let S 2 {0, 1}N⇥N denote the score matrix for a sequence with length N . We define a modified486

score matrix S̄ such that, for each row i,487

S̄i,j =

⇢
Si,j + (1�maxj Si,j) if j = 1
Si,j otherwise.

Breaking ties. Furthermore, we implement the attention mechanism so that, in the event that there488

is more than one matching key, the model attends to the closest match. Given the score matrix489

S 2 {0, 1}N⇥N , we define the modified score matrix S̄ such that, for each row i, S̄i,j = Si,j ⇥ bi�j ,490

where bi�j 2 [0, 1] is a bias associated with the offset between position i and j. For most experiments,491

we fix the bias to decrease from 1, when |i� j| = 1, to 1/N , when |i� j| = N , with b0 = 1/N to492

bias the query at position i against attending to itself. This is similar to types of relative positional493

bias that have been proposed for regular Transformer-based language models [Press et al., 2022].494

A.2 Additional modules495

Numerical attention. We implement limited support for numerical variables, designed to ensure that496

all variables within the program are integers within a bounded range, which allows us to discretize497

the program by enumerating all possible inputs. First, we include numerical attention heads, which498

read categorical variables as key and query, and numerical variables as value. The numerical attention499

head computes attention scores S 2 {0, 1}M⇥N using the select operator. Unlike in categorical500

attention, each query can attend to more than one key, and queries can attend to nothing if there is no501

matching key. Given attention scores S 2 {0, 1}M⇥N and value variable var, the output for the i
th502

token is defined as
PN

j=1 Si,jvar[j]. At the input layer, there is a single numerical variable, ones,503

which is frozen and equal to 1 for all positions; attention heads that read ones as the value variable504

are equivalent to the selector_width primitive in RASP. At higher layers, numerical attention505

heads can read the output of lower-layer attention heads as values. Figure 8 depicts a numerical506

attention head from a program for the Double Histogram task.507

Numerical attention does not directly correspond to attention in a standard Transformer, because it508

computes a weighted sum rather than a weighted average. But a numerical attention head can be509

implemented in a standard Transformer by composing an attention head with a feed-forward layer,510

using the beginning-of-sequence token to allow the model to attend to nothing. This is how the511

selector_width primitive is implemented in Tracr [Lindner et al., 2023].512

Feed-forward layers. In RASP, feed-forward layers are used to implement arbitrary element-513

wise operations, and they play an important role in many human-written RASP programs. In our514

Transformer Programs, we restrict the capacity of the feed-forward layers to ensure that they can be515

decompiled. Each feed-forward layer reads ` input variables, which are designated in advance to516

be either numerical or categorical variables, and outputs one new categorical variable. We convert517

feed-forward layers to programs by enumerating all possible inputs and forming a lookup-table. For518

all experiments, we set ` = 2. For categorical attention, given variable cardinality k, there are k
2519

possible inputs. An example of a feed-forward layer is given in Figure 9, which depicts a circuit in a520

program for the Dyck-2 task.521

For numerical attention, we can bound the input range by determining the cardinality of the numerical522

attention heads. For each numerical attention head, the minimum output value is equal to 0 and the523

maximum output value is equal to the maximum input length multiplied by the cardinality of the524

input variable (that is, the value variable). For example, if an attention head reads ones as the value525
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def num_predicate_0_1(q_token, k_token):
if q_token in {"0"}:

return k_token == "0"
elif q_token in {"1"}:

return k_token == "1"
elif q_token in {"2"}:

return k_token == "2"
elif q_token in {"3"}:

return k_token == "3"
elif q_token in {"4"}:

return k_token == "4"
elif q_token in {"5"}:

return k_token == "5"
elif q_token in {"<s>"}:

return k_token == "<pad>"

num_attn_0_1_pattern = select(
tokens, tokens, num_predicate_0_1)

num_attn_0_1_outputs = aggregate_sum(
num_attn_0_1_pattern, ones)

def num_mlp_0_1(num_attn_0_1_output):
key = num_attn_0_1_output
if key in {0, 1}:

return 4
return 0

num_mlp_0_1_outputs = [
num_mlp_0_1(k0)
for k0 in num_attn_0_1_outputs]

Figure 8: An example of a numerical attention head and MLP in a program for the Double Histogram
task. For this task, the model must output, for each position, the number of unique tokens with the
same histogram value. In this example, an attention head (left) calculates the histogram for each
position. An MLP (top right) reads the histogram values and outputs a value of 0 if the histogram
value is greater than one, and 4 otherwise. Inspecting the corresponding classifier weights (bottom

right), we see that an output value of 0—meaning a histogram count greater than 1—increases the
likelihood that the double-histogram value is 1 or 2, and decreases the likelihood of larger values.
Because the input length is limited to 8, this reflects the fact that if one number appears many times,
it is unlikely that another number appears the same number of times. An output of 4 (meaning a
histogram count of 1) increases the likelihood that the double-histogram is greater than 1. Note that
we configure all MLPs to read two input variables, but some MLPs learn to read the same variable
for both inputs, as in this example. This allows us to compress the corresponding function.

variable, the maximum output value is equal to the maximum input length. If an attention head reads526

the output of a first-layer attention head as value, the maximum output value is equal to the square of527

the maximum input length.528

A.3 Extracting programs529

In this section, we provide more details about our procedure for converting our trained models into530

Python programs. While there are many possible ways to express the discretized model as Python531

code, we choose a mapping that facilitates analysis with a standard Python debugger. We use several532

simple strategies to improve the readability of the code, by annotating variable types, compressing533

statements, and removing unreachable branches. Illustrative programs are depicted in Figures 8 and 9.534

Attention. Each attention head is represented by a predicate function, which takes as input a key535

and query and outputs a value in {0, 1}. In Transformer Programs, all keys and queries are categorical536

variables with cardinality k, so the predicate function can be defined by enumerating the possible537

query values, which we do with a series of if statements. Additionally, if multiple query values538

are mapped to the same key, we condense the predicate by combining these queries into a single539

branch. This is illustrated in Figure 9. In the first attention head (left), each query position attends to540

the previous position (with the exception of the first token), so we cannot apply any compression. In541

the second attention head (bottom right), fifteen out of the sixteen possible query values are mapped542

to a single key value, so we combine them into a single branch.543

MLPs. We convert feed-forward modules to functions by enumerating all possible inputs and forming544

a key/value lookup-table. For all experiments, we set each MLP to read ` = 2 input variables. In545

some cases, the MLP learns to read the same variable for both input variables, allowing us to reduce546

the length of the function. We further reduce the length of these functions by identifying the MLP547

output value associated with greatest number of keys, and returning this value as the default value548

without explicitly evaluating the corresponding condition. These two forms of compression are549

illustrated in Figure 8 (top right). This MLP reads a single numerical input variable and outputs a550

value of 4 if the input is 0 or 1 and a value of 0 otherwise.551
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# First attention head: copy previous token.

def predicate_0_0(q_position, k_position):
if q_position in {0, 13}:

return k_position == 12
elif q_position in {1}:

return k_position == 0
elif q_position in {2}:

return k_position == 1
elif q_position in {3}:

return k_position == 2
elif q_position in {4}:

return k_position == 3
elif q_position in {5}:

return k_position == 4
elif q_position in {6}:

return k_position == 5
elif q_position in {7}:

return k_position == 6
elif q_position in {8}:

return k_position == 7
elif q_position in {9}:

return k_position == 8
elif q_position in {10}:

return k_position == 9
elif q_position in {11}:

return k_position == 10
elif q_position in {12}:

return k_position == 11
elif q_position in {14}:

return k_position == 13
elif q_position in {15}:

return k_position == 14
attn_0_0_pattern = select_closest(positions, positions,

predicate_0_0)
attn_0_0_outputs = aggregate(attn_0_0_pattern, tokens)

# MLP: reads current token and previous token

# Outputs 13 if it sees "(}" or "{)".

def mlp_0_0(token, attn_0_0_output):
key = (token, attn_0_0_output)
if key in {(")", ")"),

(")", "}"),
("{", ")"),
("}", ")"),
("}", "}")}:

return 4
elif key in {(")", "{"),

("}", "(")}:
return 13

elif key in {("(", ")"),
("(", "}"),
(")", "("),
("{", "}"),
("}", "{")}:

return 0
return 7

mlp_0_0_outputs = [
mlp_0_0(k0, k1) for k0, k1 in
zip(tokens, attn_0_0_outputs)

]

# 2nd layer attention: check for "(}" or "{)"

def predicate_1_2(position, mlp_0_0_output):
if position in {0, 1, 2, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15}:
return mlp_0_0_output == 13

elif position in {3}:
return mlp_0_0_output == 4

attn_1_2_pattern = select_closest(
mlp_0_0_outputs, positions, predicate_1_2)

attn_1_2_outputs = aggregate(
attn_1_2_pattern, mlp_0_0_outputs)

Figure 9: An example of a circuit in a program for Dyck-2. For this task, the inputs consist of strings
from the vocabulary {(, ), {, }}. At each position i, the model must output T if the string up to
position i is a valid string in Dyck-2; P if it is the prefix of a valid string; and F otherwise. A string is
valid if every parenthesis is balanced by a parenthesis of the same type. This circuit recognizes an
invalid pattern, where a left parenthesis (( or {) is immediately followed by a right parenthesis of the
wrong type (} or ), respectively). First, an attention head (left) copies the tokens variable from the
previous position. Second, an MLP (top right) reads the output of this attention head, along with the
tokens variable, and classifies the input into one of four categories—in particular, returning 13 if it
sees the pattern (} or {). In the second layer, another attention head (bottom right) looks for 13s,
propagating this information to later positions.

Annotating variable types. In our Transformer model, all categorical variables are encoded using552

one-hot embeddings, which are represented as integers in the corresponding program. To improve553

readability, we replace these integers with symbolic values where appropriate. At the input layer,554

we represent the values of the tokens variable as strings rather than integer indices. At subsequent555

layers, we determine the appropriate type by following the computation graph. For example, in556

Figure 9, the tokens variable takes on values in {(, ), {, }}; the first attention head reads tokens as557

the value variable, so we can automatically determine that attention_0_0_outputs variable takes558

on values of the same type; finally, the MLP reads tokens and attention_0_0_outputs as input559

variables, so we define the mlp_0_0 function in terms of the token value type.560

B Experiment details561

In this section we describe additional implementation details for the experiments in Section 4. We562

will publish all code needed to reproduce the experiments following the review period.563

B.1 In-context learning564

Data. For our in-context learning experiment (Section 4.1), we sample 20,000 sequences of length565

10. The first token is a beginning-of-sequence token, and the remainder of the sequence is formed by566

randomly sampling a many-to-one mapping between letter types (either a, b, c, d) and numbers (0, 1,567

2, 3), and then alternating letters and numbers until reaching the target length. The model is trained to568
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predict the number following each letter, or a special unk token if the letter has not appeared earlier569

in the sequence. We use an autoregressive mask so that at each position i, the model can attend only570

to keys with positions j  i.571

Training. We train each model for 250 epochs with a batch size of 512, a learning rate of 0.05, and572

annealing the Gumbel temperature geometrically from 3.0 to 0.01, decreasing the temperature at each573

training step. We take one Gumbel sample per step. The model has two layers with one categorical574

attention head per layer, with a variable cardinality of 10. We train five models with different random575

initializations and pick the one with the lowest test loss. We implement all models in PyTorch [Paszke576

et al., 2019] and use the Adam optimizer [Kingma and Ba, 2014].577

B.2 RASP tasks578

Data. For each RASP task, we sample 20,000 inputs without replacement and partition them579

into train, validation, and test sets containing 16,000/2,000/2,000 instances respectively. With the580

exception of the Dyck tasks, we sample inputs by sampling tokens uniformly from the vocabulary.581

For the Dyck tasks, we follow Weiss et al. [2021] and sample with a bias towards strings with a582

valid prefix. Specifically, given maximum length of N , with probability 0.5, we sample N tokens583

uniformly from the vocabulary; otherwise, we sample a valid Dyck string s with length |s|  N , and584

append N � |s| randomly sampled tokens to the end to obtain a string with length N . For all tasks,585

we obtain 20,000 samples without replacement by sampling strings uniformly until the set of unique586

strings has the intended size. We prepend all inputs with a beginning of sequence token bos. For587

the sort and reverse tasks, we also append an end-of-sequence token, eos. Following Weiss et al.588

[2021], we report the token-level accuracy.589

Training. As above, we train the model for 250 epochs with a batch size of 512, and a learning590

rate of 0.05. We anneal the Gumbel temperature geometrically from 3.0 to 0.01, decreasing the591

temperature at each training step, and taking one Gumbel sample per step. These hyperparameters592

were chosen after initial experiments on the RASP tasks. We do a grid search for number of layers (2,593

3), number of attention heads (4, 8), and number of MLPs per layer (2, 4). The attention heads are594

evenly divided between categorical and numerical heads. Simililarly, the MLPs are evenly divided595

between MLPs with two categorical inputs, and MLPs with two numerical inputs. We train models596

with five random initializations, pick the model with the best accuracy on a validation set, and report597

the accuracy on a held-out test set. Each model takes between five and fifteen minutes to train on an598

Nvidia RTX 2080 GPU, depending on the number of layers.599

B.3 Named entity recognition600

Data. We train on data from the CoNLL-2003 shared task [Sang and De Meulder, 2003], using the601

distribution from HuggingFace Datasets [Lhoest et al., 2021]. This data is pre-tokenized and we602

filter the dataset to sentences with a maximum length of 30 tokens and add special beginning- and603

end-of-sequence tokens. Following Collobert et al. [2011], we preprocess the data by replacing all604

contiguous sequences of numbers with a special number symbol, so, for example, the string “19.99”605

is replaced with “#.#”. We use the standard train/validation/test split and evaluate the results using a606

Python implementation of the standard CoNLL evaluation script [Nakayama, 2018].607

Training. For both the standard Transformer and Transformer Programs, we use a batch size of608

32 and perform a grid search over the number of layers (1, 2) and the number of attention heads609

(4, 8). For the standard Transformer, we train for up to 100 epochs, taking a checkpoint after610

each epoch and picking the checkpoint with the highest performance on the validation set. For the611

Transformer Program, we search for the number of training epochs (30, 50, 100); as above, we anneal612

the temperature geometrically from 3.0 to 0.01, and we report results after discretizing the model at613

the end of training.614

C Additional results615

C.1 Additional RASP results616

In this section, we provide additional code examples and ablations on the RASP tasks.617

Longer sequences. In Table 3, we show the accuracy of Transformer Programs trained on RASP618

tasks with a longer maximum sequence length and a larger input vocabulary. Because we use one-hot619

encodings for the token and position embeddings, these values determine the cardinality, k, of the620
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Dataset |V|=8, N=8 |V|=8, N=16 |V|=16, N=16

Reverse 99.78 72.21 60.27
Hist 100.00 100.0 100.0
2-Hist 99.92 97.72 95.70
Sort 99.97 99.48 91.57
Most Freq 77.34 75.73 53.08

Table 3: RASP accuracy after increasing the size of the input vocabularies (|V|) and maximum
sequence length (N ). The cardinality of categorical variables, k, is set to the maximum of |V| and N .
On most tasks, performance degrades moderately when trained on longer sequences, and degrades
more when we also increase the vocabulary size. The largest drop is on the Reverse task.

categorical variables used in the program. In Table 3, we increase the vocabulary size and maximum621

sequence length from eight to sixteen. All other experiment details are the same as in Appendix B.2.622

Performance degrades on longer sequences, underscoring some of the optimization challenges in623

learning Transformer Programs for larger scales.624

Dataset L H M Acc.
Reverse 3 8 2 99.90
Hist 3 8 4 83.20
2-Hist 2 8 2 52.51
Sort 3 2 2 99.99
Most Freq 3 8 4 68.47
Dyck-1 3 8 4 99.27
Dyck-2 3 8 2 99.00

Table 4: Accuracy of Transformer Programs on RASP tasks using only categorical variables, with
the number of layers (L), attention heads (H), and MLPs (M) used in the best-performing model.

No numerical variables. In our main experiments, we train Transformer Programs with an equal625

number of categorical attention heads and numerical attention heads, and categorical MLPs and626

numerical MLPs. In Table 4, we compare results on RASP tasks with only categorical variables. The627

experiment setting is otherwise the same as in Appendix B.2, but all attention heads and MLPs are628

constrained to read only categorical variables. Not surprisingly, performance degrades on three tasks629

that are primarily based on counting: Histograms, Double Histograms, and Most Frequent. However,630

the Transformer Programs still achieve good performance on the other four tasks. These include the631

balanced parenthesis languages (Dyck-1 and Dyck-2), which are most naturally solved by keeping a632

count of unmatched parentheses at each position.633

C.2 Analyzing the generated code634

Here, we provide some additional analysis of the generated code, focusing on the RASP tasks.635

Complete, generated programs will be included in our code release.636

Program length. Table 5 shows the number of lines in our best-performing program for each RASP637

task, before and after applying the compression strategies described in Appendix A.3. The program638

length includes the basic library functions used to We use an automated Python code formatter,2639

which applies a number of standard style conventions and, in particular, enforces a maximum line640

length of 88 characters.641

What information do the attention heads read? Because each attention head reads a fixed set of642

named variables, we can characterize how information flows through the programs by examining643

which variables are read by each head. In Figure 10, we summarize this information for RASP644

programs. At the first layer, the majority of categorical attention heads read positions as key and645

query variables and tokens as the value. At higher layers, positions remains the most common646

key variable, but the models are more likely to read the outputs of lower-layer attention heads as647

the value variable. Numerical attention heads are less likely to read positions and more likely to648

2https://github.com/psf/black

17

https://github.com/psf/black


Dataset Full Pruned
Reverse 1893 713
Hist 324 160
2-Hist 1309 423
Sort 1503 635
Most Freq 1880 666
Dyck-1 9975 892
Dyck-2 5406 733

Table 5: The number of lines in best programs for each RASP task before and after applying a set of
simple pruning strategies based on static analysis of the code.

tok pos attn mlp

0
1

2
L
ay

er

0.21 0.79 0.00 0.00

0.04 0.54 0.12 0.29

0.04 0.58 0.17 0.21

Cat. head: query
tok pos attn mlp

0.17 0.83 0.00 0.00

0.04 0.83 0.12 0.00

0.29 0.54 0.08 0.08

Cat. head: key
tok pos attn mlp

0.83 0.17 0.00 0.00

0.42 0.00 0.38 0.21

0.25 0.00 0.58 0.17

Cat. head: value
tok pos attn mlp

0.38 0.62 0.00 0.00

0.00 0.17 0.38 0.46

0.04 0.12 0.58 0.25

Num. head: query
tok pos attn mlp

0.62 0.38 0.00 0.00

0.38 0.25 0.12 0.25

0.29 0.00 0.12 0.58

Num. head: key
ones attn

1.00 0.00

0.17 0.83

0.21 0.79

Num. head: value

0.00

0.25

0.50

0.75

1.00

Figure 10: For each of the RASP tasks, we learn a Transformer Program with three layers and eight
heads per-layer, divided evenly between categorical and numerical attention heads, and summarize
the types of variables that are read at different layers. For each layer, we list the key, query, and value
variables read by attention heads at that layer, and calculate the proportion of heads that read the
tokens variable; positions; ones (for numerical attention); the output of a previous attention head
(attn); or the output of a previous MLP (mlp). We aggregate over RASP programs and compare
categorical attention heads (left) and numerical attention heads (right).

read tokens, attn, and mlp outputs. Both kinds of attention successfully learn to compose modules,649

with higher-layer modules reading the outputs of modules at lower layers.650

C.3 Text classification651

Model TREC MR Subj AG
Bag of words 74.80 77.8 92.6 89.6
Standard Transformer 87.72 78.9 93.0 91.4
Transformer Program 85.20 77.4 92.9 90.8

Table 6: Classification accuracy on question classification (TREC); sentiment analysis (MR);
subjectivity classification (Subj); and topic classification (AG news). The Bag of words baseline is a
multinomial Naive Bayes model trained on unigram features.

Next, we train Transformer Programs for three standard text classification datasets: classifying652

questions as one of six topic [TREC; Voorhees and Tice, 2000]; classifying movie reviews as positive653

or negative [MR; Pang and Lee, 2005]; classifying sentences as objective or subjective [Subj; Pang654

and Lee, 2004]; and classifying sentences from news articles as one of four topics [AG News; Zhang655

et al., 2015]. We filter the datasets to sentences with at most 64 words and use a vocabulary of the656

10,000 most common words, replacing the remaining words with an unknown token, and fixing657

the variable cardinality at 64. As above, we compare the Transformer Program with a standard658

Transformer. For both models, we use the Transformer to extract token embeddings, obtain a sentence659

embedding by averaging the token embeddings, and train a linear classifier on the sentence embedding.660

We hold out 10% of the training data, pick the model that performs best on this held-out set, and661

report the accuracy on the standard test split, averaging the results over five random seeds. We662

initialize both models with GloVe embeddings and use grid search to select the model dimension,663

number of layers, and number of heads, and training hyper-parameters (learning rate and number of664

training epochs), as described in Appendix B.3.665

Accuracy. Table 6 compares the accuracy for Transformer Programs, standard Transformers, and a666

bag-of-words baseline. The Transformer Programs are competitive with thee standard Transformer667
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(a) Classification scores for each token embedding. (b) Feature-level scores for the “world” token.

# attn_1_1: Copy var0 from early positions.

def predicate_1_1(var2_embedding, position):
if var2_embedding in {0, 4, 5, 6, 10, 12, 13}:

return position == 1
elif var2_embedding in {1, 7, 8, 9, 11, 14}:

return position == 4
elif var2_embedding in {2, 3}:

return position == 5
elif var2_embedding in {15}:

return position == 2

attn_1_1_pattern = select_closest(
positions, var2_embeddings, predicate_1_1)

attn_1_1_outputs = aggregate(
attn_1_1_pattern, var0_embeddings)

(c) The code for computing the
attn_1_1_outputs feature.

(d) A subset of the embedding table, filtering to
words with var0_embedding values of 7.

Figure 11: Visualizing the predictions for an example from the TREC question classification dataset.
We classify sequences by pooling the final-layer token embeddings, so we can visualize the classifica-
tion scores for each token embedding (Figure 11a). In this example, the first three tokens (“how”,
“many”, and “people”) have the highest scores in favor of the NUM class, but most other tokens have
high scores for this class as well. To see why, we can inspect the feature-level scores for individual
token embeddings. In Figure 11b, we display the categorical features of the “world” token along
with the corresponding classifier weights. For this token, the input features favor the LOC label, but
attention features increase the score for NUM. Figure 11c displays the subset of the program that
calculates one of these attention features (attn_1_1_output = 7). This attention head generally
copies the var0_embeddings variable from first or fourth position—positions that can be expected
to be informative for question classification. In Figure 11d, we display the most frequent words that
have var0_embedding values of 7: they include question words like “how” and “when” and nouns
like “year”, “time”, and “date”, which are more likely to occur in numerical questions.

on all four datasets, performing slightly worse on the movie review dataset and TREC. This could be668

because the standard Transformer can more effectively leverage pre-trained word embeddings, or669

because it is easier to regularize.670

Interpretability. We illustrate the interpretability of these programs in Figure 11 by inspecting the671

features for an example from the TREC dataset.672
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