
Table 3: Architecture details of final proposed PETAL model.
Layer Input Dim Output Dim Spectral Norm?

x Encoder 2541 1000 ✓
Px 1000 1000 ✓
Py 800 1000 ✓

DotProd Out 1000 1000 ✗
y Decoder 1000 800 ✗
x Decoder 1000 2541 ✓

A Training the Forward Model408

All experiments were performed on a GeForce RTX 2080 Super.409

A.1 Data Preparation410

We normalize our data using the training set “pixel-wise" average and standard deviation for training411

only.412

A.2 PETAL413

The proposed PETAL model only uses linear layers throughout. However, it is able to learn a complex414

non-linear model due to the attention-inspired mechanism. The exact details of each sub-component415

can be found in Table 3. We only make slight changes to existing attention based layers. Specifically,416

we merge the PQ and PK layers into just a Px layer, but otherwise keep everything else (including417

the linear out layer referred to as DotProd Out in the table).418

The model was trained using ADAMW with a learning rate of 1e-5 for 500 epochs. The learning rate419

was dropped by a factor of 0.2 at epoch 300.420

The model was trained to minimize the MSE of the arrival time prediction as well as a MSE on the421

SSP reconstruction. The selected model achieved an (unnormalized) AT RMSE of 4.98e-4 and SSP422

RMSE of 5.37e-2.423

A.3 MLP424

We experimented with both encoder-decoder like structures as well as models without the bottleneck425

layers. The final best performing model had 4 hidden layers of dim 1500 with leaky ReLU non-426

linearities. It achieved an unnormalized AT validation RMSE of 6.08e-4 (higher than PETAL). The427

model was trained using Adam for 250 epochs with a learning rate of 1e-5.428

B Optimization Framework429

The neural adjoint method is an iterative method to recover an SSP x given some observations y. All430

models are optimized using Pytorch’s Stochastic Gradient Descent with a learning rate of 50 for 1000431

epochs.432

We use two forms of regularization: an ℓ2 penalty on x with a scale of 1e-7 and a Sobolev penalty433

(ℓ2 on the discrete x and y gradient) with a scale of 1e-4.434

The optimization is performed in batches. We set an early cutoff rate of 1e-2 such that for any sample,435

if the forward model observation loss drops below this value, we cut off the gradient to that sample.436

This value is lower than the final (normalized) mse AT loss of any of the models, so the assumption is437

that any further optimization beyond this point will just overfit to the model.438

B.1 Results439

The results of NA given different initializations for each of the forward models can be seen in Figure440

5. Although further iterations might yield higher performance, the overall RMSE already begins to441
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(a) (b) (c)

Figure 5: RMSE of different models vs number of epochs optimized given (a) average, (b) LFM, and
(c) Tik initializations.

Figure 6: Boxplot of RMSE of different models.

plateau around 1000 epochs. For some models (particularly LFM), the performance already starts to442

degrade. The distribution of errors after 1000 iterations can be found in Figure 6.443

B.2 Robustness to Unseen Slices444

In this section we explore the robustness of surrogate models to unseen slices. We perform this445

experiment by training the surrogate models on only slices 1-9 (with the same train/val/test split)446

and then evaluating on the entirety of slice 10. The performance can be seen in Figure 7 and Table447

4. We refer to the subsets of slice 10 as "Train","Val", and "Test" for convenience, referring to the448

temporal split of the data, but no samples from slice 10 were available during train time. We select449

the linearization around the last available SSP in the times corresponding to the train set for LFM.450

Both trained surrogate models greatly outperform LFM in the subset of the slice overlapping in time451

with the trainset, suggesting that there are some shared dynamics across space that can be learned.452

Notably, most models begin to degrade in the times corresponding to the validation and test set,453

highlighting the difficulty in capturing dynamic shifts over time. However, the learned models still454

remained more robust to this shift and the performance only degraded slightly compared to when455

trained with all slices dropping from 0.33715 (when evaluated only on slice 10) to 0.33736 for our456

proposed model PETAL.457
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Figure 7: Performance of models on unseen slice. Both trained forward models perform well on
the subset of the slice overlapping in time with the trainset, suggesting that dynamics are shared
throughout the region.

Table 4: Average RMSE (m/s) of inversion on unseen slice.
Model Train Val Test

LFM 0.405 0.447 0.583
MLP 0.196 0.288 0.402

PETAL (ours) 0.149 0.217 0.337

C Gradient of PETAL458

Define a (simplification) of the PETAL model as459

ŷ = W (
∑
i

wiŷi)

=
∑
i

wiW (Ai
refx+ bi),

(12)

where W encapsulates all linear layers performed on y. Note that by construction, the weights wi460

sum up to 1. If we include this in a simple MSE loss we get461

L =
1

2
∥ŷ − y∥2 . (13)

Computing a gradient w.r.t. x gives462

∂L

∂x
=

∑
i

∑
j

∂wi

∂x
wjW (Aix+bi)(WAjx+Wbj−y)+wiwjA

i⊤W⊤(WAjx+Wbj−y),

(14)
where the right term reduces to a convex combination of the gradient of the linearized physics based463

forward models, modulated by some matrix W , when i = j.464

D Limitations465

Our proposed model was evaluated on noise-less simulations, both with respect to measurements and466

sensor/receiver placement, which is not true in practice for data collected in the real world. We also467

did not explore the selection process of the reference points to linearize around, assuming that the468

chosen subset sufficiently represented the data. However, section B.2 suggests that the selection of469

reference points is somewhat robust to unseen dynamics.470
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