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Abstract

We study the problem of list-decodable Gaussian covariance estimation. Given a
multiset T of n points in Rd such that an unknown α < 1/2 fraction of points in T
are i.i.d. samples from an unknown GaussianN (µ,Σ), the goal is to output a list of
O(1/α) hypotheses at least one of which is close to Σ in relative Frobenius norm.
Our main result is a poly(d, 1/α) sample and time algorithm for this task that
guarantees relative Frobenius norm error of poly(1/α). Importantly, our algorithm
relies purely on spectral techniques. As a corollary, we obtain an efficient spectral
algorithm for robust partial clustering of Gaussian mixture models (GMMs) — a
key ingredient in the recent work of [BDJKKV22] on robustly learning arbitrary
GMMs. Combined with the other components of [BDJKKV22], our new method
yields the first Sum-of-Squares-free algorithm for robustly learning GMMs, re-
solving an open problem proposed by Vempala [Vem22] and Kothari [Kot21]. At
the technical level, we develop a novel multi-filtering method for list-decodable
covariance estimation that may be useful in other settings.

1 Introduction

Robust statistics studies the efficient (parameter) learnability of an underlying distribution given
samples some fraction of which might be corrupted, perhaps arbitrarily. While the statistical theory
of these problems has been well-established for some time [Hub64; HR09], only recently has the al-
gorithmic theory of such estimation problems begun to be understood [DKKLMS16; LRV16; DK23].

A classical problem in robust estimation is that of multivariate robust mean estimation — that is,
estimating the mean of an unknown distribution in the presence of a small constant fraction of
outliers. One of the original results in the field is that given samples from a GaussianN (µ, I) with an
ϵ-fraction of outliers (for some ϵ < 1/2), the unknown mean µ can be efficiently estimated to an error
of O(ϵ

√
log 1/ϵ) in the ℓ2-norm [DKKLMS16]. Note that the use of the ℓ2-norm here is quite natural,

as the total variation distance between two identity-covariance Gaussians is roughly proportional to
the ℓ2-distance between their means; thus, this estimator learns the underlying distribution to total
variation distance error O(ϵ

√
log 1/ϵ). This bound cannot be substantially improved, as learning to

error o(ϵ) in total variation distance is information-theoretically impossible.

While the above algorithmic result works when ϵ is small (less than 1/2), if more than half of the
samples are corrupted, it becomes impossible to learn with only a single returned hypothesis—the
corruption might simply simulate other Gaussians, and no algorithm can identify which Gaussian
is the original one. This issue can be circumvented using the list-decodable mean estimation
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paradigm [CSV17], where the algorithm is allowed to output a small list of hypotheses with the
guarantee that at least one of them is relatively close to the target. List-decodable learning is
closely related to semi-verified learning [CSV17; MV18], where a learner can choose to audit
a small amount of data. The framework has been shown to capture a multitude of applications,
including crowdsourcing [SVC16; MV18], semi-random community detection in stochastic block
models [CSV17] and clustering (as we also show in this work). For Gaussian mean estimation in
particular, if an α-fraction of the samples are clean (i.e., uncorrupted), for some α < 1/2, there exist
polynomial-time algorithms that return a list of O(1/α) hypotheses such that (with high probability)
at least one of them is within Õ(

√
1/α) of the mean in ℓ2-distance [CSV17]. Note that while this

ℓ2-norm distance bound does not imply a good bound on the total variation distance between the true
distribution and the learned hypothesis, it does bound their distance away from one, ensuring some
non-trivial overlap.

Another important, and arguably more complex, problem in robust statistics (the focus of this work) is
that of robustly estimating the covariance of a multivariate Gaussian. It was shown in [DKKLMS16]
that given ϵ-corrupted samples from N (0,Σ) (for ϵ < 1/2) there is a polynomial-time algorithm
for estimating Σ to error O(ϵ log 1/ϵ) in the relative Frobenius norm, i.e., outputting a hypothesis
covariance Σ̃ satisfying ∥Σ̃−1/2ΣΣ̃−1/2 − I∥F ≤ ϵ. This is again the relevant metric, since, if
∥Σ̃−1/2ΣΣ̃−1/2 − I∥F ≤ 2/3, then the total variation distance between N (0,Σ) and N (0, Σ̃) is
proportional to the relative Frobenius norm ∥Σ̃−1/2ΣΣ̃−1/2 − I∥F [DMR18].

A natural goal, with a number of applications, is to extend the above algorithmic result to the list-
decodable setting. That is, one would like a polynomial-time algorithm that given corrupted samples
from N (0,Σ) (with an α-fraction of clean samples, for some α < 1/2), returns a list of O(1/α)
many hypotheses with the guarantee that at least one of them has some non-trivial overlap with
the true distribution in total variation distance. We start by noting that the sample complexity of
list-decodable covariance estimation is poly(d/α), albeit via an exponential time algorithm. The only
known algorithm for list-decodable covariance estimation (with total variation error guarantees) is
due to [IK22]. This algorithm essentially relies on the Sum-of-Squares method and has (sample and
computational) complexity dpoly(1/α). Intriguingly, there is compelling evidence that this complexity
bound cannot be improved. Specifically, [DKS17; DKPPS21] showed that any Statistical Query (SQ)
algorithm for this task requires complexity dpoly(1/α). Combined with the reduction of [BBHLT20],
this implies a similar lower bound for low-degree polynomial tests. These lower bounds suggest an
intrinsic information-computation gap for the problem.

The aforementioned lower bound results [DKS17; DKPPS21] establish that it is SQ (and low-degree)
hard to distinguish between a standard multivariate Gaussian, N (0, I), and a distribution P that
behaves like N (0, I) (in terms of low-degree moments) but P contains an α-fraction of samples
from a Gaussian N (0,Σ), where Σ is very thin in some hidden direction v. Since the distribution
N (0,Σ) is very thin along v, i.e., has very small variance, the obvious choice of N (0, I) essentially
has no overlap with N (0,Σ) — making this kind of strong list-decoding guarantee (closeness in
total variation distance) likely computationally intractable.

Interestingly, there are two possible ways that a pair of mean zero Gaussians can be sepa-
rated [DHKK20; BDHKKK20]: (1) one could be much thinner than the other in some direction, or (2)
they could have many orthogonal directions in which their variances differ, adding up to something
more substantial. While the lower bounds of [DKS17; DKPPS21] seem to rule out being able to
detect deviations of the former type in fully polynomial time (i.e., poly(d/α)), it does not rule out
efficiently detecting deviations of the latter. In particular, we could hope to find (in poly(d/α) time)
a good hypothesis Σ̃ such that ∥Σ̃−1/2ΣΣ̃−1/2 − I∥F is not too big. While this does not exclude the
possibility that Σ is much thinner than Σ̃ in a small number of independent directions, it does rule out
the second kind of difference between the two. The main goal of this paper is to provide an elementary
(relying only on spectral techniques) list-decoding algorithm of this form. Given corrupted samples
from a GaussianN (0,Σ), we give a poly(d/α)-time algorithm that returns a small list of hypotheses
Σ̃ such that for at least one of them we have that ∥Σ̃−1/2ΣΣ̃−1/2 − I∥F < poly(1/α).

In addition to providing the best qualitative guarantee we could hope to achieve in fully polynomial
time, the above kind of “weak” list-decoding algorithm has interesting implications for the well-
studied problem of robustly learning Gaussian mixture models (GMMs). [BDJKKV22] gave a
polynomial-time algorithm to robustly learn arbitrary mixtures of Gaussians (with a constant number
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of components). One of the two main ingredients of their approach is a subroutine that could perform
partial clustering of points into components that satisfy exactly this kind of weak closeness guarantee.
[BDJKKV22] developed such a subroutine by making essential use of a Sum-of-Squares (SoS)
relaxation, for the setting that the samples come from a mildly corrupted mixture of Gaussians (with
a small constant fraction of outliers). As a corollary of our techniques, we obtain an elementary
spectral algorithm for this partial clustering task (and, as already stated, our results work in the more
general list-decoding setting). This yields the first SoS-free algorithm for robustly learning GMMs,
answering an open problem in the literature [Vem22; Kot21].

1.1 Our Results

Our main result is a polynomial-time algorithm for list-decoding the covariance of a Gaussian in
relative Frobenius norm, under adversarial corruption where more than half the samples could be
outliers. Definition 1.1 makes precise the corruption model, and Theorem 1.2 states the guarantees of
our main algorithm (Algorithm 1).
Definition 1.1 (Corruption model for list-decoding). Let the parameters ϵ, α ∈ (0, 1/2) and a
distribution family D. The statistician specifies the number of samples m. Then a set of n ≥ αm
i.i.d. points are sampled from an unknown D ∈ D. We call these n samples the inliers. Upon
inspecting the n inliers, a (malicious and computationally unbounded) adversary can replace an
arbitrary ℓ ≤ ϵn of the inliers with arbitrary points, and further add m− n arbitrary points to the
dataset, before returning the entire set of m points to the statistician. The parameter α is also known
a-priori to the statistician, but the number n chosen by the adversary is unknown. We refer to this set
of m points as an (α, ϵ)-corrupted set of samples from D.

In our context, the notion of list-decoding is as follows: our algorithm will return a polynomially-sized
list of matrices Hi, such that at least one Hi is an “approximate square root” of the true covariance Σ
having bounded dimension-independent error ∥H−1/2

i ΣH
−1/2
i −I∥F. As discussed earlier, the bound

we guarantee is poly(1/α), which is in general larger than 1 and thus does not lead to non-trivial
total variation bounds, thus circumventing related SQ lower bounds. Our main theorem is:
Theorem 1.2 (List-Decodable Covariance Estimation in Relative Frobenius Norm). Let C ′ > 0
be a sufficiently large constant and ϵ0 > 0 be a sufficiently small constant. Let the parameters
α ∈ (0, 1/2), ϵ ∈ (0, ϵ0), and failure probability δ ∈ (0, 1/2) be known to the algorithm. Let D be
the Gaussian distribution N (µ,Σ) with mean µ ∈ Rd and full-rank covariance Σ ∈ Rd×d. There
is an Õ(m2d2)-time algorithm (Algorithm 1) such that, on input α, δ and an (α, ϵ)-corrupted set of
m points from D (Definition 1.1) for any m > C ′ d2 log5(d/αδ)

α6 , with probability at least 1− δ, the
algorithm returns a list of at most O(1/α) many sets Ti which are disjoint subsets of samples, each
of size at least 0.5αm, and there exists a Ti in the output list such that:

• Recall the notation in the corruption model (Definition 1.1) where n is the size of the original
inlier set S and ℓ is the number of points in S that the adversary replaced—n and ℓ are unknown
to the algorithm except that n ≥ αm and ℓ ≤ ϵn. The set Ti in the returned list satisfies that
|Ti ∩ S| ≥ (1− 0.01α)(n− ℓ).

• Denote Hi := EX∼Ti [XX⊤]. The matrix Hi satisfies ∥H−1/2
i ΣH

−1/2
i − I∥F ≲ 1

α4 log(
1
α ).

Algorithm 1 is an iterative spectral algorithm, as opposed to involving large convex programs based
on the sum-of-squares hierarchy. We state Algorithm 1 and give a high-level proof sketch of why it
satisfies Theorem 1.2 in Section 3. The formal proof of Theorem 1.2 appears in Appendix F (where
we allow Σ to be rank-deficient as well).

We also briefly remark that, if we wish to list-decode pairs of (mean, covariance), then we can run
the following straightforward augmentation to Algorithm 1: after running Algorithm 1, for each
Σ̂ in the output list, whiten the data using Σ̂ and run a standard list-decoding algorithm for the
mean [CSV17; DKK20b]. These algorithms work if the data is distributed with a bounded covariance:
by the guarantees of Theorem 1.2, after whitening, the data has covariance bounded by poly(1/α) · I .

As a corollary of our main result, the same algorithm (but with a slightly higher sample complexity)
also achieves outlier-robust list-decoding of the covariances for the components of a Gaussian mixture
model, in relative Frobenius norm. Definition 1.3 and Theorem 1.4 state the corresponding corruption
model and theoretical guarantees on Algorithm 1.
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Definition 1.3 (Corruption model for samples from Gaussian Mixtures). Let ϵ ∈ (0, 1/2). Consider
a Gaussian mixture model

∑
p αpN (µp,Σp), where the parameters αp, µp and Σp are unknown and

satisfy αp ≥ α for some known parameter α. The statistician specifies the number of samples m, and
m i.i.d. samples are drawn from the Gaussian mixture, which are called the inliers. The malicious
and computationally unbounded adversary then inspects the m inliers and is allowed to replace an
arbitrary subset of ϵαm many inlier points with arbitrary outlier points, before giving the modified
dataset to the statistician. We call this the ϵ-corrupted set of samples.

Theorem 1.4 (Outlier-Robust Clustering and Estimation of Covariances for GMM). Let C ′ > 0
be a sufficiently large constant and ϵ0 > 0 be a sufficiently small constant. Let the parameters
α ∈ (0, 1/2), ϵ ∈ (0, ϵ0), and failure probability δ ∈ (0, 1/2) be known. There is an Õ(m2d2)-time
algorithm such that, on input α, δ, and m > C ′ d2 log5(d/αδ)

α6 many ϵ-corrupted samples from an
unknown k-component Gaussian mixture

∑k
p=1 αpN (µp,Σp) over Rd as in Definition 1.3, where

all Σp’s are full-rank and all αp satisfies αp ≥ α and k ≤ 1
α is unknown to the algorithm, with

probability at least 1 − δ over the corrupted samples and the randomness of the algorithm, the
algorithm returns a list of at most k many disjoint subsets of samples {Ti} such that:

• For the pth Gaussian component, denote the set Sp as the samples in the inlier set S that were
drawn from component p. Let np be the size of Sp, and let ℓp be the number of points in Sp that the
adversary replaced—np and ℓp are both unknown to the algorithm except that E[np] = αpm ≥
αm for each p and

∑
p ℓp ≤ ϵαm. Then, for every Gaussian component p in the mixture, there

exists a set Tip in the returned list such that |Tip ∩ Sp| ≥ (1− 0.01α)(np − ℓp).

• For every component p, there is a set of samples Tip in the returned list such that, defining
Hip = EX∼Tip

[XX⊤] , we have Hip satisfying ∥H−1/2
ip

ΣpH
−1/2
ip

− I∥F ≲ (1/α4) log(1/α).

• Let Σ be the (population-level) covariance matrix of the Gaussian mixture. For any two components
p ̸= p′ with ∥Σ−1/2(Σp − Σp′)Σ−1/2∥F > C(1/α)5 log(1/α) for a sufficiently large constant C,
the sets Tip and Tip′ from the previous bullet are guaranteed to be different.

The theorem states that, not only does Algorithm 1 achieve list-decoding of the Gaussian component
covariances, but it also clusters samples according to separation of covariances in relative Frobenius
norm. The recent result of [BDJKKV22] on robustly learning GMMs also involves an algorithmic
component for clustering. Their approach is based on the sum-of-squares hierarchy (and thus requires
solving large convex programs) while, Algorithm 1 is a purely spectral algorithm.

We also emphasize that the list size returned by Algorithm 1, in the case of a k-component Gaussian
mixture model, is at most k — instead of a weaker result such as O(1/α) or polynomial/exponentially
large in 1/α. This is possible because Algorithm 1 keeps careful track of samples and makes sure
that no more than a 0.01α-fraction of samples is removed from each component or mis-clustered into
another component. We prove Theorem 1.4 in Appendix G.

1.2 Overview of Techniques

At a high level, our approach involves integrating robust covariance estimation techniques from
[DKKLMS16] with the multifilter for list-decoding of [DKS18]. For a set S, we use SS⊤ to denote
the set {xx⊤ : x ∈ S}. [DKKLMS16] states that in order to estimate the true covariance Σ, it
suffices to find a large subset S of points with large overlap with the original set of good points, so
that if Σ′ = Cov(S) then Cov((Σ′)−1/2SS⊤(Σ′)−1/2) has no large eigenvalues. This will imply
that ∥(Σ′)−1/2(Σ− Σ′)(Σ′)−1/2∥F is not too large (Lemma E.2).

As in [DKKLMS16], our basic approach for finding such a set S is by the iteratively repeating the
following procedure: We begin by taking S to be the set of all samples and repeatedly check whether
or not Cov((Σ′)−1/2SS⊤(Σ′)−1/2) has any large eigenvalues. If it does not, we are done. If it
has a large eigenvalue corresponding to a matrix A (normalized to have unit Frobenius norm), we
consider the values of f(x) = ⟨A, (Σ′)−1/2xx⊤(Σ′)−1/2⟩, for x in S, and attempt to use them to
find outliers. Unfortunately, as the inliers might comprise a minority of the sample, the values we
get out of this formula might end-up in several reasonably large clusters, any one of which could
plausibly contain the true samples; thus, not allowing us to declare any particular points to be outliers
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with any degree of certainty. We resolve this issue by using the multifilter approach of [DKS18]—we
either (i) iteratively remove outliers, or (ii) partition the data into clusters and recurse on each cluster.
In particular, we note that if there is large variance in the A-direction, one of two things must happen,
either: (i) The substantial majority of the values of f(x) lie in a single cluster, with some extreme
outliers. In this case, we can be confident that the extreme outliers are actual errors and remove them
(Section 3.2). (ii) There are at least two clusters of values of f(x) that are far apart from each other.
In this case, instead of simply removing obvious outliers, we replace S by two subsets S1 and S2

with the guarantee that at least one of the Si contains almost all of the inliers. Naïvely, this can be
done by finding a value y between the two clusters so that very few samples have f(x) close to y, and
letting S1 be the set of points with f(x) < y and S2 the set of points with f(x) > y (Section 3.3).
In either case, we will have cleaned up our set of samples and can recurse on each of the returned
subsets of S. Iterating this technique recursively on all of the smaller subsets returned ensures that
there is always at least one subset containing the majority of the inliers, and that eventually once it
stops having too large of a covariance, we will return an appropriate approximation to Σ.

We want to highlight the main point of difference where our techniques differ notably from [DKS18].
In order to implement the algorithm outlined above, one needs to have good a priori bounds for what
the variance of f(x) over the inliers ought to be. Since f(·) is a quadratic polynomial, the variance of
f over the inliers, itself depends on the covariance Σ, which is exactly what we are trying to estimate.
This challenge of circular dependence does not appear in [DKS18]: their goal was to estimate the
unknown mean of an identity-covariance Gaussian, and thus it sufficed to use a linear polynomial
f (instead of a quadratic polynomial). Importantly, the covariance of a linear polynomial does not de-
pend on the (unknown) mean (it depends only on the covariance, which was known in their setting). In
order to overcome this challenge, we observe that if S contains most of the inliers, then the covariance
of S cannot be too much smaller than the true covariance Σ. This allows us to find an upper bound
on Σ, which in turn lets us upper bound the variance of f(x) over the good samples (Lemma 3.2).

Related Work We refer the reader to [DK23] for an overview of algorithmic robust statistics. We
mention the most relevant related work here and discuss additional related work in Appendix A.
Algorithms for list-decodable covariance estimation were developed in the special cases of subspace
estimation and linear regression in [KKK19; BK21; RY20b; RY20a; DJKS22]. On the other
hand, [DKS17; DKPPS21] present SQ lower bounds for learning Gaussian mixture models and
list-decodable linear regression (and thus list-decodable covariance estimation), respectively.

[IK22] gave the first algorithm for general list-decodable covariance estimation that achieves non-
trivial bounds in total variation distance using the powerful sum-of-squares hierarchy. Their algorithm
outputs an exp(poly(1/α))-sized list of matrices containing an Hi that is close to the true Σ in two
metrics (i) relative Frobenius norm: ∥H−1/2

i ΣH
−1/2
i − I∥F = poly(1/α) and (ii) multiplicative

spectral approximation: poly(α)Σ ⪯ Hi ⪯ poly(1/α)Σ. Their algorithm uses dpoly(1/α) samples,
which seems to be necessary for efficient (statistical query) algorithms achieving multiplicative
spectral approximation [DKS17; DKPPS21]. In comparison, Theorem 1.2 uses only poly(d/α)
samples, returns a list of O(1/α) matrices, but approximates only in the relative Frobenius norm:
∥H−1/2

i ΣH
−1/2
i − I∥F = poly(1/α).

2 Preliminaries

For a vector v, we let ∥v∥2 denote its ℓ2-norm. We use Id to denote the d× d identity matrix; We
will drop the subscript when it is clear from the context. For a matrix A, we use ∥A∥F and ∥A∥op to
denote the Frobenius and spectral (or operator) norms, respectively. We denote by ⟨v, u⟩, the standard
inner product between the vectors u, v. For matrices U, V ∈ Rd×d, we use ⟨U, V ⟩ to denote the trace
inner product

∑
ij UijVij . For a matrix A ∈ Rd×d, we use A♭ to denote the flattened vector in Rd2

,

and for a v ∈ Rd2

, we use v♯ to denote the unique matrix A such that A♭ = v♯. For a matrix A, we
let A† denote its pseudo-inverse. We use ⊗ to denote the Kronecker product. For a matrix A, we use
ker(A) for the null space of A. We use X ∼ D to denote that a random variable X is distributed
according to the distribution D. We use N (µ,Σ) for the Gaussian distribution with mean µ and
covariance matrix Σ. For a set S, we use X ∼ S to denote that X is distributed uniformly at random
from S. We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent
of the variables or parameters on which a and b depend) such that a ≤ Cb.
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2.1 Deterministic Conditions

Our algorithm will rely on the uncorrupted inliers satisfying a set of properties, similar to the “stability
conditions" from [DKKLMS16]. Intuitively, these are are concentration properties for sets of samples,
but with the added requirement that every large subset of the samples also satisfies these properties.

Definition 2.1 ((η, ϵ)-Stable Set). Let D be a distribution with mean µ and covariance Σ. We say a set
of points A ⊂ Rd is (η, ϵ)-stable with respect to D, if for any subset A′ ⊆ A with |A′| ≥ (1− ϵ)|A|,
the following hold: for every v ∈ Rd, symmetric U ∈ Rd×d, and every even degree-2 polynomial p:

(L.1)
∣∣ 1
|A′|

∑
x∈A′ v⊤(x− µ)

∣∣ ≤ 0.1
√
(v⊤Σv) .

(L.2)
∣∣〈 1

|A′|
∑

x∈A′(x− µ)(x− µ)⊤ − Σ, U
〉∣∣ ≤ 0.1

∥∥Σ1/2UΣ1/2
∥∥

F .

(L.3) Pr
X∼A′

[∣∣p(X)−E
X∼D

[p(X)]
∣∣>10

√
Var
Y∼D

[p(Y )] ln
(

2
η

) ]
≤η.

(L.4) VarX∼A′ [p(X)] ≤ 4VarX∼D[p(X)].

(L.5) The null space of second moment matrix of A′ is contained in the null space of Σ, i.e.,
ker
(∑

x∈A′ xx⊤) ⊆ ker(Σ).

A Gaussian dataset is “stable” with high probability [DKKLMS16]; formally, we have Lemma 2.2,
proved in Appendix D.1. Moreover, Lemma 2.2 can be extended to a variety of distributions (cf.
Remark D.1).

Lemma 2.2 (Deterministic Conditions Hold with High Probability). For a sufficiently small positive
constant ϵ0 and a sufficiently large absolute constant C, a set of m > Cd2 log5(d/(ηδ))/η2 samples
from N (µ,Σ), with probability 1− δ, is (η, ϵ)-stable set with respect to µ,Σ for all ϵ ≤ ϵ0.

3 Analysis of a Single Recursive Call of the Algorithm

Our algorithm, Algorithm 1, filters and splits samples into multiple sets recursively, until we can
certify that the empirical second moment matrix of the “current data set" is suitable to be included
in the returned list of covariances. As a reference point, we define the notations and assumptions
necessary to analyze each recursive call below. However, before moving to the formal analysis we
will first give an informal overview of the algorithm’s steps and the high-level ideas behind them.

Assumption 3.1 (Assumptions and notations for a single recursive call of the algorithm).

• S = {xi}ni=1 is a set of n uncontaminated samples, which is assumed to be (η, 2ϵ0)-stable with
respect to the inlier distribution D having mean and covariance µ,Σ (c.f. Definition 2.1). We
assume η ≤ 0.001, ϵ0 = 0.01, and VarX∼D[X⊤AX] ≤ C1(∥Σ1/2AΣ1/2∥2F +∥Σ1/2Aµ∥22)
for all symmetric d× d matrices A and a constant C1.

• T is the input set to the current recursive call of the algorithm (after the adversarial corruptions),
which satisfies |S ∩ T | ≥ (1− 2ϵ0)|S| and |T | ≤ (1/α)|S|.

• We denote H = EX∼T

[
XX⊤].

• We denote by S̃, T̃ the versions of S and T normalized by H†/2: S̃ = {H†/2x : x ∈ S} and
T̃ = {H†/2x : x ∈ T}. We use the notation x̃ for elements in S̃ and T̃ , and x for elements in
S and T . Similarly, we use the notation X̃ for random variables with support in S̃ or T̃ .

• The mean and covariance of the inlier distribution D after transformation with H†/2 are
denoted by µ̃ := H†/2µ, Σ̃ := H†/2ΣH†/2. We denote the empirical mean and covariance
of the transformed inliers in T by µ̂ := EX̃∼S̃∩T̃ [X̃] and Σ̂ := CovX̃∼S̃∩T̃ [X̃].

Much of the algorithm uses the fact that, for a Gaussian, even quadratic polynomials have a small
variance. We will leverage this for filtering and clustering samples. See Appendix E for the proof.
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Lemma 3.2. Make Assumption 3.1 and recall that H = EX∼T [XX⊤], where T is the corrupted
version of a stable inlier set S. For every symmetric matrix A with ∥A∥F = 1 , we have that
VarX∼D[(H†/2X)⊤A(H†/2X)] ≤ 18C1/α

2.

Armed with Lemma 3.2, we can now give a high-level overview of a recursive call of Algorithm 1:

1. In our notation, we call the current data set T . Denoting H = EX∼T [XX⊤] for its the empirical
second moment matrix, we construct the normalized data set T̃ = {H−1/2x : x ∈ T}. The
normalization allows us to bound the covariance Σ in terms of H .

2. Since we are trying to estimate a covariance, consider the vectors s̃ = {(x̃x̃⊤)♭ : x̃ ∈ T̃}, which
are the second moment matrices of each data point flattened into vectors.

3. The first step is standard in filtering-based outlier-robust estimation: we test whether the covariance
of the s̃ vectors is small. If so, we are able to prove that the current H is a good approximate
square root of Σ (c.f. Section 3.1) hence we just return H .

4. If the first test fails, that would imply that the empirical covariance of the s̃ vectors is large in
some direction. We want to leverage this direction to make progress, either by removing outliers
through filtering or by bi-partitioning our samples into two clear clusters.

5. To decide between the 2 options, consider projecting the s̃ vectors onto their largest variance
direction. Specifically, let A be the matrix lifted from the largest eigenvector of the covariance
of the s̃ vectors. Define the vectors ỹ = x̃⊤Ax̃ = ⟨x̃x̃⊤, A⟩ for x̃ ∈ T̃ , corresponding to the
1-dimensional projection of s̃ onto the A♭ direction. Since we have failed the first test, these ỹ
elements must have a large variance. We will decide to filter or divide our samples, based on
whether the αm-smallest and αm-largest elements of the ỹs are close to each other.

6. If they are close, yet we have large variance, we will use this information to design a score
function and perform filtering that removes a random sample with probability proportional to
its score. We will then go back to Step 1. This would work because by Lemma 3.2 and by
stability (Definition 2.1), the (unfiltered) inliers have a small empirical variance within themselves,
meaning that the large total empirical variance is mostly due to the outlier.

Ideally, the score of a sample would be (proportional to) the squared distance between the
sample and the mean of the inliers—the total inlier score would then be equal to the inlier variance.
However, since we do not know which points are the inliers, we instead use the median of all
the projected samples as a proxy for the unknown inlier mean. We show that the distance between
the αm-smallest and largest ỹs bounds the difference between the ideal and proxy scores.

7. Otherwise, αm-smallest and αm-largest elements of the ỹs are far apart. By the stability condition
Definition 2.1 (specifically, Condition (L.3)), most of the inliers must be close to each other under
this 1-dimensional projection. Therefore, the large quantile range necessarily means there is a
threshold under this projection to divide the samples into two sets, such that each set has at least
αm points and most of the inliers are kept within a single set.

The score function mentioned in Step 6 upper bounds the maximum variance we check in Step 3. For
simplicity, in the actual algorithm (Algorithm 1) we use the score directly for the termination check
instead of checking the covariance, but it does not matter technically which quantity we use.

Remark 3.3 (Runtime of Algorithm 1). We claim that each “loop” in Algorithm 1 takes Õ(md2)
time to compute. The number of times we run the “loop” is at most O(m), since each loop either
ends in termination, removes 1 element from the dataset, or splits the dataset, all of which can happen
at most O(m) times. From this, we can conclude a runtime of Õ(m2d2). The sample complexity of
our algorithm is also explicitly calculable to be Õ(d2/α6), which follows from Lemma 2.2 and the
choice of parameter η = Θ(α3) from Theorem F.1 (the formal version of Theorem 1.2).

To see the runtime of a single loop: the most expensive operations in each loop are to compute Ht, its
pseudo-inverse, and to compute the symmetric matrix A in Line 7 that is the top eigenvector of a d2×
d2 matrix. Computing Ht trivially takes O(md2) time, resulting in a d× d matrix. Its pseudoinverse
can be computed in O(dω) time, which is dominated by O(md2) since m ≳ d. Lastly, we observe
that, instead of actually computing the top eigenvector in Line 7 to yield the matrix A, it suffices in our
analysis to compute a matrix B whose Rayleigh quotient (B♭)⊤

(
CovX̃∼T̃t

[X̃⊗2]
)
B♭/((B♭)⊤B♭)

is at least 1
2 times (A♭)⊤

(
CovX̃∼T̃t

[X̃⊗2]
)
A♭/((A♭)⊤A♭). We can do this via O(log d) many
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Algorithm 1 List-Decodable Covariance Estimation in Relative Frobenius Norm

1: Constants: m,α, η,R := C(1/α2) log(1/(ϵ0α)) for C > 6000
√
C1, C ′ > 720/ϵ0 (where

C1, ϵ0 are defined in Assumption 3.1).
2: function COVLISTDECODING(T0)
3: t← 0.
4: loop
5: Compute Ht = EX∼Tt

[XX⊤].
6: Let T̃t = {H†/2

t x : x ∈ Tt} be the transformed set of samples.
7: Let A be the symmetric matrix corresponding to the top eigenvector of CovX̃∼T̃t

[X̃⊗2].
8: Normalize A so that ∥A∥F = 1.
9: Compute the set Ỹt = {x̃⊤Ax̃ : x̃ ∈ T̃t}

10: Compute the αm/9-th smallest element qleft as well as the αm/9-th largest element
qright, as well as the median ỹmedian of Ỹt.

11: Define the function f(x̃) = (x̃⊤Ax̃− ỹmedian)
2.

12: if EX̃∼T̃t
[f(X̃)] ≤ C ′R2/α3 then ▷ c.f. Lemma 3.4

13: If |Tt| ≥ 0.5αm then return {Tt} else return the empty list.
14: else if qright − qleft ≤ R then ▷ c.f. Lemma 3.5
15: Let the probability mass function p(x̃) := f(x̃)/

∑
x̃∈T̃t

f(x̃).

16: Pick xremoved ∈ Tt according to p(H
†/2
t x).

17: Tt+1 ← Tt \ {xremoved}.
18: else
19: τ ← FindDivider(Ỹt, αm/9). ▷ c.f. Lemma 3.6
20: T ′ ← {H1/2

t x̃ : x̃ ∈ T̃t, x̃
⊤Ax̃ ≤ τ}, T ′′ ← {H1/2

t x̃ : x̃ ∈ Tt, x̃
⊤Ax̃ > τ}.

21: L1 ← COVLISTDECODING(T ′), L2 ← COVLISTDECODING(T ′′).
22: return L1 ∪ L2.
23: t← t+ 1.

power iterations. Since

Cov
X̃∼T̃t

[X̃⊗2] =
1

|T̃t|

∑
z∈T̃t

zz⊤ −

 1

|T̃t|

∑
z∈T̃t

z

⊤ 1

|T̃t|

∑
z∈T̃t

z

 ,

we can compute each matrix-vector product in O(|Tt|d2) ≤ O(md2) time, thus yielding an Õ(m2d2)
runtime for the power iteration.

3.1 Certificate Lemma: Bounded Fourth Moment Implies Closeness

The first component of the analysis is our certificate lemma, which states that, if the empirical
covariance of the (flattened) second moment matrices of current data set (after normalization) is
bounded, then the empirical second moment matrix H of the current data set is a good approximation
to the covariance of the Gaussian component we want to estimate.

Lemma 3.4 (Case when we stop and return). Make Assumption 3.1. Let w ∈ Rd2

be the leading
eigenvector of the CovX̃∼T̃ [X̃

⊗2] with ∥w∥2 = 1, and let A ∈ Rd×d be w♯. Note that ∥w∥2 = 1

implies ∥A∥F = 1. Then, we have
∥∥H†/2ΣH†/2 − I

∥∥2
F ≲ (1/α)VarX̃∼T̃ [X̃

⊤AX̃] + 1/α2.

See Appendix E.2 for the proof. Our termination check of Line 12 uses the score f(x̃) = (x̃⊤Ax̃−
ỹmedian)

2 where ỹmedian is the median of {x̃⊤Ax̃ : x̃ ∈ T̃}. Since VarX̃∼T̃ [X̃
⊤AX̃] ≤

EX̃∼T̃ [f(X̃)] our check ensures that VarX̃∼T̃ [X̃
⊤AX̃] ≤ poly(1/α) before returning.

3.2 Filtering: Removing Extreme Outliers

As discussed in the algorithm outline, if the termination check fails, namely the expected score over
the entire set of T̃ is large, then we proceed to either filter or bi-partition our samples. This subsection
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states the guarantees of the filtering procedure, which assumes that the αm-smallest and largest
elements in the set {x̃⊤Ax̃ : x̃ ∈ T̃} have distance at most R for some R = poly(1/α).

Recall from Lemma 3.2 that VarX̃∼H†/2D[X̃⊤AX̃] = EX̃∼H†/2D[(X̃⊤AX̃ −
EX̃∼H†/2D[X̃⊤AX̃])2] is bounded by O(1/α2). By stability, the same is true for
EX̃∼S̃∩T̃ [(X̃

⊤AX̃ − EX̃∼S̃∩T̃ [X̃
⊤AX̃])2]. Notice that this looks almost like our score function

f(X̃), except that in f(X̃) we use ỹmedian for centering instead of EX̃∼S̃∩T̃ [X̃
⊤AX̃], since the latter

quantity is by definition unknown to the algorithm. In Lemma E.3, we show that the two quantities
have distance upper bounded by O(R), where R is the quantile distance in our assumption, which in
turn implies that the inliers in S̃ ∩ T̃ contribute very little to EX̃∼T̃ [f(X̃)]. Given that EX̃∼T̃ [f(X̃)]
is large, by virtue of having failed the termination check, we can then conclude that most of the
score contribution comes from the outliers. Thus, we can safely use the score to randomly pick an
element in the dataset for removal, with probability proportional to its score, and the element will be
overwhelmingly more likely to be an outlier rather than an inlier. Lemma 3.5 below states the precise
guarantees on the ratio of the total score of the inliers versus the total score over the entire dataset.

Lemma 3.5 (Filtering). Make Assumption 3.1. Let A be an arbitrary symmetric matrix with ∥A∥F = 1.
Let R = C(1/α) log(1/η) for C ≥ 100

√
C1. Define ỹmedian = Median({x̃⊤Ax̃ | x̃ ∈ T̃}). Define

the function f(x̃) := (x̃⊤Ax̃ − ỹmedian)
2. Let m1 be a number less than |S|/3. Denote by qi the

i-th smallest point of {x̃⊤Ax̃ | x̃ ∈ T̃}. If q|T |−m1
− qm1 ≤ R and EX∼T [f(x)] > C ′R2/α3 for

C ′ ≥ 720/ϵ0, that is, in the case where the check in Line 12 fails, then, the function f(·) satisfies∑
x̃∈T̃ f(x̃) > 40

ϵ0
1
α3

∑
x̃∈S̃∩T̃ f(x̃) .

The score ratio determines (in expectation) the ratio between the number of outliers and inliers
removed. In Lemma 3.5, the ratio is in the order of 1/α3—this will allow us to guarantee that at
the end of the entire recursive execution of Algorithm 1, we would have removed at most a 0.01α
fraction of the inliers. See Remark F.5 in Appendix F for more details.

3.3 Divider: Identifying Multiple Clusters and Recursing

The previous subsections covered the cases where (i) the expected score is small, or (ii) the expected
score over T̃ is large and the α and 1− α quantiles of {X̃⊤AX̃ : x̃ ∈ T̃} are close to each other.
What remains is the case when both the expected score is large yet the quantiles are far apart. In this
instance, we will not be able to make progress via filtering using the above argument. This is actually
an intuitively reasonable scenario, since the outliers may in fact have another ≈ αm samples that
are distributed as a different Gaussian with a very different covariance—the algorithm would not be
able to tell which Gaussian is supposed to be the inliers. We will argue that, when both the expected
score is large and the quantiles are far apart, the samples are in fact easy to bipartition into 2 clusters,
such that the most of the inliers fall within 1 side of the bipartition. This allows us to make progress
outside of filtering, and this clustering mechanism also allows us to handle Gaussian mixture models
and make sure we (roughly) handle components separately.

The key intuition is that, by the stability Conditions (L.3) and (L.4), we know that the inliers under
the 1-dimensional projection {X̃⊤AX̃ : X̃ ∈ S̃ ∩ T̃} must be well-concentrated, in fact lying in an
interval of length Õ(1/α). The fact that the quantile range is wide implies that there must be some
point within the range that is close to very few samples X̃⊤AX̃ , by an averaging argument. We can
then use the point as a threshold to bipartition our samples. See below for the precise statement.

Algorithm 2 Divider for list decoding

1: function FINDDIVIDER(T ,n′,m1)
2: Let the m1-th smallest point be qm1 and m1-th largest point be q|T |−m1

.
3: Divide the interval [qm1

, q|T |−m1
] into 2m′/n′ equally-sized subintervals.

4: Find a subinterval I ′ with at most n′/2 points and return its midpoint.

Lemma 3.6 (Divider Algorithm). Let T = (y1, . . . , ym′) be a set of m′ points in R. Let Sproj ⊂ T
be a set of n′ points such that Sproj is supported on an interval I of length r. For every i ∈ [m′], let
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the i-th smallest point of the set T be qi. Suppose q|T |−m1
− qm1 ≥ R such that R ≥ 10(m′/n′)r.

Then, given T and n′,m1, Algorithm 2 returns a point t such that if we define T1 = {x ∈ T : x ≤ t}
and T2 = T \ T1 then: (i) min(|T1|, |T2|) ≥ m1 and (ii) Sproj ⊆ T1 or Sproj ⊆ T2.

Proof. The last step of the algorithm must succeed by an averaging argument. Consider the midpoint t
of the returned subinterval I ′, which is at least qm1

and at most q|T |−m1
. Since T1 contains all points at

most qm1 , and T2 contains all points at most q|T |−m1
, we must have min(|T1|, |T2|) ≥ m1. Lastly, we

verify the second desideratum, which holds if t /∈ I . For the sake of contradiction, if t ∈ I , then since
I has length r and I ′ has length at least R/(2m/n′) ≥ 5r, then I ⊆ I ′. However, since |I ′ ∩ T | ≤
n′/2, we know that I cannot be strictly contained in I ′, reaching the desired contradiction.

4 High-Level Proof Sketch of Theorem 1.2

We discuss the proof strategy of Theorem 1.2 at a high level. See Appendix F for the complete proof.

Proof Sketch Recall that Algorithm 1 is a recursive algorithm: each call repeatedly filters out
samples before either terminating or splitting the dataset into two and recursively calling itself. The
execution of Algorithm 1 can thus be viewed as a binary tree, with each node being a recursive call.

The high-level idea for proving Theorem 1.2 is straightforward, though involving technical calcula-
tions to implement. Consider the subtree grown from the root recursive call, up to and including a
certain level j. We proceed by induction on the height j of such subtree, and claim there must exists
a leaf node in this subtree such that most of the inliers remain in the input dataset of the leaf node.

Concretely, let Tj be the subtree of height j grown from the root node. We claim that there must be a
leaf in this subtree, whose input set T satisfies

α3(ϵ0/40)|T |+ |S \ T | ≤ (j + 1)α3(ϵ0/20)m+ ℓ , (1)

recalling that α is the proportion of inliers, ϵ0 is the maximum fraction of inliers removed by the
adversary, ℓ is the actual (unknown) number of inliers removed and m is the size of the original
dataset returned by the adversary. The left hand side keeps track of both a) how many inliers we
have accidentally removed, through the |S \ T | term, and b) the relative proportions of the outliers
we have removed versus the inliers we have removed, by comparing both terms on the left hand side.

For the induction step, we need to analyze the execution of a single recursive call. We show that (1)
implies Assumption 3.1, and so the inductive step can follow the case analysis outlined in Section 3—
either we terminate, or we decide to either filter or bipartition the sample set. To convert this into a
high-probability statement, we use a standard (sub-)martingale argument in Appendix F.1.
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A Additional Related Work

Gaussian Mixture Models Gaussian mixture models (GMM) have a long history in statistics and
theoretical computer science. In theoretical computer science, a system investigation of efficient
algorithms for GMM was initiated by [Das99], and then improved upon in a series of works, see, for
example, [VW04; AK05; DS07; KK10]. However, these algorithms imposed additional assumptions
on the parameters of GMM, for example, separation between the components. Later, [MV10; BS10]
gave algorithms without any assumptions on the components but these algorithms were sensitive
to outliers. The field of algorithmic robust statistics has developed in the last decade to develop
outlier-robust algorithms. A recent line of work [BDHKKK20; LM21; LM22; BDJKKV22] has
developed efficient algorithms for learning GMM robustly.

List-decodable Learning The model of list-decodable learning was first introduced in [BBV08]
and was first used in the context of high-dimensional estimation in [CSV17]. Regarding mean
estimation in particular, a body of work presented algorithms with increasingly better guarantees
[DKS18; KS17; RY20a; CMY20; DKK20a; DKKLT21; DKKLT22; DKKPP22; ZS22].

B Omitted Preliminaries

B.1 Notation

We use Z+ to denote positive integers. For n ∈ Z+, we denote [n]
def
= {1, . . . , n} and use Sd−1 for

the d-dimensional unit sphere. For a vector v, we let ∥v∥2 denote its ℓ2-norm. We use Id to denote
the d× d identity matrix. We will drop the subscript when it is clear from the context. For a matrix A,
we use ∥A∥F and ∥A∥op to denote the Frobenius and spectral (or operator) norms respectively. We
say that a symmetric d× d matrix A is PSD (positive semidefinite) and write A ⪰ 0 if for all vectors
x ∈ Rd we have that x⊤Ax ≥ 0. We denote λmax(A) := maxx∈Sd−1 x⊤Ax. We write A ⪯ B
when B −A is PSD. For a matrix A ∈ Rd×d, tr(A) denotes the trace of the matrix A. We denote by
⟨v, u⟩, the standard inner product between the vectors u, v. For matrices U, V ∈ Rd×d, we generalize
the inner product as follows: ⟨U, V ⟩ =

∑
ij UijVij . For a matrix A ∈ Rd×d, we use A♭ to denote

the flattened vector in Rd2

, and for a v ∈ Rd2

, we use v♯ to denote the unique matrix A such that
A♭ = v♯. For a matrix A, we let A† denote its pseudo-inverse. We use ⊗ to denote the Kronecker
product. For a matrix A, we use ker(A) for the null space of A and use PA to denote the projection
onto the range of A, i.e., PA = AA† [Ber18, Proposition 8.1.7 (xii)].

We use the notation X ∼ D to denote that a random variable X is distributed according to the
distribution D. For a random variable X , we use E[X] for its expectation. We useN (µ,Σ) to denote
the Gaussian distribution with mean µ and covariance matrix Σ. For a set S, we use U(S) to denote
the uniform distribution on S and use X ∼ S as a shortcut for X ∼ U(S).
We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent of the
variables or parameters on which a and b depend) such that a ≤ Cb.

B.2 Miscellaneous Facts

In this section, we state standard facts that will be used in our analysis.

Fact B.1. For any matrix A ∈ Rd×d, VarX∼N (µ,Σ)[X
⊤AX] ≤ 4∥Σ1/2AΣ1/2∥2F + 8∥Σ1/2Aµ∥22.

Proof. We write X ∼ N (µ,Σ) as X = Σ1/2Z + µ for Z ∼ N (0, I). We have that

Var
X∼N (µ,Σ)

[X⊤AX] = Var
Z∼N (0,I)

[(Σ1/2Z + µ)⊤A(Σ1/2Z + µ)]

= Var
Z∼N (0,I)

[Z⊤Σ1/2AΣ1/2Z + 2µ⊤AΣ1/2Z + µ⊤Aµ]

≤ 2

(
Var

Z∼N (0,I)
[Z⊤Σ1/2AΣ1/2Z] + 4 Var

Z∼N (0,I)
[µ⊤AΣ1/2Z]

)
≤ 4∥Σ1/2AΣ1/2∥2F + 8∥Σ1/2Aµ∥22 , (2)
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where the first inequality line uses that Var[A + B] = Var[A] + Var[B] + 2Cov[A,B] ≤
Var[A]+Var[B]+2

√
Var[A]Var[B] = (

√
Var[A]+

√
Var[B])2 ≤ 2(Var[A]+Var[B]), and

the last inequality uses the following: The first term uses the fact that for a symmetric matrix B and a
vector v, VarZ∼N (0,I)[Z

⊤BZ] = 2∥B∥2F and VarZ∼N (0,I)[v
⊤Z] = ∥v∥22, with B := Σ1/2AΣ1/2

and v := Σ1/2Aµ.

Fact B.2 (Azuma-Hoeffding Inequality). Let {Xn}n∈N be a submartingale or supermatingale with
respect to a sequence {Yn}n∈N. If for all n = 1, 2, . . . it holds |Xn −Xn−1| ≤ cn almost surely,
then for any ϵ > 0 and n ∈ N

Pr [Xn −Xt > ϵ] ≤ exp

(
− 2ϵ2∑∞

t=1 ct

)
.

Fact B.3 (See, e.g., [Ber18, Proposition 11.10.34]). Let R and M be two square matrices, then
∥RM∥F ≤ min ((∥R∥F∥M∥op , ∥R∥op∥M∥F).
Fact B.4 (Frobenius norm and projection matrices). Let A be a symmetric matrix. If L1 and L2 are
two PSD projection matrices satisfying L1 ⪯ L2, then ∥L1AL⊤

1 ∥F ≤ ∥L2AL⊤
2 ∥F.

Fact B.5 (Pseudo-inverse of a matrix). Let G be a square matrix and define R = G†. Let the SVD
of G be UΛV ⊤. Then R = V Λ†U⊤, PG = UΛΛ†U⊤, and R = RPG. Moreover, Let ∆ be any
arbitrary diagonal matrix such that if Λi,i = 0, then ∆i,i = 0, and define L = V∆V ⊤. Then
L = LRG.

Proof. The first follows from [Ber18, Chapter 8], the second follows from [Ber18, Proposition 8.1.7
(xii)], and the third follows from the first two and the fact that Λ†ΛΛ† = Λ. The final claim follows
from the following series of equalities:

LRG = V∆V ⊤V Λ†U⊤UΛV ⊤

= V∆V ⊤V Λ†U⊤UΛV ⊤

= V∆Λ†ΛV ⊤

= V∆V ⊤ = L,

where we use that ∆ is diagonal and for each i such that ∆i,i ̸= 0, Λ†
i,iΛi,i = 1.

Fact B.6 ([Ber18, Fact 8.4.16]). Let A and B be two square matrices and suppose that A is full rank.
Then PBA = PB .

C Linear Algebraic Results

In this section, we prove the proofs of certain linear algebraic results that we need. In particular, we
provide the proofs of Lemmata C.1 and C.3 that will be used later.

C.1 Relative Frobenius Norm to Frobenius Norm: Proof of Lemma C.1

In this section, we provide the proof of Lemma C.1.
Lemma C.1. Consider two arbitrary full rank, positive definite matrices Σ1 and Σ2, and suppose
there exists a full rank, positive definite matrix H such that (i) ∥I −H†/2Σ1H

†/2∥F ≤ ρ and (ii)
∥I −H†/2Σ2H

†/2∥F ≤ ρ. Then, for an arbitrary full rank, positive definite matrix Σ, we have

∥Σ−1/2Σ1Σ
−1/2 − Σ−1/2Σ2Σ

−1/2∥F ≤ 5ρmax(∥Σ−1/2Σ1Σ
−1/2∥op, ∥Σ−1/2Σ2Σ

−1/2∥op).

Proof of Lemma C.1. Let G = H−1/2Σ1/2. Let Σ̃1 = Σ−1/2Σ1Σ
−1/2 and Σ̃2 = Σ−1/2Σ2Σ

−1/2,
both of which are positive definite matrices. Since Σ is full rank, we obtain that

Σ1 = Σ1/2Σ−1/2Σ1Σ
−1/2Σ1/2 = Σ1/2Σ̃1Σ

1/2

Σ2 = Σ1/2Σ−1/2Σ2Σ
−1/2Σ1/2 = Σ1/2Σ̃2Σ

1/2.
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This directly gives us that GΣ̃1G
⊤ = I −HΣ1H and GΣ̃2G

⊤ = I −HΣ2H . Overall, we have
obtained the following:

∥I −GΣ̃1G
⊤∥F ≤ ρ and ∥I −GΣ̃2G

⊤∥F ≤ ρ.

We first state a result, proved in the end of this section, that transfers closeness in relative Frobenius
norm to Frobenius norm of the difference (along most of the directions).

Lemma C.2. Let G be a d × d matrix and let B be an arbitrary symmetric matrix of the same
dimension. Recall that PG denotes the projection matrix onto range of G. Suppose that

∥PG −GBG⊤∥F ≤ ρ

for some ρ ≥ 1. Let the SVD of G be G = UΛV ⊤ for some orthonormal matrices U and V and a
diagonal matrix Λ.

Then there exists a d× d matrix L such that

1. (L captures directions of G) L = V∆BV
⊤ for some binary diagonal matrix ∆B ⪯ ΛΛ†.

That is, the diagonal entries of ∆B are all in {0, 1}, and furthermore, all the 1 diagonal
entries of ∆B are also non-zero diagonal entries in Λ.

2. (rank of L) The rank of L satisfies ∥Λ−∆B∥F ≤ 2ρ and

3. (closeness of G† and B along L)
∥∥L (RR⊤ −B

)
L⊤
∥∥

F ≤ 2ρ∥B∥op, where R = G†.

We will now apply Lemma C.2 twice following the same notation as in its statement. In particular,
the SVD decomposition of G = U∆V ⊤ and R = G†. Lemma C.2 implies that there exist two binary
diagonal matrices ∆1 and ∆2, where ∆1 is for Σ̃1 and ∆2 is for Σ̃2 such that (i) both ∥I −∆1∥F

and ∥I−∆1∥F are at 2ρ, and (ii) V∆1V
⊤(RR⊤− Σ̃1)V∆1V

⊤ and V∆2V
⊤(RR⊤− Σ̃2)V∆2V

⊤

have Frobenius norms at most 2ρ∥Σ̃1∥op and 2ρ∥Σ̃2∥op, respectively. Let ∆ = ∆1 ×∆2 and define
L = V∆V ⊤. By (i), we have that ∥I − L∥F = ∥I − ∆∥F ≤ 4ρ. Since L ⪯ V∆1V

⊤ and L is a
projection matrix, Fact B.4 along with (ii) above implies that

∥L(RR⊤ − Σ̃1)L
⊤∥F ≤ 2ρ∥Σ̃1∥op.

Similarly for Σ̃2. By triangle inequality, we obtain that

∥L(Σ̃1 − Σ̃2)L
⊤∥F ≤ 4ρmax

(
∥Σ̃1∥op, ∥Σ̃2∥op

)
.

Since L is a projection matrix, triangle inequality implies that∥∥∥(Σ̃1 − Σ̃2

)∥∥∥
F
≤
∥∥∥L(Σ̃1 − Σ̃2

)
L⊤
∥∥∥

F
+
∥∥∥(I − L)

(
Σ̃1 − Σ̃2

)
(I − L)⊤

∥∥∥
F

≲
∥∥∥L(Σ̃1 − Σ̃2

)
L⊤
∥∥∥

F
+ ∥I − L∥F ·

∥∥∥(Σ̃1 − Σ̃2

)∥∥∥
op

≲ ρ ·max
(
∥Σ̃1∥op, ∥Σ̃2∥op

)
.

This completes the proof.

We now provide the proof of Lemma C.2.
Lemma C.2. Let G be a d × d matrix and let B be an arbitrary symmetric matrix of the same
dimension. Recall that PG denotes the projection matrix onto range of G. Suppose that

∥PG −GBG⊤∥F ≤ ρ

for some ρ ≥ 1. Let the SVD of G be G = UΛV ⊤ for some orthonormal matrices U and V and a
diagonal matrix Λ.

Then there exists a d× d matrix L such that
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1. (L captures directions of G) L = V∆BV
⊤ for some binary diagonal matrix ∆B ⪯ ΛΛ†.

That is, the diagonal entries of ∆B are all in {0, 1}, and furthermore, all the 1 diagonal
entries of ∆B are also non-zero diagonal entries in Λ.

2. (rank of L) The rank of L satisfies ∥Λ−∆B∥F ≤ 2ρ and

3. (closeness of G† and B along L)
∥∥L (RR⊤ −B

)
L⊤
∥∥

F ≤ 2ρ∥B∥op, where R = G†.

Proof. Let u1, u2, . . . , ud be the columns of U and let v1, v2, . . . , vd be the columns of V . Let the
entries of Λ be λ1, λ2, . . . , λd, which are non-negative by SVD property. Let J be the set of i’s in
[d] such that λi > 0.

Define the matrices F := U⊤GBG⊤U and B′ := V ⊤BV . Then since G⊤ = V ΛU⊤, we have
F = U⊤GBG⊤U = U⊤UΛV ⊤BV ΛU⊤U = ΛV ⊤BV Λ = ΛB′Λ.

Thus the (i, j)-th entry of F is B′
i,jλiλj .

Now define the matrix M := U⊤PGU . From Fact B.5, we have that PG = UΛΛ†U⊤. And thus,
M = ΛΛ†, which is the diagonal matrix with entries Mii = 1 for each i ∈ J , and Mii = 0
otherwise.

Using the invariance of Frobenius norm under orthogonal transform, we obtain the following series
of equalities:

∥PG −GBG⊤∥2F
=
∥∥U⊤ (PG −GBG⊤)U∥∥2F

= ∥M − F∥2F
≥
∑
i∈J

(Mi,i − Fi,i)
2

=
∑
i∈J

(
1−B′

i,i · λ2
i

)2
(3)

Let I ⊆ J be the set of i’s in J such that λ2
iB

′
i,i < (1/2). Then

∑
i∈I
(
1−B′

i,i · λ2
i

)2
>

|I|/4. Thus if |I| is larger than 4ρ2, then the Frobenius norm squared is larger than r2, which is a
contradiction.

If i ∈ J \ I, then λ2
i ≥ 1/(2B′

i,i) and not just λi > 0.

Define the matrix L to be L :=
∑

i:i∈J\I viv
⊤
i , which is equal to V∆BV

⊤ where ∆B is a diagonal
matrix with the i-th diagonal entry equal to 1 if i ∈ J \ I and 0 otherwise. By definition, L has rank
|J | − |I| and furthermore, the 1 diagonal entries of ∆B are always non-zero diagonal entries in Λ.

Let R = G†, and by Fact B.5, we have that R = V Λ†U⊤. Thus LR = V∆BV
⊤V Λ†U⊤ =

V∆BΛ
†U⊤, and thus the singular values of LR satisfy that they are at most

1

mini∈J\I λi
≤ max

i

√
2B′

i,i ≤
√

2∥B′∥op =
√

2∥V ⊤BV ∥op =
√
2∥B∥op.

We first need two more observations: L = LRG and LRR⊤L⊤ = LRPGR
⊤L⊤, both of which

hold by Fact B.5. Finally, we show that RR⊤ and B are close along the directions in L.

∥L(RR⊤ −B)L⊤∥F

= ∥LRR⊤L⊤ − LBL⊤∥F

= ∥LRPGR
⊤L⊤ − LRGBG⊤R⊤L⊤∥F

= ∥LR(PG −GBG⊤)R⊤L⊤∥F

≤ ∥LR∥op∥PG −GBG⊤∥F∥R⊤L⊤∥op

= ∥LR∥2op∥PG −GBG⊤∥F

≤ 2∥B∥op · ρ. (4)
This completes the proof.
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C.2 Proof of Lemma C.3

We now restate and prove Lemma C.3.

Lemma C.3. Let A and B be two PSD matrices with PB ⪯ PA or equivalently ker(A) ⊆ ker(B).
Then ∥ABA− PB∥F ≤ 2∥ABA− PA∥F.

Proof. Applying triangle inequality, we have that

∥ABA− PB∥F ≤ ∥ABA− PA∥F + ∥PA − PB∥F.

It thus suffices to show that the second term, ∥PB −PA∥F, is less than ∥ABA−PA∥F. Let dA be the
rank of A and dB be the rank of B. We will show the following two results, which imply the desired
bound:

∥PB − PA∥2F = |dB − dA| ≤ ∥ABA− PB∥2F (5)

In the rest of the proof, we will establish the above two inequalities.

We begin with the second inequality in (5). By the lemma assumptions, we have that the null space
of A being a subspace of the null space of B. This is equivalent to saying that the column space of B
being a subspace of the column space of A. In particular, this also implies that dB ≤ dA. It is easy to
see that rank(ABA) ≤ rank(B) ≤ rank(A) = rank(PA), and the eigenvalues of PA are either 0 or
1. We now state a simple result lower bounding the Frobenius norm by the difference of the ranks for
such matrices:

Claim C.4 (Bound on rank difference). Let A′ be a symmetric matrix such that the eigenvalues of A′

belong to {0, 1,−1}. Let B′ be an arbitrary matrix. Then ∥B′ −A′∥2F ≥ rank(A′)− rank(B′).

Proof. Let u1, . . . ud be the orthonormal eigenvectors of A′ with eigenvalues λ1, λ2, . . . , λd such
that |λi| = 1 for i ≤ rank(A′) and λi = 0 otherwise. Without loss of generality, we assume
rank(B′) ≤ rank(A′), otherwise the result is trivial. Let I be the set of i’s such that i ≤ rank(A′)
and B′ui = 0.

∥B′ −A′∥2F =

d∑
i=1

∥B′ui −A′ui∥22 ≥
rank(A′)∑

i=1

∥B′ui −A′ui∥22

=

rank(A′)∑
i=1

∥B′ui − λiui∥22. ≥
∑
i∈I
∥λiui∥22 = |I|.

Since the rank of B′ is less than the rank of A′, it follows that B′ui is nonzero for at most rank(B′)
many ui’s in {ui : i ≤ rank(A′)}. Thus |I| is at least rank(A′)− rank(B′).

By Claim C.4, we have that rank(PB)− rank(ABA) ≤ ∥PB−ABA∥2F. Thus, it implies the desired
inequality, |dB − dA| ≤ ∥ABA− PA∥2F.

We will now establish the first inequality in (5). Observe that both PA and PB are PSD matrices,
whose eigenvalues are either 1 or 0. The following result upper bounds the Frobenius norm of
PA − PB in terms of the difference of their ranks.

Claim C.5. If A and B are two PSD matrices such that PB ⪯ PA, then ∥PA − PB∥2F = rank(A)−
rank(B).

Proof. Let dA be the rank of A and dB be the rank of B. We have that dB = rank(PB) ≤
rank(PA) = dA. Consider any orthonormal basis v1, . . . , vd in Rd, such that v1, . . . , vdA

spans the
column space of PA, and v1, . . . , vdB

spans the column space of B. Since the column space of PB is
a subspace of that of PB , such an orthonormal basis always exists.

Moreover, since the eigenvalues of PA are either 0 or 1, we have that PAvi = vi for i ≤ dA and 0
otherwise. Similarly, PBvi = vi for i ≤ dB and 0 otherwise.
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We will also use the following basic fact: for any square matrix J and any set of orthonormal basis
vectors u1, . . . , ud, we have that ∥J∥2F =

∑d
i=1 ∥Jui∥22. Applying this fact to PA − PB and the

orthonormal basis v1, . . . , vd above, we get the following:

∥PA − PB∥2F =

d∑
i=1

∥PAvi − PBvi∥22 =

dB∑
i=1

∥PAvi − PBvi∥22 +
dA∑

dB+1

∥PAvi − PBvi∥22 =

dA∑
dB+1

∥vi∥22

= dA − dB ,

where the second equality uses that PAvi = PBvi = 0 for i ≥ dA, and the third equality uses that
PAvi = PBvi = vi for i ≤ dB and PBvi = 0 and PAvi = vi for i ∈ {dB + 1, . . . , dA}.

By Claim C.5, we have that ∥PA − PB∥2F = | rank(A)− rank(B)|.

D Stability: Sample Complexity and Its Consequences

In this section, we prove results related to stability. Appendix D.1 proves the sample complexity for
the stability condition to hold for Gaussians and Appendix D.2 focuses on some consequences of
stability.
Remark D.1. We note that the deterministic conditions of Definition 2.1 are not specific to the
Gaussian distribution but hold with polynomial sample complexity poly(d/η) for broader classes of
distributions, roughly speaking, distributions with light tails for degree-4 polynomials.

• Condition (L.1) is satisfied with polynomial sample complexity by distributions that have
bounded second moment.

• Condition (L.3) at the population level is a direct implication of hypercontractivity of
degree-2 polynomials. The log(1/η) factor in the condition as stated currently is tailored
to the Gaussian distribution but it is not crucial for the algorithm and could be relaxed to
some polynomial of 1/η; this would translate to incurring some poly(1/η) to the final error
guarantee of the main theorem. After establishing the condition at the population level, it
can be transferred to sample level with polynomial sample complexity.

• Regarding Condition (L.2), every entry of the Frobenius norm is a degree 2 polynomial,
thus the property holds for distributions with light tails for these polynomials, e.g., hyper-
contractive degree-2 distributions.

• Condition (L.4) can also be derived by hypercontractivity of degree 4 polynomials similarly.

• Condition (L.5) holds almost surely for continuous distributions.

D.1 Sample Complexity of Stability Conditions

Lemma 2.2 (Deterministic Conditions Hold with High Probability). For a sufficiently small positive
constant ϵ0 and a sufficiently large absolute constant C, a set of m > Cd2 log5(d/(ηδ))/η2 samples
from N (µ,Σ), with probability 1− δ, is (η, ϵ)-stable set with respect to µ,Σ for all ϵ ≤ ϵ0.

Proof. Let A be a set of i.i.d. samples fromN (µ,Σ). We check the four conditions from Definition 2.1
separately. Since A is a set of i.i.d. samples from a Gaussian, it satisfies Condition (L.1) with high
probability (see, e.g., [Li18, Corollary 2.1.13]).

We start with Condition (L.2). Let X ∼ N (µ,Σ), then X − µ ∼ N (0,Σ). Equivalently, X − µ =
Σ1/2Z with Z ∼ N (0, I). Let A be a set of m i.i.d. samples fromN (µ,Σ) and like before, for every
x ∈ A, write x− µ = Σ1/2z, where z are corresponding i.i.d. samples from N (0, I). Let a subset
A′ ⊂ A with |A′| ≥ |A|(1− ϵ). Then, we have the following

tr

((
1

n

∑
x∈A′

(x− µ)(x− µ)⊤ − Σ

)
U

)
= tr

(
Σ1/2

(
1

n

∑
z

zz⊤ − I

)
Σ1/2U

)
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= tr

((
1

n

∑
z

zz⊤ − I

)
Σ1/2UΣ1/2

)
≤ Cϵ log(1/ϵ)∥Σ1/2UΣ1/2∥F ,

where the first line uses the rewriting that we introduced before, the second line uses the cyclic
property of the trace operator, and the last line uses [Li18, Corollary 2.1.13]. As stated in that
corollary, the inequality holds with probability 1 − δ/4 as long as the sample complexity is a
sufficiently large multiple of (d2/ϵ2) log(4/δ). Fixing ϵ = ϵ0 a sufficiently small positive absolute
constant can make the right hand side of the above inequality 0.1∥Σ1/2UΣ1/2∥F.

Condition Condition (L.1) can be shown identically using [Li18, Corollary 2.1.9].

We now turn our attention to Condition (L.3). [DKKLMS16, Lemma 5.17] implies that with the
stated number of samples, with high probability, it holds that

Pr
X∼A

[
|p(x)| >

√
Var

Y∼N (µ,Σ)
[p(Y )]10 ln

(
2

η

)]
≤ η

2
.

Since |A′| ≥ |A|(1− ϵ0) ≥ |A|/2, Condition (L.3) holds. Finally, Condition (L.4) follows by noting
that VarX∼A′ [p(X)] ≤ 2VarX∼A[p(X)] and using [DKKLMS16, Lemma 5.17] again with ϵ = ϵ0.
In order for the conclusion of that lemma to hold with probability 1− δ/4, the number of samples of
the Gaussian component is a sufficiently large multiple of d2 log5(4d/(ηδ))/η2. A union bound over
the events corresponding to each of the four conditions concludes the proof.

Lastly, we show Condition (L.5). We will in fact show a stronger statement: suppose the rank of Σ is
dΣ. Then, if we take m ≥ dΣ +1 i.i.d. samples {µ+ z1, µ+ z2, . . . , µ+ zm} fromN (µ,Σ), it must
be the case that with probability 1, for all A′ ⊆ A with |A′| ≥ dΣ + 1, we have

∑
x∈A′(v⊤x)2 = 0

(or equivalently, v being orthogonal to all vectors x ∈ A′) implying v⊤Σv = 0 for all vectors v ∈ Rd.

We will need the following straightforward claim: if A′ = {µ+ z′0, . . . , µ+ z′dΣ
} (of size dΣ + 1) is

such that 1) {z′1−z′0, . . . , z
′
dΣ
−z′0} are linearly independent and 2) z′i all lie within the column space

of Σ, then for any vector v ∈ Rd, v being orthogonal to all of A′ implies that v⊤Σv = 0. To see why
this is true, observe that {z′1 − z′0, . . . , z

′
dΣ
− z′0}, which are linearly independent vectors that all lie

in the column space of Σ, must span the entirety of the column space of Σ by dimension counting.
Thus, if v is orthogonal to all the points in A′, then v is orthogonal to all of {z′1 − z′0, . . . , z

′
dΣ
− z′0},

which implies v⊤Σv = 0.

We can now show the following inductive claim on the size of A, which combined with the above
claim implies the strengthened version of Condition (L.5). Specifically, we show inductively that,
with probability 1 over the sampling of A, for any subset A′ ⊂ A of size at most dΣ + 1, the claim
conditions hold for A′. Namely, if A′ = {µ+ z′0, . . . , µ+ z′j} for some j ≤ dΣ, for some arbitrary
ordering of the elements in A′, then 1) the set {z′1 − z′0, . . . , z

′
j − z′0} is linearly independent and 2)

z′i all lie in the column space of Σ.

The base case of |A| = 1 is trivial. Now suppose the above statement is true for |Aℓ| = ℓ, and
consider sampling a new point µ+ zℓ and adding it to Aℓ to form Aℓ+1. Take any subset A′ of Aℓ+1

of size at most dΣ + 1. If A′ ⊂ Aℓ we are already done by the induction hypothesis. Otherwise,
A′ = {µ+zℓ}∪A′

ℓ, where A′
ℓ = {µ+z′0, . . . , µ+z′j} has size at most dΣ and satisfies the conditions

in the induction by the inductive hypothesis. The space of µ+ z such that z − z′0 lies in the span of
{z′1 − z′0, . . . , z

′
j − z′0} has measure 0 under N (µ,Σ), given there are strictly fewer than dΣ many

linearly independent vectors in {z′1 − z′0, . . . , z
′
j − z′0}, all of which lie in the column space of Σ.

Furthermore, there is only a finite number of such A′
ℓ. Thus, with probability 1, the new point µ+ zℓ

will be sampled such that for all such A′
ℓ, {µ+ zℓ} ∪A′

ℓ remains linearly independent. Additionally,
also with probability 1, zℓ will lie in the column space of Σ. This completes the proof of the inductive
claim, which as we have shown implies Condition (L.5).
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D.2 Facts Regarding Stability

The following corollaries will be useful later on. In particular, since our algorithm will perform
transformations of the dataset, we will need Corollary D.2 to argue about the stability properties
of these sets. Moreover, the next lemma (Lemma D.3) will be used to extract the final Frobenius
norm guarantee of our theorem given the first bullet of that theorem. The proofs are deferred to
Appendix D.4.
Corollary D.2 (Stability of Transformed Sets). Let D be a distribution over Rd with mean µ and
covariance Σ. Let A be a set of points in Rd that satisfies Conditions (L.1) and (L.2) of Definition 2.1
of (η, ϵ)-stability with respect to D. Then we have that for any symmetric transformation P ∈ Rd×d

and every A′ ⊂ A with |A′| ≥ (1− ϵ)|A|, the following holds:

1.
∥∥∥P ( 1

|A′|
∑

x∈A′ x− µ
)∥∥∥

2
≤ 0.1

√
∥PΣP∥op.

2.
∥∥∥P ( 1

|A′|
∑

x∈A′(x− µ)(x− µ)⊤ − Σ
)
P
∥∥∥

F
≤ 0.1∥PΣP∥op.

The following lemma (proved in Appendix D.4) will be needed to prove our certificate lemma to
transfer the final guarantees of our algorithm from the empirical covariance of the sample set to the
actual covariance of the Gaussians.
Lemma D.3. Let A be a set of points in Rd satisfying Conditions (L.1) and (L.2) of (η, ϵ)-stability
(Definition 2.1) with respect to µ,Σ. Let A′ ⊆ A such that |A′| ≥ (1 − ϵ)|A|. If P,L ∈ Rd×d are
symmetric matrices with the property that ∥CovX∼A′ [PX]− L∥F ≤ r, then

∥PΣP − L∥F = O(r + ∥L∥op) .

D.3 Certificate Lemma

The following result shows that if the covariance matrix of X⊗2 over the corrupted set of points
is bounded in operator norm, then the empirical second moment matrix of T is a good estimate
of covariance of inliers in Frobenius norm. We prove a more general version below that allows
for arbitrary linear transformation matrix P and since we are interested in guarantees for relative
Frobenius norm, our algorithm will chose P so that EX∼T [PXX⊤P ] is equal to identity.
Lemma D.4 (Bounded fourth-moment and second moment imply closeness of covariance). Let T
be a set of n points in Rd. Let P be an arbitrary symmetric matrix. Let w ∈ Rd2

be the leading
eigenvector of the CovX∼T [(PX)⊗2] with ∥w∥2 = 1, and let A ∈ Rd×d be w♯. Note that ∥w∥2 = 1
implies ∥A∥F = 1. For every subset T ′ ⊆ T with |T ′| ≥ (α/2)|T |, we have that∥∥∥ E

X∼T ′
[PXX⊤P ]− E

x∼T
[PXX⊤P ]

∥∥∥2
F
≤ 2

α
Var
X∼T

[X⊤PAPX] and∥∥∥Cov
X∼T ′

[PX]− E
x∼T

[PXX⊤P ]
∥∥∥2

F
≤ 4

α
Var
X∼T

[X⊤PAPX] +
8

α2

∥∥∥ E
X∼T

[PXX⊤P ]
∥∥∥2

op
.

In particular, suppose that there exists a set S that satisfies Conditions (L.1) and (L.2) of (η, ϵ)-
stability (Definition 2.1) with respect to µ and Σ for some η and ϵ, and suppose that |S ∩ T ′| ≥
min(α|T |/2, (1− ϵ)|S|). Then∥∥∥PΣP − E

X∼T ′
[PXX⊤P ]

∥∥∥
F
≲

1

α
Var
X∼T

[X⊤PAPX] +
1

α2

∥∥∥ E
X∼T

[PXX⊤P ]
∥∥∥2

op
.

Proof. Let T̃ define the set {PX : X ∈ T}. In this notation, w is the leading eigenvector of
Covx̃∼T̃ [X̃

⊗2] with ∥w∥2 = 1, and A = w♯. Then, for any T̃ ′ ⊆ T̃ with |T̃ ′| ≥ α|T̃ ′|/2, we have
the following

Var
X̃∼T̃

[X̃⊤AX̃] = sup
v∈Rd2 ,∥v∥2

2=1

E
X̃∼T̃

[〈
X̃⊗2 − E

Ỹ∼T̃
[Ỹ ⊗2], v

〉2
]

= sup
v∈Rd2 ,∥v∥2

2=1

|T̃ ′|
|T̃ |

E
X̃∼T̃ ′

[〈
X̃⊗2 − E

Ỹ∼T̃
[Ỹ ⊗2], v

〉2
]
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+
|T̃ \ T̃ ′|
|T̃ |

E
X̃∼T̃\T̃ ′

[〈
X̃⊗2 − E

Ỹ∼T̃
[Ỹ ⊗2], v

〉2
]

≥ α

2
sup

v∈Rd2 ,∥v∥2
2=1

E
X̃∼T̃ ′

[〈
X̃⊗2 − E

Ỹ∼T̃
[Ỹ ⊗2], v

〉2
]

(since |T̃ ′| ≥ (α/2)|T̃ |)

≥ α

2
sup

v∈Rd2 ,∥v∥2
2=1

〈
E

X̃∼T̃ ′
[X̃⊗2]− E

Ỹ∼T̃
[Ỹ ⊗2], v

〉2

(E[Y 2] ≥ (E[Y ])2 for any Y )

=
α

2
sup

J∈Rd×d,∥J∥2
F=1

[〈
E

X̃∼T̃ ′
[X̃X̃⊤]− E

Ỹ∼T̃
[Ỹ Ỹ ⊤], J

〉2
]

=
α

2

∥∥∥∥ E
X̃∼T̃ ′

[X̃X̃⊤]− E
X̃∼T̃

[X̃X̃⊤]

∥∥∥∥2
F
,

where the penultimate step above holds by lifting the flattened matrix inner products in the previous
line to the matrix inner product, and the last line uses the variation characterization of the Frobenius
norm. This implies the first inequality since EX̃∼T̃ [X̃X̃⊤] = EX∼T [PXX⊤P ].

We will now establish the second inequality. Using the relation between the second moment matrix
and the covariance, we have the following:∥∥∥∥Cov
X̃∼T̃ ′

[X̃]− E
X̃∼T̃

[X̃X̃⊤]

∥∥∥∥2
F

=

∥∥∥∥ E
X̃∼T̃ ′

[X̃X̃⊤]− E
X̃∼T̃ ′

[X̃] E
X̃∼T̃ ′

[X̃⊤]− E
X̃∼T̃

[X̃X̃⊤]

∥∥∥∥2
F

≤ 2

∥∥∥∥ E
X̃∼T̃ ′

[X̃X̃⊤]− E
X̃∼T̃

[X̃X̃⊤]

∥∥∥∥2
F
+ 2

∥∥∥∥ E
X̃∼T̃ ′

[X̃] E
X̃∼T̃ ′

[X̃⊤]

∥∥∥∥2
F

≤ 4

α
Var
X̃∼T̃

[X̃⊤AX̃] + 2

∥∥∥∥ E
X̃∼T̃ ′

[X̃] E
X̃∼T̃ ′

[X̃⊤]

∥∥∥∥2
op

,

where the last step uses that EX̃∼T̃ ′ [X̃]EX̃∼T̃ ′ [X̃
⊤] has rank one and thus its Frobenius

and operator norm match. Thus to establish the desired inequality, it suffices to prove that
EX̃∼T̃ ′ [X̃]EX̃∼T̃ ′ [X̃

⊤] ⪯ (2/α) ·EX̃∼T̃ [X̃X̃⊤]. Indeed, we have that

E
X̃∼T̃ ′

[X̃] E
X̃∼T̃ ′

[X̃⊤] ⪯ E
X̃∼T̃ ′

[X̃X̃⊤] =
1

|T̃ ′|

∑
X̃∈T̃ ′

X̃X̃⊤ =
|T̃ |
|T̃ ′|

1

|T̃ |

∑
X̃∈T̃ ′

X̃X̃⊤

⪯ 2

α

1

|T̃ |

∑
X̃∈T̃ ′

X̃X̃⊤ ⪯ 2

α

1

|T̃ |

∑
X̃∈T̃

X̃X̃⊤,

where the last expression is in fact equal to (2/α) ·EX̃∼T̃ [X̃X̃⊤]. This completes the proof for the
second statement.

We now consider the case when T contains a large stable subset. Let T ′ = T ∩ S, which satisfies
that |T ′| ≥ (α/2)|T | and |T ′| ≥ (1− ϵ)|S|. By applying Lemma D.3 with L = EX∼T [PXX⊤P ]
to the second inequality in the statement with T ′, we obtain the desired result.

D.4 Proofs of Corollary D.2 and lemma D.3

Corollary D.2 (Stability of Transformed Sets). Let D be a distribution over Rd with mean µ and
covariance Σ. Let A be a set of points in Rd that satisfies Conditions (L.1) and (L.2) of Definition 2.1
of (η, ϵ)-stability with respect to D. Then we have that for any symmetric transformation P ∈ Rd×d

and every A′ ⊂ A with |A′| ≥ (1− ϵ)|A|, the following holds:

1.
∥∥∥P ( 1

|A′|
∑

x∈A′ x− µ
)∥∥∥

2
≤ 0.1

√
∥PΣP∥op.

2.
∥∥∥P ( 1

|A′|
∑

x∈A′(x− µ)(x− µ)⊤ − Σ
)
P
∥∥∥

F
≤ 0.1∥PΣP∥op.
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Proof. We explain each condition separately. We begin with the first condition as follows: For any
unit vector u in Rd, we have that∣∣∣∣∣u⊤P

(
1

|A′|
∑
x∈A′

x− µ

)∣∣∣∣∣ ≤ 0.1
√
u⊤PΣPu ≤

√
∥PΣP∥op ,

where the first inequality uses Condition (L.1) of Definition 2.1 for v = Pu.

We now focus our attention to the second condition. Denote Σ̂ := 1
|A′|

∑
x∈A′(x− µ)(x− µ)⊤ for

saving space. Let Q be any symmetric matrix Q ∈ Rd×d with ∥Q∥F ≤ 1. Using the cyclical property
of trace, we obtain

tr
(
P
(
Σ̂− Σ

)
PQ
)
= tr

((
Σ̂− Σ

)
PQP

)
≤ 0.1

∥∥∥Σ1/2PQPΣ1/2
∥∥∥

F
,

where the last step applies Condition (L.2) of Definition 2.1 with V = PQP . Finally, using the
cyclic properties of the trace operator,∥∥∥Σ1/2PQPΣ1/2

∥∥∥2
F
= tr

(
Σ1/2PQPΣPQPΣ1/2

)
= tr(QPΣPQPΣP )

= ∥QPΣP∥2F ≤ ∥Q∥2F∥PΣP∥2op ≤ ∥PΣP∥2op,

where the first inequality uses Fact B.3 and the second inequality uses ∥Q∥F ≤ 1. Thus we have the
following: ∥∥∥P (Σ̂− Σ

)
P
∥∥∥

F
= sup

Q:∥Q∥F≤1

tr
(
P
(
Σ̂− Σ

)
PQ
)

= sup
symmetric Q:∥Q∥F≤1

tr
(
P
(
Σ̂− Σ

)
PQ
)

≤ 0.1∥PΣP∥op.

where the second equality is due to the fact that P
(
Σ̂− Σ

)
P is itself symmetric.

Lemma D.3. Let A be a set of points in Rd satisfying Conditions (L.1) and (L.2) of (η, ϵ)-stability
(Definition 2.1) with respect to µ,Σ. Let A′ ⊆ A such that |A′| ≥ (1 − ϵ)|A|. If P,L ∈ Rd×d are
symmetric matrices with the property that ∥CovX∼A′ [PX]− L∥F ≤ r, then

∥PΣP − L∥F = O(r + ∥L∥op) .

Proof. To simplify notation, let Σ̂ := CovX∼A′ [X] and Σ := EX∼A′ [(X −µ)(X −µ)⊤]. Observe
that Σ = Σ̂ + (µ− µ̂)(µ− µ̂)⊤. We apply triangle inequality and Corollary D.2 with to obtain the
following:

∥P (Σ̂− Σ)P∥F ≤ ∥P (Σ− Σ)P∥F + ∥P (µ− µ̂)(µ− µ̂)⊤P∥F

= ∥P (Σ− Σ)P∥F + ∥P (µ− µ̂)∥22
≤ 0.1∥PΣP∥op + 0.1∥PΣP∥op

≤ 0.2∥PΣP∥op , (6)
where the first inequality follows from the triangle inequality and the second inequality uses Corol-
lary D.2.

We now analyze the desired expression by using the triangle inequality and the lemma assumption as
follows:

∥PΣP − L∥F ≤ ∥P Σ̂P − L∥F + ∥P (Σ̂− Σ)P∥F ≤ r + 0.2∥PΣP∥op,

where the first term was bounded by r by assumption and the second term uses the bound (6). Thus it
suffices to show that ∥PΣP∥op = O(r + ∥L∥op). To this end, we again use triangle inequality as
follows:

∥PΣP∥op ≤ ∥P Σ̂P − L∥op + ∥L∥op + ∥P (Σ̂− Σ)P∥op

≤ r + ∥L∥op + 0.2∥PΣP∥op, (7)
where the second inequality uses the bound (6). Rearranging the above display inequality, we obtain
∥PΣP∥op = O(r + ∥L∥op).
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E Analysis of a Single Recursive Call of the Algorithm: Proofs from Section 3

In this section, we present the details that were omitted from Section 3. We recall Assumption 3.1
from the main body.

Assumption 3.1 (Assumptions and notations for a single recursive call of the algorithm).

• S = {xi}ni=1 is a set of n uncontaminated samples, which is assumed to be (η, 2ϵ0)-stable with
respect to the inlier distribution D having mean and covariance µ,Σ (c.f. Definition 2.1). We
assume η ≤ 0.001, ϵ0 = 0.01, and VarX∼D[X⊤AX] ≤ C1(∥Σ1/2AΣ1/2∥2F +∥Σ1/2Aµ∥22)
for all symmetric d× d matrices A and a constant C1.

• T is the input set to the current recursive call of the algorithm (after the adversarial corruptions),
which satisfies |S ∩ T | ≥ (1− 2ϵ0)|S| and |T | ≤ (1/α)|S|.

• We denote H = EX∼T

[
XX⊤].

• We denote by S̃, T̃ the versions of S and T normalized by H†/2: S̃ = {H†/2x : x ∈ S} and
T̃ = {H†/2x : x ∈ T}. We use the notation x̃ for elements in S̃ and T̃ , and x for elements in
S and T . Similarly, we use the notation X̃ for random variables with support in S̃ or T̃ .

• The mean and covariance of the inlier distribution D after transformation with H†/2 are
denoted by µ̃ := H†/2µ, Σ̃ := H†/2ΣH†/2. We denote the empirical mean and covariance
of the transformed inliers in T by µ̂ := EX̃∼S̃∩T̃ [X̃] and Σ̂ := CovX̃∼S̃∩T̃ [X̃].

E.1 Normalization and Proof of Lemma 3.2

We start with a simple result stating that after normalization with H†/2, the mean and covariance
of the inliers, both empirical and population-level, are bounded. This is intuitive since the inliers
constitute Ω(α)-fraction of the overall samples and the second moment of the complete set after
normalization is bounded by identity.

Lemma E.1 (Normalization). Make Assumption 3.1 and recall the notations µ̃, Σ̃, µ̂, Σ̂ that were
defined in Assumption 3.1. We have that:

1. ∥Σ̂∥op ≤ 2/α.

2. ∥µ̂∥2 ≤
√
2/α.

3. ∥Σ̃∥op ≤ 3/α

4. ∥µ̃∥2 ≤
√
3/α

5. ∥EX̃∼S̃ [X̃]∥2 ≤ 2/
√
α and ∥CovX̃∼S̃ [X̃]∥op ≤ 4/α.

6. For every matrix A with ∥A∥F ≤ 1, |EX̃∼S̃ [X̃
⊤AX̃]−EX∼D[(H†/2X)⊤A(H†/2X)]| <

1/α.

Proof. We prove each part below:

Establishing Item 1 The transformation H is such that EX̃∼T̃ [X̃X̃⊤] =

EX∼T [H
†/2XX⊤H†/2] = H†/2HH†/2 = PH , which has operator norm at most 1. By

assumption, we have that
∣∣∣S̃ ∩ T̃

∣∣∣ ≥ (1− 2ϵ0)α|T | ≥ 0.5α|T |. Thus, we obtain the following
inequality:

1∣∣∣S̃ ∩ T̃
∣∣∣
∑

x̃∈S̃∩T̃

x̃x̃⊤ ⪯ 1∣∣∣S̃ ∩ T̃
∣∣∣
∑
x̃∈T̃

x̃x̃⊤ =
|T̃ |∣∣∣S̃ ∩ T̃

∣∣∣PH ⪯
2

α
PH . (8)
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By applying (8), we obtain

Σ̂ =
1∣∣∣S̃ ∩ T̃
∣∣∣
∑

x̃∈S̃∩T̃

(x̃− µ̂)(x̃− µ̂)⊤ ⪯ 1∣∣∣S̃ ∩ T̃
∣∣∣
∑

x̃∈S̃∩T̃

x̃x̃⊤ ⪯ 2

α
PH ,

implying that ∥Σ̂∥op ≤ 2/α, since PH is just a projection matrix with 0/1 eigenvalues.

Establishing Item 2 Since, for any random vector X , we have that E[X]E[X]⊤ ⪯ E[XX⊤]
(which is equivalent to Cov[X] ⪰ 0), we obtain

µ̂µ̂⊤ ⪯ 1∣∣∣S̃ ∩ T̃
∣∣∣
∑

x̃∈S̃∩T̃

x̃x̃⊤ ⪯ 2

α
PH ,

where the last inequality uses (8). This implies that ∥µ̂∥22 ≤ 2/α.

Establishing Item 3 The goal is to bound the population-level covariance ∥Σ̃∥op. To this end, we
will use the bounds from Items 1 and 2 which bounds their empirical versions and relate the empirical
versions to the population ones via the deterministic conditions.

Consider an arbitrary subset S̃1 of S̃ satisfying
∣∣∣S̃1

∣∣∣ ≥ ∣∣∣S̃∣∣∣ (1 − 2ϵ0). We first note that by Corol-
lary D.2, we have that∥∥∥∥Σ̃− E

X̃∼S̃1

[(X̃ − µ̃)(X̃ − µ̃)⊤]

∥∥∥∥
F

≤ 0.1
∥∥∥Σ̃∥∥∥

op
and

∥∥∥∥µ̃− E
X̃∼S̃1

[X̃]

∥∥∥∥
2

≤ 0.1

√∥∥∥Σ̃∥∥∥
op
. (9)

Now define Σ̃1 := EX̃∼S̃∩T̃ [(X̃ − µ̃)(X̃ − µ̃)⊤], the centered second moment matrix of S̃ ∩ T̃ ,
which satisfies Σ̃1 = Σ̂ + (µ̃− µ̂)(µ̃− µ̂)⊤. We have that

∥Σ̃∥op ≤ ∥Σ̃− Σ̂∥F + ∥Σ̂∥op (triangle inequality)

≤ ∥Σ̃− Σ̃1∥F + ∥µ̃− µ̂∥22 + ∥Σ̂∥op (triangle inequality and Σ̃1 = Σ̂ + (µ− µ̂)(µ− µ̂)⊤)

≤ 0.2∥Σ̃∥op + ∥Σ̂∥op,

where in the last line we use (9) for S̃1 = S̃∩T̃ and the fact that
∣∣∣S̃ ∩ T̃

∣∣∣ ≥ (1−2ϵ0)|S̃|. Rearranging,

we have that ∥Σ̃∥op < 1.25∥Σ̂∥op for which we can use Item 1 to further upper bound it by 3/α.

Establishing Item 4 We use a similar argument as in Item 3:

∥µ̃∥2 ≤ ∥µ̂∥2 + ∥µ̃− µ̂∥2 ≤ ∥µ̂∥2 + 0.1

√
∥Σ̃∥op ≤

√
3/α, (10)

where the first step uses the triangle inequality, the second inequality uses Equation (9) for S̃1 = S̃∩T̃ ,
and the last inequality uses Items 2 and 3.

Establishing Item 5 For the covariance condition, we have the following:∥∥∥∥Cov
X̃∼S̃

[X̃]

∥∥∥∥
op
≤
∥∥∥∥ E
X̃∼S̃

[
(X̃ − µ̃)(X̃ − µ̃)⊤

]∥∥∥∥
op

(using Cov(X̃) ⪯ E[X̃X̃⊤])

≤
∥∥∥∥ E
X̃∼S̃

[
(X̃ − µ̃)(X̃ − µ̃)⊤

]
− Σ̃

∥∥∥∥
op
+ ∥Σ̃∥op (triangle inequality)

≤ 1.1∥Σ̃∥op,

where the last step upper bounds the first term using Equation (9) for S̃1 = S̃, which trivially satisfies
|S̃| ≥ |S̃|(1− 2ϵ0). The overall expression is upper bounded by (1.1× 3)/α by Item 3.

The mean condition has a similar proof:∥∥∥∥ E
X̃∼S̃

[X̃]

∥∥∥∥
2

≤
∥∥∥∥ E
X̃∼S̃

[X̃]− µ̃

∥∥∥∥
2

+ ∥µ̃∥2 ≤ 0.1

√
∥Σ̃∥op +

√
3/α ≤ 2/

√
α,

where we use Equations (9) and (10).
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Establishing Item 6 Consider an arbitrary square matrix A with ∥A∥F ≤ 1. We have that

∣∣∣∣ E
X̃∼S̃

[X̃⊤AX̃]− E
X∼D

[(H†/2X)⊤A(H†/2X)]

∣∣∣∣
=

∣∣∣∣〈A, E
X̃∼S̃

[X̃X̃⊤]− E
X∼D

[(H†/2X)(H†/2X)⊤]

〉∣∣∣∣
=

∣∣∣∣〈A,

(
Cov
X̃∼S̃

[X̃] + E
X̃∼S̃

[X̃] E
X̃∼S̃

[X̃]⊤
)
−
(
Σ̃ + µ̃µ̃⊤

)〉∣∣∣∣
≤
∣∣∣∣〈A,Cov

X∼S̃
[X]− Σ̃

〉∣∣∣∣+ ∣∣∣∣〈A, E
X∼S̃

[X] E
X∼S̃

[X]⊤ − µ̃µ̃⊤
〉∣∣∣∣ (triangle inequality)

≤
∥∥∥∥Cov
X̃∼S̃

[X̃]− Σ̃

∥∥∥∥
F
+

∥∥∥∥ E
X̃∼S̃

[X̃] E
X̃∼S̃

[X̃]⊤ − µ̃µ̃⊤
∥∥∥∥

F
(variational definition of Frobenius norm)

=

∥∥∥∥∥ E
X̃∼S̃

[(X̃ − µ̃)(X̃ − µ̃)⊤]− Σ̃ +

(
E

X̃∼S̃
[X̃]− µ̃

)(
E

X̃∼S̃
[X̃]− µ̃

)⊤
∥∥∥∥∥

F

+

∥∥∥∥ E
X̃∼S̃

[X̃] E
X̃∼S̃

[X̃]⊤ − µ̃µ̃⊤
∥∥∥∥

F

≤
∥∥∥∥ E
X̃∼S̃

[(X̃ − µ̃)(X̃ − µ̃)⊤]− Σ̃

∥∥∥∥
F
+

∥∥∥∥∥
(

E
X̃∼S̃

[X̃]− µ̃

)(
E

X̃∼S̃
[X̃]− µ̃

)⊤
∥∥∥∥∥

F

+

∥∥∥∥ E
X̃∼S̃

[X̃] E
X̃∼S̃

[X̃]⊤ − µ̃µ̃⊤
∥∥∥∥

F

(a)

≤
∥∥∥∥ E
X∼S̃

[(X − µ̃)(X − µ̃)⊤]− Σ̃

∥∥∥∥
F
+ 3

∥∥∥∥ E
X∼S̃

[X]− µ̃

∥∥∥∥2
2

≤ 0.1∥Σ̃∥op + 0.03∥Σ̃∥op (using (9))
< 1/α , (using Item 3)

where the inequality (a) uses the fact that ∥uv⊤ − wz⊤∥2F ≤ ∥u− w∥22 + ∥v − z∥22 for the last term.

The previous result implies that the mean and covariance of the inlier distribution D after transforma-
tion with H†/2 is bounded. Since the variance of degree-two polynomials under D is bounded by
assumption, we obtain the following bound on the variance:

Lemma 3.2. Make Assumption 3.1 and recall that H = EX∼T [XX⊤], where T is the corrupted
version of a stable inlier set S. For every symmetric matrix A with ∥A∥F = 1 , we have that
VarX∼D[(H†/2X)⊤A(H†/2X)] ≤ 18C1/α

2.

Proof. By Assumption 3.1, we have that VarX∼D[X⊤BX] ≤ C1(∥Σ1/2BΣ1/2∥2F + ∥Σ1/2Bµ∥22)
for all B ∈ Rd×d. Applying this to B = H†/2AH†/2, we have that

Var
X∼D

[(H†/2X)⊤A(H†/2X)] ≤ C1(∥Σ1/2H†/2AH†/2Σ1/2∥2F + ∥Σ1/2H†/2AH†/2µ∥22)

= C1(∥Σ̃1/2AΣ̃1/2∥2F + ∥Σ̃1/2Aµ̃∥22) , (11)

where we use that ∥Σ̃1/2AΣ̃1/2∥2F = ∥Σ1/2H†/2AH†/2Σ1/2∥2F and ∥Σ1/2H†/2AH†/2µ∥22 =

∥Σ̃1/2Aµ̃∥22 since Σ̃ = H†/2ΣH†/2 and µ̃ = H†/2µ. By Lemma E.1, ∥Σ̃∥op ≤ 3/α. Since
∥A∥F = 1, we have that the first term in (11) is bounded as follows: ∥Σ̃1/2AΣ̃1/2∥2F ≤
∥Σ̃∥2op∥A∥2F ≤ 9/α2, using the fact that ∥AB∥F ≤ ∥A∥op∥B∥F (Fact B.3). We also have that
∥Σ̃1/2Aµ̃∥22 ≤ ∥Σ̃∥op∥A∥2op∥µ̃∥22 ≤ 9/α2, where we the bounds from Lemma E.1. The desired
conclusion then follows by applying these upper bounds in (11).
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E.2 Certificate Lemma: Proof of Lemma 3.4

Lemma E.2 (Case when we stop and return; Formal version of Lemma 3.4). Make Assumption 3.1.
Let w ∈ Rd2

be the leading eigenvector of the CovX̃∼T̃ [X̃
⊗2] with ∥w∥2 = 1, and let A ∈ Rd×d be

w♯. Note that ∥w∥2 = 1 implies ∥A∥F = 1. For every subset T̃ ′ ⊆ T̃ with |T̃ ′| ≥ (α/2)|T̃ |, we have
that ∥∥∥∥Cov

X̃∼T̃ ′
[X̃]− PH

∥∥∥∥2
F
≲

1

α
Var
X̃∼T̃

[X̃⊤AX̃] +
1

α2
.

In particular, we have that
∥∥H†/2ΣH†/2 − PH

∥∥2
F ≲ 1

α VarX̃∼T̃ [X̃
⊤AX̃] + 1

α2 and∥∥H†/2ΣH†/2 − PΣ

∥∥2
F ≲ 1

α VarX̃∼T̃ [X̃
⊤AX̃] + 1

α2 .

Proof. We will apply the main certificate lemma, Lemma D.4, with P = H†/2. The desired result
then follows by noting that EX∼T [PXX⊤P ] = H†/2HH†/2 = PH and the operator norm of PH

is at most 1. We will use the following result, proved in Appendix C, to upper bound the frobenius
norm of H†/2ΣH†/2 − PΣ:

Lemma C.3. Let A and B be two PSD matrices with PB ⪯ PA or equivalently ker(A) ⊆ ker(B).
Then ∥ABA− PB∥F ≤ 2∥ABA− PA∥F.

Before providing the proof sketch of Lemma C.3 below, we show that it suffices to prove the desired
result. Since H is the second moment matrix of T , we have that ker(H) ⊆ ker(

∑
x∈S∩T xx⊤),

which is further contained in ker(Σ) by Condition (L.5) in Definition 2.1. We apply Lemma C.3 with
B = Σ and A = H , which gives the desired result.

We now give a brief proof sketch of Lemma C.3. By triangle inequality, it suffices to show that
∥PA−PB∥F ≤ ∥ABA−PA∥F. Since ker(A) ⊂ ker(B), PA−PB is again a projection matrix of rank
equal to rank(A)−rank(B) and thus its frobenius norm is equal to square root of rank(A)−rank(B).
On the other hand, the matrices ABA and PA have a rank difference of at least rank(A)− rank(B).
Combining this observation with the fact that PA has binary eigenvalues, we can lower bound
∥ABA− PA∥F by square root of rank(A)− rank(B).

E.3 Filtering: Proof of Lemma 3.5

We first show that if we take the median of a quadratic polynomial p over the corrupted set, then the
sample mean of p over the inliers is not too far from the median if the left and right quantiles are
close.
Lemma E.3 (Quantiles of quadratics after normalization). Make Assumption 3.1. Let A be an
arbitrary symmetric matrix with ∥A∥F = 1. Define ỹmedian = Median

({
x̃⊤Ax̃ | x̃ ∈ T̃

})
. Let m1

be any number less than |S|/3. Denote by qi the i-th smallest point of
{
x̃⊤Ax̃ | x̃ ∈ T̃

}
.

Suppose that q|T |−m1
− qm1

≤ R for R := C(1/α) log(1/η) with C > 100
√
C1 (recall that the

absolute constant C1 is defined in Assumption 3.1). Then,
∣∣∣EX̃∼S̃ [X̃

⊤AX̃]− ỹmedian

∣∣∣ ≤ 2R.

Proof. Let µ′ = EX̃∼S̃ [X̃
⊤AX̃]. (Not to be confused with µ̂ and µ̃ in Assumption 3.1, which are

expectations of X̃ in the samples and at the population level, instead of the quadratic form in the
definition of µ′.)

Given that ỹmedian (by definition) lies within the interval [qm1
, q|T |−m1

] which has length at most R,
it suffices to argue that µ′ also lies within distance R of that interval. Namely, µ′ ≥ qm1 − R and
µ′ ≤ q|T |−m1

+R.

Let σ2 := VarX∼D[(H†/2X)⊤A(H†/2X)]. The (η, 2ϵ0)-stability of S in Assumption 3.1 (see
Condition (L.3)) implies that all but an η-fraction of {x̃⊤Ax̃ : x̃ ∈ S̃ ∩ T̃} lies in the interval
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EX∼D[(H†/2X)⊤A(H†/2X)]±10σ log(1/η) since the size of the set S̃∩ T̃} is at least |S|(1−2ϵ0)
(by Assumption 3.1).

Thus, for at least (1− η)|S ∩ T | ≥ |S|(1− 2ϵ0 − η)|S| points in T , the value of x̃⊤Ax̃ lies in the
interval EX∼D[(H†/2X)⊤A(H†/2X)]± 10σ log(1/η). Since η ≤ 0.01 and ϵ0 < 1/4, the number
of such points is at least |S|/3.

Rephrasing, there is an interval [yleft, yright] that contains at least |S|/3 points in T̃ , where

yleft = E
X∼D

[(H†/2X)⊤A(H†/2X)]− 10σ log(1/η) ,

yright = E
X∼D

[(H†/2X)⊤A(H†/2X)] + 10σ log(1/η) .

Therefore, there are at most |T |− |S|/3 points in T̃ that are less than yleft, implying that q|T |−|S|/3 ≥
yleft. Furthermore, since, by assumption we have m1 ≤ |S|/3, this implies that q|T |−m1

≥ yleft. By
a symmetric argument, we also have that qm1

≤ yright.

Next, recall that by Item 6 of Lemma E.1, we have that |EX∼D[(H†/2X)⊤A(H†/2X)] − µ′| =
|EX∼D[(H†/2X)⊤A(H†/2X)] − EX̃∼S̃ [X̃

⊤AX̃]| < 1/α. Thus, we have q|T |−m1
≥ yleft ≥

µ′−10σ log(1/η)−1/α. Rearranging, we get µ′ ≤ q|T |−m1
+10σ log(1/η)+1/α. Symmetrically,

we get that µ′ ≥ qm1
− 10σ log(1/η)− 1/α.

Finally, we argue that 10σ log(1/η)+ 1/α ≤ R, showing that µ′ ≤ q|T |−m1
+R and µ′ ≥ qm1

−R,
which as we argued at the beginning of the proof is sufficient to show the lemma statement. To
argue this, by Lemma 3.2, we have that σ ≤ 5

√
C1/α. Thus, it suffices to choose, as in the lemma

statement, that R = (C/α) log(1/η) for some sufficiently large C > 0.

The above result implies that if we calculate the “squared deviation” of the projections of inliers
centered around the empirical median of the corrupted set, then it will be of the order of the empirical
variance of inliers up to a factor of R2 (by triangle inequality). Moreover, the empirical variance of
the inliers is of the order O(1/α2) by Lemma 3.2. Thus if the variance of the corrupted set is much
larger than the upper bound, then we can assign score to each point, the function f below, such that
the contribution from outliers is much larger than the inliers.

Lemma E.4 (Filtering; Formal version of Lemma 3.5). Make Assumption 3.1. Let A be an arbitrary
symmetric matrix with ∥A∥F = 1. Let R = C(1/α) log(1/η) for C ≥ 100

√
C1. Define ỹmedian =

Median({x̃⊤Ax̃ | x̃ ∈ T̃}). Define the function f(x̃) := (x̃⊤Ax̃− ỹmedian)
2. Let m1 be a number

less than |S|/3. Denote by qi the i-th smallest point of {x̃⊤Ax̃ | x̃ ∈ T̃}.
If q|T |−m1

− qm1
≤ R and EX∼T [f(x)] > C ′R2/α3 for C ′ ≥ 720/ϵ0, that is, in the case where

the check in Line 12 fails, then, the function f(·) satisfies∑
x̃∈T̃

f(x̃) >
40

ϵ0

1

α3

∑
x̃∈S̃∩T̃

f(x̃) .

Proof. The core argument for the proof is that
∑

x̃∈S̃∩T̃ f(x̃) can be upper bounded under the
assumption that q|T |−m1

− qm1
≤ R, as shown in the following claim.

Claim E.5. Assuming the conditions in Lemma E.4, we have
∑

x̃∈S̃∩T̃ f(x̃) ≤ 9|S|R2.

Proof. Let µ′ = EX̃∼S̃ [X̃
⊤AX̃]. We have the following series of inequalities:∑

x̃∈S̃∩T̃

f(x̃) ≤
∑
x̃∈S̃

f(x̃) (since f(x) ≥ 0)

=
∑
x̃∈S̃

(x̃⊤Ax̃− ỹmedian)
2
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≤ 2
∑
x̃∈S̃

((
x⊤Ax− µ′

)2
+
(
µ′ − ỹmedian

)2)
(by (a+ b)2 ≤ 2a2 + 2b2)

= 2|S|Var
X̃∼S̃

[X̃⊤AX̃] + 2
∑
x̃∈S̃

(µ′ − ỹmedian)
2

≤ 2|S|Var
X̃∼S̃

[X̃⊤AX̃] + 8R2|S| (by Lemma E.3)

≤ 2|S|
(
72C1

α2

)
+ 8R2|S| (by Lemma 3.2 and Condition (L.4))

≤ 9|S|R2 , (by definition of R)

where the last line uses that R ≥ 12
√
C1/α, which is satisfied for C ≥ 12

√
C1. This completes the

proof of Claim E.5.

On the other hand, we have that∑
x̃∈T̃

f(x̃) > C ′R2|T |/α3 (by assumption)

≥ 0.5C ′R2|S|/α3 (since |T | ≥ |S ∩ T | ≥ |S|(1− 2ϵ0) ≥ |S|/2)

> (360/ϵ0)R
2|S|/α3 (since C ′ ≥ 720/ϵ0)

≥ 40/(ϵ0α
3)

∑
x̃∈S̃∩T̃

f(x̃) . (using Claim E.5)

This completes the proof of Lemma E.4.

F Proof of Theorem 1.2

In this section, we present the main algorithmic result of the paper. As previously stated, the theorem
holds for distributions beyond Gaussians, as long as the input set of points satisfies the deterministic
conditions from Section 2.1 and the distribution meets a mild requirement. We now restate and prove
the theorem in this more general form.
Theorem F.1 (Weak List Decodable Covariance Estimation). Let the ambient dimension be d ∈ Z+,
let C be a sufficiently large absolute constant, and let the parameters α ∈ (0, 1/2), ϵ ∈ (0, ϵ0)
for a sufficiently small positive constant ϵ0, and failure probability δ ∈ (0, 1/2) be known to the
algorithm. Let D be a distribution with mean µ ∈ Rd, covariance Σ ∈ Rd×d, and assume that
VarX∼D[X⊤AX] = O(∥Σ1/2AΣ1/2∥2F + ∥Σ1/2Aµ∥22). There is a polynomial-time algorithm
such that, on input α, δ as well as an (α, ϵ)-corruption of a set S (Definition 1.1) with |S| >
C/(α6ϵ20) log(1/(αδ)) which is ((ϵ0/40)α

3, 2ϵ0))-stable with respect to D (Definition 2.1), with
probability at least 1− δ over the randomness of the algorithm, the algorithm returns a list of at most
O(1/α) many sets Ti which are disjoint subsets of samples in the input, each Ti has size at least
0.5αm, and there exists a Ti in the output list such that:

• Recall the notation in the corruption model (Definition 1.1) where n is the size of the
original inlier set S and ℓ is the number of points in S that the adversary replaced—n and
ℓ are unknown to the algorithm except that n ≥ αm and ℓ ≤ ϵn. The set Ti satisfies that
|Ti ∩ S| ≥ (1− 0.01α)(n− ℓ).

• Denote Hi := EX∼Ti [XX⊤]. The matrix Hi satisfies

max
(
∥(H†

i )
1/2Σ(H†

i )
1/2 − PH∥F , ∥(H†

i )
1/2Σ(H†

i )
1/2 − PΣ∥F

)
≤ O((1/α4) log(1/α)).

The Gaussian distribution N (µ,Σ) satisfies the distributional assumption of Theorem F.1 (c.f.
Fact B.1), and a set of size m = C ′ d2 log5(d/αδ)

α6 from N (µ,Σ) is ((ϵ0/40)α
3, 2ϵ0))-stable with

probability 1− δ for a constant ϵ0 (c.f. Lemma 2.2). Thus, Theorem F.1 theorem covers the Gaussian
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case D = N (µ,Σ) with polynomial sample complexity, and it directly implies Theorem 1.2, the
main result of this work.

We achieve the guarantee of Theorem F.1 by combining the procedure of the previous section in a
recursive algorithm (Algorithm 1). We maintain the notation of Assumption 3.1 with the addition of
subscripts that indicate the number of filtering steps performed.

We restate the algorithm below, before proving Theorem F.1:

Algorithm 3 List-Decodable Covariance Estimation in Relative Frobenius Norm

1: Constants: m,α, η,R := C(1/α2) log(1/(ϵ0α)) for C > 6000
√
C1, C ′ > 720/ϵ0 (where

C1, ϵ0 are defined in Assumption 3.1).
2: function COVLISTDECODING(T0)
3: t← 0.
4: loop
5: Compute Ht = EX∼Tt

[XX⊤].
6: Let T̃t = {H†/2

t x : x ∈ Tt} be the transformed set of samples.
7: Let A be the symmetric matrix corresponding to the top eigenvector of CovX̃∼T̃t

[X̃⊗2].
8: Normalize A so that ∥A∥F = 1.
9: Compute the set Ỹt = {x̃⊤Ax̃ : x̃ ∈ T̃t}

10: Compute the αm/9-th smallest element qleft as well as the αm/9-th largest element
qright, as well as the median ỹmedian of Ỹt.

11: Define the function f(x̃) = (x̃⊤Ax̃− ỹmedian)
2.

12: if EX̃∼T̃t
[f(X̃)] ≤ C ′R2/α3 then ▷ c.f. Lemma 3.4

13: If |Tt| ≥ 0.5αm then return {Tt} else return the empty list.
14: else if qright − qleft ≤ R then ▷ c.f. Lemma 3.5
15: Let the probability mass function p(x̃) := f(x̃)/

∑
x̃∈T̃t

f(x̃).

16: Pick xremoved ∈ Tt according to p(H
†/2
t x).

17: Tt+1 ← Tt \ {xremoved}.
18: else
19: τ ← FindDivider(Ỹt, αm/9). ▷ c.f. Lemma 3.6
20: T ′ ← {H1/2

t x̃ : x̃ ∈ T̃t, x̃
⊤Ax̃ ≤ τ}, T ′′ ← {H1/2

t x̃ : x̃ ∈ Tt, x̃
⊤Ax̃ > τ}.

21: L1 ← COVLISTDECODING(T ′), L2 ← COVLISTDECODING(T ′′).
22: return L1 ∪ L2.
23: t← t+ 1.

Proof of Theorem F.1. Since the final error guarantees do not depend on ϵ, without loss of generality
we use the maximum level of corruptions ϵ = ϵ0 = 0.01 in the following proof. We will also use the
letter η to denote the expression (ϵ0/40)α

3 as in the stability assumption in the theorem statement on
the inlier set. We will proceed to prove Theorem F.1 by induction, and crucially use the following
fact that “union bounds also work under conditioning”.

Fact F.2. If event A happens with probability 1− τ1 and event B happens with probability 1− τ2
conditioned on event A, then the probability of both A and B happening is at least 1− τ1 − τ2.

The technical bulk for proving Theorem F.1 is Lemma F.4, an inductive claim over the levels of
recursion, that (in addition to some other basic properties) with high probability over any level, either
(i) there was a recursive call at a prior level whose input contains most of the inliers, and by definition
that call has terminated, or (ii) there exists some recursive call at this current level whose input
contains most of the inliers. We will use the following notation (Definition F.3) to denote various
objects in the recursive execution of our algorithm.

Definition F.3 (Notation for Recursion Tree). We define a rooted binary tree T that corresponds
to the execution of our recursive algorithm (Algorithm 1). The root node at level 0 corresponds to
the top-level call of COVLISTDECODING (Algorithm 1) and for every non-leaf node, its left child
corresponds to a call of COVLISTDECODING from Line 21 and its right child corresponds to a call

29



from Line 21. Thus, every node is uniquely specified by the level in the tree and its position within
that level. We denote by Ti,j the ith node of level j, where the node numbers are also 0-indexed (e.g.,
the root node is T0,0). For the node Ti,j , we denote by T

(i,j)
(0) the input data set to the corresponding

recursive call. In order to refer to the working data set at the tth iteration of the main loop in the
execution of node Ti,j , we use the notation T

(i,j)
(t) and T̃

(i,j)
(t) exactly in the same way as T(t) and T̃(t)

are used in Algorithm 1. Finally, Tj (i.e., using a single subscript) refers to the subtree growing from
the root and including all the nodes up to and including the jth level.

Lemma F.4. In the context of Theorem F.1, consider the recursion tree of COVLISTDECODING
(Definition F.3). Then, for any j ∈ {0, . . . , 9/α}, we have that with probability at least 1− 0.01αjδ
the following holds:

1. (Size decrease under recursion) The input of every node Ti,j of level j satisfies |T (i,j)
(0) | ≤

m− jαm/9

2. (Disjoint inputs) Consider the subtree Tj growing from the root and truncated at (but
including) level j. All the leaves in Tj have disjoint input sets. Note that the leaves may not
all be at level j, and some might be at earlier levels.

3. (Bound on inliers removed) Consider the subtree Tj growing from the root and truncated
at (but including) level j. There exists a leaf Ti′,j′ in Tj (but the level of the leaf j′ is not
necessarily equal to j) such that its input T (i′,j′)

(0) satisfies

α3(ϵ0/40)|T (i′,j′)
(0) |+ |S \ T (i′,j′)

(0) | ≤ (j + 1)α3(ϵ0/20)m+ ℓ (12)

where as in Definition 1.1, m is the size of the original input set of the root node T0,0 and
ℓ ≤ ϵ0n is the number of samples that the adversary replaced in S. In particular, the number
of inliers removed by the algorithm until T (i′,j′)

(0) is at most (j + 1)α3(ϵ0/20)m.

Remark F.5. We remark on why (12) uses a cubic power of α, which is the same cubic power
appearing in Lemma E.4 that states that the total score of all the outliers is a 1/α3 factor more than
the total score of the inliers. The three powers of α are due to the following reasons: 1) the inliers
can be as few as an α-fraction of all the samples, 2) the depth of the recursion tree can be as much
as O(1/α), meaning that a set can be filtered O(1/α) times, and 3) Theorem F.1 guarantees that
we remove at most an O(α) fraction of inliers. We also remark that, by tweaking parameters in the
algorithm and increasing the power of poly(1/α) in our covariance estimation guarantees, we can
make the score function ratio (and hence the poly(α) factor in (12)) as large a power of α as we
desire. This would guarantee that we remove at most a smaller poly(α) fraction of inliers.

Proof. We prove Lemma F.4 by induction on the level number j. For the base case of j = 0,
Conditions 1 and 2 are trivial. As for Condition 3, at j = 0 we have |T (0,0)

(0) | = m and |S \
T

(0,0)
(0) | ≤ ℓ by the definition of the contamination model (Definition 1.1), which directly implies

α3(ϵ0/40)|T (0,0)
(0) |+ |S \ T

(0,0)
(0) | ≤ α3(ϵ0/40)m+ ℓ ≤ α3(ϵ0/20)m+ ℓ as desired.

To show the inductive case, we assume the lemma statement is true for some j and we will show the
statement for the case j + 1.

Conditions 1 and 2 These are trivially true, by virtue of the fact that the recursive algorithm, after
it is done with removing points via filtering, it partitions the input set using FINDDIVIDER which
guarantees that both output sets have size at least m1 = αm/9 (Lemma 3.6).

Condition 3 Recall the notation T
(i,j)
(t) from Definition F.3 that is used to denote the set of points in

the variable Tt after the tth iteration in the ith recursive call in level j.

By Fact F.2, we will condition on Condition 3 being true for Tj , the subtree truncated at (but including)
level j and show that Condition 3 holds also for Tj+1, the subtree truncated at level j+1, except with
probability 0.01αδ. Concretely, the conditioning implies that there exists a leaf Ti′,j′ of the subtree
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Tj whose input set T (i′,j′)
(0) satisfies the inequality in Condition 3 for j′ ≤ j. If j′ < j, then we are

done (since it continues to be a leaf and the desired bound on the right hand size in Equation (12) is
only larger). Otherwise, in the case of j′ = j, we have to analyze the execution of the recursive call
associated with this leaf node in the recursion tree Tj .

To begin with the analysis, we verify that the input set T (i′,j)
(0) satisfies Assumption 3.1. We first check

that |S ∩ T
(i′,j)
(0) | ≥ n(1− 2ϵ0):

|S ∩ T
(i′,j)
(0) | = |S| − |S \ T

(i′,j)
(0) |

≥ n− (j + 1)α3(ϵ0/20)m− ℓ (by the inductive hypothesis)

≥ n− (9/α+ 1)α3(ϵ0/20)m− ℓ (j ≤ 9/α)

≥ n− α2ϵ0m− ϵ0n (ℓ ≤ ϵ0n)
≥ n− αϵ0n− ϵ0n (n ≥ αm)
≥ n− 1.5ϵ0n , (13)

where the last line uses that α ≤ 1/2. Then it remains to check that |T (i′,j)
(0) | ≤ (1/α)|S|, but this is

trivially satisfied since it holds for the input set T (0,0)
(0) that we start with: |T (i′,j)

(0) | ≤ |T
(0,0)
(0) | = m ≤

(1/α)n = (1/α)|S|.
In a recursive call, the algorithm iteratively removes points (through Line 16) before either terminating
(Line 12) or calling FINDDIVIDER and recursing (Line 21). Denote the iteration just before either
terminating or running FINDDIVIDER by t∗i′ . We need to argue that the iterative filtering of points
prior to iteration t∗i′ still roughly preserves Condition 3. Lemma F.6, that is stated below and proved
in Lemma F.6, captures the standard martingale argument for filtering-based robust algorithms, and it
informally states that if the input set T (i′,j)

(0) satisfies Assumption 3.1, then Condition 3 is roughly
preserved.

Lemma F.6. Recall the notations and assumptions from Assumption 3.1. Consider an execution of
COVLISTDECODING(T0) with T0 = T (with T satisfying the assumptions from Assumption 3.1), and
suppose that |T0| ≥ C ′/(α6ϵ20) log (1/(αδ)). Further assume that |S \ T0| ≤ 1.5ϵ0|S| (which is a
strengthening over Assumption 3.1). Moreover, denote by Tt the dataset through the loop iterations
of Algorithm 1. Then, with probability at least 1− 0.01αδ, it holds that

α3(ϵ0/40)|Tt|+ |S \ Tt| ≤ α3(ϵ0/40)|T0|+ |S \ T0|+ α3(ϵ0/40)|T0| ,

simultaneously for all iterations t until the execution of COVLISTDECODING enters either Line 13
or Line 19.

Concretely, applying Lemma F.6 for input set T (i′,j)
(0) and with failure probability 0.01αδ in place of δ.

The lemma is applicable since its first requirement |S \ T (i′,j)
(0) | ≤ 1.5ϵ0|S| has been already checked

in (13), and for its second requirement we have that |T (i′,j)
(0) | ≥ |T

(i′,j)
(0) ∩ S| ≥ (1 − 1.5ϵ0)|S| ≥

C ′/(α6ϵ20) log(1/(αδ)), where the last one uses (13) and the next step uses our assumption |S| >
C/(α6ϵ20) log(1/(αδ)). The lemma then yields that, with probability at least 1− 0.01αδ, T (i′,j)

(t∗
i′ )

is
such that

α3(ϵ0/40)|T (i′,j)
(t∗

i′ )
|+ |S \ T (i′,j)

(t∗
i′ )
| ≤ (j + 1)α3(ϵ0/20)m+ ℓ+ (ϵ0/40)α

3m . (14)

Now, either the recursive call terminates at iteration t∗i′ or it goes into Line 19. In the former case, we
are done (since it is now a leaf node). Otherwise, the recursive call uses FINDDIVIDER to partition
T

(i′,j)
(t∗

i′ )
into T ′ and T ′′. We need to show that at least one of T ′ and T ′′ satisfies Condition 3 (for case

j + 1), using Lemma 3.6. Let us now derive what parameters and set to invoke Lemma 3.6 with.

Using (i) Condition (L.3) of the stability property of the original inlier set S, and (ii) the fact that
(H†/2X)⊤A(H†/2X) − EX∼N (µ,Σ)[(H

†/2X)⊤A(H†/2X)] is an even quadratic in X for any H
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and A, it must be the case that a 1− η fraction (recall η is a shorthand for (ϵ0/40)α3) of the points
x ∈ S satisfies ∣∣∣∣(H†/2x)⊤A(H†/2x)− E

X∼N (µ,Σ)
[(H†/2X)⊤A(H†/2X)]

∣∣∣∣ (15)

≤ 10 log(2/η)
√

Var
X∼D

[(H†/2X)⊤A(H†/2X)]

≤ 50 log(2/η)

√
C1

α2
. (Lemma 3.2)

Denote the set of points x ∈ S with the above property by SH,A ⊆ S, and let S(i′,j)
core = T

(i′,j)
(t∗

i′ )
∩

SH,A. We will therefore apply Lemma 3.6 with Sproj = {(H†/2x)⊤A(H†/2x) : x ∈ S
(i′,j)
core },

T = {(H†/2x)⊤A(H†/2x) : x ∈ T
(i′,j)
(t∗

i′ )
} and diameter r = 100 log(2/η)

√
C1/α. It remains to

check that for qm1 = qleft and q|T (i′,j)
(t∗

i′
)
|−m1

= qright of T (i′,j)
(t∗

i′ )
, we have q|T (i′,j)

(t∗
i′

)
|−m1

− qm1 ≥

10(|T (i′,j)
(t∗

i′ )
|/|Sproj|)r, to make sure that the application of Lemma 3.6 is valid.

To show this, recall that Line 14 fails whenever FINDDIVIDER is called, meaning that q|T (i′,j)
(t∗

i′
)
|−m1

−

qm1
≥ R. Thus, we need to verify that the definition of R in Algorithm 1 satisfies R ≥

10(|T (i′,j)
(t∗

i′ )
|/|Sproj|)r. The main step is to lower bound |Sproj| = |S(i′,j)

core |. Since S
(i′,j)
core ⊂ S,

we can lower bound the above by

|S(i′,j)
core | ≥ |S| − |S \ SH,A| − |S \ T (i′,j)

(t∗
i′ )
| (S(i′,j)

core = T
(i′,j)
(t∗

i′ )
∩ SH,A)

≥ (1− η)|S| − |S \ T (i′,j)
(t∗

i′ )
| (by the definition of SH,A)

≥ (1− η)|S| − (j + 1)α3(ϵ0/20)m− ℓ− (ϵ0/40)α
3m (by (14))

≥ (1− η)n− (j + 2)α3(ϵ0/20)m− ℓ (|S| = n and basic inequality)

≥ (1− η)n− (j + 2)α2(ϵ0/20)n− ℓ (n ≥ αm)
≥ (1− η)n− αϵ0n− ℓ (j ≤ 9/α and α < 1/2)
≥ (1− η)n− αϵ0n− ϵ0n (ℓ ≤ ϵ0n)
≥ (1− η − 2ϵ0)n ≥ n/2 (η ≤ 0.001 and ϵ0 = 0.01)

Combining with the fact that |T (i′,j)
(t∗

i′ )
| ≤ m, we have that 10(|T (i′,j)

(t∗
i′ )
|/|Sproj|)r ≤ 20(m/n)r ≤

(20/α)r. Recalling that r = 100 log(2/η)
√
C1/α, η = (ϵ0/40)α

3 and ϵ0 = 0.001, the definition of
R in Algorithm 1 satisfies R ≥ 6000

√
C1(1/α

2) log(1/(ϵ0α)) ≥ (20/α)r ≥ 10(|T (i′,j)
(t∗

i′ )
|/|Sproj|)r.

Knowing that the application of Lemma 3.6 is valid, the lemma then guarantees that either T ′ or T ′′

contains all of S(i′,j)
core . Without loss of generality, we assume this happens for T ′. We now check

Condition 3 for case j + 1 on T ′:

α3(ϵ0/40)|T ′|+ |S \ T ′| ≤ α3(ϵ0/40)|T (i′,j)
(t∗

i′ )
|+ |S \ T ′| (since T ′ ⊂ T

(i′,j)
(t∗

i′ )
)

≤ α3(ϵ0/40)|T (i′,j)
(t∗

i′ )
|+ |S \ S(i′,j)

core | (by Lemma 3.6)

≤ α3(ϵ0/40)|T (i′,j)
(t∗

i′ )
|+ |S \ T (i′,j)

(t∗
i′ )
|+ |S \ SH,A|

(by the definition of S(i′,j)
core and a union bound)

≤ α3(ϵ0/40)|T (i′,j)
(t∗

i′ )
|+ |S \ T (i′,j)

(t∗
i′ )
|+ ηn (by the definition of SH,A)

≤ (j + 1)α3(ϵ0/20)m+ ℓ+ (ϵ0/40)α
3m+ ηn (by Equation 14)

≤ (j + 1)α3(ϵ0/20)m+ ℓ+ (ϵ0/20)α
3m

(since η = (ϵ0/40)α
3 and n ≤ m)
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= (j + 2)α3(ϵ0/20)m+ ℓ . (16)

Thus Condition 3 is satisfied by T ′ for case j + 1, completing the inductive proof of this lemma.

We now use the lemma to conclude the proof of Theorem F.1.

By Lemma F.4, we know that with probability at least 1 − 0.09δ, the recursion tree generated up
to level 9/α, namely T9/α, satisfies the lemma guarantees. In particular, since (i) by Line 19 in
Algorithm 1, the input to any recursive call must have size at least m1 = αm/9, and (ii) Condition 1
of Lemma F.4 applied to j = m/m1 = 9/α yields an input size upper bound of 0, we can conclude
that the execution of the algorithm must have completely terminated by level 9/α. We know by
Lemma F.4 that there exists a leaf node i in the recursion tree whose input satisfies Condition 3 of the
third part of the lemma statement. That is, letting j denote the level of that leaf, we have that

α3(ϵ0/40)|T (i,j)
(0) |+ |S \ T

(i,j)
(0) | ≤ (j + 1)α3(ϵ0/20)m+ ℓ . (17)

The recursion node Ti,j starts with that input set T (i,j)
(0) and, before terminating, it may perform some

filtering steps. As in the proof of Lemma F.4, we will use Lemma F.6 to analyze the “working set”
right before the recursive call terminates. If we denote by t∗ the number of filtering steps before
termination, Lemma F.6 yields that except with probability 0.01αδ, we have

α3(ϵ0/40)|T (i,j)
(t∗) |+ |S \ T

(i,j)
(t∗) | ≤ (j + 1)α3(ϵ0/20)m+ ℓ+ (ϵ0/40)α

3m . (18)

Note that by Fact F.2, the total failure probability is upper bounded by 0.09δ + 0.01αδ which is less
than δ.

We are now ready to prove the first bullet of Theorem F.1. The above inequality implies that

|T (i,j)
(t∗) ∩ S| = |S| − |S \ T (i,j)

(t∗) |

≥ n− ℓ− (ϵ0/20)(j + 1)α3m− (ϵ0/40)α
3m (by (18))

≥ n− ℓ− (ϵ0/20)(j + 2)α3m

≥ n− ℓ− (ϵ0/20)(j + 2)α2n (n ≥ αm)
≥ n− ℓ− (ϵ0/2)αn (j ≤ 9/α and α < 1/2)
≥ n− ℓ− ϵ0(1− ϵ0)αn (1/2 ≤ 1− ϵ0)
≥ n− ℓ− ϵ0α(n− ℓ) (ℓ ≤ ϵ0n)
= (n− ℓ)(1− ϵ0α) . (19)

(19) further implies that |T (i,j)
(t∗) ∩ S| ≥ (n− ℓ)(1− ϵ0α) ≥ n(1− ϵ0)(1− ϵ0α) ≥ (α/2)m (since

n ≥ αm and ϵ0 and α are small), meaning that the set T (i,j)
(t∗) will indeed be returned. This completes

the proof of the first bullet of Theorem F.1.

We now move to the second bullet. Defining H = E
X∼T

(i,j)

(t∗)

[XX⊤], we need to show that

∥H†/2ΣH†/2 − HH†∥F ≲ (1/α4) log2(1/α). We will apply Lemma E.2 to show the bounds
in the second bullet, which requires checking that Assumption 3.1 is satisfied by T

(i,j)
(t∗) . Earlier, right

below (19), we have already checked that |T (i,j)
(t∗) ∩S| ≥ (α/2)|T (i,j)

(t∗) |. The only remaining condition

to check is |T (i,j)
(t∗) | ≤ |S|/α, but this is trivially true since T

(i,j)
(t∗) ⊂ T

(0,0)
(0) (the original input set to

the recursive algorithm) and |T (0,0)
(0) | ≤ |S|/α by Definition 1.1. Thus, Lemma E.2 yields that∥∥∥H†/2ΣH†/2 − PH

∥∥∥2
F
≲

1

α
Var

X̃∼T
(i,j)

(t∗)

[X̃⊤AX̃] +
1

α2

≤ 1

α
E

X̃∼T
(i,j)

(t∗)

[f(X̃)] +
1

α2
(Var(Y ) ≤ E[(Y − c)2] for any c ∈ R)
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≲
R2

α4
(c.f. Line 12 of Algorithm 1)

≲
1

α8
log2

(
1

α

)
, (R = Θ((1/α2) log(1/α)), noting that ϵ0 = 0.01)

where the penultimate inequality uses the fact that, if the algorithm terminated, it must be the case
that E

X̃∼T
(i,j)

(t∗)

[f(X̃)] ≤ C ′R2/α3 by Line 12 in Algorithm 1. Taking a square root on both sides

implies that ∥∥∥H†/2ΣH†/2 − PH

∥∥∥
F
≲

1

α4
log

(
1

α

)
The same guarantee holds for

∥∥H†/2ΣH†/2 − PΣ

∥∥
F, also following from Lemma E.2.

Lastly, we check that we only return O(1/α) sets in the output list. This is true by construction: (i)
Line 13 only allows sets to be output if they have size at least Ω(αm), (ii) there were only m points
to begin with and (iii) all the leaves have disjoint input sets by Lemma F.4.

F.1 Proof of Lemma F.6

We now prove that filtering does not remove too many inliers using a standard martingale argument.

Lemma F.6. Recall the notations and assumptions from Assumption 3.1. Consider an execution of
COVLISTDECODING(T0) with T0 = T (with T satisfying the assumptions from Assumption 3.1), and
suppose that |T0| ≥ C ′/(α6ϵ20) log (1/(αδ)). Further assume that |S \ T0| ≤ 1.5ϵ0|S| (which is a
strengthening over Assumption 3.1). Moreover, denote by Tt the dataset through the loop iterations
of Algorithm 1. Then, with probability at least 1− 0.01αδ, it holds that

α3(ϵ0/40)|Tt|+ |S \ Tt| ≤ α3(ϵ0/40)|T0|+ |S \ T0|+ α3(ϵ0/40)|T0| ,

simultaneously for all iterations t until the execution of COVLISTDECODING enters either Line 13
or Line 19.

Proof. We will use the notation of Assumption 3.1 for a single call of Algorithm 1. Denote by t the
iteration count. Also define the stopping time tend to be the first iteration when α3(ϵ0/40)|Ttend |+
|S \ Ttend

| > 2ϵ0|S| or when the iteration goes into Line 12 or Line 19 instead of Line 16 (that is,
when EX∼Ttend

[f(H
†/2
t X)] ≤ C ′R2/α3 or when qright − qleft > R for the iteration tend). Now,

define ∆t = α3(ϵ0/40)|Tmin {t,tend}|+ |S \ Tmin {t,tend}|.

In order to prove the lemma, we will show that at the first t∗ (if one exists) such that α3(ϵ0/40)|Tt∗ |+
|S \ Tt∗ | > α3(ϵ0/40)|T0| + |S \ T0| + α3(ϵ0/40)|T0|, then ∆t∗ > α3(ϵ0/40)|T0| + |S \ T0| +
α3(ϵ0/40)|T0| as well. Afterwards, we will show that ∆t is a sub-martingale and use sub-martingale
tail bounds to show that the sequence ∆t remains small over an entire trajectory of |T0| steps with
high probability.

The first step is easy to show, since the threshold of α3(ϵ0/40)|T0| + |S \ T0| + α3(ϵ0/40)|T0| <
α3(ϵ0/20)|T0|+ 1.5ϵ0|S| ≤ α2(ϵ0/20)|S|+ 1.5ϵ0|S| ≤ 2ϵ0|S|, where the first inequality is by the
lemma assumption. Therefore, t∗ ≤ tend if it exists, meaning that ∆t∗ = α3(ϵ0/40)|Tt∗ |+ |S \ Tt∗ |.
Now we need to show that ∆t is a sub-martingale with respect to the sequence Tmin{t,tend}. If
t ≥ tend, then ∆t+1 is by definition equal to ∆t and thus E[∆t+1 | Tmin{t,tend}] = ∆t. Otherwise,
we have that E[∆t+1 | Tt] is equal to ∆t plus the expected number of inliers removed minus
α3(ϵ0/40) times the expected number of all points removed by our filter. Since the stopping condition
is not satisfied, we have |S \ Tt| ≤ 2ϵ0|S|, meaning that Assumption 3.1 continues to hold for Tt, as
well as that the other conditions for Lemma E.4 hold. We can therefore apply Lemma E.4 to obtain

E[∆t+1 | Tt] = ∆t +
∑

x̃∈S̃∩T̃t

f(x̃)− α3 ϵ0
40

∑
x̃∈T̃t

f(x̃) ≤ ∆t ,

Summarizing, the above case analysis shows that {∆t}t∈N is a sub-martingale with respect to
Tmin{t,tend}.
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We note also that for every t, |∆t − ∆t+1| ≤ 1 with probability 1. Thus, using the standard
Azuma-Hoeffding inequality for sub-martingales (Fact B.2), we have that for every t ≤ |T0|,

Pr
[
∆t −∆0 > (ϵ0/40)α

3|T0|
]
≤ e−(2/402)·ϵ20α

6|T0| .

By a union bound over all t ∈ [|T0|], we have

Pr
[
∃t ∈ [m] : ∆t > ∆0 + α3(ϵ0/40)|T0|

]
≤ |T0|e−(2/402)·ϵ20α

6|T0| ≤ 0.01αδ , (20)

where the last inequality uses that |T0| > C′

α6ϵ20
log
(

1
αδ

)
for a sufficiently large absolute constant C ′.

G Applications to Learning Gaussian Mixture Models

In this section, we prove the applications of our result to robustly learning Gaussian mixture models.

Theorem 1.4 (Outlier-Robust Clustering and Estimation of Covariances for GMM). Let C ′ > 0
be a sufficiently large constant and ϵ0 > 0 be a sufficiently small constant. Let the parameters
α ∈ (0, 1/2), ϵ ∈ (0, ϵ0), and failure probability δ ∈ (0, 1/2) be known. There is an Õ(m2d2)-time
algorithm such that, on input α, δ, and m > C ′ d2 log5(d/αδ)

α6 many ϵ-corrupted samples from an
unknown k-component Gaussian mixture

∑k
p=1 αpN (µp,Σp) over Rd as in Definition 1.3, where

all Σp’s are full-rank and all αp satisfies αp ≥ α and k ≤ 1
α is unknown to the algorithm, with

probability at least 1 − δ over the corrupted samples and the randomness of the algorithm, the
algorithm returns a list of at most k many disjoint subsets of samples {Ti} such that:

• For the pth Gaussian component, denote the set Sp as the samples in the inlier set S that were
drawn from component p. Let np be the size of Sp, and let ℓp be the number of points in Sp that the
adversary replaced—np and ℓp are both unknown to the algorithm except that E[np] = αpm ≥
αm for each p and

∑
p ℓp ≤ ϵαm. Then, for every Gaussian component p in the mixture, there

exists a set Tip in the returned list such that |Tip ∩ Sp| ≥ (1− 0.01α)(np − ℓp).

• For every component p, there is a set of samples Tip in the returned list such that, defining
Hip = EX∼Tip

[XX⊤] , we have Hip satisfying ∥H−1/2
ip

ΣpH
−1/2
ip

− I∥F ≲ (1/α4) log(1/α).

• Let Σ be the (population-level) covariance matrix of the Gaussian mixture. For any two components
p ̸= p′ with ∥Σ−1/2(Σp − Σp′)Σ−1/2∥F > C(1/α)5 log(1/α) for a sufficiently large constant C,
the sets Tip and Tip′ from the previous bullet are guaranteed to be different.

We show the first two bullets as a direct corollary of Theorem 1.2 applied to each Gaussian component
D = N (µp,Σp) as the inlier distribution. The proof of the final bullet involves some more involved
linear algebraic lemmas. Here we give only the high-level proof of the final bullet, and defer the
proof of these individual lemmas to Appendix C.

Proof. First observe that, with a sufficiently large poly(d, 1
α , log

1
δ ) samples, with probability at least

1 − δ/4, the number of inliers np from component p is at least 0.99αm for all components p. We
will condition on this event.

Furthermore, noting that in the corruption model defined in Definition 1.3, at most ϵαm points can
be corrupted total, this implies that ℓp ≤ ϵαm ≤ (ϵ/0.99)np (since np ≥ 0.99αm).

Therefore, we apply Theorem 1.2 to all the k Gaussian components, using parameter 0.99α in place
of α, ϵ/0.99 in place of ϵ, and failure probability δ/(4k). This implies that, with a union bound,
using m = poly(d, 1/α, log k/δ) = poly(d, 1/α, log 1/δ) samples (since k ≲ 1/α, for otherwise
the Gaussian mixture will have weight greater than 1), with probability at least 1− δ/4, the two bullet
points in the theorem holds for all the Gaussian components, directly guaranteed by Theorem 1.2.

It remains to show that the algorithm will return at most k subsets in its output list. Noting that,
across the subsets output by the algorithm for each of the components, there is already a total of
(1−0.01α)

∑k
p=1(np−ℓp) points being output. Recall that

∑
p np = m and

∑
p ℓp ≤ ϵαm. Thus, in
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the output subsets corresponding to the components, there are a total of at least m− (ϵ+0.01)αm ≥
m− 0.4αm points (where we used that ϵ is bounded by sufficiently small constant. Since (i) there
were only m points in the input and (ii) all the output subsets are disjoint subsets of the input,
this means that there are at most 0.4αm points that can be output in any additional subsets not
corresponding to any Gaussian component. However, by Theorem 1.2, any output subset must have
size at least 0.5(0.99α)m, and so there cannot be any extra subset output in the list that does not
correspond to any Gaussian component. This shows that there can be at most k subsets in the output
list.

We turn to the final bullet of the theorem. We will show that any two components p and p′ that belong
to the same set Ti in the output of the algorithm satisfy that ∥Σ−1/2ΣpΣ

−1/2−Σ−1/2Σp′Σ−1/2∥F ≲
1
α5 log(1/α). Taking the contrapositive yields the final theorem bullet.

Let H be the second moment matrix of this set, that is, H = EX∼Ti [XX⊤]. Then H satisfies that
∥I −H†/2ΣpH

†/2∥F ≤ r and ∥I −H†/2Σp′H†/2∥F ≤ r for r ≲ (1/α4) log(1/α), by the second
bullet point of the theorem. Furthermore, H is full rank because H is the second moment matrix of
a large subset of empirical points of component p and thus Condition (L.5) implies that ker(H) is
contained in ker(Σp), which is empty since Σp is full rank by the theorem assumption.

We will now apply the following result (Lemma C.1) to infer that Σp and Σp′ must be close, in the
sense of the final theorem bullet point. We defer the proof of this lemma to Appendix C.

We will now apply Lemma C.1 to Σ1 = Σp and Σ2 = Σp′ , and upper bound the right hand side of
the lemma to give the final theorem bullet point.

We claim that the operator norm of Σ−1/2ΣpΣ
−1/2 is bounded by 1/α, due to the fact that component

p has mass at least α. Indeed, we have that

Σp ⪯ E
X∼N (µp,Σp)

[(X − µ)(X − µ)⊤] ⪯ 1

αp
· E
X∼

∑
i αiN (µi,Σi)

[(X − µ)(X − µ)⊤] =
1

αp
· Σ .

This in particular implies that Σ−1/2ΣpΣ
−1/2 ⪯ 1

αp
I ⪯ 1

αI , and hence ∥Σ−1/2ΣpΣ
−1/2∥op ≤ 1

α .
The same conclusion holds for the component p′. Recalling that r ≲ (1/α4) log(1/α), the right hand
side of Lemma C.1 can be upper bounded by O((1/α5) log(1/α)), thus yielding the final bullet in
the theorem, as discussed above.

We end this section with a brief discussion on the proof of Lemma C.1. The lemma states that, if
there exists a single matrix H that is an approximate square root to both Σ1 and Σ2, in the sense that
∥I −H†/2Σ1H

†/2∥F and ∥I −H†/2Σ1H
†/2∥F are both upper bounded, then Σ1 and Σ2 cannot be

too far from each other, in that Σ1 − Σ2 must also have bounded Frobenius norm. In fact, this can be
generalized to the normalized version Σ−1/2(Σ1 − Σ2)Σ

−1/2 for any positive definite matrix Σ.

For simplicity of the discussion, let us assume for now that Σ = I . To show Lemma C.1, a natural
first idea is to show that, if ∥I −H†/2Σ1H

†/2∥F is bounded, say by some quantity ρ, then so must
be ∥HH⊤ − Σ1∥F by some quantity related to O(ρ), times the operator norm of Σ1 for appropriate
scaling. Unfortunately, that is not true: Even for Σ1 = I , we can have H being infinity in the first
diagonal element and 1s in the other diagonal elements, and ∥I −H†/2Σ1H

†/2∥F would only be
1 yet HH⊤ − Σ1 is infinite in the first dimension. The crucial observation, then, is that a slightly
weaker statement is true: On an orthonormal basis that depends only on H and not on Σ1, HH⊤

approximates Σ1 in most dimensions, namely d−O(ρ2) many dimensions. This statement is formally
captured by Lemma C.2. Thus, in these dimensions, we can bound the difference between Σ1 and
Σ2 (in Frobenius norm). In the rest of the dimensions where HH⊤ does not approximate either Σ1

or Σ2 well, we can bound these dimensions’ contribution to the Frobenius norm of Σ1 − Σ2 simply
by max(∥Σ1∥op, ∥Σ2∥op) times the number of such dimensions, which is small. Combining these
bounds yields Lemma C.1 as desired.
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