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Abstract

Neural ordinary differential equations (neural ODEs) are a popular family of
continuous-depth deep learning models. In this work, we consider a large family
of parameterized ODEs with continuous-in-time parameters, which include time-
dependent neural ODEs. We derive a generalization bound for this class by a
Lipschitz-based argument. By leveraging the analogy between neural ODEs and
deep residual networks, our approach yields in particular a generalization bound
for a class of deep residual networks. The bound involves the magnitude of the
difference between successive weight matrices. We illustrate numerically how this
quantity affects the generalization capability of neural networks.

1 Introduction

Neural ordinary differential equations (neural ODEs, Chen et al., 2018) are a flexible family of
neural networks used in particular to model continuous-time phenomena. Along with variants such
as neural stochastic differential equations (neural SDEs, Tzen and Raginsky, 2019) and neural
controlled differential equations (Kidger et al., 2020), they have been used in diverse fields such
as pharmokinetics (Lu et al., 2021; Qian et al., 2021), finance (Gierjatowicz et al., 2020), and
transportation (Zhou et al., 2021). We refer to Massaroli et al. (2020) for a self-contained introduction
to this class of models.

Despite their empirical success, the statistical properties of neural ODEs have not yet been fully
investigated. What is more, neural ODEs can be thought of as the infinite-depth limit of (properly
scaled) residual neural networks (He et al., 2016a), a connection made by, e.g., E (2017); Haber
and Ruthotto (2017); Lu et al. (2017). Since standard measures of statistical complexity of neural
networks grow with depth (see, e.g., Bartlett et al., 2019), it is unclear why infinite-depth models,
including neural ODEs, should enjoy favorable generalization properties.

To better understand this phenomenon, our goal in this paper is to study the statistical properties of a
class of time-dependent neural ODEs that write

dHt = Wtσ(Ht)dt, (1)

whereWt ∈ Rd×d is a weight matrix that depends on the time index t, and σ : R→ R is an activation
function applied component-wise. Time-dependent neural ODEs were first introduced by Massaroli
et al. (2020) and generalize time-independent neural ODEs

dHt = Wσ(Ht)dt, (2)

as formulated in Chen et al. (2018), where W ∈ Rd×d now denotes a weight matrix independent
of t. There are two crucial reasons to consider time-dependent neural ODEs rather than the more
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restrictive class of time-independent neural ODEs. On the one hand, the time-dependent formulation
is more flexible, leading to competitive results on image classification tasks (Queiruga et al., 2020,
2021). As a consequence, obtaining generalization guarantees for this family of models is a valuable
endeavor by itself. On the other hand, time dependence is required for the correspondence with
general residual neural networks to hold. More precisely, the time-dependent neural ODE (1) is the
limit, when the depth L goes to infinity, of the deep residual network

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1, (3)

where (Wk)16k6L ∈ Rd×d are weight matrices and σ is still an activation function. We refer to
Marion et al. (2022, 2023); Sander et al. (2022); Thorpe and van Gennip (2022) for statements that
make precise under what conditions and in which sense this limit holds, as well as its consequences
for learning. These two key reasons compel us to consider the class of time-dependent ODEs (1) for
our statistical study, which in turn will inform us on the properties of the models (2) and (3).

In fact, we extend our study to the larger class of parameterized ODEs, which we define as the
mapping from x ∈ Rd to the value at time t = 1 of the solution of the initial value problem

H0 = x, dHt =

m∑
i=1

θi(t)fi(Ht)dt, (4)

where Ht is the variable of the ODE, θi are functions from [0, 1] into R that parameterize the ODE,
and fi are fixed functions from Rd into Rd. Time-dependent neural ODEs (1) are obtained by setting
a specific entrywise form for the functions fi in (4).

Since the parameters θi belong to an infinite-dimensional space, in practice they need to be approxi-
mated in a finite-dimensional basis of functions. For example, the residual neural networks (3) can
be seen as an approximation of the neural ODEs (1) on a piecewise-constant basis of function. But
more complex choices are possible, such as B-splines (Yu et al., 2022). However, the formulation (4)
is agnostic from the choice of finite-dimensional approximation. This more abstract point of view
is fruitful to derive generalization bounds, for at least two reasons. First, the statistical properties
of the parameterized ODEs (4) only depend on the characteristics of the functions θi and not on the
specifics of the approximation scheme, so it is more natural and convenient to study them at the
continuous level. Second, their properties can then be transferred to any specific discretization, such
as the deep residual networks (3), resulting in generalization bounds for the latter.

Regarding the characteristics of the functions θi, we make the structural assumption that they are
Lipschitz-continuous and uniformly bounded. This is a natural assumption to ensure that the initial
value problem (4) has a unique solution in the usual sense of the Picard-Lindelöf theorem (Arnold,
1992). Remarkably, this assumption on the parameters also enables us to obtain statistical guarantees
despite the fact that we are working with an infinite-dimensional set of parameters.

Contributions. We provide a generalization bound for the large class of parameterized ODEs (4),
which include time-dependent and time-independent neural ODEs (1) and (2). To the best of our
knowledge, this is the first available bound for neural ODEs in supervised learning. By leveraging on
the connection between (time-dependent) neural ODEs and deep residual networks, our approach
allows us to provide a depth-independent generalization bound for the class of deep residual net-
works (3). The bound is precisely compared with earlier results. Our bound depends in particular
on the magnitude of the difference between successive weight matrices, which is, to our knowledge,
a novel way of controlling the statistical complexity of neural networks. Numerical illustration
is provided to show the relationship between this quantity and the generalization ability of neural
networks.

Organization of the paper. Section 2 presents additional related work. In Section 3, we specify
our class of parameterized ODEs, before stating the generalization bound for this class and for neural
ODEs as a corollary. The generalization bound for residual networks is presented in Section 4 and
compared to other bounds, before some numerical illustration. Section 5 concludes the paper. The
proof technique is discussed in the main paper, but the core of the proofs is relegated to the Appendix.

2



2 Related work

Hybridizing deep learning and differential equations. The fields of deep learning and dynamical
systems have recently benefited from sustained cross-fertilization. On the one hand, a large line of
work is aimed at modeling complex continuous-time phenomena by developing specialized neural
architectures. This family includes neural ODEs, but also physics-informed neural networks (Raissi
et al., 2019), neural operators (Li et al., 2021) and neural flows (Biloš et al., 2021). On the other hand,
successful recent advances in deep learning, such as diffusion models, are theoretically supported by
ideas from differential equations (Huang et al., 2021).

Generalization for continuous-time neural networks. Obtaining statistical guarantees for
continuous-time neural networks has been the topic of a few recent works. For example, Fer-
manian et al. (2021) consider recurrent neural networks (RNNs), a family of neural networks handling
time series, which is therefore a different setup from our work that focuses on vector-valued inputs.
These authors show that a class of continuous-time RNNs can be written as input-driven ODEs, which
are then proved to belong to a family of kernel methods, which entails a generalization bound. Lim
et al. (2021) also show a generalization bound for ODE-like RNNs, and argue that adding stochasticity
(that is, replacing ODEs with SDEs) helps with generalization. Taking another point of view, Yin et al.
(2021) tackle the separate (although related) question of generalization when doing transfer learning
across multiple environments. They propose a neural ODE model and provide a generalization bound
in the case of a linear activation function. Closer to our setting, Hanson and Raginsky (2022) show
a generalization bound for parameterized ODEs for manifold learning, which applies in particular
for neural ODEs. Their proof technique bears similarities with ours, but the model and task differ
from our approach. In particular, they consider stacked time-independent parameterized ODEs, while
we are interested in a time-dependent formulation. Furthermore, these authors do not discuss the
connection with residual networks.

Lipschitz-based generalization bounds for deep neural networks. From a high-level perspective,
our proof technique is similar to previous works (Bartlett et al., 2017; Neyshabur et al., 2018) that
show generalization bounds for deep neural networks, which scale at most polynomially with depth.
More precisely, these authors show that the network satisfies some Lipschitz continuity property
(either with respect to the input or to the parameters), then exploit results on the statistical complexity
of Lipschitz function classes. Under stronger norm constraints, these bounds can even be made depth-
independent (Golowich et al., 2018). However, their approach differs from ours insofar as we consider
neural ODEs and the associated family of deep neural networks, whereas they are solely interested in
finite-depth neural networks. As a consequence, their hypotheses on the class of neural networks
differ from ours. Section 4 develops a more thorough comparison. Similar Lipschitz-based techniques
have also been applied to obtain generalization bounds for deep equilibrium networks (Pabbaraju
et al., 2021). Going beyond statistical guarantees, Béthune et al. (2022) study approximation and
robustness properties of Lipschitz neural networks.

3 Generalization bounds for parameterized ODEs

We start by recalling the usual supervised learning setup and introduce some notation in Section 3.1,
before presenting our parameterized ODE model and the associated generalization bound in Sec-
tion 3.2. We then apply the bound to the specific case of time-invariant neural ODEs in Section 3.3.

3.1 Learning procedure

We place ourselves in a supervised learning setting. Let us introduce the notation that are used
throughout the paper (up to and including Section 4.1). The input data is a sample of n i.i.d. pairs
(xi, yi) with the same distribution as some generic pair (x, y), where x (resp. y) takes its values in
some bounded ball X = B(0, RX ) (resp. Y = B(0, RY)) of Rd, for someRX , RY > 0. This setting
encompasses regression but also classification tasks by (one-hot) encoding labels in Rd. Note that
we assume for simplicity that the input and output have the same dimension, but our analysis easily
extends to the case where they have different dimensions by adding (parameterized) projections at
the beginning or at the end of our model. Given a parameterized class of models FΘ = {Fθ, θ ∈ Θ},
the parameter θ is fitted by empirical risk minimization using a loss function ` : Rd × Rd → R+ that
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we assume to be Lipschitz with respect to its first argument, with a Lipschitz constant K` > 0. In the
following, we write for the sake of concision that such a function is K`-Lipschitz. We also assume
that `(x, x) = 0 for all x ∈ Rd. The theoretical and empirical risks are respectively defined, for any
θ ∈ Θ, by

R(θ) = E[`(Fθ(x), y)] and R̂n(θ) =
1

n

n∑
i=1

`
(
Fθ(xi), yi

)
,

where the expectation E is evaluated with respect to the distribution of (x, y). Letting θ̂n a minimizer
of the empirical risk, the generalization problem consists in providing an upper bound on the
difference R(θ̂n)− R̂n(θ̂n).

3.2 Generalization bound

Model. We start by making more precise the parameterized ODE model introduced in Section 1.
The setup presented here can easily be specialized to the case of neural ODEs, as we will see in
Section 3.3. Let f1, . . . , fm : Rd → Rd be fixed Kf -Lipschitz functions for some Kf > 0. Denote
by M their supremum on X (which is finite since these functions are continuous). The parameterized
ODE Fθ is defined by the following initial value problem that maps some x ∈ Rd to Fθ(x) ∈ Rd:

H0 = x

dHt =

m∑
i=1

θi(t)fi(Ht)dt

Fθ(x) = H1,

(5)

where the parameter θ = (θ1, . . . , θm) is a function from [0, 1] to Rm. We have to impose constraints
on θ for the model Fθ to be well-defined. To this aim, we endow (essentially bounded) functions
from [0, 1] to Rm with the following (1,∞)-norm

‖θ‖1,∞ = sup
06t61

m∑
i=1

|θi(t)|. (6)

We can now define the set of parameters

Θ = {θ : [0, 1]→ Rm, ‖θ‖1,∞ 6 RΘ and θi is KΘ-Lipschitz for i ∈ {1, . . . ,m}}, (7)

for some RΘ > 0 and KΘ > 0. Then, for θ ∈ Θ, the following Proposition, which is a consequence
of the Picard-Lindelöf Theorem, shows that the mapping x 7→ Fθ(x) is well-defined.

Proposition 1 (Well-posedness of the parameterized ODE). For θ ∈ Θ and x ∈ Rd, there exists a
unique solution to the initial value problem (5).

An immediate consequence of Proposition 1 is that it is legitimate to consider FΘ = {Fθ, θ ∈ Θ} for
our model class.

When KΘ = 0, the parameter space Θ is finite-dimensional since each θi is constant. This setting
corresponds to the time-independent neural ODEs of Chen et al. (2018). In this case, the norm (6)
reduces to the ‖ · ‖1 norm over Rm. Note that, to fit exactly the formulation of Chen et al. (2018), the
time t can be added as a variable of the functions fi, which amounts to adding a new coordinate to Ht.
This does not change the subsequent analysis. In the richer time-dependent case where KΘ > 0,
the set Θ belongs to an infinite-dimensional space and therefore, in practice, θi is approximated in
a finite basis of functions, such as Fourier series, Chebyshev polynomials, and splines. We refer to
Massaroli et al. (2020) for a more detailed discussion, including formulations of the backpropagation
algorithm (a.k.a. the adjoint method) in this setting.

Note that we consider the case where the dynamics at time t are linear with respect to the param-
eter θi(t). Nevertheless, we emphasize that the mapping x 7→ Fθ(x) remains a highly non-linear
function of each θi(t). To fix ideas, this setting can be seen as analogue to working with pre-activation
residual networks instead of post-activation (see He et al., 2016b, for definitions of the terminology),
which is a mild modification.
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Statistical analysis Since Θ is a subset of an infinite-dimensional space, complexity measures
based on the number of parameters cannot be used. Instead, our approach is to resort to Lipschitz-
based complexity measures. More precisely, to bound the complexity of our model class, we propose
two building blocks: we first show that the model Fθ is Lipschitz-continuous with respect to its
parameters θ. This allows us to bound the complexity of the model class depending on the complexity
of the parameter class. In a second step, we assess the complexity of the class of parameters itself.

Starting with our first step, we show the following estimates for our class of parameterized ODEs.
Here and in the following, ‖ · ‖ denotes the `2 norm over Rd.

Proposition 2 (The parameterized ODE is bounded and Lipschitz). Let θ and θ̃ ∈ Θ. Then, for any
x ∈ X ,

‖Fθ(x)‖ 6 RX +MRΘ exp(KfRΘ)

and
‖Fθ(x)− Fθ̃(x)‖ 6 2MKfRΘ exp(2KfRΘ)‖θ − θ̃‖1,∞.

The proof, given in the Appendix, makes extensive use of Grönwall’s inequality (Pachpatte and Ames,
1997), a standard tool to obtain estimates in the theory of ODEs, in order to bound the magnitude of
the solution Ht of (5).

The next step is to assess the magnitude of the covering number of Θ. Recall that, for ε > 0, the
ε-covering number of a metric space is the number of balls of radius ε needed to completely cover
the space, with possible overlaps. More formally, considering a metric space M and denoting
by B(x, ε) the ball of radius ε centered at x ∈ M , the ε-covering number of M is equal to
inf{n > 1|∃x1, . . . , xn ∈M ,M ⊆ ⋃ni=1B(xi, ε)}.
Proposition 3 (Covering number of the ODE parameter class). For ε > 0, letN (ε) be the ε-covering
number of Θ endowed with the distance associated to the (1,∞)-norm (6). Then

logN (ε) 6 m log
(16mRΘ

ε

)
+
m2KΘ log(4)

ε
.

Proposition 3 is a consequence of a classical result, see, e.g., Kolmogorov and Tikhomirov (1959,
example 3 of paragraph 2). A self-contained proof is given in the Appendix for completeness. We also
refer to Gottlieb et al. (2017) for more general results on covering numbers of Lipschitz functions.

The two propositions above and an ε-net argument allow to prove the first main result of our paper
(where we recall that the notations are defined in Section 3.1).
Theorem 1 (Generalization bound for parameterized ODEs). Consider the class of parameterized
ODEs FΘ = {Fθ, θ ∈ Θ}, where Fθ is given by (5) and Θ by (7). Let δ > 0.

Then, for n > 9 max(m−2R−2
Θ , 1), with probability at least 1− δ,

R(θ̂n) 6 R̂n(θ̂n) +B

√
(m+ 1) log(RΘmn)

n
+B

m
√
KΘ

n1/4
+

B√
n

√
log

1

δ
,

where B is a constant depending on K`,Kf , RΘ, RX , RY ,M . More precisely,

B = 6K`Kf exp(KfRΘ)
(
RX +MRΘ exp(KfRΘ) +RY

)
.

Three terms appear in our upper bound of R(θ̂n)− R̂n(θ̂n). The first and the third ones are classical
(see, e.g. Bach, 2023, Sections 4.4 and 4.5). On the contrary, the second term is more surprising
with its convergence rate in O(n−1/4). This slower convergence rate is due to the fact that the
space of parameters is infinite-dimensional. In particular, for KΘ = 0, corresponding to a finite-
dimensional space of parameters, we recover the usual O(n−1/2) convergence rate, however at
the cost of considering a much more restrictive class of models. Finally, it is noteworthy that the
dimensionality appearing in the bound is not the input dimension d but the number of mappings m.

Note that this result is general and may be applied in a number of contexts that go beyond deep
learning, as long as the instantaneous dependence of the ODE dynamics to the parameters is linear.
One such example is the predator-prey model, describing the evolution of two populations of animals,
which reads dxt = xt(α − βyt)dt and dyt = −yt(γ − δxt)dt, where xt and yt are real-valued
variables and α, β, γ and δ are model parameters. This ODE falls into the framework of this section,
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if one were to estimate the parameters by empirical risk minimization. We refer to Deuflhard and
Röblitz (2015, section 3) for other examples of parameterized biological ODE dynamics and methods
for parameter identification.

Nevertheless, for the sake of brevity, we focus on applications of this result to deep learning, and
more precisely to neural ODEs, which is the topic of the next section.

3.3 Application to neural ODEs

As explained in Section 1, parameterized ODEs include both time-dependent and time-independent
neural ODEs. Since the time-independent model is more common in practice, we develop this case
here and leave the time-dependent case to the reader. We thus consider the following neural ODE:

H0 = x

dHt = Wσ(Ht)dt

FW (x) = H1,

(8)

where W ∈ Rd×d is a weight matrix, and σ : R→ R is an activation function applied component-
wise. We assume σ to be Kσ-Lipschitz for some Kσ > 0. This assumption is satisfied by all common
activation functions. To put the model in the form of Section 3.2, denote e1, . . . , ed the canonical
basis of Rd. Then the dynamics (8) can be reformulated as

dHt =

d∑
i,j=1

Wijσij(Ht)dt,

where σij(x) = σ(xj)ei. Each σij is itself Kσ-Lipschitz, hence we fall in the framework of
Section 3.2. In other words, the functions fi of our general parameterized ODE model form a shallow
neural network with pre-activation. Denote by ‖W‖1,1 the sum of the absolute values of the elements
of W . We consider the following set of parameters, which echoes the set Θ of Section 3.2:

W = {W ∈ Rd×d, ‖W‖1,1 6 RW}, (9)

for some RW > 0. We can then state the following result as a consequence of Theorem 1.

Corollary 1 (Generalization bound for neural ODEs). Consider the class of neural ODEs FW =
{FW ,W ∈ W}, where FW is given by (8) andW by (9). Let δ > 0.

Then, for n > 9R−1
W max(d−4R−1

W , 1), with probability at least 1− δ,

R(Ŵn) 6 R̂n(Ŵn) +B(d+ 1)

√
log(RWdn)

n
+

B√
n

√
log

1

δ
,

where B is a constant depending on K`,Kσ, RW , RX , RY ,M . More precisely,

B = 6
√

2K`Kσ exp(KσRW)
(
RX +MRW exp(KσRW) +RY

)
.

Note that the term inO(n−1/4) from Theorem 1 is now absent. Since we consider a time-independent
model, we are left with the other two terms, recovering a standard O(n−1/2) convergence rate.

4 Generalization bounds for deep residual networks

As highlighted in Section 1, there is a strong connection between neural ODEs and discrete residual
neural networks. The previous study of the continuous case in Section 3 paves the way for deriving a
generalization bound in the discrete setting of residual neural networks, which is of great interest
given the pervasiveness of this architecture in modern deep learning.

We begin by presenting our model and result in Section 4.1, before detailing the comparison of our
approach with other papers in Section 4.2 and giving some numerical illustration in Section 4.3.
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4.1 Model and generalization bound

Model. We consider the following class of deep residual networks:

H0 = x

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1

FW(x) = HL,

(10)

where the parameter W = (Wk)16k6L ∈ RL×d×d is a set of weight matrices and σ is still a
Kσ-Lipschitz activation function. To emphasize that W is here a third-order tensor, as opposed to
the case of time-invariant neural ODEs in Section 3.3, where W was a matrix, we denote it with a
bold notation. We also assume in the following that σ(0) = 0. This assumption could be alleviated at
the cost of additional technicalities. Owing to the 1/L scaling factor, the deep limit of this residual
network is a (time-dependent) neural ODE of the form studied in Section 3. We refer to Marion et al.
(2022) for further discussion on the link between scaling factors and deep limits. We simply note
that this scaling factor is not common practice, but preliminary experiments show it does not hurt
performance and can even improve performance in a weight-tied setting (Sander et al., 2022). The
space of parameters is endowed with the following (1, 1,∞)-norm

‖W‖1,1,∞ = sup
16k6L

d∑
i,j=1

|Wk,i,j |. (11)

Also denoting ‖ · ‖∞ the element-wise maximum norm for a matrix, we consider the class of matrices

W =
{
W ∈ RL×d×d, ‖W‖1,1,∞ 6 RW and

‖Wk+1 −Wk‖∞ 6
KW
L

for 1 6 k 6 L− 1
}
,

(12)

for some RW > 0 and KW > 0, which is a discrete analogue of the set Θ defined by (7).

In particular, the upper bound on the difference between successive weight matrices is to our
knowledge a novel way of constraining the parameters of a neural network. It corresponds to the
discretization of the Lipschitz continuity of the parameters introduced in (7). By analogy, we refer
to it as a constraint on the Lipschitz constant of the weights. Note that, for standard initialization
schemes, the difference between two successive matrices is of the order O(1) and not O(1/L), or, in
other words, KW scales as O(L). This dependence of KW on L can be lifted by adding correlations
across layers at initialization. For instance, one can take, for k ∈ {1, . . . , L} and i, j ∈ {1, . . . , d},
Wk,i,j = 1√

d
fi,j(

k
L ), where fi,j is a smooth function, for example a Gaussian process with the RBF

kernel. Such a non-i.i.d. initialization scheme is necessary for the correspondence between deep
residual networks and neural ODEs to hold (Marion et al., 2022). Furthermore, Sander et al. (2022)
prove that, with this initialization scheme, the constraint on the Lipschitz constant also holds for the
trained network, with KW independent of L. Finally, we emphasize that the following developments
also hold in the case where KW depends on L (see also Section 4.2 for a related discussion).

Statistical analysis. At first sight, a reasonable strategy would be to bound the distance between the
model (10) and its limit L→∞ that is a parameterized ODE, then apply Theorem 1. This strategy is
straightforward, but comes at the cost of an additional O(1/L) term in the generalization bound, as a
consequence of the discretization error between the discrete iterations (10) and their continuous limit.
For example, we refer to Fermanian et al. (2021) where this strategy is used to prove a generalization
bound for discrete RNNs and where this additional error term is incurred. We follow another way by
mimicking all the proof with a finite L. This is a longer approach but it yields a sharper result since
we avoid the O(1/L) discretization error. The proof structure is similar to Section 3: the following
two Propositions are the discrete counterparts of Propositions 2 and 3.

Proposition 4 (The residual network is bounded and Lipschitz). Let W and W̃ ∈ W . Then, for any
x ∈ X ,

‖FW(x)‖ 6 RX exp(KσRW)

and
‖FW(x)− FW̃(x)‖ 6 RX

RW
exp(2KσRW)‖W − W̃‖1,1,∞.
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Proposition 5 (Covering number of the residual network parameter class). Let N (ε) be the covering
number ofW endowed with the distance associated to the (1, 1,∞)-norm (11). Then

logN (ε) 6 d2 log
(16d2RW

ε

)
+
d4KW log(4)

ε
.

The proof of Proposition 4 is a discrete analogous of Proposition 2. On the other hand, Proposition 5
can be proven as a consequence of Proposition 3, by showing the existence of an injective isometry
fromW into a set of the form (7). Equipped with these two propositions, we are now ready to state
the generalization bound for our class of residual neural networks.
Theorem 2 (Generalization bound for deep residual networks). Consider the class of neural networks
FW = {FW,W ∈ W}, where FW is given by (10) andW by (12). Let δ > 0.

Then, for n > 9R−1
W max(d−4R−1

W , 1), with probability at least 1− δ,

R(Ŵn) 6 R̂n(Ŵn) +B(d+ 1)

√
log(RWdn)

n
+B

d2
√
KW

n1/4
+

B√
n

√
log

1

δ
, (13)

where B is a constant depending on K`,Kσ, RW , RX , RY . More precisely,

B = 6
√

2K` max
(exp(KσRW)

RW
, 1
)

(RX exp(KσRW) +RY).

We emphasize that this result is non-asymptotic and valid for any width d and depth L. Furthermore,
the depth L does not appear in the upper bound (13). This should not surprise the reader since
Theorem 1 can be seen as the deep limitL→∞ of this result, hence we expect that our bound remains
finite when L→∞ (otherwise the bound of Theorem 1 would be infinite). However, L appears as a
scaling factor in the definition of the neural network (10) and of the class of parameters (12). This is
crucial for the depth independence to hold, as we will comment further on in the next section.

Furthermore, the depth independence comes at the price of a O(n−1/4) convergence rate. Note that,
by taking KW = 0, we obtain a generalization bound for weight-tied neural networks with a faster
convergence rate in n, since the term in O(n−1/4) vanishes.

4.2 Comparison with other bounds

As announced in Section 2, we now compare Theorem 2 with the results of Bartlett et al. (2017) and
Golowich et al. (2018). Beginning by Bartlett et al. (2017), we first state a slightly weaker version of
their result to match our notations and facilitate comparison.
Corollary 2 (corollary of Theorem 1.1 of Bartlett et al. (2017)). Consider the class of neural networks
FW̃ = {FW,W ∈ W̃}, where FW is given by (10) and W̃ = {W ∈ RL×d×d, ‖W‖1,1,∞ 6 RW}.
Assume that L > RW and Kσ = 1, and let γ, δ > 0. Consider (x, y), (x1, y1), . . . , (xn, yn) drawn
i.i.d. from any probability distribution over Rd × {1, . . . d} such that a.s. ‖x‖ 6 RX .

Then, with probability at least 1− δ, for every W ∈ W̃ ,

P
(

arg max
16j6d

FW(x)j 6= y
)
6 R̂n(W) + C

RXRW exp(RW) log(d)
√
L

γ
√
n

+
C√
n

√
log

1

δ
, (14)

where R̂n(W) 6 n−1
∑n
i=1 1FW(xi)yi6γ+maxj 6=yi

f(xi)j and C is a universal constant.

We first note that the setting is slightly different from ours: they consider a large margin predictor for
a multi-class classification problem, whereas we consider a general Lipschitz-continuous loss `. This
being said, the model class is identical to ours, except for one notable difference: the constraint on
the Lipschitz constant of the weights appearing in equation (12) is not required here.

Comparing (13) and (14), we see that our bound enjoys a better dependence on the depth L but
a worse dependence on the width d. Regarding the depth, our bound (13) does not depend on L,
whereas the bound (14) scales as O(

√
L). This comes from the fact that we consider a smaller set

of parameters (12), by adding the constraint on the Lipschitz norm of the weights. This constraint
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allows us to control the complexity of our class of neural networks independently of depth, as long
as KW is independent of L. If KW scales as O(L), which is the case for i.i.d. initialization schemes,
our result also features a scaling in O(

√
L). As for the width, Bartlett et al. (2017) achieve a better

dependence by a subtle covering numbers argument that takes into account the geometry induced by
matrix norms. Since our paper focuses on a depth-wise analysis by leveraging the similarity between
residual networks and their infinite-depth counterpart, improving the scaling of our bound with width
is left for future work. Finally, note that both bounds have a similar exponential dependence in RW .

As for Golowich et al. (2018), they consider non-residual neural networks of the form x 7→
MLσ(ML−1σ(. . . σ(M1x))). These authors show that the generalization error of this class scales as

O
(
RX

ΠF

√
log
(

ΠF

πS

)
n1/4

)
,

where ΠF is an upper-bound on the product of the Frobenius norms
∏L
k=1 ‖Mk‖F and πS is a

lower-bound on the product of the spectral norms
∏L
k=1 ‖Mk‖. Under the assumption that both ΠF

and ΠF/πS are bounded independently of L, their bound is indeed depth-independent, similarly to
ours. Interestingly, as ours, the bound presents a O(n−1/4) convergence rate instead of the more
usual O(n−1/2). However, the assumption that ΠF is bounded independently of L does not hold in
our residual setting, since we have Mk = I + 1

LWk and thus we can lower-bound

L∏
k=1

‖Mk‖F >
L∏
k=1

(
‖I‖F −

1

L
‖Mk‖F

)
>
(√
d− RW

L

)L ≈ dL
2 e
−RW√

d .

In our setting, it is a totally different assumption, the constraint that two successive weight matrices
should be close to one another, which allows us to derive depth-independent bounds.

4.3 Numerical illustration

The bound of Theorem 2 features two quantities that depend on the class of neural networks,
namely RW that bounds a norm of the weight matrices and KW that bounds the maximum difference
between two successive weight matrices, i.e. the Lipschitz constant of the weights. The first one be-
longs to the larger class of norm-based bounds that has been extensively studied (see, e.g., Neyshabur
et al., 2015). We are therefore interested in getting a better understanding of the role of the second
quantity, which is much less common, in the generalization ability of deep residual networks.

To this aim, we train deep residual networks (10) (of width d = 30 and depth L = 1000) on MNIST.
We prepend the network with an initial weight matrix to project the data x from dimension 768
to dimension 30, and similarly postpend it with another matrix to project the output FW(x) into
dimension 10 (i.e. the number of classes in MNIST). Finally, we consider two training settings: either
the initial and final matrices are trained, or they are fixed random projections. We use the initialization
scheme outlined in Section 4.1. Further experimental details are postponed to the Appendix.

We report in Figure 1a the generalization gap of the trained networks, that is, the difference between
the test and train errors (in terms of cross entropy loss), as a function of the maximum Lipschitz
constant of the weights sup06k6L−1(‖Wk+1 −Wk‖∞). We observe a positive correlation between
these two quantities. To further analyze the relationship between the Lipschitz constant of the weights
and the generalization gap, we then add the penalization term λ ·

(∑L−1
k=0 ‖Wk+1 −Wk‖2F

)1/2
to

the loss, for some λ > 0. The obtained generalization gap is reported in Figure 1b as a function of λ.
We observe that this penalization allows to reduce the generalization gap. These two observations go
in support of the fact that a smaller Lipschitz constant improves the generalization power of deep
residual networks, in accordance with Theorem 2.

However, note that we were not able to obtain an improvement on the test loss by adding the
penalization term. This is not all too surprising since previous work has investigated a related
penalization, in terms of the Lipschitz norm of the layer sequence (Hk)06k6L, and was similarly not
able to report any improvement on the test loss (Kelly et al., 2020).

Finally, the proposed penalization term slightly departs from the theory that involves
sup06k6L−1(‖Wk+1 −Wk‖∞). This is because the maximum norm is too irregular to be used
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(a) Generalization gap as a function of the maximum
Lipschitz constant of the weights. Each dot corresponds
to a network trained with a varying number of epochs
(between 1 and 30).
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(b) Generalization gap as a function of the penalization
factor λ. The experiment is repeated 20 times for each
value of λ. Each time, the network is trained for 50
epochs. The initial and final matrices are random. The
value λ = ∞ corresponds to a weight-tied network.

Figure 1: Link between the generalization gap and the Lipschitz constant of the weights.

in practice since, at any one step of gradient descent, it only impacts the maximum weights
and not the others. As an illustration, Figure 2 shows the generalization gap when penalizing
with the maximum max-norm sup06k6L−1(‖Wk+1 −Wk‖∞) and the L2 norm of the max-norm(∑L−1

k=0 ‖Wk+1 −Wk‖2∞
)1/2

. The factor λ is scaled appropriately to reflect the scale difference of
the penalizations. The results are mixed: the L2 norm of the max-norm is effective contrarily to the
maximum max-norm. Further investigation of the properties of these norms is left for future work.
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(a) Penalizing by the maximum max-norm.

0.0 0.1 1.0
λ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

G
en

er
al

iz
at

io
n

ga
p

(b) Penalizing by the L2 norm of the max-norm.

Figure 2: Generalization gap as a function of the penalization factor λ for other penalizations.

5 Conclusion

We provide a generalization bound that applies to a wide range of parameterized ODEs. As a
consequence, we obtain the first generalization bounds for time-independent and time-dependent
neural ODEs in supervised learning tasks. By discretizing our reasoning, we also provide a bound
for a class of deep residual networks. Understanding the approximation and optimization properties
of this class of neural networks is left for future work. Another intriguing extension is to relax the
assumption of linearity of the dynamics at time t with respect to θi(t), that is, to consider a general
formulation dHt =

∑m
i=1 fi(Ht, θi(t)). In the future, it should also be interesting to extend our

results to the more involved case of neural SDEs, which have also been found to be deep limits of a
large class of residual neural networks (Cohen et al., 2021; Marion et al., 2022).
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Appendix

Organization of the Appendix Section A contains the proofs of the results of the main paper.
Section B contains the details of the numerical illustrations presented in Section 4.3.

A Proofs

A.1 Proof of Proposition 1

The function

(t, h) 7→
m∑
i=1

θi(t)fi(h)

is locally Lipschitz-continuous with respect to its first variable and globally Lipschitz-continuous
with respect to its second variable. Therefore, the existence and uniqueness of the solution of the
initial value problem (5) for t > 0 comes as a consequence of the Picard-Lindelöf theorem (see, e.g.,
Luk, 2017 for a self-contained presentation and Arnold, 1992 for a textbook).

A.2 Proof of Proposition 2

For x ∈ X , let H be the solution of the initial value problem (5) with parameter θ and with the initial
condition H0 = x. Let us first upper-bound ‖fi(Ht)‖ for all i ∈ {1, . . . ,m} and t > 0. To this aim,
for t > 0, we have

‖Ht −H0‖ =
∥∥∥ ∫ t

0

m∑
i=1

θi(s)fi(Hs)ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)|‖fi(H0)‖ds+

∫ t

0

m∑
i=1

|θi(s)|‖fi(Hs)− fi(H0)‖ds

6M

∫ t

0

m∑
i=1

|θi(s)|ds+Kf

∫ t

0

(
‖Hs −H0‖

m∑
i=1

|θi(s)|
)
ds

6 tMRΘ +KfRΘ

∫ t

0

‖Hs −H0‖ds.

Next, Grönwall’s inequality yields, for t ∈ [0, 1],

‖Ht −H0‖ 6 tMRΘ exp(tKfRΘ) 6MRΘ exp(KfRΘ).

Hence

‖Ht‖ 6 ‖H0‖+ ‖Ht −H0‖ 6 RX +MRΘ exp(KfRΘ),

yielding the first result of the proposition. Furthermore, for any i ∈ {1, . . . ,m},

‖fi(Ht)‖ 6 ‖fi(Ht)− fi(H0)‖+ ‖fi(H0)‖ 6M
(
KfRΘ exp(KfRΘ) + 1

)
=: C.

Now, let H̃ be the solution of the initial value problem (5) with another parameter θ̃ and with the
same initial condition H̃0 = x. Then, for any t > 0,

Ht − H̃t =

∫ t

0

m∑
i=1

θi(s)fi(Hs)ds−
∫ t

0

m∑
i=1

θ̃i(s)fi(H̃s)ds.
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Hence

‖Ht − H̃t‖ =
∥∥∥∫ t

0

m∑
i=1

(θi(s)− θ̃i(s))fi(Hs)ds+

∫ t

0

m∑
i=1

θ̃i(s)(fi(Hs)− fi(H̃s))ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+

∫ t

0

m∑
i=1

|θ̃i(s)|‖fi(Hs)− fi(H̃s)‖ds

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+Kf

∫ t

0

(
‖Hs − H̃s‖

m∑
i=1

|θ̃i(s)|
)
ds

6 tC‖θ − θ̃‖1,∞ +KfRΘ

∫ t

0

‖Hs − H̃s‖ds.

Then Grönwall’s inequality implies that, for t ∈ [0, 1],

‖Ht − H̃t‖ 6 tC‖θ − θ̃‖1,∞ exp(tKfRΘ)

6M(KfRΘ exp(KfRΘ) + 1) exp(KfRΘ)‖θ − θ̃‖1,∞
6 2MKfRΘ exp(2KfRΘ)‖θ − θ̃‖1,∞

since 1 6 KfRΘ exp(KfRΘ) because Kf > 1, RΘ > 1.

A.3 Proof of Proposition 3

We first prove the result for m = 1. Let Gx be an ε/2KΘ-grid of [0, 1] and Gy an ε/2-grid of
[−RΘ, RΘ]. Formally, we can take

Gx =
{ kε

2KΘ
, 0 6 k 6

⌈2KΘ

ε

⌉}
and Gy =

{
−RΘ +

kε

2
, 1 6 k 6

⌊4RΘ

ε

⌋}
Our cover consists of all functions that start at a point of Gy, are piecewise linear with kinks in Gx,
where each piece has slope +KΘ or −KΘ. Hence our cover is of size

N1(ε) = |Gy|2|Gx| 6
4RΘ

ε
2

2KΘ
ε +2 =

16RΘ

ε
4

KΘ
ε .

Now take a function f : [0, 1] → R that is uniformly bounded by RΘ and KΘ-Lipschitz. We
construct a cover member at distance ε from f as follows. Choose a point y0 in Gy at distance at
most ε/2 from f(0). Since f(0) ∈ [−RΘ, RΘ], this is clearly possible, except perhaps at the end of
the interval. To verify that it is possible at the end of the interval, note that RΘ is at a distance less
than ε/2 of the last element of the grid, since

RΘ−
(
−RΘ+

⌊4RΘ

ε

⌋ε
2

)
= 2RΘ−

⌊4RΘ

ε

⌋ε
2
∈
[
2RΘ−

4RΘ

ε

ε

2
, 2RΘ−

(4RΘ

ε
−1
)ε

2

]
=
[
0,
ε

2

]
.

Then, among the cover members that start at y0, choose the one which is closest to f at each point
of Gx (in case of equality, pick any one). Let us denote this cover member as f̃ . Let us show
recursively that f is at `∞-distance at most ε from f̃ . More precisely, let us first show by induction
on k that for all k ∈ {0, . . . , d 2KΘ

ε e},∣∣f( kε

2KΘ

)
− f̃

( kε

2KΘ

)∣∣ 6 ε

2
. (15)

First, |f(0) − f̃(0)| 6 ε
2 . Then, assume that (15) holds for some k. Then we have the following

inequalities:

f̃
( kε

2KΘ

)
− ε 6 f

( kε

2KΘ

)
− ε

2
(by induction)

6 f
( (k + 1)ε

2KΘ

)
(f is KΘ-Lipschitz)

6 f
( kε

2KΘ

)
+
ε

2
(f is KΘ-Lipschitz)

6 f̃
( kε

2KΘ

)
+ ε (by induction).
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Moreover, by definition, f̃
( (k+1)ε

KΘ

)
is the closest point to f

( (k+1)ε
KΘ

)
among{

f̃
( kε
KΘ

)
− ε

2
, f̃
( kε
KΘ

)
+
ε

2

}
.

The bounds above show that, among those two points, at least one is at distance no more than ε/2
from f

( (k+1)ε
KΘ

)
. This shows (15) at rank k + 1.

To conclude, take now x ∈ [0, 1]. There exists k ∈ {0, . . . , d 2KΘ

ε e} such that x is at distance at most
ε/4KΘ from kε

2KΘ
. Again, this is clear except perhaps at the end of the interval, where it is also true

since
1−

⌈2KΘ

ε

⌉ ε

2KΘ
6 1− 2KΘ

ε

ε

2KΘ
= 0,

meaning that 1 is located between two elements of the grid Gx, showing that it is at distance at
most ε/4KΘ from one element of the grid. Then, we have

|f(x)− f̃(x)| 6
∣∣∣f(x)− f

( kε

2KΘ

)∣∣∣+
∣∣∣f( kε

2KΘ

)
− f̃

( kε

2KΘ

)∣∣∣+
∣∣∣f̃( kε

2KΘ

)
− f̃(x)

∣∣∣
6
ε

4
+
ε

2
+
ε

4
,

where the first and third terms are upper-bounded because f and f̃ are KΘ-Lip, while the second
term is upper bounded by (15). Hence ‖f − f̃‖∞ 6 ε, proving the result for m = 1.

Finally, to prove the result for a general m, note that the Cartesian product of ε/m-covers for each
coordinate of θ gives an ε-cover for θ. Indeed, consider such covers and take θ ∈ Θ. Since each
coordinate of θ is uniformly bounded by RΘ and KΘ-Lipschitz, the proof above shows the existence
of a cover member θ̃ such that, for all i ∈ {1, . . . ,m}, ‖θi − θ̃i‖∞ 6 ε/m. Then

‖θ − θ̃‖1,∞ = sup
06t61

m∑
i=1

|θi(t)− θ̃i(t)| 6 sup
06t61

m∑
i=1

‖θi − θ̃i‖∞ 6 ε.

As a consequence, we conclude that

N (ε) 6
(
N1

( ε
m

))m
=
(16mRΘ

ε

)m
4

m2KΘ
ε .

Taking the logarithm yields the result.

A.4 Proof of Theorem 1

First note that, for any θ ∈ Θ, x ∈ X and y ∈ Y ,

|`(Fθ(x), y)| 6 |`(Fθ(x), y)− `(y, y)|+ |`(y, y)| 6 K`‖Fθ(x)− y‖.
since, by assumption, ` is K`-Lipschitz with respect to its first variable and `(y, y) = 0. Thus

|`(Fθ(x), y)| 6 K`(‖Fθ(x)‖+ ‖y‖) 6 K`

(
RX +MRΘ exp(KfRΘ) +RY

)
=: M

by Proposition 2.

Now, taking δ > 0, a classical computation involving McDiarmid’s inequality (see, e.g., Wainwright,
2019, proof of thm 4.10) yields that, with probability at least 1− δ,

R(θ̂n) 6 R̂n(θ̂n) + E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
+
M
√

2√
n

√
log

1

δ
.

Denote C = 2MKfRΘ exp(2KfRΘ). Then we show that R and R̂n are CK`-Lipschitz with
respect to (θ, ‖ · ‖1,∞): for θ, θ̃ ∈ Θ,

|R(θ)−R(θ̃)| 6 E
[
|`(Fθ(x), y)− `(Fθ̃(x), y)|

]
6 K`E

[
‖Fθ(x)− Fθ̃(x)‖

]
6 CK`‖θ − θ̃‖1,∞,
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according to Proposition 2. The proof for the empirical risk is very similar.

Let now ε > 0 and N (ε) be the covering number of Θ endowed with the (1,∞)-norm. By Proposi-
tion 3,

logN (ε) 6 m log
(16mRΘ

ε

)
+
m2KΘ log(4)

ε
.

Take θ(1), . . . , θ(N (ε)) the associated cover elements. Then, for any θ ∈ Θ, denoting θ(i) the cover
element at distance at most ε from θ,

|R(θ)− R̂n(θ)| 6 |R(θ)−R(θ(i))|+ |R(θ(i))− R̂n(θ(i))|+ |R̂n(θ(i))− R̂n(θ)|
6 2CK`ε+ sup

i∈{1,...,N (ε)}
|R(θ(i))− R̂n(θ(i))|.

Hence

E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+ E

[
sup

i∈{1,...,N (ε)}
|R(θ(i))− R̂n(θ(i))|

]
.

Recall that a real-valued random variable X is said to be s2 sub-Gaussian (Bach, 2023, Section 1.2.1)
if for all λ ∈ R, E(exp(λ(X−E(X)))) 6 exp(λ

2s2/2). Since R̂n(θ) is the average of n independent
random variables, which are each almost surely bounded by M , it is M

2
/n sub-Gaussian, hence we

have the classical inequality on the expectation of the maximum of sub-Gaussian random variables
(see, e.g., Bach, 2023, Exercise 1.13)

E
[

sup
i∈{1,...,N (ε)}

|R(θ(i))− R̂n(θ(i))|
]
6M

√
2 log(2N (ε))

n
.

The remainder of the proof consists in computations to put the result in the required format. More
precisely, we have

E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+M

√
2 log(2N (ε))

n

6 2CK`ε+M

√
2 log(2) + 2m log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n

6 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
.

The third step is valid if 16mRΘ

ε > 2. We will shortly take ε to be equal to 1√
n

, thus this condition
holds true under the assumption from the Theorem that mRΘ

√
n > 3. Hence we obtain

R(θ̂n) 6 R̂n(θ̂n) + 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
.

(16)
Now denote B̃ = 2MKf exp(KfRΘ). Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√

n
, we obtain

R(θ̂n) 6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+

2m2KΘ log(4)√
n

+
B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+
B̃

2

m
√

2KΘ log(4)

n1/4
+

B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
3B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,

since 2 6 2
√

log(2) 6
√

2(m+ 1) log(16mRΘ
√
n) since 16mRΘ

√
n > 2 by the Theorem’s

assumptions, and
√

2 log(4) 6 2. We finally obtain that

R(θ̂n) 6 R̂n(θ̂n) + 3B̃

√
(m+ 1) log(mRΘn)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,
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by noting that n > 9 max(m−2R−2
Θ , 1) implies that

log(16mRΘ

√
n) 6 2 log(mRΘn).

The result unfolds since the constant B in the Theorem is equal to 3B̃.

A.5 Proof of Corollary 1

The corollary is an immediate consequence of Theorem 1. To obtain the result, note that m = d2,
thus in particular

√
m+ 1 =

√
d2 + 1 6 d + 1, and besides log(RWd

2n) 6 2 log(RWdn) since
RWn 6 R2

Wn
2 by assumption on n.

A.6 Proof of Proposition 4

For x ∈ X , let (Hk)06k6L be the values of the layers defined by the recurrence (10) with the
weights W and the input H0 = x. We denote by ‖ · ‖ the `2-norm for vectors and the spectral norm
for matrices. Then, for k ∈ {0, . . . , L− 1}, we have

‖Hk+1‖ 6 ‖Hk‖+
1

L
‖Wkσ(Hk)‖ 6 ‖Hk‖+

1

L
‖Wk‖ ‖σ(Hk)‖ 6

(
1 +

KσRW
L

)
‖Hk‖,

where the last inequality uses that the spectral norm of a matrix is upper-bounded by its (1, 1)-norm
and that σ(0) = 0. As a consequence, for any k ∈ {0, . . . , L},

‖Hk‖ 6
(

1 +
KσRW
L

)k
‖H0‖ 6 exp(KσRW)RX =: C,

yielding the first claim of the Proposition.

Now, let H̃ be the values of the layers (10) with another parameter W̃ and with the same input
H̃0 = x. Then, for any k ∈ {0, . . . , L− 1},

Hk+1 − H̃k+1 = Hk − H̃k +
1

L
(Wkσ(Hk)− W̃kσ(H̃k)).

Hence, using again that the spectral norm of a matrix is upper-bounded by its (1, 1)-norm and that
σ(0) = 0,

‖Hk+1 − H̃k+1‖ 6 ‖Hk − H̃k‖+
1

L
‖Wk(σ(Hk)− σ(H̃k))‖+

1

L
‖(Wk − W̃k)σ(H̃k)‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

Kσ

L
‖Wk − W̃k‖ ‖H̃k‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

CKσ

L
‖Wk − W̃k‖.

Then, dividing by (1 +Kσ
RW
L )k+1 and using the method of differences, we obtain that

‖Hk − H̃k‖
(1 +Kσ

RW
L )k

6 ‖H0 − H̃0‖+
CKσ

L

k−1∑
j=0

‖Wj − W̃j‖
(1 +Kσ

RW
L )j+1

6
CKσ

L
‖W − W̃‖1,1,∞

k−1∑
j=0

1

(1 +Kσ
RW
L )j+1

.

Finally note that
k−1∑
j=0

(1 +Kσ
RW
L )k

(1 +Kσ
RW
L )j+1

=

k−1∑
j=0

(1 +Kσ
RW
L

)j

=
L

KσRW

(
(1 +Kσ

RW
L

)k − 1
)

6
L

KσRW
(exp(KσRW)− 1).

We conclude that

‖Hk − H̃k‖ 6
C

RW
(exp(KσRW)− 1)‖W − W̃‖1,1,∞ 6

RX
RW

exp(2KσRW)‖W − W̃‖1,1,∞.
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A.7 Proof of Proposition 5

For two integers a and b, denote respectively a//b and a%b the quotient and the remainder of the
Euclidean division of a by b. Then, for W ∈ RL×d×d, let φ(W) : [0, 1]→ Rd2

the piecewise-affine
function defined as follows: φ(W) is affine on every interval

[
k
L ,

k+1
L

]
for k ∈ {0, . . . , L− 1}; for

k ∈ {1, . . . , L} and i ∈ {1, . . . , d2},

φ(W)i

( k
L

)
= W k

L ,(i//d)+1,(i%d)+1 ,

and φ(W)i(0) = φ(W)i(1/L). Then φ(W) satisfies two properties. First, it is a linear function
of W. Second, for W ∈ RL×d×d,

‖φ(W)‖1,∞ = ‖W‖1,1,∞,
because, for x ∈ [0, 1], φ(W)(x) is a convex combination of two vectors that are bounded in `1-
norm by ‖W‖1,1,∞, so it is itself bounded in `1-norm by ‖W‖1,1,∞, implying that ‖φ(W)‖1,∞ 6
‖W‖1,1,∞. Reciprocally,

‖φ(W)‖1,∞ = sup
06t61

‖φ(W)(x)‖1 > sup
16k6L

∥∥∥φ(W)
( k
L

)∥∥∥
1

= ‖W‖1,1,∞.

Now, take W ∈ W . The second property of φ implies that ‖φ(W)‖1,∞ 6 RW . Moreover, each
coordinate of φ(W) is KW -Lipschitz, since the slope of each piece of φ(W)i is at most KW . As a
consequence, φ(W) belongs to

ΘW = {θ : [0, 1]→ Rd
2

, ‖θ‖1,∞ 6 RW and θi is KW -Lipschitz for i ∈ {1, . . . , d2}}.
Therefore φ(W) is a subset of ΘW , thus its covering number is less than the one of ΘW . Moreover,
φ is clearly injective, thus we can define φ−1 on its image. Consider an ε-cover (θ1, . . . , θN ) of
(φ(W), ‖ · ‖1,∞). Let us show that (φ−1(θ1), . . . , φ−1(θN )) is an ε-cover of (W, ‖ · ‖1,1,∞): take
W ∈ W and consider θi a cover member at distance less than ε from φ(W). Then

‖W − φ−1(θi)‖1,1,∞ = ‖φ(W − φ−1(θi))‖1,∞ = ‖φ(W)− θi‖1,∞ 6 ε,

where the second equality holds by linearity of φ. Therefore, the covering number of (W, ‖ · ‖1,1,∞)
is upper bounded by the one of (φ(W), ‖ · ‖1,∞), which itself is upper bounded by the one of
(ΘW , ‖ · ‖1,∞), yielding the result by Proposition 3.

A.8 Proof of Theorem 2

The proof structure is the same as the one of Theorem 1, but some constants change. Similarly
to (16), we obtain that, if 16d2RW

ε > 2 (which holds true for ε = 1/
√
n and under the assumption of

the Theorem),

R(Ŵn) 6 R̂n(Ŵn)+2CK`ε+M

√
2(d2 + 1) log

(
16d2RW

ε

)
+ 2d4KW

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
,

with
M = K`(RX exp(KσRW) +RY)

and
C =

RX
RW

exp(2KσRW).

Finally denote

B̃ = 2M max
(exp(KσRW)

RW
, 1
)
.

Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√
n

, we obtain as in the proof of Theorem 1 that

R(Ŵn) 6 R̂n(Ŵn) + 3B̃

√
(d2 + 1) log(d2RWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ
.
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for n > 9R−1
W max(d−4R−1

W , 1). Thus

R(Ŵn) 6 R̂n(Ŵn) + 3
√

2B̃(d+ 1)

√
log(dRWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ
,

since
√
d2 + 1 6 d + 1 and RWn 6 R2

Wn
2 by assumption on n. The result unfolds since the

constant B in the Theorem is equal to 3
√

2B̃.

A.9 Proof of Corollary 2

Let

A(W) =

( L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥)( L∑
k=1

‖WT
k ‖

2/3
2,1

L2/3‖I + 1
LWk‖2/3

)3/2

,

where ‖ · ‖2,1 denotes the (2, 1)-norm defined as the `1-norm of the `2-norms of the columns, and I
is the identity matrix (and we recall that ‖ · ‖ denotes the spectral norm). We apply Theorem 1.1 from
Bartlett et al. (2017) by taking as reference matrices the identity matrix. The theorem shows that,
under the assumptions of the corollary,

P
(

arg max
16j6d

FW(x)j 6= y
)
6 R̂n(W) + C

RXA(W) log(d)

γ
√
n

+
C√
n

√
log

1

δ
,

where, as in the corollary, R̂n(W) 6 n−1
∑n
i=1 1FW(xi)yi6γ+maxj 6=yi

f(xi)j and C is a universal
constant. Let us upper bound A(W) to conclude. On the one hand, we have

L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥ 6
L∏
k=1

(
‖I‖+

1

L
‖Wk‖

)
6

L∏
k=1

(
1 +

1

L
‖Wk‖1,1

)
6

L∏
k=1

(
1 +

1

L
RW

)
6 exp(RW)

On the other hand, for any k ∈ {1, . . . , L},
‖WT

k ‖2,1 6 ‖WT
k ‖1,1 6 RW ,

while
‖I +

1

L
Wk‖ > 1− 1

L
‖Wk‖ > 1− RW

L
>

1

2
,

under the assumption that L > RW . All in all, we obtain that

A(W) 6 exp(RW)
(
22/3L1/3R

2/3
W
)3/2

= 2RW exp(RW)
√
L,

which yields the result.

B Experimental details

Our code is available at

https://github.com/PierreMarion23/generalization-ode-resnets.

We use the following model, corresponding to model (10) with additional projections at the beginning
and at the end:

H0 = Ax

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1

FW(x) = BHL,
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Name Value
d 30
L 1000
σ ReLU

Table 1: Values of the model hyperparameters.

where x ∈ R768 is a vectorized MNIST image, A ∈ Rd×768, and B ∈ R10×d. Table 1 gives the
value of the hyperparameters.

We use the initialization scheme outlined in Section 4.1: we initialize, for k ∈ {1, . . . , L} and
i, j ∈ {1, . . . , d},

Wk,i,j =
1√
d
fi,j

( k
L

)
,

where fi,j are independent Gaussian processes with the RBF kernel (with bandwidth equal to 0.1).
We refer to Marion et al. (2022) and Sander et al. (2022) for further discussion on this initialization
scheme. However, A and B are initialized with a more usual scheme, namely with i.i.d. N (0, 1/c)
random variables, where c denotes the number of columns of A (resp. B).

In Figure 1a, we repeat training 10 times independently. Each time, we perform 30 epochs, and
compute after each epoch both the Lipschitz constant of the weights and the generalization gap. This
gives 300 pairs (Lipschitz constant, generalization gap), which each corresponds to one dot in the
figure. Furthermore, we report results for two setups: when A and B are trained or when they are
fixed random matrices.

In Figure 1b, A and B are not trained. The reason is to assess the effect of the penalization on W
for a fixed scale of A and B. If we allow A and B to vary, then it is possible that the effect of the
penalization might be neutralized by a scale increase of A and B during training.

For all experiments, we use the standard MNIST datasplit (60k training samples and 10k testing
samples). We train using the cross entropy loss, mini-batches of size 128, and the optimizer Adam
(Kingma and Ba, 2015) with default parameters and a learning rate of 0.02.

We use PyTorch (Paszke et al., 2019) and PyTorch Lightning for our experiments.

The code takes about 60 hours to run on a standard laptop (no GPU).
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