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Summary. We provide additional experimental results/details and analysis in this supplement as:
(A) analysis on regularization Lz, (B) the proof of Theorem 1, (C) additional results on Guacamol
Benchmarks, (D) additional results on DRD3 task, (E) efficiency analysis, and (F) implementation
details.

A Analysis on Regularization Lz

Here, we analyze the necessity of regularization Lz. Based on Theorem 1 in the main paper, to in-
crease the correlation between the distance of latent vectors and the differences in their correspond-
ing objective values, we need to keep the distance between the latent vectors z to be a constant.
Figure 1 displays the box plot of distances between z at each iteration of BO. The box represents the
first and third quartiles, and the whiskers represent the 10 and 90 percentiles. Each data point has
a top-k score of objective value. As in Figure 1, the model only with Lipschitz regularization LLip
(i.e., without Lz) increases the distance between the latent vectors ∥zi− zj∥2 since it is an easy way
to minimize LLip given as

LLip =
∑

i,j≤N

max

(
0,

|yi − yj |
∥zi − zj∥2

− L

)
. (1)

However, when applying both regularizations LLip and Lz, we observe that the distance is preserved
within a certain range, similar to the beginning of training.

B Proof of Theorem 1

Theorem 1. Let DZ = dZ(Z1, Z2) and DY = dY (f(Z1), f(Z2)) be random variables where
Z1, Z2 are i.i.d. random variables, f is an L-Lipschitz continuous function, and dZ , dY are distance
functions. Then, the correlation between DZ and DY is lower bounded as

DY ≤ LDZ ⇒ CorrDZ ,DY
≥

1
L (σ

2
DY

+ µ2
DY

)− Lµ2
DZ√

σ2
DZ

σ2
DY

,

where µDZ
, σ2

DZ
, µDY

, and σ2
DY

are the mean and variance of DZ and DY respectively.
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Figure 1: Effects on Regularization Lz. The green and red box plots depict the distances of the
latent vectors with and without regularization term Lz, respectively.

Proof. The correlation between DZ and DY is:

CorrDZ ,DY
=

Cov (DZ , DY )√
Var (DZ)Var(DY )

(2)

=
E[(DZ − E[DZ ])(DY − E[DY ])]√

Var (DZ)Var(DY )
(3)

=
E[DZDY ]− E[DZ ]E[DY ]√

Var (DZ)Var(DY )
. (4)

By L-Lipschitz continuity, we have:

dY (f(Z1), f(Z2)) ≤ LdZ(Z1, Z2) ⇒ DY ≤ LDZ . (5)

Hence, the correlation is bounded as follows:

CorrDZ ,DY
=

E[DZDY ]− E[DZ ]E[DY ]√
Var (DZ)Var(DY )

(6)

≥
E[ 1LDY DY ]− E[DZ ]E[LDZ ]√

Var (DZ)Var(DY )
(7)

=
1
LE[(DY )

2]− LE[DZ ]E[DZ ]√
Var (DZ)Var(DY )

(8)

=
1
L

(
Var[DY ] + (E[DY ])

2
)
− L(E[DZ ])

2√
Var (DZ)Var(DY )

(9)

=
1
L (σ

2
DY

+ µ2
DY

)− Lµ2
DZ√

σ2
DZ

σ2
DY

. (10)

C Additional Results on Guacamol Benchmarks

In addition to the four tasks of the Guacamol benchmark that we previously mentioned, we also eval-
uate our model on three additional tasks: Ranolazine MPO, Aripiprazole similarity, and Valsartan
SMART. The experimental settings for these additional tasks are the same with the settings applied
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(a) Ranolazine MPO (rano) (b) Aripiprazole similarity (adip)

(c) Valsartan SMART (valt)

Figure 2: Optimization results with the additional three tasks on the Guacamol benchmark.
The lines and range are the mean and standard deviation of three repetitions with the same parame-
ters.

to the initial four tasks. The results of the experiments are present in Figure 2. For the Valsartan
SMART task, as depicted in Figure 2c, three models find the optimal point, note that our model finds
the optimal point faster than other models.

D Additional Results on DRD3 Task

We compare our results with the leaderboard3 of the DRD3 task in Table 1. Note that we use a
random initialized dataset of 100. We specifically compare the Top-1 scores as absolute values,
which are also reported in our line plot.

Table 1: Optimization results with best score on TDC DRD3 task. Baselines are reported on leader-
board.

Oracle calls CoBO (Ours) Graph-GA[1] SMILES-LSTM[2] GCPN[3] MARS[4] MolDQN[5]

100 -11.80 -11.13 -11.77 -9.10 -7.02 -11.63
500 -13.57 -12.50 -11.37 -11.97 -9.83 -7.62

1000 -13.97 -13.23 -11.97 -12.03 -11.10 -7.80
3000 -15.37 - - - - -

E Efficiency Analysis

We conduct an efficiency analysis on every tasks: the Guacamol benchmarks, the DRD3 task, and
the arithmetic fitting task. In our analysis, we compare our model with four baseline models. For a

3https://tdcommons.ai/benchmark/docking_group/drd3/
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fair comparison, we set up experiments for every model in the same condition, as we use the CPU
of AMD EPYC 7742 with a single NVIDIA RTX 2080 TI. Note that since these are CPU-intensive
tasks, the CPU is crucial to the speed of execution. We report runtimes, the found best score, and the
number of oracles, where we measure runtimes of executing a certain number of oracles as the wall
clock time. The number of oracle calls increases each time as unique inputs are passed to the black-
box objective function. Table 2, 3, 4 demonstrates that CoBO achieves comparable runtime with the
same number of oracle calls, while outperforming the baselines by finding superior solutions.

F Implementation Details

In our implementation, we use PyTorch4, BoTorch5 and GPyTorch6. Additionally, we utilize the
codebase7 of [6] for the implementation. The SELFIES VAE is pretrained with 1.27M molecules in
Guacamol benchmark and DRD3 task from [7] and the Grammar VAE is pretrained 40K expression
in Arithmetic data from [8]. On the DRD3 task, we modify the evaluation metric from minimization
to maximization by simply changing the sign of the objective values. In our experiments, we mainly
employ NVIDIA V100 and Intel Xeon Gold 6230. In this setup, the pdop tasks with a budget of 70k
oracle, took an average of 11 hours.

F.1 Hyperparameters

We grid search coefficients of our proposed regularizations LLip_W and Lz, in the range of
[10,100,1000] for LLip_W and [0.1,1] for Lz. For some tasks, we didn’t search for these hyper-
parameters, and their coefficients are provided in Table 6. The selected coefficients from this search
are presented in Table 5. For other hyperparameters, such as coefficients for other losses, batch size,
and learning rate, we set values according to Table 7.

4Copyright (c) 2016-Facebook, Inc (Adam Paszke), Licensed under BSD-style license
5Copyright (c) Meta Platforms, Inc. and affiliates. Licensed under MIT License
6Copyright (c) 2017 Jake Gardner. Licensed under MIT License
7Copyright (c) 2022 Natalie Maus. Licensed under MIT License
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Table 2: Efficiency comparison on Guacamol benchmarks within 70k evaluation budget.

Model CoBO (Ours) LOL-BO W-LBO TuRBO-L LS-BO

med2



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 1057.8 1080.4 175.8 246.7 1580.3

Found Best Score 0.3828 0.3530 0.3118 0.3118 0.3464

Oracle calls 55k 33k 70k 48k 16k
Wall clock time (min) 175.8 175.8 175.8 175.8 175.8

Found Best Score 0.3828 0.3434 0.3118 0.3118 0.3295

adip



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 4986.3 3340.7 198.2 236.3 1320.8

Found Best Score 0.8133 0.8086 0.6983 0.6983 0.7186

Oracle calls 32k 28k 70k 58k 13k
Wall clock time (min) 198.2 198.2 198.2 198.2 198.2

Found Best Score 0.7921 0.7466 0.6983 0.6983 0.7186

pdop



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 1020.9 1920.4 168.4 268.1 840.6

Found Best Score 0.8343 0.7959 0.5855 0.5736 0.6514

Oracle calls 33k 28k 70k 38k 18k
Wall clock time (min) 168.4 168.4 168.4 168.4 168.4

Found Best Score 0.8343 0.7948 0.5855 0.5233 0.6312

rano



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 3940.5 2820.9 340.6 276.1 2320.6

Found Best Score 0.9550 0.9468 0.8045 0.7766 0.9226

Oracle calls 42k 41k 55k 70k 21k
Wall clock time (min) 276.1 276.1 276.1 276.1 276.1

Found Best Score 0.9486 0.9433 0.8045 0.7766 0.9166

valt



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 560.3 760.5 304.1 234.2 1940.4

Found Best Score 0.9982 0.9982 4e-14 4e-33 0.9917

Oracle calls 51k 38k 57k 70k 23k
Wall clock time (min) 234.2 234.2 234.2 234.2 234.2

Found Best Score 0.9982 0.9942 4.8532e-14 4875e-36 0.6533

zale



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 374.7 1320.2 366.7 150.4 840.5

Found Best Score 0.7733 0.7521 0.6024 0.5142 0.6366

Oracle calls 46k 24k 35k 70k 11k
Wall clock time (min) 150.4 150.4 150.4 150.4 150.4

Found Best Score 0.7733 0.7415 0.5633 0.5142 0.5833

osmb



Oracle calls 70k 70k 70k 70k 70k
Wall clock time (min) 477.6 840.1 372.2 210.2 743.4

Found Best Score 0.9267 0.9233 0.8336 0.8481 0.8933

Oracle calls 59k 43k 46k 70k 19k
Wall clock time (min) 210.2 210.2 210.2 210.2 210.2

Found Best Score 0.9233 0.9167 0.8332 0.8481 0.8866
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Table 3: Efficiency comparison on DRD3 benchmark within 3k evaluation budget.

Model CoBO (Ours) LOL-BO W-LBO TuRBO-L LS-BO

Oracle calls 3k 3k 3k 3k 3k
Wall clock time (hr) 86.4 65.7 40.7 34.3 67.4
Found Best Score -15.4 -14.6 -12.3 -12.2 -13.9

Oracle calls 1.5k 1.5k 2.6k 3k 2.1k
Wall clock time (hr) 34.3 34.3 34.3 34.3 34.3
Found Best Score -14.5 -14.2 -12.3 -12.2 -13.6

Table 4: Efficiency comparison on arithmetic expression fitting task within 500 evaluation
budget.

Model CoBO (Ours) LOL-BO W-LBO TuRBO-L LS-BO

Oracle calls 500 500 500 500 500
Wall clock time (min) 5.4 11.3 11.1 338.1 1620.7

Found Best Score 0.1468 0.4624 0.5848 0.7725 0.5533

Oracle calls 500 330 173 0 0
Wall clock time (min) 5.4 5.4 5.4 5.4 5.4

Found Best Score 0.1468 0.5467 1.0241 1.521 1.521

Table 5: Coefficients of our proposed regularizations determined by grid search.

med2 osmb pdop zale Arithmetic DRD3

Coefficient of LLip_W 1e3 1e2 1e2 1e3 1e1 1e1
Coefficient of Lz 1e0 1e0 1e-1 1e0 1e-1 1e0

Table 6: Coefficients of our proposed regularizations w/o search.

rano adip valt

Coefficient of LLip_W 1e2 1e2 1e2
Coefficient of Lz 1e-1 1e-1 1e-1

Table 7: Other hyperparameters used in the experiments.

Parameter Guacamol Arithmetic DRD3

Learning rate 0.1 0.1 0.1
Coefficient of Lsurr 1 1 1

Coefficient of Lrecon_W 1 1 1
Coefficient of LKL 0.1 0.1 0.1

Quantile of objective value for loss weighting 0.95 0.95 0.95
Standard deviation σ for loss weighting 0.1 0.1 0.1

# initial datapoints N 10000 40000 100
Latent update interval Nfail 10 10 10

Batch size 10 5 1
# top-k used training 1000 10 10
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