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Abstract

Inverse problems describe the task of recovering an underlying signal of interest
given observables. Typically, the observables are related via some non-linear for-
ward model applied to the underlying unknown signal. Inverting the non-linear
forward model can be computationally expensive, as it often involves computing
and inverting a linearization at a series of estimates. Rather than inverting the
physics-based model, we instead train a surrogate forward model (emulator) and
leverage modern auto-grad libraries to solve for the input within a classical opti-
mization framework. Current methods to train emulators are done in a black box
supervised machine learning fashion and fail to take advantage of any existing
knowledge of the forward model. In this article, we propose a simple learned
weighted average model that embeds linearizations of the forward model around
various reference points into the model itself, explicitly incorporating known
physics. Grounding the learned model with physics based linearizations improves
the forward modeling accuracy and provides richer physics based gradient infor-
mation during the inversion process leading to more accurate signal recovery. We
demonstrate the efficacy on an ocean acoustic tomography (OAT) example that
aims to recover ocean sound speed profile (SSP) variations from acoustic observa-
tions (e.g. eigenray arrival times) within simulation of ocean dynamics in the Gulf
of Mexico.

1 Introduction

Inverse problems arise in many scientific applications where the goal is to reconstruct some unknown
signal, image or volume of interest from indirect observations. The forward process, or the mapping
from the data to observations, is typically well-known usually through modeling the physical process.
However, inverting the model is often ill-posed or even non-invertible. More formally, let us consider
the task of recovering some signal x from observations y that are related by some potentially
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non-linear forward model F via
y = F (x) + η, (1)

where η encapsulates noise or other perturbations. Our forward model F represents a computational
model of the underlying physics of the measurement process. Classical solutions involve modeling the
forward process with extremely high accuracy and then attempting to invert a stabilized or linearized
variant, which often requires heavy domain knowledge.

Another approach to handle the ill-posed nature of the inversion task is to cast the problem as an
optimization task and incorporate regularization. A regularizer is a measure of how well the proposed
solution fits some known, and often hand-crafted, prior. This term makes the inversion well-posed
by biasing towards certain solutions. The inversion is typically solved for an in iterative fashion.
This process can be potentially computationally expensive due to requiring many applications of the
physics based forward model. Computing the adjoint to determine a descent direction increases the
computational burden even more.

In this paper, we propose a novel architecture trained to emulate the physics-based forward model.
The surrogate model provides a cheaper alternative for both the forward pass and descent direction
calculation by leveraging existing auto-grad libraries[30], making iterative solvers feasible for
recovering a solution. This work departs from previous works who also aim to emulate the forward
model [4, 11, 33] by embedding low-fidelity forward models into the surrogate itself, thereby
explicitly incorporating the physics instead of treating it as a black box. More concretely, we propose
to use a set of linearizations of the forward model at a set of reference point and train a model to
fuse and correct the outputs in an adaptive manner. We then use this trained model in a classical
optimization framework to recover the signal given a set of observations.

Concretely, our paper makes the following contributions:

• We propose a novel architecture that learns to emulate the forward model. The model
directly embeds physics via linearizations around a subset of reference points.

• We introduce a learned encoder/decoder scheme to the neural adjoint method to mitigate
artifacts from directly optimizing in the input space.

• We demonstrate its efficacy for recovering solutions in a classical optimization framework
on an ocean acoustic tomography (OAT) example that aims to recover ocean sound speed
profile (SSP) variations from acoustic observations (e.g. eigenray arrival times) within a
simulation of ocean dynamics in the Gulf of Mexico.

2 Related Works

2.1 Iterative Inversion

The task of directly inverting some potentially non-linear forward model F is often non-trivial or
mathematically impossible. Instead, a more stable alternative is to iteratively solve for x given some
observations y. Classically, this is done by formulating the reconstruction as solving a non-linear
least squares problem that aims to minimize

x̂ = arg min
x

1

2
∥y − F (x)∥2 . (2)

The Gauss-Newton method solves Equation (2) by iteratively computing the Jacobian JF of F at the
current best estimate x(k) and solving a set of linear equations to generate an update of the form

x(k+1) = x(k) + (J⊤
FJF )

−1J⊤
F (y − F (x(k))). (3)

The Levenberg-Marquardt algorithm [17, 23] presents a more robust alternative to Gauss-Newton by
introducing a (non-negative) damping factor λ leading to an update of the form

x(k+1) = x(k) + (J⊤
FJF + λI)−1J⊤

F (y − F (x(k))). (4)

Another approach to address the ill-posed nature of F is to explicitly introduce a regularization
function R(x) as an additional penalty term to Equation (2). The regularizer R addresses the ill-posed
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(a) (b)

Figure 1: (a) Architecture of PETAL for training the forward model. The signal x is passed through
the Embedded Physics module to generate low-fidelity physics-based predictions ŷ1, ..., ŷN that
are then merged in an adaptive manner through attention mechanisms with the Learned Weighted
Average module before being corrected with a final linear output layer W . An encoding layer Ex

and decoding layer Dx are simultaneously learned. (b) The architecture rearranged for inversion.
The decoding layer is moved to the input to allow for inversion in the learned lower dimensional
subspace z ∈ Z. Learned modules are denoted in green.

nature by stabilizing the inversion process and biasing the solution towards those with expected or
desired structure. Some common examples include the ℓ2 norm to encourage smaller norm solutions
(similar to Equation 4), ℓ1 to promote sparsity, and total variation (TV) to induce homogeneous
regions separated by sharp boundaries. For differentiable R, the augmented optimization problem
can be solved via steepest descent, computing updates of the form

x(k+1) = x(k) + γJ⊤
F (y − F (x(k)))− λ∇R(x(k)), (5)

where γ is a tuned step size, λ is a non-negative factor controlling the strength of regularization, and
JF is the Jacobian of F evaluated at x(k).

However all these approaches can be undesirable in practice due to the need to re-compute the
Jacobian (or a Jacobian-vector product) at each iteration. Computing a Jacobian-vector product
to determine a descent direction often involves solving an auxiliary set of PDEs, which can be
computationally expensive if many iterations are required to achieve an acceptable level of accuracy.

Ensemble Kalman filter (EnKF) offers a Bayesian iterative approach to estimating the underlying
signal [8, 12]. Rather than estimating a single instance of the signal, EnKF recursively updates an
estimated distribution of the state, assuming Gaussian probability. A sample mean and covariance is
calculated using an ensemble of samples that are updated iteratively via Bayesian updates. However,
such a method still ultimately relies on applying the physics based forward model to each member of
the ensemble, which can be prohibitively expensive for complex non-linear forward operators.

2.2 Learned Inversion

An increasingly popular approach for solving inverse problems takes advantage of machine learning.
Deep learning has achieved tremendous success in areas of natural language processing, computer
vision and other tasks, in part due to the availability of large labelled datasets. Recent works attempt
to tackle inverse problems using these data-driven methods [7, 13, 25, 29, 37, 38]. Unlike typical
supervised learning tasks that attempt to learn a mapping purely from examples, deep learning for
inverse problems can leverage our understanding of the physics in the forward model. One common
approach to embed the physics is the so-called "Loop Unrolled" architecture heavily inspired by
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existing iterative algorithms [1, 2, 9, 10, 35, 40, 41]. The learned model alternates between taking
a gradient step computed directly from existing forward models and applying a learned regularizer
step. However, such approaches have to apply the forward model multiple times for a single forward
pass through the architecture, making the method infeasible for more complex non-linear simulators.
Our approach bypasses this obstacle by using more computationally tractable approximations of the
forward model.

An alternative approach to incorporating physics is termed "Physics Informed Neural Networks
(PINN)" [16, 32]. These methods incorporate the governing partial differential equations directly in
the loss, guiding a parameterized model towards physics-obeying solutions. However, an important
distinction between PINNs and more generalized machine learning for inverse problems is that each
model is trained for a single instance of a PDE solve given some boundary/initial conditions and must
be re-trained for any new conditions or observables (in the case of inverse problems). Every training
iteration involves a PDE misfit calculation, which can be expensive and ill-posed, making scaling to
larger dimensions difficult. Unlike PINNs, the linearizations we use only need to be computed once
before training rather than at each iteration of the training process.

Gaussian process regression (GPR) is another approach that leverages a set of references. GPR
attempts to model some unknown function f given data points by assuming a multivariate normal
distribution prior and interpolating between the observed samples [39]. GPR is similar to the proposed
model in that it does a distance comparison (usually through a pre-defined kernel function) with
every reference point provided. However, it is designed to only take in input-output pairs and scales
poorly with the number of examples, making it difficult to take advantage of large training sets. Our
proposed model only needs to retain a subset of the training set for comparison purposes, but can still
leverage large datasets for training a more accurate predictor.

2.3 Neural Adjoint

The neural adjoint method [33] was proposed to tackle inverse problems with more computationally
intensive forward models. A parameterized model Gθ is trained to emulate the forward model [4, 11].
This is done in a supervised learning fashion, often with a simple mean-squared error loss. Not
only does this provide a cheaper/quicker alternative to the physics-based forward model, if trained
with existing auto-grad libraries such as PyTorch [30], this also allows for efficient computation of
the gradient with respect to the input, bypassing the need to explicitly solve for the adjoint when
calculating the gradient.

Once trained, the parameters are fixed and the model Gθ is substituted for F in Equation (2) or
other similar optimization frameworks. The auto-grad libraries are then used to efficiently compute
a gradient with respect to the input x, making it possible to iteratively solve for the best estimate
x̂ that fits some observations y. Existing works primarily focused on lower dimensional examples
(on the order of 5-15) where the test set was drawn from the same distribution as the training set
[5, 22, 28, 31, 33], thus a simple "boundary-loss" regularizer was often sufficient to produce accurate
results. Direct learned inversion methods are much faster than this iterative based method, but yield
only a single estimate and are susceptible to overfitting to the training set. The neural adjoint method
allows for exploration of the solution space with different initializations and the incorporation of
various regularizers such as ℓ1, ℓ2, or even gradient based [21], to guide the optimization towards
specific solutions. In addition, one can also restrict the optimization to some pre-determined basis
that better represents the data while reducing the dimensionality [15].

Our proposed architecture extends the neural adjoint method in two notable ways. Existing methods
are purely data-driven and thus treated like a black box [4, 33], while as our architecture explicitly
incorporates knowledge of the physics-based forward model into the learned emulator in the form of
linearized approximations. Tangent-linear models are also explored in [11], but on the surrogate in
order to verify the accuracy of the learned model, while as the proposed architecture uses linearizations
of the physics based forward model in the construction of the surrogate. In addition, we also propose
to jointly learn a subspace to improve the accuracy of the optimization stage.
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(a) (b) (c)

Figure 2: An overview of data from a month long simulation of the (a) Gulf of Mexico. (b) Example
2D slices of the sound speed profile (top) and its deviation from the mean (bottom). The 10 slices
used for experiments are separated by white lines. (c) The average SSP as a function of depth. Note
that most of the fluctuations occur near the surface.

3 Method

The neural adjoint (NA) method is typically decomposed into two stages: training an emulator of the
forward model and then using it for inference. We motivate and describe the proposed architecture
for the forward model in Section 3.1. Next, we formulate the optimization problem that uses the
trained model for inference in Section 3.2. Finally, we propose an augmentation to the optimization
formulation to incorporate a learned subspace in Section 3.3.

3.1 Embedding Physics in the Learned Forward Model

The neural adjoint (NA) method aims to learn an accurate emulator of the forward model to replace
existing physics simulators. More formally, assume that we are given a forward model F : x → y
that maps our input x ∈ Rm, where m denotes the size of the discretization, to some observations
y ∈ Rn, where n denotes the total number of observations. In our computational ocean tomography
examples in Section 4, F (x) is computed using a ray tracer; in other applications, a PDE might have
to be solved. We then train a neural net Gθ, whose architecture is illustrated in Figure 1 and described
in detail below, to approximate the mapping F .

We first motivate the design of the architecture by discussing the more classical approach of linearizing
the forward model F . Given a reference point xi

ref , we perform a first order Taylor series expansion

ŷ ≈ F (xi
ref) + JF (x

i
ref)

⊤(x− xi
ref)

= yi
ref +Ai

ref(x− xi
ref).

(6)

This linearization approximates the forward model with varying levels of accuracy depending on the
proximity of the input x to the reference point xi

ref . Rather than learning the mapping from x to y in
a pure data-driven fashion, we propose to leverage a set of these linearizations that already perform
the mapping. We mitigate the modeling inaccuracies by using an ensemble of reference models rather
than a single linearization. Only a small subset of linearizations need to be performed once in order
to construct the proposed emulator Gθ, so the additional computational cost is minimal relative to
attempting to invert the actual physics based forward model F for arbitrary measurements y.

The operation of the architecture acts as follows: Given some input x, we first pass x through the
embedded physics ensemble A1

ref , ...,A
N
ref to produce N predicted observations ŷ1, ..., ŷN through

the application of Equation (6). The predicted observations are then combined through a learned
weighted average module to produce the final predicted observation.

A natural way to compute the weights wi is by calculating the dot product similarity between the input
point x and the reference points x1

ref , ...,x
N
ref used to generate the linearizations; higher similarity

implies that the linearization is a better approximation and thus the prediction is more "trustworthy".
We follow an approach similar to attention-based models [36] by learning an embedding space to
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perform the dot product and applying a softmax to normalize the weights. Thus for each ŷi, we
compute the corresponding weight wi as

wi =
exp ⟨x,xi

ref⟩P x∑
j exp ⟨x,x

j
ref⟩P x

, (7)

where P x is the learned projection for the dot product space. The predicted ŷi get summed together
using the learned weights before being passed through a final linear layer W . Thus the output of the
proposed model is

Gθ(x) = W
∑
i

wi(yi
ref +Ai

ref(x− xi
ref)), (8)

where we distinguish components related to the embedded physics module with superscripts. The
encoder-decoder layers Ex and Dx are treated as the identity mapping for this section. They are
described in further detail in Section 3.3. Note that the learned weights wi depend on the input x.
To prevent saturation of the learned softmax distribution, we apply spectral normalization to all x
projection layers (Ex and P x). The full architecture is outlined in Figure 1a. The model is trained
using the mean squared error loss on a dataset of paired example (xk,yk)

min
θ

∑
k

∥Gθ(xk)− yk∥
2
. (9)

3.2 Performing Inference

In order to perform inference on a set of observations y, we solve the following optimization problem
that incorporates our trained network

x̂ = arg min
x

1

2
∥Gθ(x)− y∥2 +R(x). (10)

We solve this iteratively by fixing the weights of the network and computing the gradient with respect
to its input x. Note that this same optimization problem can be set up with the original forward model
F , but computing a gradient is often non-trivial and computationally expensive. By training a forward
model approximation, we can leverage existing auto-grad libraries [30] to efficiently compute the
gradient. Having an accurate descent direction is critical for solving Equation 10. However, these
black box models are only trained to match outputs, and thus performing gradient descent can lead to
many undesireable local minima. Due to the construction of our emulator, a convex combination of
the gradients from using the individual linear forward model approximations (slightly modulated by
the learned weights) arises in the calculation, providing some physics-based descent directions which
may help alleviate these issues (See Appendix for derivations).

Equation (10) can be solved with a variety of optimization algorithms to converge on some locally
optimal x. Since we are substituting the forward model with an approximation, we can account
for any inaccuracies by introducing a tolerance level. Once the observation loss drops below a
pre-determined level, the optimization terminates early.

Note that we incorporated a regularizer R(·) as an additional cost term. The regularizer encourages
certain properties (e.g. smaller values) and helps guide the optimization towards particular solutions.
In our experiments, we used ℓ2 as well as a Sobolev norm (ℓ2 norm performed on the discrete x and y
gradient of our input x).

Finally, it should be noted that the iterative nature of this method requires that we initialize our guess
with some estimate. When optimizing from scratch, a reasonable candidate would be the average
from the training set. Alternatively, we can leverage an estimated x̂ from other inverse methods by
first initializing with that estimate and then refining it with the NA procedure. We note that there is
an increase in computation time compared to directly learning the inverse due to the iterative nature
of the algorithm, but the NA method offers certain trade-offs outlined above that might be more
beneficial in practice than the single estimate provided by learned direct inverse methods.

3.3 Learning a Subspace for Reconstruction

Directly inverting on the input space of neural networks often generates artifacts in the final result or
gets trapped in local minima due to the highly non-convex model. One way to address this issue is by
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Figure 3: An example OAT forward model set up with 20 sources and 20 receivers. The direct and
surface bounce paths are denoted in blue and red respectively. The average SSP influencing the arrival
times at the receivers can be seen on the right.

Table 1: RMSE (m/s) of inversion with various initializations.
Model Avg Init LFM Init Tik Init

Tik 0.760 — —
LFM 0.608 0.625 0.602
MLP 0.391 ± 0.005 0.395 ± 0.005 0.393 ± 0.005

PETAL (ours) 0.364 ± 0.018 0.357 ± 0.014 0.357 ± 0.014

optimizing in some lower dimensional subspace, such as one determined by principle component
analysis (PCA) [15]. The PCA basis acts as a de-noiser, removing any artifacts due to the optimization
and helps reduce the dimensionality, simplifying the optimization process.

Rather than pre-computing a basis, we instead propose to jointly learn a linear projection and
reconstruction layer along with the forward model. The model as described in Subsection 3.1 can be
augmented with a linear encoder Ex and decoder Dx layer. The encoder layer projects our input x
onto a learned subspace, producing the latent code z. This code is then passed through the decoder
layer to reconstruct x̂. An additional input reconstruction loss in the form of a mean squared error loss
between x and x̂ is included during training time, forcing the model to not only learn to approximate
the forward model but also to learn a linear subspace of the input. We leave learning more complex
non-linear encoder-decoder schemes for future work.

During inference, we then optimize in this subspace. More concretely, we rearrange the proposed
architecture so that the x Decoder layer becomes the first input layer as shown in Figure 1b. The
optimization variable z is passed through this layer to produce an estimated x̂, that is then passed
through the rest of the model as described in Section 3.1. Our optimization framework thus becomes

ẑ = arg min
z

1

2
∥Gθ(Dxz)− y∥2 +R(Dxz), (11)

where we recover our final estimate with x̂ = Dxẑ.

4 Experimental Set Up

Although the method described in this article should be generalizable to any forward model, we
demonstrate on an ocean acoustic tomography problem. Sound speed variations in the ocean are
essential for accurate predictions of sound propagation and the various acoustic applications that
rely on these predictions [6, 14, 24]. Typically, the ocean sound speed is estimated using empirical
formulas based on the temperature, salinity and density. However, this would require a dense sampling
both spatially and temporally throughout the whole volume of interest. Alternatively, the fundamental
relationship between acoustic observations (e.g. arrival time measurements) can be leveraged to
indirectly estimate the volumetric spatio-temporal variability of the ocean sound speed profiles (SSPs),
bypassing the need to densely sample.

Ocean acoustic tomography (OAT) aims to reconstruct the SSP variations (with respect to a known
reference environment) within an ocean slice given the changes in acoustic measurements from the
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(a)

(b)

Figure 4: Example visualizations of predicted sound speed profiles for each method. Tik manages to
recover general structure, but often gets the magnitude wrong. LFM introduces many artifacts during
the optimization process due to the ill-posed matrix. MLP only captures coarse features but fails to
capture subtler details like PETAL (ours).

propagating acoustic waves between multiple pairs of sources and receivers [26]. The “forward
model" that computes arrival time measurements between source-receiver pairs given an SSP is
fundamentally non-linear and would require solving the wave equation. However, SSP fluctuations
are typically small compared to baseline values (typically < 1%). Modeling assumptions can be made
to simplify (e.g. ray-tracing methods). Classical OAT methods also further simplify by linearizing the
relationship between SSP perturbations and the measured variations in arrival times of stable “paths"
propagating between source and receiver pairs, providing a more numerically tractable solution
(inverting a linearized model) [3, 26, 27, 34].

We perform our experiments on a high fidelity month long simulation of the Gulf of Mexico as seen
in Figure 2 [19, 20]. We restrict our experiments to 10 2D range-dependent slices within the data
cube (Figure 2b). The first 1000 time samples are used for training, the next 200 for validation and
the remaining 239 for testing for each slice. This particular train/test/split in time was selected to
mimic existing conditions (i.e. collect data for a set amount of time to train models and then deploy
on future samples). Note that this creates a slightly more difficult problem due to the temporally
changing dynamics in the test/validation set not present in the training set. The testset is further
divided based on the variability within each slice. This is measured by the average deviation of the
last 239 samples from the average of the first 1000.

The ray tracer BELLHOP simulates a forward model of sound waves being emitted from each of
the sources. The receivers aim to detect peaks of the observed pressure wave, corresponding to the
"arrival time" of the direct path and the surface bounce path of the sound wave. The simulation is
an approximation of the wave equation. Rather than solving the full partial differential equations,
the wave is modeled as an eigen-ray traversing through space, reducing it to an ordinary differential
equation solve along the path of the ray between the source and receiver.

We experiment with two source-receiver configurations, a “dense" set up with 20 sources and receivers
approximately every 50 m in depth and 5 km apart in range as shown in Figure 3. We also construct
the more challenging “sparse" set up by sub-sampling in depth by a factor of 2. To counter the
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differing bathymetry between the 10 slices, we restrict ourselves to the upper 1000 m portion of the
ocean (where a majority of the SSP variation lies as shown in Figure 2c) and consider only direct or
surface bounce arrival time paths. The 2D SSP is discretized into a range by depth grid of 11× 231.

Thus, the linearized forward models (LFM) are of dimension 800×2541 (or 200×2541 in the sparse
case), yielding an ill-posed matrix for inversion. We construct our proposed model with 10 reference
SSPs: the last available SSP in the trainset (time 1000) for each of the 10 slices. Once trained, the
weights are fixed and the ssp x is solved for iteratively given some observations y. We perform the
optimization in the learned subspace and with ℓ2 as well as Sobolev regularization. All optimized
models are given a budget of 1000 gradient descent iterations with a learning rate of 50.

5 Results

We compare our proposed model against three baselines. First we compare ourselves against the
pseudo-inverse performed in the PCA space and using Tikhonov Regularization as proposed in [15],
hereby referred to as “Tik". We select the last available SSP in the train set (time 1000) for each
respective slice as the reference point for linearization when evaluating on the test set. We perform
PCA on the first 1000 SSPs for each respective slice to construct the basis. Next, we compare against
using the linearized forward model (LFM) in an iterative method using the same regularization as the
proposed model, but with the linearization around a single reference as the forward model. Similar to
the Tik method, we linearize around the last available SSP in the training set for each respective slice.
Finally, we compare ourselves with a simple multi-layer perceptron (MLP) trained to emulate the
forward model. The MLP does not incorporate any physical information and is simply trained to map
SSPs to arrival times in a black box manner. All iterative methods are initialized with: the average
SSP, the Tik solution and the LFM solution.

The full results are summarized in Table 1. When provided no initialization (avg), the proposed
method performs the best at 0.364 ± 0.018 m/s RMSE. MLP achieves the second best average
performance at 0.391± 0.005 m/s RMSE, where the loss in performance is likely due to its inability
to emulate the forward model as accurately as the proposed model. Despite using the same forward
model set up, LFM (optimized with different regularization) is able to outperform Tik. We hypothesize
that this is due to the basis computed by applying PCA to the training set failing to generalize to the
dynamics of the test set. However, when allowed to optimize further (LFM init), degradation occurs
due to the inaccuracy of the forward model approximation, increasing from 0.608 to 0.625 m/s error.

MLP also fails to refine the solution for both the LFM as well as the Tik initialization, suggesting that
the learned non-linear forward model gets caught in local minimas desipte having better initialization.
Our proposed model achieved better results when initialized with the more accurate estimates,
dropping the RMSE to 0.357 for both LFM and Tik initializations.

Visualizations of the recovered SSPs can be seen in Figure 4. All models are able to recover the
background levels and other coarse features. Tik is able to recover some finer details, but often fails
to achieve the correct magnitudes. LFM introduces many artifacts due to the ill-posed forward matrix,
an issue mitigated by using a subspace in Tik and PETAL. MLP is able to capture some of the finer
details, but also suffers from artifacts introduced during the non-convex optimization.

Table 2 breaks down the accuracy into further sub categories. Note that the level of variability does
not always correlate with the performance of each method. For examples, PETAL performs the worst
on the dense case with low variability with average initialization at 0.365 m/s RMSE. However, when
provided with the Tik initialization (that performed better on the low variability scenario), it is able
to achieve the best RMSE of 0.339 m/s. The sparse source/receiver scenario shows a degradation
in performance across all methods as expected given the less observations available to each model.
However, trends are still upheld with learned surrogates MLP and PETAL outperforming classical
linearization based solutions and PETAL performing the best overall.

6 Ablations

In this section, we explore which design decisions contribute to the overall success of PETAL. More
specifically, we try to determine whether the learned weighted averaging, learned transformation of
the predicted arrival times or the learned encoding/decoding of the SSP are all necessary components.
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Table 2: RMSE (m/s) of inversion across different scenarios.
Low Variability Med Variability High Variability

Model Avg Tik Avg Tik Avg Tik

Sparse S/R Pairs
(10× 10)

Tik 0.724 — 0.967 — 0.926 —
LFM 0.692 0.670 0.674 0.677 0.727 0.728
MLP 0.465 0.456 0.477 0.494 0.463 0.466

PETAL (Ours) 0.450 0.444 0.423 0.431 0.416 0.420

Dense S/R Pairs
(20× 20)

Tik 0.647 — 0.773 — 0.881 —
LFM 0.620 0.597 0.584 0.580 0.617 0.630
MLP 0.384 0.378 0.406 0.409 0.424 0.428

PETAL (Ours) 0.365 0.339 0.360 0.346 0.361 0.374

Table 3: Ablation study of PETAL
Model Weighted Avg AT Transform SSP Subspace RMSE (m/s)

PETAL (ours) ✓ ✓ ✓ 0.343
A-LFM ✗ ✗ ✗ 0.585

WA-LFM ✓ ✗ ✗ 0.577
WA-LFM + Dec ✓ ✗ ✓ 0.508

WAN ✓ ✓ ✗ 0.372

The baseline will be the proposed model which incorporates all three design choices. We compare this
against (1) the average of all reference linearizations (A-LFM), (2) weighted average of linearizations
(WA-LFM), (3) weighted average combined optimized in the learned subspace (WA-LFM + Dec),
and (4) a learned weighted average network (WAN). A full summary as well as the average RMSE
on a test set can be found in Table 3.

This study shows that each component is essential in the success of the proposed model. A-LFM
performs the worst overall, though still noticeably better than the single LFM presented in Table 1,
suggesting that incorporating more references is crucial for representing the varied dynamics present
in the test set. Simply adjusting the weights of the average (WA-LFM) as learned by a fully trained
PETAL model already leads to an improvement in performance, dropping the RMSE from 0.585 to
0.577. Incorporating the learned SSP subspace improves even further, dropping the RMSE to 0.508.
Learning an AT transform allows the surrogate model to better approximate the true model, leading
to a more dramatic improvement in RMSE at 0.372 for WAN. And finally, incorporating all three
components leads to the best performance overall at an RMSE of 0.343

7 Conclusions

In this study, we propose a novel architecture to embed physics in learned surrogate models by
incorporating linearizations around a set of reference points. We also include an encoder-decoder
structure to learn a subspace to optimize in when solving inverse problems, mitigating issues arising
from the non-convex optimization. We demonstrate the efficacy of our approach on an Ocean Acoustic
Tomography example, outperforming classical methods as well as learned forward models that do
not incorporate any known physics. We validate the necessity of each component in an ablation study,
confirming that each contributes to the success of the proposed model.

Acknowledgments and Disclosure of Funding

This work was sponsored by the Ocean Acoustics program at the Office of Naval Research (Code
322) and the Task Force Ocean. We would also like to thank Dr. Guangpeng Liu and Dr. Annalisa
Bracco (EAS, GaTech) for sharing Gulf of Mexico simulations of the SSPs.

10



References
[1] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE transactions on

medical imaging, 37(6):1322–1332, 2018.

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. Advances in neural information processing systems, 29, 2016.

[3] D Behringer, T Birdsall, M Brown, B Cornuelle, R Heinmiller, R Knox, K Metzger, W Munk,
J Spiesberger, R Spindel, D Webb, P Worcester, and C Wunsch. A demonstration of ocean
acoustic tomography. Nature, 299(5879):121–125, 1982.

[4] Matthew Chantry, Sam Hatfield, Peter Dueben, Inna Polichtchouk, and Tim Palmer. Machine
learning emulation of gravity wave drag in numerical weather forecasting. Journal of Advances
in Modeling Earth Systems, 13(7):e2021MS002477, 2021.

[5] Yang Deng, Simiao Ren, Kebin Fan, Jordan M Malof, and Willie J Padilla. Neural-adjoint
method for the inverse design of all-dielectric metasurfaces. Optics Express, 29(5):7526–7534,
2021.

[6] David R Dowling and Karim G Sabra. Acoustic remote sensing. Annual Review of Fluid
Mechanics, 47:221–243, 2015.

[7] Nicholas C Durofchalk, Jihui Jin, Heriberto J Vazquez, Kay L Gemba, Justin Romberg, and
Karim G Sabra. Data driven source localization using a library of nearby shipping sources of
opportunity. JASA Express Letters, 1(12):124802, 2021.

[8] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
monte carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162, 1994.

[9] Zalan Fabian and Mahdi Soltanolkotabi. Humus-net: Hybrid unrolled multi-scale network
architecture for accelerated mri reconstruction. arXiv preprint arXiv:2203.08213, 2022.

[10] Peimeng Guan, Jihui Jin, Justin Romberg, and Mark A Davenport. Loop unrolled shallow
equilibrium regularizer (luser)–a memory-efficient inverse problem solver. arXiv preprint
arXiv:2210.04987, 2022.

[11] Sam Hatfield, Matthew Chantry, Peter Dueben, Philippe Lopez, Alan Geer, and Tim Palmer.
Building tangent-linear and adjoint models for data assimilation with neural networks. Journal
of Advances in Modeling Earth Systems, 13(9):e2021MS002521, 2021.

[12] Peter L Houtekamer and Herschel L Mitchell. Data assimilation using an ensemble kalman
filter technique. Monthly Weather Review, 126(3):796–811, 1998.

[13] Zhaoqiong Huang, Ji Xu, Zaixiao Gong, Haibin Wang, and Yonghong Yan. Source localization
using deep neural networks in a shallow water environment. The journal of the acoustical
society of America, 143(5):2922–2932, 2018.

[14] Finn B Jensen, William A Kuperman, Michael B Porter, Henrik Schmidt, and Alexandra Tolstoy.
Computational Ocean Acoustics, volume 794. Springer, 2011.

[15] Jihui Jin, Priyabrata Saha, Nicholas Durofchalk, Saibal Mukhopadhyay, Justin Romberg, and
Karim G Sabra. Machine learning approaches for ray-based ocean acoustic tomography. The
Journal of the Acoustical Society of America, 152(6):3768–3788, 2022.

[16] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[17] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of applied mathematics, 2(2):164–168, 1944.

[18] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

11



[19] Guangpeng Liu, Annalisa Bracco, and Uta Passow. The influence of mesoscale and subme-
soscale circulation on sinking particles in the northern gulf of mexico. Elementa: science of the
Anthropocene, 6, 2018.

[20] Guangpeng Liu, Annalisa Bracco, and Alexandra Sitar. Submesoscale mixing across the mixed
layer in the gulf of mexico. Frontiers in Marine Science, 8:615066, 2021.

[21] Xiaofeng Liu, Yalan Song, and Chaopeng Shen. Bathymetry inversion using a deep-learning-
based surrogate for shallow water equations solvers. arXiv preprint arXiv:2203.02821, 2022.

[22] Wei Ma, Feng Cheng, and Yongmin Liu. Deep-learning-enabled on-demand design of chiral
metamaterials. ACS nano, 12(6):6326–6334, 2018.

[23] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[24] Herman Medwin and Clarence S Clay. Fundamentals of Acoustical Oceanography. Elsevier,
1998.

[25] Ali Mousavi and Richard G Baraniuk. Learning to invert: Signal recovery via deep convolutional
networks. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pages 2272–2276. IEEE, 2017.

[26] Walter Munk and Carl Wunsch. Ocean acoustic tomography: A scheme for large scale monitor-
ing. Deep Sea Research Part A. Oceanographic Research Papers, 26(2):123–161, 1979.

[27] Walter H Munk and Peter F Worcester. Ocean acoustic tomography. Oceanography, 1(1):8–10,
1988.

[28] Christian C Nadell, Bohao Huang, Jordan M Malof, and Willie J Padilla. Deep learning for
accelerated all-dielectric metasurface design. Optics express, 27(20):27523–27535, 2019.

[29] Haiqiang Niu, Emma Ozanich, and Peter Gerstoft. Ship localization in santa barbara chan-
nel using machine learning classifiers. The journal of the acoustical society of America,
142(5):EL455–EL460, 2017.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[31] John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G DeLacy, John D
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Table 4: Architecture details of final proposed PETAL model.
Layer Input Dim Output Dim Spectral Norm?

x Encoder 2541 1000 ✓
Px 1000 1000 ✓
W 800 800 ✗

x Decoder 1000 2541 ✓

A Training the Forward Model

All experiments were performed on a GeForce RTX 2080 Super.

A.1 Data Preparation

We normalize our data using the training set “pixel-wise" average and standard deviation for training
only.

A.2 PETAL

The proposed PETAL model only uses linear layers throughout. However, it is able to learn a
complex non-linear model due to the attention-inspired mechanism. The exact details of each linear
sub-component can be found in Table 4. The embedded physics layer takes in an input of dimension
BS ×Nx, where BS is the batch size and Nx = 2541 the size of the vectorized SSP, and outputs a
tensor of dimension BS ×Nref ×Ny where Nref refers to the number of linearized reference models
and Ny = 800 is the number of observations.

The weighted average layer inspired by attention layers takes in a query of dimension BS × 1×Hx,
where Hx is the hidden dimension for the latent space of input SSPs, a key of BS ×Nref ×Hx and a
value of BS ×Nref ×Ny . It outputs a predicted arrival time vector ŷ of dimension BS ×Ny .

The model was trained using ADAMW with a learning rate of 1e-5 for 500 epochs. The learning rate
was dropped by a factor of 0.2 at epoch 300.

The model was trained to minimize the MSE of the arrival time prediction as well as a MSE on the
SSP reconstruction. The selected model achieved training RMSE of 4.88e-2 and validation RMSE of
1.02e-1. It achievse an unnormalized (removing training normalization) AT RMSE of 4.98e-4 and
SSP RMSE of 5.37e-2 on the validation set.

A.3 MLP

We experimented with both encoder-decoder like structures as well as models without the bottle-
neck layers. The final best performing model had 4 hidden layers of dim 1500 with leaky ReLU
non-linearities. It achieved a training RMSE of 3.62e-2 and validation RMSE of 1.22e-1. The
unnormalized AT validation RMSE was 6.08e-4 (higher than PETAL). The model was trained using
Adam for 250 epochs with a learning rate of 1e-5.

B Optimization Framework

The neural adjoint method is an iterative method to recover an SSP x given some observations y. All
models are optimized using Pytorch’s Stochastic Gradient Descent with a learning rate of 50 for 1000
epochs.

We use two forms of regularization: an ℓ2 penalty on x with a scale of 1e-7 and a Sobolev penalty
(ℓ2 on the discrete x and y gradient) with a scale of 1e-4.

The optimization is performed in batches. We set an early cutoff rate of 1e-2 such that for any sample,
if the forward model observation loss drops below this value, we cut off the gradient to that sample.
This value is lower than the final (normalized) mse AT loss of any of the models, so the assumption is
that any further optimization beyond this point will just overfit to the model.
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(a) (b) (c)

Figure 5: RMSE of different models vs number of epochs optimized given (a) average, (b) LFM, and
(c) Tik initializations.

Figure 6: Boxplot of RMSE of different models.

B.1 Results

The results of NA given different initializations for each of the forward models can be seen in Figure
5. Although further iterations might yield higher performance, the overall RMSE already begins to
plateau around 1000 epochs. For some models (particularly LFM), the performance already starts to
degrade. The distribution of errors after 1000 iterations can be found in Figure 6.

B.2 Robustness to Unseen Slices

In this section we explore the robustness of surrogate models to unseen slices. We perform this
experiment by training the surrogate models on only slices 1-9 (with the same train/val/test split)
and then evaluating on the entirety of slice 10. The performance can be seen in Figure 7 and Table
5. We refer to the subsets of slice 10 as "Train","Val", and "Test" for convenience, referring to the
temporal split of the data, but no samples from slice 10 were available during train time. We select
the linearization around the last available SSP in the times corresponding to the train set for LFM.

Both trained surrogate models greatly outperform LFM in the subset of the slice overlapping in time
with the trainset, suggesting that there are some shared dynamics across space that can be learned.
Notably, most models begin to degrade in the times corresponding to the validation and test set,
highlighting the difficulty in capturing dynamic shifts over time. However, the learned models still
remained more robust to this shift and the performance only degraded slightly compared to when
trained with all slices dropping from 0.33715 (when evaluated only on slice 10) to 0.33736 for our
proposed model PETAL.

15



Figure 7: Performance of models on unseen slice. Both trained forward models perform well on
the subset of the slice overlapping in time with the trainset, suggesting that dynamics are shared
throughout the region.

Table 5: Average RMSE (m/s) of inversion on unseen slice.
Model Train Val Test

LFM 0.405 0.447 0.583
MLP 0.196 0.288 0.402

PETAL (ours) 0.149 0.217 0.337

C Gradient of PETAL

Define a (simplification) of the PETAL model as

ŷ = W (
∑
i

wiŷi)

=
∑
i

wiW (Ai
refx+ bi).

(12)

Note that by construction, the weights wi sum up to 1. If we include this in a simple MSE loss we get

L =
1

2
∥ŷ − y∥2 . (13)

Computing a gradient w.r.t. x gives

∂L

∂x
=

∑
i

∑
j

∂wi

∂x
wjW (Aix+bi)(WAjx+Wbj−y)+wiwjA

i⊤W⊤(WAjx+Wbj−y),

(14)
where the right term reduces to a convex combination of the gradient of the linearized physics based
forward models, modulated by some matrix W , when i = j.

D Extensions to Interpolation: Additional Experiments

In this section, we begin a preliminary study on PETAL for interpolation (i.e. a random split of the
available data). By removing the dynamics shift between the training and the validation set, we are
able to explore more complex models beyond linear components.

D.1 Selecting Reference Points

Due to the random split, we can no longer rely on heuristics to select appropriate reference models.
Instead, we perform a projected k-means approach to select our reference points. The standard
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k-means algorithm is applied to all SSPs in the training set. Once the algorithm terminates, the closest
point in the training set to each mean is selected as the reference point to be embedded in the model.
For our experiments, we used k = 20.

D.2 Extending the layers

We maintain the overall structure of PETAL by retaining an SSP encoder-decoder, an embedded
physics module, a learned weighted average module, and a final layer for the predicted arrival time.
However, we extend the learned components by replacing the single linear layer used in the main
manuscript with MLPs.

In addition to replacing the final linear layer W with a series of linear layers followed by a leaky
ReLU activation, we also include a skip connection between the output of the learned weighted
average module and the final arrival times prediction. We also observed that including an auxiliary
loss in the form of mean squared error between the ground truth arrival times and the direct output of
the weighted average layer (prior to passing through the final layers) was beneficial.

We experimented with replacing linear layers with convolutional layers, but noticed a huge degradation
in performance. We hypothesize that this is due to the nature of the data not being suitable for
convolutions. The input SSPs are not translationally invariant depth-wise. The output arrival times
are spatially small (20× 20), and thus the choice of padding can easily introduce errors at the edge,
degrading the final prediction.

However, we did notice introducing convolutional layers to have a beneficial effect when added to the
end of the SSP decoder. The convolutional filters play the role of filtering/smoothing the predicted
output to create more realistic reconstructions.

D.3 Results

We compare all our results against a Gaussian process regression (GPR) baseline. We construct a
dataset by randomly sampling 1000 SSPs from the 1439 available from each of the 10 slices, totaling
10,000 total training samples. We use a random subset of 1000 points to train GPR due to memory
limitations of the method. Two models (MLP and PETAL) are trained to approximate the forward
model and then used in an optimization framework for inference.

The MLP consists of 4 hidden layers with dimension 1500 for a total of 5 linear layers separated by
leaky ReLU. Batch normalization was found to degrade performance and thus was omitted for the
final model.

The final PETAL architecture uses a 2 layer MLP with hidden dimension 1000 for the x encoder and
x decoder separated by leaky ReLUs. The x decoder also uses 3 convolutional layers with kernel size
3× 7 and 32 filters. Finally, the output layer consists of a 3 layer MLP with hidden dimension 800.

The performance of each model is shown in Table 6. We experiment with gradient descent (SGD) and
limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS)[18] as the optimization
algorithm. For both MLP and PETAL, LBFGS reached a local minima significantly faster than SGD.
However, it did not always achieve the most accurate reconstruction, likely getting trapped in local
minimas due to the non-convex nature of optimizing a neural net.

MLP achieved higher accuracy for emulating the forward model. However, this higher performance
did not translate to the inference stage. MLP was able to perform well when given a more accurate
starting point (GPR init), but failed to outperform GPR with the average intialization, getting caught
in local minimas. PETAL was able to outperform GPR regardless of initialization. This suggests that
the structure embedded into PETAL’s architecture aids in the optimization process when determining
descent directions. Examples of reconstructed SSPs can be found in Figure 8. Note the artifacts and
hallucinations introduced by optimizing the MLP surrogate.

E Limitations

Our proposed model was evaluated on noise-less simulations, both with respect to measurements and
sensor/receiver placement, which is not true in practice for data collected in the real world. We also
did not explore the selection process of the reference points to linearize around, assuming that the
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Table 6: RMSE (m/s) of random data split
Model Optimization Avg Init GPR Init
GPR — 0.176 —

PETAL SGD 0.144 0.128
PETAL LBFGS 0.142 0.129
MLP SGD 0.224 0.146
MLP LBFGS 0.231 0.164

(a)

(b)

(c)

Figure 8: Example visualizations of predicted sound speed profiles for each method. The "S-" prefix
denotes models optimized with SGD and "L-" with LBFGS.
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chosen subset sufficiently represented the data. However, section B.2 suggests that the selection of
reference points is somewhat robust to unseen dynamics.
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