
A Additional Experiments

A.1 Estimating Test Robust Accuracy

Instead of estimating the robust generalization gap, one might expect the analysis on the relationship
between test robust accuracy and the measures. In this regard, we investigate the correlation between
the measures and the test robust accuracy 1− E(w; ϵ,D) on the test dataset D instead of the robust
generalization gap g(w).

Table 8: Numerical results of ψk between each measure and test robust accuracy, along with its
corresponding standard deviation.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) 0.14±0.44 - - - - - - - 0.02
path_norm (8) 0.22±0.57 0.36±0.41 0.33±0.94 0.08±0.72 0.22±0.50 0.20±0.70 0.17±0.73 -0.43±0.51 0.02

log_prod_of_spec (9) -0.22±0.43 0.06±0.42 0.05±1.00 0.04±0.73 0.03±0.49 0.07±0.73 0.07±0.73 -0.16±0.68 -0.15
log_prod_of_fro (10) 0.12±0.41 0.36±0.39 0.64±0.77 0.30±0.70 0.44±0.41 0.39±0.66 0.40±0.65 0.08±0.66 0.07
euclid_init_norm (11) 0.16±0.45 0.28±0.31 -0.14±0.99 -0.01±0.73 -0.14±0.48 -0.13±0.69 -0.10±0.68 -0.23±0.62 0.10

average_ce (12) -0.09±0.62 0.03±0.53 0.08±1.00 0.17±0.73 -0.13±0.57 -0.01±0.77 0.01±0.76 0.55±0.47 0.14
inverse_margin (13) 0.24±0.56 0.44±0.36 0.48±0.88 0.44±0.60 0.18±0.50 0.28±0.69 0.24±0.68 0.71±0.37 0.44
prob_margin (14) 0.05±0.62 -0.03±0.54 -0.09±1.00 -0.16±0.74 0.11±0.57 -0.01±0.77 -0.03±0.75 -0.56±0.46 -0.14

boundary_thickness (15) 0.07±0.60 0.24±0.49 0.26±0.97 0.29±0.71 0.06±0.53 0.17±0.75 0.21±0.73 0.62±0.43 0.32
kl_divergence (16) -0.55±0.49 -0.57±0.36 -0.94±0.35 -0.65±0.48 -0.46±0.40 -0.37±0.60 -0.45±0.61 -0.63±0.47 -0.45

local_lip (17) -0.46±0.49 -0.44±0.44 -0.70±0.72 -0.58±0.56 -0.32±0.44 -0.28±0.65 -0.33±0.69 -0.64±0.49 -0.40
pacbayes_flat (18) 0.31±0.52 0.21±0.44 0.31±0.95 0.17±0.77 0.25±0.51 0.28±0.68 0.26±0.67 -0.17±0.67 0.15

estimated_sharpness (19) 0.09±0.60 0.25±0.39 0.36±0.93 0.16±0.75 0.21±0.50 0.30±0.68 0.32±0.67 0.20±0.66 0.18
estimated_inv_sharpness (20) 0.24±0.56 0.39±0.33 0.56±0.83 0.29±0.74 0.29±0.50 0.38±0.65 0.41±0.64 0.51±0.58 0.33

average_flat (21) -0.44±0.50 -0.60±0.41 -0.82±0.57 -0.64±0.51 -0.40±0.42 -0.30±0.62 -0.35±0.63 -0.66±0.46 -0.42
x_grad_norm (22) -0.40±0.48 -0.34±0.39 -0.74±0.68 -0.49±0.59 -0.37±0.41 -0.26±0.65 -0.30±0.65 -0.09±0.76 -0.17
w_grad_norm (23) 0.20±0.52 0.42±0.35 0.66±0.75 0.33±0.75 0.29±0.50 0.42±0.66 0.42±0.65 0.60±0.54 0.37

average_ce(PGD) (12) -0.70±0.41 -0.67±0.19 -0.89±0.46 -0.60±0.48 -0.61±0.35 -0.51±0.58 -0.50±0.60 -0.57±0.51 -0.58
inverse_margin(PGD) (13) 0.58±0.47 0.64±0.30 0.86±0.50 0.69±0.45 0.51±0.43 0.49±0.62 0.59±0.56 0.78±0.33 0.61
prob_margin(PGD) (14) 0.74±0.43 0.73±0.18 0.92±0.38 0.66±0.43 0.60±0.39 0.54±0.58 0.52±0.60 0.58±0.50 0.60

pacbayes_flat(PGD) (18) 0.62±0.44 0.59±0.24 0.81±0.58 0.60±0.56 0.52±0.45 0.60±0.48 0.72±0.38 0.11±0.77 0.61
estimated_sharpness(PGD) (19) -0.17±0.65 -0.28±0.54 -0.25±0.97 -0.22±0.75 -0.06±0.57 -0.01±0.74 -0.01±0.72 -0.49±0.48 -0.22

estimated_inv_sharpness(PGD) (20) -0.20±0.65 -0.22±0.56 -0.22±0.98 -0.19±0.75 -0.05±0.56 0.01±0.74 0.04±0.71 -0.48±0.48 -0.21
x_grad_norm(PGD) (22) -0.37±0.51 -0.45±0.35 -0.77±0.64 -0.55±0.59 -0.32±0.44 -0.21±0.64 -0.29±0.66 -0.63±0.45 -0.38
w_grad_norm(PGD) (23) -0.30±0.61 -0.28±0.50 -0.28±0.96 -0.26±0.73 -0.09±0.57 -0.05±0.72 -0.05±0.73 -0.47±0.50 -0.28

Table 9: Numerical results of πk between each measure and test robust accuracy, along with its
corresponding standard deviation.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) - 0.04±0.04 0.05±0.12 0.03±0.01 0.02±0.03 0.02±0.00 0.03±0.02 0.02±0.02 0.02
path_norm (8) 0.01±0.12 -0.20±0.19 -0.33±0.14 0.04±0.00 0.02±0.03 0.04±0.01 0.02±0.05 0.27±0.18 0.02

log_prod_of_spec (9) -0.06±0.12 -0.08±0.10 -0.00±0.09 -0.15±0.06 -0.14±0.05 -0.15±0.01 -0.15±0.03 -0.16±0.04 -0.15
log_prod_of_fro (10) 0.22±0.08 0.06±0.05 -0.00±0.14 0.07±0.01 0.07±0.01 0.07±0.02 0.06±0.01 0.12±0.05 0.07
euclid_init_norm (11) 0.08±0.02 -0.10±0.16 -0.12±0.18 0.11±0.00 0.11±0.04 0.11±0.04 0.12±0.01 0.16±0.14 0.10

average_ce (12) 0.16±0.06 0.26±0.21 0.32±0.21 0.13±0.02 0.16±0.02 0.15±0.02 0.15±0.03 -0.08±0.40 0.14
inverse_margin (13) 0.45±0.08 0.47±0.13 0.43±0.14 0.44±0.02 0.44±0.08 0.44±0.04 0.44±0.03 0.34±0.02 0.44
prob_margin (14) -0.16±0.05 -0.27±0.21 -0.32±0.22 -0.13±0.02 -0.15±0.02 -0.15±0.01 -0.15±0.03 0.08±0.41 -0.14

boundary_thickness (15) 0.33±0.02 0.36±0.22 0.41±0.22 0.30±0.04 0.33±0.02 0.32±0.02 0.32±0.03 0.19±0.38 0.32
kl_divergence (16) -0.44±0.01 -0.47±0.15 -0.29±0.36 -0.45±0.01 -0.45±0.03 -0.48±0.04 -0.46±0.08 -0.40±0.20 -0.45

local_lip (17) -0.39±0.03 -0.45±0.15 -0.40±0.27 -0.38±0.06 -0.40±0.03 -0.43±0.01 -0.40±0.03 -0.31±0.31 -0.40
pacbayes_flat (18) 0.16±0.04 0.07±0.30 -0.08±0.37 0.16±0.06 0.14±0.06 0.14±0.08 0.14±0.10 0.26±0.16 0.15

estimated_sharpness (19) 0.19±0.05 0.18±0.11 0.05±0.28 0.19±0.10 0.17±0.04 0.17±0.00 0.16±0.03 0.20±0.11 0.18
estimated_inv_sharpness (20) 0.35±0.06 0.35±0.20 0.20±0.15 0.35±0.05 0.33±0.03 0.33±0.00 0.32±0.01 0.28±0.07 0.33

average_flat (21) -0.42±0.02 -0.42±0.17 -0.31±0.38 -0.40±0.07 -0.42±0.02 -0.45±0.02 -0.43±0.05 -0.36±0.24 -0.42
x_grad_norm (22) -0.17±0.02 -0.13±0.11 0.04±0.22 -0.17±0.01 -0.17±0.06 -0.20±0.16 -0.19±0.18 -0.20±0.05 -0.17
w_grad_norm (23) 0.41±0.08 0.39±0.22 0.24±0.08 0.38±0.06 0.38±0.05 0.36±0.02 0.37±0.01 0.29±0.01 0.37

average_ce(PGD) (12) -0.56±0.06 -0.52±0.18 -0.41±0.43 -0.59±0.05 -0.57±0.01 -0.59±0.09 -0.58±0.08 -0.61±0.07 -0.58
inverse_margin(PGD) (13) 0.61±0.01 0.64±0.04 0.52±0.16 0.61±0.04 0.61±0.01 0.63±0.01 0.60±0.02 0.56±0.15 0.61
prob_margin(PGD) (14) 0.58±0.06 0.54±0.20 0.45±0.44 0.61±0.05 0.59±0.02 0.61±0.09 0.60±0.09 0.64±0.05 0.60

pacbayes_flat(PGD) (18) 0.60±0.02 0.29±0.57 0.08±0.54 0.61±0.04 0.61±0.03 0.61±0.05 0.58±0.07 0.62±0.10 0.61
estimated_sharpness(PGD) (19) -0.20±0.01 -0.21±0.23 -0.22±0.40 -0.20±0.08 -0.22±0.04 -0.24±0.02 -0.25±0.01 -0.15±0.32 -0.22

estimated_inv_sharpness(PGD) (20) -0.18±0.04 -0.23±0.24 -0.24±0.41 -0.19±0.06 -0.21±0.05 -0.23±0.04 -0.24±0.00 -0.13±0.34 -0.21
x_grad_norm(PGD) (22) -0.39±0.00 -0.41±0.13 -0.29±0.34 -0.37±0.04 -0.39±0.03 -0.41±0.01 -0.39±0.05 -0.27±0.16 -0.38
w_grad_norm(PGD) (23) -0.25±0.03 -0.28±0.24 -0.30±0.40 -0.27±0.07 -0.28±0.02 -0.31±0.01 -0.30±0.03 -0.21±0.28 -0.28

Tables 8 and 9 present the values ofψk and πk for each measure. Fig. 6 illustrates the difference in total
τ when the robust generalization gap and the test robust accuracy are used as the target variable for
correlation analysis. Certain measures exhibit stronger rank correlations with the test robust accuracy
than the robust generalization gap. w_grad_norm, inverse_margin, and inverse_margin(PGD)
exhibit the total τ values exceeding 0.4 with respect to the test robust accuracy, whereas they show
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Figure 6: Comparison of the total τ when the robust generalization g(w) (yellow) and the test robust
accuracy 1− E(w; ϵ,D) (blue) are used as the target variables for correlation analysis.

near-zero total τ values for the robust generalization gap. Similarly, local_lip and average_flat
show stronger correlations. Although we observe some different behavior of measures, we find that
estimating the test robust accuracy can be more challenging. When we perform a linear regression
analysis, predicting the test robust accuracy yields poor R2 values. To ease comparison, we refer the
readers detailed analysis to Table 15 in Appendix A.3.

A.2 Focusing on Adversarially Robust models
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Figure 7: Scatter plot of
pacbayes_flat(PGD). Adversar-
ially robust models (bright colors)
and non-robust models (darker
colors) show distinct range of values
for pacbayes_flat(PGD).

In the main paper, we use all models regardless of their
robust accuracy, to ensure the generality of our analyses.
However, as we discussed in Table 4, adversarially robust
and non-robust models may exhibit different behaviors with
some measures. For instance, as shown in Fig. 7, non-robust
models have extremely low values of pacbayes_flat(PGD)
less 5. In constrast, robust models show higher values of
pacbayes_flat(PGD) over 5. Thus, investigating only ro-
bust models might potentially reveal hidden behaviors of mea-
sures in predicting the robust generalization gap.

In Tables 10 and 11, we summarize ψk and πk with condi-
tioned on average_ce(PGD) ≤ 1.5. To ease the comparison
between the previous results, we also illustrate the total τ
of those in Fig. 8. First, overall πk and ψk of path_norm
increases, and the total τ increases 0.35 to 0.63. As shown
in Fig. 9a, the log of path_norm shows almost linear rela-
tionships between the robust generalization gap. Similarly,
overall πk and ψk of prob_margin, and the total τ decreased
-0.23 to -0.62. Similar to prob_margin, the margin-based measures, i.e., inverse_margin and
average_ce, show more negative correlations. Thus, similar to probability margins on adversarial
examples, maximizing the margins on benign examples may harm to the robust generalization with
high probability. Lastly, boundary_thickness shows strong correlation to the robust generaliza-
tion gap for average_ce(PGD) ≤ 1.5. As shown in Fig. 9c, high boundary_thickness shows
low robust generalization gap. Thus, we can conclude that average_ce(PGD) is also an effective
condition for boundary_thickness as well as the training method.

Notably, some flatness-based measures have a weaker correlation, average_flat (-0.36 to -0.15),
estimated_sharpness(PGD) (-0.22 to -0.02), and estimated_inv_sharpness(PGD) (-0.25 to-
0.03). Their overall values of ψk and πk in Tables 10 and 11 are also close to 0, which supports
our claim that flatness measures cannot serve as reliable indicators of correlation in the adversarial
training framework.
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Table 10: Numerical results of ψk for each measure, along with its corresponding standard deviation.
Conditioned on average_ce(PGD) ≤ 1.5.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) 0.23±0.64 - - - - - - - 0.04
path_norm (8) 0.43±0.54 0.45±0.50 0.54±0.84 0.77±0.46 0.32±0.52 0.71±0.49 0.71±0.51 0.88±0.30 0.63

log_prod_of_spec (9) -0.14±0.56 0.25±0.57 0.21±0.98 0.44±0.73 0.34±0.50 0.16±0.79 0.29±0.78 0.55±0.62 -0.09
log_prod_of_fro (10) -0.14±0.58 0.56±0.54 0.55±0.84 0.66±0.59 0.68±0.39 0.36±0.73 0.45±0.73 0.84±0.38 0.16
euclid_init_norm (11) 0.23±0.62 -0.02±0.56 -0.04±1.00 0.39±0.72 -0.16±0.55 0.54±0.60 0.53±0.62 -0.40±0.73 0.13

average_ce (12) -0.50±0.53 -0.49±0.46 -0.28±0.96 -0.76±0.39 -0.74±0.34 -0.68±0.49 -0.74±0.41 -0.71±0.53 -0.62
inverse_margin (13) -0.12±0.70 -0.28±0.61 0.23±0.97 -0.33±0.77 -0.28±0.65 -0.35±0.75 -0.33±0.77 -0.45±0.67 -0.48
prob_margin (14) 0.50±0.53 0.45±0.46 0.29±0.96 0.76±0.38 0.74±0.34 0.70±0.48 0.75±0.41 0.71±0.53 0.63

boundary_thickness (15) -0.38±0.57 -0.25±0.50 -0.08±1.00 -0.59±0.55 -0.62±0.41 -0.57±0.58 -0.65±0.50 -0.58±0.62 -0.50
kl_divergence (16) -0.36±0.60 -0.03±0.55 -0.52±0.85 -0.05±0.80 -0.39±0.57 -0.70±0.46 -0.36±0.73 -0.53±0.68 -0.31

local_lip (17) -0.16±0.66 0.15±0.52 -0.37±0.93 0.24±0.76 -0.06±0.59 -0.46±0.68 0.11±0.79 0.11±0.79 0.04
pacbayes_flat (18) 0.32±0.65 0.10±0.54 0.30±0.95 0.10±0.83 0.15±0.54 -0.35±0.71 -0.31±0.75 0.47±0.72 0.00

estimated_sharpness (19) -0.02±0.67 -0.12±0.55 0.26±0.97 0.16±0.82 -0.02±0.61 -0.41±0.68 -0.29±0.78 0.13±0.81 -0.26
estimated_inv_sharpness (20) -0.06±0.66 -0.14±0.56 0.32±0.95 0.19±0.82 0.02±0.63 -0.41±0.68 -0.28±0.77 0.03±0.81 -0.29

average_flat (21) -0.12±0.56 0.12±0.60 -0.48±0.88 0.14±0.79 -0.09±0.48 -0.63±0.52 -0.27±0.76 -0.22±0.74 -0.15
x_grad_norm (22) -0.39±0.63 -0.22±0.59 -0.52±0.85 -0.52±0.68 -0.65±0.44 -0.80±0.36 -0.75±0.47 -0.70±0.59 -0.63
w_grad_norm (23) -0.13±0.65 -0.14±0.56 0.41±0.91 0.03±0.84 -0.14±0.60 -0.45±0.65 -0.34±0.74 -0.03±0.79 -0.34

average_ce(PGD) (12) -0.64±0.55 -0.74±0.41 -0.70±0.71 -0.87±0.28 -0.86±0.26 -0.80±0.37 -0.84±0.34 -0.81±0.45 -0.76
inverse_margin(PGD) (13) 0.57±0.48 -0.13±0.61 0.55±0.84 0.13±0.82 0.39±0.63 0.28±0.81 0.26±0.81 0.10±0.80 -0.01
prob_margin(PGD) (14) 0.61±0.58 0.57±0.42 0.66±0.75 0.88±0.27 0.85±0.27 0.79±0.37 0.84±0.34 0.79±0.50 0.76

pacbayes_flat(PGD) (18) 0.45±0.62 0.29±0.55 0.63±0.78 0.33±0.78 0.45±0.48 0.16±0.79 0.00±0.83 0.65±0.59 0.26
estimated_sharpness(PGD) (19) 0.10±0.66 0.03±0.56 0.12±0.99 0.40±0.71 0.17±0.61 -0.21±0.76 -0.18±0.79 0.29±0.76 0.02

estimated_inv_sharpness(PGD) (20) -0.03±0.66 -0.01±0.57 0.16±0.99 0.39±0.73 0.17±0.59 -0.31±0.74 -0.20±0.79 0.20±0.78 -0.03
x_grad_norm(PGD) (22) -0.08±0.64 0.09±0.61 -0.48±0.88 0.11±0.79 -0.31±0.55 -0.61±0.53 -0.40±0.72 -0.32±0.75 -0.19
w_grad_norm(PGD) (23) -0.09±0.67 -0.13±0.57 0.06±1.00 0.25±0.78 0.07±0.60 -0.27±0.76 -0.17±0.80 0.08±0.79 -0.12

Table 11: Numerical results of πk for each measure, along with its corresponding standard deviation.
Conditioned on average_ce(PGD) ≤ 1.5. Total τ is same as in Table 10.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) - 0.03±0.04 -0.01±0.09 0.03±0.01 0.05±0.03 0.05±0.07 0.04±0.02 0.04±0.00 0.04
path_norm (8) 0.64±0.03 0.65±0.03 0.62±0.02 0.64±0.05 0.68±0.00 0.65±0.03 0.63±0.01 0.52±0.01 0.63

log_prod_of_spec (9) 0.19±0.25 -0.09±0.01 -0.06±0.00 -0.08±0.02 -0.07±0.02 -0.09±0.02 -0.09±0.00 -0.08±0.06 -0.09
log_prod_of_fro (10) 0.47±0.04 0.16±0.05 0.17±0.06 0.16±0.01 0.15±0.04 0.19±0.02 0.17±0.01 0.11±0.01 0.16
euclid_init_norm (11) 0.21±0.07 0.15±0.07 0.10±0.11 0.11±0.01 0.16±0.03 0.11±0.03 0.11±0.02 0.17±0.06 0.13

average_ce (12) -0.63±0.04 -0.70±0.05 -0.65±0.03 -0.61±0.05 -0.62±0.03 -0.66±0.06 -0.62±0.05 -0.56±0.15 -0.62
inverse_margin (13) -0.48±0.09 -0.44±0.22 -0.47±0.12 -0.45±0.10 -0.46±0.12 -0.47±0.12 -0.47±0.06 -0.42±0.28 -0.48
prob_margin (14) 0.63±0.03 0.71±0.04 0.65±0.03 0.61±0.04 0.62±0.03 0.66±0.06 0.63±0.05 0.57±0.16 0.63

boundary_thickness (15) -0.51±0.03 -0.61±0.03 -0.57±0.01 -0.49±0.07 -0.50±0.04 -0.53±0.07 -0.49±0.09 -0.45±0.21 -0.50
kl_divergence (16) -0.31±0.07 -0.40±0.14 -0.13±0.18 -0.33±0.03 -0.31±0.11 -0.25±0.18 -0.30±0.08 -0.27±0.13 -0.31

local_lip (17) 0.03±0.12 0.01±0.23 0.17±0.08 0.01±0.04 0.03±0.08 0.13±0.03 0.04±0.03 0.02±0.03 0.04
pacbayes_flat (18) -0.03±0.19 -0.01±0.06 -0.05±0.07 0.02±0.01 -0.00±0.08 0.11±0.07 0.07±0.06 -0.16±0.18 0.00

estimated_sharpness (19) -0.26±0.02 -0.24±0.13 -0.37±0.01 -0.25±0.05 -0.26±0.10 -0.15±0.16 -0.22±0.12 -0.32±0.27 -0.26
estimated_inv_sharpness (20) -0.28±0.02 -0.28±0.14 -0.42±0.01 -0.29±0.04 -0.29±0.06 -0.18±0.15 -0.26±0.11 -0.32±0.27 -0.29

average_flat (21) -0.17±0.05 -0.22±0.13 0.02±0.18 -0.20±0.09 -0.16±0.05 -0.04±0.19 -0.14±0.04 -0.17±0.01 -0.15
x_grad_norm (22) -0.64±0.04 -0.69±0.13 -0.55±0.08 -0.65±0.04 -0.62±0.08 -0.58±0.12 -0.62±0.04 -0.57±0.14 -0.63
w_grad_norm (23) -0.34±0.03 -0.34±0.11 -0.48±0.01 -0.33±0.05 -0.33±0.08 -0.26±0.12 -0.31±0.09 -0.35±0.27 -0.34

average_ce(PGD) (12) -0.77±0.03 -0.77±0.01 -0.73±0.03 -0.76±0.02 -0.77±0.01 -0.80±0.02 -0.77±0.00 -0.72±0.07 -0.76
inverse_margin(PGD) (13) -0.02±0.03 0.13±0.11 -0.14±0.07 0.03±0.11 -0.02±0.05 -0.01±0.15 0.02±0.22 -0.02±0.31 -0.01
prob_margin(PGD) (14) 0.77±0.03 0.77±0.01 0.73±0.03 0.76±0.01 0.77±0.02 0.80±0.01 0.77±0.00 0.72±0.08 0.76

pacbayes_flat(PGD) (18) 0.26±0.08 0.25±0.07 0.25±0.15 0.29±0.03 0.26±0.07 0.34±0.03 0.36±0.04 0.08±0.20 0.26
estimated_sharpness(PGD) (19) 0.01±0.04 0.03±0.09 0.06±0.19 -0.01±0.01 0.01±0.13 0.14±0.10 0.07±0.11 -0.09±0.17 0.02

estimated_inv_sharpness(PGD) (20) -0.02±0.05 -0.02±0.08 0.00±0.20 -0.06±0.04 -0.04±0.08 0.10±0.10 0.02±0.10 -0.14±0.20 -0.03
x_grad_norm(PGD) (22) -0.20±0.04 -0.24±0.06 0.04±0.28 -0.25±0.10 -0.19±0.13 -0.12±0.18 -0.18±0.02 -0.17±0.08 -0.19
w_grad_norm(PGD) (23) -0.12±0.04 -0.08±0.08 -0.06±0.21 -0.13±0.01 -0.11±0.11 -0.01±0.10 -0.08±0.08 -0.19±0.18 -0.12
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Figure 8: Comparison of total τ between no condition and average_ce(PGD) ≤ 1.5. Follow-
ing measures show strong correlation on the condition: path_norm, average_ce, x_grad_norm,
inverse_margin, prob_margin, and boundary_thickness.
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Figure 9: Scatter plot of the measures showing the most increased the total τ when conditioned on
average_ce(PGD) ≤ 1.5.
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Table 12: Regression analysis in Fig. 10 for the target variable, the robust generalization gap g(w).
We summarize their R2 for each measure.

Measures R2

num_params (7) 0.87
path_norm (8) 0.87

log_prod_of_spec (9) 0.88
log_prod_of_fro (10) 0.88
euclid_init_norm (11) 0.87

average_ce (12) 0.86
inverse_margin (13) 0.86
prob_margin (14) 0.87

boundary_thickness (15) 0.86
kl_divergence (16) 0.87

local_lip (17) 0.87
pacbayes_flat (18) 0.90

Measures R2

estimated_sharpness (19) 0.88
estimated_inv_sharpness (20) 0.89

average_flat (21) 0.87
x_grad_norm (22) 0.91
w_grad_norm (23) 0.88

inverse_margin(PGD) (13) 0.86
prob_margin(PGD) (14) 0.91

pacbayes_flat(PGD) (18) 0.89
estimated_sharpness(PGD) (19) 0.87

estimated_inv_sharpness(PGD) (20) 0.86
x_grad_norm(PGD) (22) 0.88
w_grad_norm(PGD) (23) 0.87
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Figure 10: Cumulative distribution of absolute errors for the robust generalization gap estimation is
shown. A simple linear regression model is constructed to estimate the robust generalization gap,
using average_ce(PGD) as the baseline measure, and each measure considered as an additional
independent variable. The mean (solid line), Q1 (dotted line), and Q3 (dashed line) are plotted. A
lower absolute error indicates that the measure is more effective in estimating the robust generalization
gap.

A.3 Robust Measures with Regression Analysis

In the seminar work of [17], the concept of an affine oracle was proposed, which utilizes linear
regression to assess the performance of measures. Motivated by this experiment, we conduct a simple
linear regression analysis. Specifically, for each measure, we calculate the optimal coefficients and
bias to predict the robust generalization gap g(w). Considering that average_ce(PGD) consistently
exhibits the highest correlation across all settings, we use it as a baseline for the regression, i.e.,
β1×average_ce(PGD)+β0. We then consider each measure as an independent variable, resulting
in a new form of measure β1×average_ce(PGD)+β2×measure+β0. To ensure high predictability,
we perform this regression analysis with robust models with average_ce(PGD) ≤ 1.5.

In Table 12, we calculate the coefficient of determination (R2) for the regression analysis to evaluate
the extent to which each measure explained the generalization gap. Consistent with the findings in
the main paper, x_grad_norm and prob_margin(PGD) exhibit the highest R2 values.

Additionally, to examine the distributional information of each measure, we plot the cumulative
distribution of absolute errors for each model with the mean (solid line) and the interval denoted by
the first quartile (Q1, dotted line) and the third quartile (Q3, dashed line). The results are illustrated
in Figure 10. We observe that only a few measures, such as x_grad_norm and prob_margin(PGD),
provided meaningful information about the generalization gap, while the effects of other measures are
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Table 13: Total τ of generated measures from the regression analysis. Both new measures show
improved performance in predicting the robust generalization gap.

Generated Measures Total τ
−514.11×x_grad_norm−23.87×average_ce(PGD)+57.32 0.81 (+0.18)

81.17×prob_margin(PGD)+13.52×average_ce(PGD)−20.60 0.78 (+0.02)

Table 14: Total τ of generated predictors from the regression analysis with forward selection.
#Measures Selected Measures 5-fold τ (Avg.±Std.)

1 average_ce(PGD) 0.7229±0.1301
2 x_grad_norm, average_ce(PGD) 0.7683±0.1040
3 x_grad_norm, average_ce(PGD), pacbayes_mag_flat(PGD) 0.8145±0.0728
4 x_grad_norm, average_ce(PGD), x_grad_norm(PGD), pacbayes_mag_flat(PGD) 0.8219±0.0730

All - 0.8165±0.0868

Table 15: Regression analysis for the target variable, the test robust accuracy 1 − E(w; ϵ,D). We
summarize their R2 for each measure.

Measures R2

num_params (7) 0.10
path_norm (8) 0.07

log_prod_of_spec (9) 0.14
log_prod_of_fro (10) 0.14
euclid_init_norm (11) 0.12

average_ce (12) 0.12
inverse_margin (13) 0.05
prob_margin (14) 0.20

boundary_thickness (15) 0.20
kl_divergence (16) 0.13

local_lip (17) 0.16
pacbayes_flat (18) 0.40

Measures R2

estimated_sharpness (19) 0.33
estimated_inv_sharpness (20) 0.41

average_flat (21) 0.12
x_grad_norm (22) 0.09
w_grad_norm (23) 0.38

inverse_margin(PGD) (13) 0.04
prob_margin(PGD) (14) 0.24

pacbayes_flat(PGD) (18) 0.48
estimated_sharpness(PGD) (19) 0.04

estimated_inv_sharpness(PGD) (20) 0.05
x_grad_norm(PGD) (22) 0.16
w_grad_norm(PGD) (23) 0.05

negligible. Specifically, x_grad_norm and prob_margin(PGD) achieve the lowest mean absolute
error across all trained models.

In Table 13, we evaluate the effectiveness of predictors generated from the regression analysis. The
predictor using x_grad_norm achieves an exceptionally strong correlation of 0.81, an increase of
0.18 compared to the previous value in Table 10. The predictor using prob_margin(PGD) also
exhibits improved performance. These results suggest the potential to effectively predict the robust
generalization gap by combining existing measures.

To push further, we conduct a 5-fold evaluation strategy with a linear regression model to predict the
robust generalization gap. Specifically, we use the forward selection to identify the most effective set
of measures. In Table 14, we present the results of our 5-fold evaluation, reporting the average τ along
with its standard deviation. average_ce(PGD) is selected as a prominent predictor, followed by
the selection of x_grad_norm. Furthermore, our exploration identifies pacbayes_mag_flat(PGD)
and x_grad_norm(PGD) as additional effective measures, resulting in higher average τ compared to
using the entire feature set.

In Table 15, we conduct a linear regression analysis to predict the test robust accuracy, rather than the
robust generalization gap. Compared to Table 12, overall values of R2 for each measure are lower.
This implies that directly predicting the test robust accuracy might be more difficult than the robust
generalization gap.
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A.4 Robust Generalization Gap with AutoAttack [11]
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Figure 11: Scatter plot of the ro-
bust generalization gap calculated by
PGD and AutoAttack. The color of
each dot implies the test robust accu-
racy on CIFAR-10.

In the main paper, we estimate the robust generalization gap
using PGD10. While we acknowledge the potential benefits
of stronger attacks, such as AutoAttack [11], we mainly use
PGD10 due to the following reasons. Firstly, the computa-
tional cost of AutoAttack is substantial. Our experimental
design involves training models across diverse adversarial
settings and requires adversarial examples for both training
and test datasets to estimate the robust generalization gap.
AutoAttack takes 10 min per batch for WRN-34-10 on our
resources. Since we have 1300 models, we need at least 1
year to obtain all adversarial examples even with 6 GPUs.
Secondly, the prevalent usage of PGD among various meth-
ods. AT, TRADES, and MART use PGD as a baseline during
training and further adopt early-stopping by using PGD on
training or validation sets. Lastly, some measures, namely
boundary_thickness and local_lip, rely on PGD adver-
sarial examples for their calculation. As these robustness mea-
sures are often computed using PGD, the choice to use PGD for evaluation contributes to consistency
across our experiments.

However, we here highlight the potential benefits of utilizing AutoAttack in future work. In Fig. 11,
we calculate the gap g(w) using AutoAttack for 30 models on CIFAR-10 in RobustBench [12].
While the gaps calculated using PGD10 and AutoAttack exhibit an almost linear relationship, there
are a few exceptions (2 out of 30): ‘Ding2020MMA’ [14] and ‘Sitawarin2020Improving’ [55]. We
leave this question open for further exploration.

A.5 Importance of Model Architecture in Norm-based Measures
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Figure 12: Distributions of norm-based measures for model architectures. For each model architecture,
the range of measure extremely varies.

In Fig. 12, we plot log_prod_of_spec and log_prod_of_fro for each model architecture. We can
observe that the range of each measure extremely varies with respect to the used model architecture.
When the model architecture is fixed, they show some correlation with the robust generalization gap
as described in the main paper.

A.6 Early Stopping and Estimated Sharpness

In the main paper, we discussed that estimated_sharpness exhibits a significant negative correla-
tion when early stopping is not used. Fig. 13 shows the importance of early-stopping for estimated
sharpness measures. Compared to Figures 4 and 13b, when early stopping is employed, the correlation
approaches zero as shown in Figures 13a and 13c. This results supports the observation of prior study
[56] that the importance of early stopping in the analysis of flatness.
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Figure 13: Scatter plot of the estimated sharpness measures for the use of early-stopping. The same
condition, average_ce(PGD)< 2, used as Fig. 4.

B Measures

In this section, we introduce the concept of each category of measures in the main paper, then explain
the details of each measure and their mathematical definitions. Here, we denote Wi as the weight
tensor of i-th layer, following [17]. Given the number of layers d, the whole trainable parameters are
denoted as w = vec(W1,W2, · · · ,Wd).

Weight-norm. Based on some theoretical frameworks such as PAC-Bayes [43, 47, 38], weight
norm-based measures are expected to be correlated with generalization performance. Among
them, the product of Frobenius norm [46] (log_prod_of_fro), the product of spectral norm
[7] (log_prod_of_spec), and path norm (path_norm) have been considered as important mea-
sures [27, 17]. Furthermore, the distance to the converged weight from the initial weight
(euclid_init_norm) is also used to estimate the generalization gap [27]. Liu et al. [40] also
argues that this distance can be used to judge the difficulty of optimization in adversarial training.
▷ num_params.

d∑
i=1

kici−1(ci + 1), (7)

where ci is the number of channels and ki is the kernel size at layer i. In the experiments, we
calculated num_params by adding the number of parameters of all convolutional and linear layers.
num_params is a fixed value when a model architecture is given.
▷ path_norm. ∑

i

fw2(1)[i], (8)

where w2 is the element-wise square operation and f(·)[i] is the i-th logit output of the network.
By setting all input variables as 1, this measure captures geometric properties of optimization under
scale-invariant characteristics.
▷ log_prod_of_spec.

log

(
d∏

i=1

∥Wi∥22

)
, (9)

where ∥ · ∥2 is a matrix L2-norm, i.e., the largest singular value of each layer.
▷ log_prod_of_spec.

log

(
d∏

i=1

∥Wi∥2F

)
, (10)

where ∥ · ∥F is a Frobenius norm, i.e., the square root of the sum of the squares of the weight matrix.
▷ euclid_init_norm.

1

d

d∑
i=1

∥wi −w0
i ∥2, (11)

where wi = vec(Wi) and the initial weight of i-th layer w0
i .
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Margin. Margins are also actively researched measures to estimate the generalization gap [26].
For instance, the 10-th percentile of the margin values in the output space on the training set
(inverse_margin) is often used to measure the generalization bound for neural networks [50, 27].
In terms of adversarial robustness, most of attack methods and defense methods utilize the probability
margins (prob_margin). Yang et al. [67] further proposed a new measure, called boundary thickness
(boundary_thickness), that is a generalized version of margin and argued that it is highly correlated
to the robust generalization gap.

▷ average_ce.
Ex,y [Lce(f(x,w), y)] , (12)

where Lce is the cross-entropy loss.

▷ inverse_margin.
1/γ2, (13)

where γ is 10th-percentile of {σ(f(x,w))y −maxi ̸=y σ(f(x,w))i} for all x, y, with the sigmoid
function σ(·).
▷ prob_margin.

Ex,y

[
σ(f(x,w))y −max

i ̸=y
σ(f(x,w))i

]
. (14)

▷ boundary_thickness.

Ex

[
∥x− x∗∥2

∫ 1

0

1{a < g(x,x∗, λ) < b}dλ
∣∣∣ argmax

i
σ(f(x,w))i ̸= argmax

i
σ(f(x∗,w))i

]
,

(15)
where 1{·} is an indicator function, g(x,x∗, λ) = σ(f(λx + (1 − λ)x∗,w))ŷ − σ(f(λx + (1 −
λ)x∗,w))ŷ∗ , ŷ = argmaxi σ(f(x,w))i, ŷ∗ = argmaxi σ(f(x

∗,w))i and a, b are the hyper-
parameters that controls the sensitivity of the boundary thickness. Following [67], we find x∗ by
using PGD10 with L2-norm, ϵ = 1, α = 0.2, then a = 0, b = 0.75, and batch size 128. A higher
value of boundary_thickness implies a larger margin in the output space.

Smoothness. Based on prior works [6, 10, 28], a line of work has focused on the smoothness for
achieving adversarial robustness in adversarial training. Most simply, the KL divergence between
benign and adversarial logits (kl_divergence) of TRADES [71] can be regarded as a smoothness
regularization due to its logit pairing. Yang et al. [66] investigated the theoretical benefit of local
Lipschitzness (local_lip) and demonstrated that its value estimated on the test dataset correlates
with the robust generalization gap.

▷ kl_divergence.

Ex

[
max

∥x−x∗∥≤ϵ
KL(f(x,w), f(x∗,w))

]
, (16)

where KL is KL-divergence and the maximization is conducted by PGD10 with the step-size 2/255. A
lower value of kl_divergence implies that a model outputs similar outputs for both benign example
and adversarial example.

▷ local_lip.

Ex

[
max

∥x−x∗∥≤ϵ

∥f(x,w)− f(x∗,w)∥1
∥x− x∗∥∞

]
, (17)

where the maximization is conducted by PGD10 with the step-size 2/255. This is the empirical
version of the local Lipschitzness, resulting a lower value of local_lip implies a smoother model.

Flatness. Flatness is a recently focused measure in the generalization domain [43, 30]. Recent works
argue that flatter minima yield better generalization performance than sharper minima. The common
strategy to achieve flatness is to minimize the estimated sharpness [18, 73], which is the difference
between the current loss and the maximum loss for a given neighborhood (estimated_sharpness).
Kwon et al. [36] investigated the scale-invariant sharpness (estimated_inv_sharpness). Note
that other diverse concept of estimated sharpness is actively researched in recent works [33, 5, 34].
Adversarial weight perturbation (AWP) [64] also has dramatically improved adversarial robustness
by minimizing the loss of perturbed weight. Recently, Stutz et al. [56] has demonstrated that their
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proposed measure, average flatness (average_flat), is effective for estimating robust generalization
gap.

▷ pacbayes_flat. Based on PAC-Bayesian framework [43], Jiang et al. [27] proposed a simplified
version of PAC-Bayesian bounds as follows:

1/σ′ (18)

where σ′ is the largest value such that Eu[E(w + u; {x, y}) − E(w; {x, y})] < 0.1. Here, uj ∼
N (0, σ′) and E(w; {x, y}) denotes the error on the given set {x, y}. Thus, a higher value of
pacbayes_flat implies flatter optimum in terms of error landscape.

▷ estimated_sharpness.

Ex,y

[
max

∥v∥2≤ρ
Lce(f(x,w + v), y)− Lce(f(x,w), y)

]
. (19)

Following [73], we calculate the estimated sharpness with a single-step ascent with ρ = 0.1. A higher
value of estimated_sharpness implies a sharper optimum in terms of loss landscape.

▷ estimated_inv_sharpness.

Ex,y

[
max

∥T−1
w v∥2≤ρ

Lce(f(x,w + v), y)− Lce(f(x,w), y)

]
, (20)

where Tw is ∥w∥, i.e., element-wise adaptive sharpness, and Lce is the cross-entropy loss. Similar to
the estimated sharpness, we calculate the estimated invariant sharpness with a single-step ascent with
ρ = 0.1 [36]. A higher value of estimated_inv_sharpness implies a sharper optimum in terms
of loss landscape.

▷ average_flat.

Ex,y

[
Ev∈Bρ(w)

[
max

∥x−x∗∥≤ϵ
Lce(f(x

∗,w + v), y)

]
− max

∥x−x∗∥≤ϵ
Lce(f(x

∗,w), y)

]
, (21)

where Bρ(w) = {w+v
∣∣∥vi∥2 ≤ ρ∥wi∥2∀ layers i}. We use PGD10 with ϵ = 8/255 for both inner

maximizations. Following [56], we take 10 random weight perturbations with ρ = 0.5. A higher
value of average_flat implies a sharper optimum in terms of adversarial loss landscape.

Gradient-norm. Gradient-norm with respect to input or weight is also a consistently researched
area in terms of generalization. Recently, Zhao et al. [72] also demonstrated that regularizing the
gradient norm of weights (w_grad_norm) can achieve sufficient improvement on several tasks.
Additionally, there are a few works that emphasize the importance of regularizing the gradient norm
of weights [53, 44]. The gradient norm of inputs (x_grad_norm) also can have underlying correlation
between the robust generalization performance. Prior works utilized the input gradient for analyzing
adversarially trained models [4] and generating adversarial examples [35, 16].

▷ x_grad_norm.
Ex,y [∥∇xLce(f(x,w), y)∥2] . (22)

▷ w_grad_norm.
Ex,y [∥∇wLce(f(x,w), y)∥2] . (23)

Comment on batch normalization fusion Here, we provide comments on some further discussed
things when estimating the above measures. In previous studies [27, 17], it has been observed
that considering batch normalization (batch-norm) layers can have an impact on common general-
ization measures, such as sharpness [15]. To address this issue, the batch-norm layers and other
moving statistics were fused with the preceding convolution layers before calculating the values of
generalization measures. Thus, when estimating {num_params, path_norm, log_prod_of_spec,
log_prod_of_fro, pacbayes_flat}, we apply batch-norm fusion to all ResNet blocks. However,
for certain blocks, such as pre-activation ResNets, where the batch-norm layer is placed at the begin-
ning, the fusion cannot be directly applied. To ensure consistency, we add an identity convolutional
layer in front of all batch-norm layers that do not have the preceding convolution layer. While
there are various batch-norm fusion (or batch-norm folding) techniques, including those related to
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generalization [27, 17, 5], quantization [69, 37, 49], and memory optimization domains [8, 19, 2],
there is no precise solution to address this problem in the context of various model structures (ResNets,
PreActResNets, ViT, etc.) and activation functions (SiLU, LeakyReLU, etc.), which we leave as a
topic for future work.

C Training Details

In Section 3, 1,344 models were trained using the CIFAR-10 dataset with ϵ = 8/255. We here
provide the detailed training settings. We followed the common settings used in [42, 71, 48, 21].

Given the higher Rademacher complexity [68] and larger sample complexity [54] of adversarial
training, data augmentation [21] and the utilization of extra data [9] can significantly improve
the adversarial robustness. Therefore, we also considered the impact of augmentation technique,
including RandomCrop with padding 4 and RandomHorizontalFlip, as well as the use of additional
data collected by Carmon et al. [9].

Regarding model architectures, we employed three different models: ResNet18 [23], WRN28-10
[70], and WRN34-10 [70]. These models have been widely adopted and serve as benchmarks for
evaluating the stability and performance of adversarial training methods. It is worth noting that
the majority of models trained on CIFAR-10 in RobustBench [12] consist of WRN28-10 (15) and
WRN34-10 (14) among the 63 available models.

For training methods, we considered four different approaches: Standard, AT [42], TRADES [71],
and MART [61]. Notably, AT, TRADES, and MART have been shown to outperform other variations
by incorporating various training tricks [48] and integrating recent techniques [9, 64]. For all methods,
we generated adversarial examples using projected gradient descent (PGD) [42]. During training, a
single-step approximation of the inner maximization in Eq. (1) can lead to faster adversarial training,
but may suffer from catastrophic overfitting [63, 31]. On the other hand, a large number of steps
leads to stable robustness, but requires heavy computational costs. Therefore, we considered both 1
and 10 steps for each adversarial training method.

In terms of optimization, we used SGD with momentum 0.9 and weight decay of 5× 10−4, and a
step-wise learning rate decay was performed at epochs 100 and 150 with a decay rate of 0.1. In all the
experiments, we trained the models for 200 epochs. As highlighted by Pang et al. [48], the batch size
used during adversarial training has been found to affect its performance. Thus, we varied the batch
size among {32, 64, 128, 256}. Additionally, we also considered adversarial weight perturbation
(AWP) [64], which can improve the robust generalization performance of models. AWP belongs to
the class of sharpness-aware minimization methods [18, 36]. This can be formalized as follows:

min
w

max
∥xadv−x∥≤ϵ,v∈Bρ(w)

L(f(xadv,w + v), y), (24)

where Bρ(w) = {w + v
∣∣∥vi∥2 ≤ ρ∥wi∥2 ∀i-th layer}. As described by Wu et al. [64], xadv is

calculated based on the non-perturbed model f(w), and a single step of maximization with respect to
v is sufficient to improve robustness. We used the best-performing value of ρ = 5× 10−3 from [64].
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