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Abstract

Adversarial training has become the de-facto standard method for improving the
robustness of models against adversarial examples. However, robust overfitting
remains a significant challenge, leading to a large gap between the robustness on the
training and test datasets. To understand and improve robust generalization, various
measures have been developed, including margin, smoothness, and flatness-based
measures. In this study, we present a large-scale analysis of robust generalization
to empirically verify whether the relationship between these measures and robust
generalization remains valid in diverse settings. We demonstrate when and how
these measures effectively capture the robust generalization gap by comparing over
1,300 models trained on CIFAR-10 under the L∞ norm and further validate our
findings through an evaluation of more than 100 models from RobustBench [12]
across CIFAR-10, CIFAR-100, and ImageNet. We hope this work can help the
community better understand adversarial robustness and motivate the development
of more robust defense methods against adversarial attacks.

1 Introduction

Deep neural networks have achieved tremendous success in various domains, but their vulnerability
to subtle perturbations has been revealed through the existence of adversarial examples, which are
not generally perceptible to human beings [57, 20]. To obtain robustness against these adversarial
examples, numerous defense methods have been proposed, and among them, adversarial training has
become a common algorithm because of its effectiveness and ease of implementation [42, 71, 61].
However, researchers have recently found that adversarial training methods also suffer from the
problem of overfitting [63, 52], where an adversarially trained model shows high robustness on
training examples, yet significantly reduced robustness on test examples. As this robust overfitting
progresses, the robust generalization gap increases, resulting in poor robustness for unseen examples.

To prevent robust overfitting and achieve high robust generalization, researchers have analyzed the
properties of adversarial training and demonstrated the usefulness of some measures, such as margin-
based measures, flatness-based measures, and gradient-based measures [53, 67, 66, 56]. Researchers
have used them to estimate the robust generalization gap of given models and further developed new
training schemes for improving its robustness [44, 66]. While these measures offer significant insights
into robust generalization, we find that the evaluation of some measures is often limited due to the
lack of models or training setups. These limitations can potentially lead to misleading conclusions,
which may include inaccurate estimations of the robust generalization gap and misguided directions
for the further development of adversarial training methods.
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Therefore, to gain a more precise understanding of when and how these measures correlate with
robust generalization, we train over 1,300 models on CIFAR-10 under the L∞ norm across various
training settings. We then investigate the relationships between a wide range of measures and their
robust generalization gap. To further validate our findings, we also analyze over 100 models provided
in RobustBench [12] across CIFAR-10, CIFAR-100, and ImageNet. Based on our large-scale study,
we summarize our key findings as follows:

Key findings.

1. Due to the high sensitivity of the robust generalization gap to different training setups, the
expectation of rank correlation across a wide range of training setups leads to high variance
and may not capture the underlying trend.

2. Margin and smoothness exhibit significant negative correlations with the robust generaliza-
tion gap. This suggests that, beyond a certain threshold, maximizing margin and minimizing
smoothness can lead to a degradation in robust generalization performance.

3. Flatness-based measures, such as estimated sharpness, tend to exhibit poor correlations with
the robust generalization gap. Rather, contrary to conventional assumptions, models with
sharper minima can actually result in a lower robust generalization gap.

4. The norm of the input gradients consistently and effectively captures the robust generalization
gap, even across diverse conditions, including fixed training methods and when conditioned
on average cross-entropy.

To promote reproducibility and transparency in the field of deep learning, we have integrated
the code used in this paper, along with pre-trained models, accessible to the public at https:
//github.com/Harry24k/MAIR. We hope that our findings and codes can help the community
better understand adversarial robustness and motivate the development of more robust defense
methods against adversarial attacks.

2 Related Work

The primary distinction between standard and adversarial training is that adversarial training aims to
correctly classify not only benign examples but also adversarial examples as follows:

min
w

max
∥xadv−x∥≤ϵ

L(f(xadv,w), y), (1)

where (x, y) is drawn from the training dataset S and f represents the model with trainable parameters
w. Among the distance metrics ∥ · ∥, in this paper, we focus on robustness with respect to the L∞
norm. Note that the loss function L can also include f(x,w) to minimize the loss with respect to x.
By optimizing (1), we hope to minimize the robust error on the true distribution D, defined as:

E(w; ϵ,D) = E(x,y)∈D

[
max

∥xadv−x∥≤ϵ
1(f(xadv,w) ̸= y)

]
, (2)

where 1(ŷ ̸= y) is an indicator function that outputs 0 if the prediction ŷ is same as the true label y,
and 1 otherwise.

The majority of researches have focused on optimizing (1) through the development of new loss
functions or training attacks. For instance, vanilla adversarial training (AT) [42] minimizes the
loss of adversarial examples generated by projected gradient descent (PGD) [42] with multiple
iterations. Following AT, several variations, such as TRADES [71] and MART [61], have achieved
significant reductions in robust errors on various datasets through the adoption of KL divergence and
the regularization on probability margins, based on theoretical and empirical analyses.

However, recent works have revealed that the adversarial training framework has a challenging
generalization problem, characterized by higher Rademacher complexity [68] and larger sample
complexity [54]. The overfitting problem in adversarial training has been observed as a common
phenomenon across various settings [52], and it can even occur in a more catastrophic manner
during single-step adversarial training [63, 31]. As robust overfitting progresses, the following robust
generalization gap g(w) increases,

g(w) = E(w; ϵ,D)− E(w; ϵ,S). (3)
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Thus, in order to minimize E(w; ϵ,D), we should not only focus on minimizing the training objective
function E(w; ϵ,S) but also on reducing the robust generalization gap g(w).

To gain a deeper understanding of the robust overfitting and further reduce the robust generalization
gap g(w), a line of work has theoretically and empirically investigated measures, such as boundary
thickness [67], local Lipschitzness [66], and flatness [56]. While these studies claim that these mea-
sures are reliable indicators of the robust generalization gap, the lack of consistency in experimental
settings hinders us to identify their validity in practical scenarios. Therefore, in this work, we aim
to investigate the clear relationship between these measures and the robust generalization gap by
conducting a comprehensive analysis using a large set of models.

2.1 Comparison to Jiang et al. [27]

The pioneering study [27] explored the empirical correlations between complexity measures and
generalization with a primary focus on the standard training framework. Our main contribution is
delving into the realm of measures within the adversarial training framework—a context having
different generalization tendencies from those of the standard training framework [53, 66]. Indeed,
we observe that the metric ψk proposed in [27] has limitations in capturing the effectiveness of
measures due to the high sensitivity of the robust generalization gap with respect to training setups.
By introducing a new metric πk, our work enhances the understanding of when and how robust-
ness measures correlate with robust generalization. Furthermore, while Jiang et al. [27] employed
customized parameter-efficient neural networks, we adopt widely-used model architectures such as
ResNets, thereby providing insights that are not only relevant to recent research but also offer more
practical implications.

3 Experimental Methodology

In the adversarial training framework, measures have played a crucial role by providing either
theoretical upper bounds or empirical correlations with robust generalization. Previous works have
leveraged these measures to propose new training schemes [61, 67, 64] and suggested directions to
achieve high robustness [66, 56]. However, we discover that certain limitations and confusions exist
when extending the findings of prior works to practical scenarios due to the use of a restricted set
of models and training setups [67, 64, 66]. In order to gain a comprehensive understanding of the
true efficacy of these measures, it is crucial to validate whether the effectiveness of measures remains
valid in practical settings.

To address these challenges, our work aims to provide a comprehensive and accurate assessment
of the effectiveness of measures for robust generalization in practical settings. Our objective is to
address the fundamental question:

Do measures remain effective in correlating with robust generalization in practical settings?
If so, how and when are measures correlated with robust generalization?

To this end, in Sections 3.1 and 3.2, we carefully construct the training space that considers practical
scenarios within the adversarial training framework and gather a wide range of measures from
previous works. In Section 3.3, we define the evaluation metrics and introduce specific variations to
accurately capture the correlation between measures and robust generalization in practical settings.

3.1 Training Space

In the realm of adversarial training, various training procedures have been extensively explored to
enhance adversarial robustness based on the development of AT, TRADES, and MART. Recently,
to resolve the issue of robust overfitting, researchers have begun combining additional techniques,
including commonly employed in the standard training framework, such as early-stopping [52],
using additional data [9, 22], manipulating training tricks [48, 11], and adopting sharpness-aware
minimization [64]. By integrating these techniques into AT, TRADES, and MART, high adversarial
robustness have been achieved, outperforming other variants of adversarial training methods [21].

Based on these prior works, to mimic practical scenarios, we have carefully selected eight training
parameters widely used for improving robust generalization: (1) Model architecture {ResNet18 [23],
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Figure 1: (Left) Scatter plot of train robustness and test robustness. Bright color corresponds to high
robust generalization gap, i.e., poor generalization. (Right) Boxplot of robust generalization gap for
some training setups. All adversarial examples during training and testing are generated by PGD10
on CIFAR-10.

WRN28-10 [70], WRN34-10 [70]}, (2) Training methods {Standard, AT [42], TRADES [71], MART
[61]}, (3) Inner maximization steps {1, 10}, (4) Optimizer {SGD, AWP [64]}, (5) Batch-size {32, 64,
128, 256}, (6) Data augmentation {No Augmentation, Use crop and flip}, (7) Extra-data {No extra
data, Use extra data [9]}, and (8) Early-stopping {No early-stopping, Use early-stopping}. Additional
training details can be found in Appendix C, providing a comprehensive overview of the training
procedures.

In total, 1,344 models were trained using the CIFAR-10 dataset with ϵ = 8/255. Given these
models, we evaluate their train/test robustness against PGD with 10 iterations (denoted as PGD10).
While we acknowledge the existence of stronger adversarial attacks, such as AutoAttack [11], we
primarily use PGD10 due to its prevalent use in adversarial training and the high computational
demands of AutoAttack. Additionally, considering the usage of PGD in calculating specific measures,
such as boundary_thickness and local_lip, ensures consistency in our analysis. For a detailed
discussion, please refer to the Appendix A.4.

The statistics of the trained models are summarized in Figure 1. In the left plot, we can observe
that the selected range of training parameters generates a diverse set of models, exhibiting robust
generalization gaps ranging from 0% to 70%. Notably, certain models achieve 100% robustness on
training data against PGD10, but their maximum robustness on the test set is only 65%, highlighting
the importance of robust generalization gap. The right plot is a boxplot shows the distribution of
robust generalization gaps for some training setups. As described in prior works [9, 52, 64], each
training setup has a significant impact on robust generalization.

3.2 Measures

Beyond the measures proposed under the adversarial training frameworks [67, 66], previous works
[27, 17] have demonstrated that certain measures can effectively capture the generalization gap under
the standard training framework. Therefore, in this paper, we have gathered diverse measures from
both the standard and adversarial training frameworks and categorized them into five different types
based on their origins and formulas: (i) weight-norm (7, 8, 9, 10), (ii) margin (12, 13, 14, 15),
(iii) smoothness (16, 17), (iv) flatness (18, 19, 20, 21), and (v) gradient-norm (22, 23). We denote
the chosen measures in teletype font (e.g., path_norm). While we briefly introduce the concepts
of measures in each paragraph in Section 4, we refer the readers to Appendix B for the details of
measures including their mathematical definitions due to the page limit.

Given these measures, we calculate their value on whole training examples for each trained model.
This choice aligns with prior works, which argue that the most direct approach for studying general-
ization is to prove a generalization bound that can be calculated on the training set [27] and offer a
caution against the oversimplified notion that maximizing (or minimizing) a measure value inherently
leads to improved generalization [5].
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3.3 Evaluation Metrics

To uncover the relationship between measures and robust generalization performance, we adopt the
Kendall rank correlation coefficient following prior works [27, 36]. We begin by defining a search
space Θ = Θ1 ×Θ2 × · · · ×Θn. Each Θi corresponds to a search space for each training parameter
defined in Section 3.1. Given the search space Θ, we obtain the trained models fθ(w) for θ ∈ Θ.
For each model fθ(w), we measure the robust generalization gap g(fθ(w)) and the corresponding
measure value µ(fθ(w)). For simplicity, we denote g(θ) := g(fθ(w)) and µ(θ) := µ(fθ(w)). We
then calculate Kendall’s rank coefficient [29] as follows:

τ(Θ) =
1

|Θ|(|Θ| − 1)

∑
θ∈Θ

∑
θ′∈Θ,θ ̸=θ′

sgn(g(θ)− g(θ′)) · sgn(µ(θ)− µ(θ′)), (4)

where |Θ| is the number of elements in Θ, and sgn(·) is a sign function. The value of τ becomes 1
when the pairs have the same rankings and −1 when the pairs have reversed order rankings. Therefore,
a higher value of τ implies that as the value of a measure µ increases, the robust generalization gap g
also increases.

As noted by [27], the measure may strongly correlate with the robust generalization gap only when a
specific training setting is varied. Therefore, Jiang et al. [27] introduced the following metric:

ψk(Θ) = Eθ1,··· ,θk−1,θk+1,··· ,θn [τ({θ = (θ1, · · · , θn), θk ∈ Θk})] , (5)
which captures the robust generalization gap when only the hyper-parameter Θk changes. However,
we demonstrate that ψk may not perform well in cases where Simpson’s paradox exists. Simpson’s
paradox refers to a situation where each of the individual groups exhibits a specific trend, but it
disappears (or reverses) when the groups are combined. Thus, when a parameter Θi ̸=k heavily affects
the robust generalization gap, ψk becomes not effective as it captures the overall trends by taking
expectation across all parameters including Θi ̸=k. In fact, within the adversarial training framework,
the inner τ in (5) shows extremely high variance due to the high sensitivity of the robust generalization
gap with respect to training setups, which will be discussed in Table 1.

Therefore, we propose a metric for capturing the robust generalization performance by fixing the
hyper-parameter Θk as follows:

πk(Θ) = Eθk [τ({θ = (θ1, · · · , θn), θi ∈ Θi ∀i ̸= k})] . (6)
Here, πk(Θ) represents the effectiveness of a measure µ within a specific fixed training setup. This
enables us to discover that some measures only work for specific training settings, e.g., uncovering
the strong correlation between boundary_thickness and the robust generalization gap when AT
is used as the training method. Furthermore, for measures exhibiting meaningful value of πk, we
additionally provide their scatter plots to mitigate the limitations of a correlation analysis.

4 Experimental Results

Based on the measures and trained models defined in Section 3, we calculate the measures for each
model and their robust generalization gap. Notably, in the realm of adversarial training, models
encounter two types of examples: benign examples and adversarial examples. Therefore, to gain
a deeper understanding of the relationship between robust generalization and measures, we also
calculate the values of example-dependent measures for both benign examples and PGD10 examples.

Table 1 summarizes the results of ψk for each measure. Further, in order to consider the distributional
correlation [17] and quantify the precision of ψk, we also report the corresponding standard deviation
of the inner τ in Eq. (5). A higher value of ψk indicates a stronger positive rank correlation, implying
that as the measure value increases, the robust generalization gap increases. First of all, it is important
to note that none of the measures are perfect. While certain measures show high ψk, all measures
show high standard deviations. This observation indicates that no measure can provide a perfect
estimation of the model’s robust generalization gap. Moreover, with such high variances, it becomes
challenging to clearly identify the underlying correlation of the measures.

To address this limitation, we conduct further analyses with our proposed metric, πk in Eq. (6). The
benefit of πk is that it reveals the potential hidden relationship between the measures and the robust
generalization gap by fixing training settings, which ψk cannot captures. Thus, from now on, we
will report πk of each measure and provide correlation analyses with the robust generalization gap,
extending the connections beyond those presented in Table 1.
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Table 1: Numerical results of ψk for each measure, along with its corresponding standard deviation.
The total τ indicates the Kendall’s rank coefficient for the entire pairs (g, µ). *(PGD) indicates the
same measure calculated on PGD10 examples for example-based measures.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) 0.05±0.47 - - - - - - - -0.03
path_norm (8) 0.22±0.59 0.47±0.39 0.38±0.92 0.41±0.69 0.20±0.47 0.32±0.73 0.29±0.72 0.28±0.63 0.35

log_prod_of_spec (9) -0.13±0.49 0.15±0.40 0.11±0.99 0.16±0.75 0.13±0.47 0.02±0.73 0.11±0.74 0.17±0.66 -0.13
log_prod_of_fro (10) 0.07±0.44 0.48±0.39 0.62±0.79 0.56±0.63 0.45±0.46 0.38±0.65 0.35±0.70 0.37±0.69 0.18
euclid_init_norm (11) 0.07±0.47 0.32±0.34 0.00±1.00 0.08±0.74 -0.02±0.45 0.20±0.69 0.16±0.68 -0.06±0.70 0.18

average_ce (12) -0.16±0.62 -0.25±0.52 -0.10±1.00 -0.26±0.74 -0.26±0.56 -0.20±0.73 -0.24±0.72 -0.21±0.65 -0.23
inverse_margin (13) 0.19±0.57 0.25±0.37 0.45±0.89 0.08±0.73 0.11±0.49 0.15±0.70 0.08±0.71 0.03±0.72 0.07
prob_margin (14) 0.19±0.61 0.23±0.52 0.09±1.00 0.26±0.74 0.30±0.53 0.25±0.72 0.30±0.70 0.20±0.65 0.24

boundary_thickness (15) -0.06±0.61 0.05±0.45 0.07±1.00 -0.15±0.72 -0.17±0.53 -0.08±0.71 -0.16±0.70 -0.11±0.66 -0.02
kl_divergence (16) -0.42±0.53 -0.36±0.36 -0.71±0.71 -0.26±0.70 -0.36±0.46 -0.51±0.66 -0.38±0.69 -0.45±0.74 -0.45

local_lip (17) -0.25±0.56 -0.20±0.41 -0.48±0.88 -0.13±0.71 -0.17±0.48 -0.38±0.69 -0.20±0.69 -0.15±0.72 -0.23
pacbayes_flat (18) 0.22±0.60 0.20±0.42 0.33±0.94 0.17±0.75 0.17±0.53 0.05±0.71 0.06±0.72 0.20±0.69 0.05

estimated_sharpness (19) 0.07±0.60 0.07±0.41 0.19±0.98 0.15±0.80 0.05±0.56 -0.11±0.71 -0.03±0.74 -0.03±0.72 -0.07
estimated_inv_sharpness (20) 0.16±0.60 0.20±0.35 0.42±0.91 0.27±0.77 0.14±0.55 0.00±0.71 0.07±0.73 0.06±0.78 0.04

average_flat (21) -0.30±0.53 -0.31±0.41 -0.58±0.82 -0.21±0.68 -0.22±0.44 -0.43±0.66 -0.32±0.68 -0.30±0.71 -0.36
x_grad_norm (22) -0.36±0.56 -0.29±0.36 -0.62±0.78 -0.31±0.74 -0.40±0.45 -0.51±0.65 -0.45±0.70 -0.50±0.69 -0.42
w_grad_norm (23) 0.17±0.56 0.23±0.36 0.50±0.86 0.31±0.74 0.16±0.52 0.03±0.70 0.10±0.72 0.10±0.78 0.07

average_ce(PGD) (12) -0.59±0.52 -0.85±0.15 -0.86±0.51 -0.59±0.69 -0.63±0.48 -0.61±0.66 -0.59±0.68 -0.58±0.72 -0.78
inverse_margin(PGD) (13) 0.56±0.49 0.40±0.31 0.75±0.66 0.33±0.67 0.44±0.43 0.49±0.63 0.39±0.67 0.27±0.76 0.35
prob_margin(PGD) (14) 0.59±0.53 0.80±0.14 0.84±0.55 0.61±0.69 0.64±0.45 0.62±0.65 0.61±0.68 0.59±0.71 0.79

pacbayes_flat(PGD) (18) 0.55±0.47 0.64±0.21 0.82±0.58 0.61±0.47 0.62±0.29 0.57±0.44 0.50±0.46 0.68±0.57 0.59
estimated_sharpness(PGD) (19) -0.05±0.64 -0.19±0.48 -0.10±0.99 0.08±0.77 -0.03±0.55 -0.15±0.74 -0.12±0.75 -0.00±0.67 -0.22

estimated_inv_sharpness(PGD) (20) -0.08±0.65 -0.20±0.52 -0.13±0.99 0.08±0.78 -0.06±0.57 -0.21±0.74 -0.12±0.75 -0.06±0.66 -0.25
x_grad_norm(PGD) (22) -0.23±0.54 -0.21±0.38 -0.53±0.85 -0.19±0.70 -0.26±0.45 -0.38±0.68 -0.29±0.70 -0.33±0.73 -0.34
w_grad_norm(PGD) (23) -0.14±0.63 -0.28±0.46 -0.19±0.98 0.01±0.78 -0.09±0.57 -0.19±0.76 -0.16±0.76 -0.13±0.68 -0.32

Table 2: (Norm-based measures) Numerical results of πk and its corresponding standard deviation.
Model

Architecture
Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
num_params (7) - -0.02±0.04 -0.01±0.08 -0.03±0.01 -0.02±0.03 -0.02±0.02 -0.03±0.00 -0.02±0.01
path_norm (8) 0.35±0.05 0.27±0.13 0.24±0.26 0.34±0.03 0.37±0.03 0.35±0.05 0.35±0.03 0.46±0.14

log_prod_of_spec (9) 0.03±0.13 -0.07±0.07 -0.00±0.01 -0.12±0.03 -0.11±0.05 -0.13±0.01 -0.13±0.01 -0.13±0.06
log_prod_of_fro (10) 0.37±0.03 0.15±0.11 0.09±0.10 0.18±0.01 0.18±0.04 0.19±0.00 0.19±0.02 0.19±0.04
euclid_init_norm (11) 0.32±0.03 0.06±0.03 0.09±0.10 0.17±0.00 0.20±0.04 0.17±0.01 0.17±0.03 0.20±0.11

Norm-based measures requires fixed model architecture. In many prior works, researchers
have demonstrated the effectiveness of norm-based measures in estimating the generalization gap
[27, 17]. Among them, the weight norm-based measures, e.g., the product of Frobenius norm
(log_prod_of_fro) [46], the product of spectral norm (log_prod_of_spec) [7], and the distance
to the initial weight (euclid_init_norm) [27, 40], are built on theoretical frameworks such as PAC-
Bayes [43, 47, 38]. path_norm is also often used to estimate the complexity of a neural network,
which calculates the sum of outputs for all-ones input after squaring all parameters [27].

In Table 1, the most of norm-based measures exhibit a low correlation with the robust generaliza-
tion gap for the metric ψk. However, by using the proposed metric πk in Table 2, we discover
that log_prod_of_fro and euclid_init_norm exhibit strong correlations with low standard de-
viation when the model architecture is fixed. Intuitively, when the model architecture varies, the
number of parameters and their corresponding values exhibit different ranges. Indeed, the range
of log_prod_of_fro roughly shows [50, 100] for ResNet18, but shows [140, 200] for WRN28-10.
Thus, comparing models with different architectures degrades the precision of weight norm-based
measures. Under the fixation of the model architecture, log_prod_of_fro is positively correlated
with the robust generalization gap, which consistents to the prior theoretical observations in PAC-
Bayesian framework [50] or Lipschitz analysis [58]. For log_prod_of_spec, we do not observe a
strong correlation under any conditions.

Furthermore, we observe that path_norm shows some extent of correlation for all ψk and πk.
Upon conducting a more in-depth analysis, we find that the log of path_norm yields an almost
linear relationship with the robust generalization gap when conditioned with average_ce(PGD),
resulting the total τ = 0.68 (detailed in Appendix A.2). This finding suggests that path_norm can
be effectively utilized for estimating the robust generalization gap, with consistent to the prior works
under the standard training framework [27, 17].
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Table 3: (Margin-based measures) Numerical results of πk and its corresponding standard deviation.
Model

Architecture
Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
average_ce (12) -0.24±0.03 -0.28±0.17 -0.30±0.27 -0.23±0.00 -0.23±0.04 -0.24±0.06 -0.23±0.06 -0.34±0.31

inverse_margin (13) 0.07±0.05 -0.05±0.23 -0.18±0.32 0.09±0.06 0.08±0.09 0.08±0.13 0.09±0.12 0.09±0.12
prob_margin (14) 0.24±0.02 0.28±0.16 0.31±0.27 0.23±0.01 0.23±0.04 0.24±0.06 0.23±0.06 0.34±0.31

boundary_thickness (15) -0.02±0.01 -0.17±0.15 -0.19±0.23 -0.02±0.01 -0.02±0.02 -0.04±0.06 -0.02±0.05 -0.04±0.27
average_ce(PGD) (12) -0.78±0.01 -0.58±0.39 -0.47±0.40 -0.79±0.04 -0.79±0.01 -0.80±0.03 -0.79±0.00 -0.78±0.01

inverse_margin(PGD) (13) 0.34±0.02 0.26±0.22 0.05±0.19 0.37±0.03 0.35±0.03 0.34±0.05 0.36±0.13 0.38±0.08
prob_margin(PGD) (14) 0.79±0.01 0.59±0.38 0.48±0.39 0.79±0.04 0.79±0.01 0.80±0.03 0.79±0.00 0.78±0.02
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Figure 2: Scatter plot for
average_ce(PGD) and the gap.
Bright color indicates a higher test
robustness. For better visualization,
we cutoff average_ce(PGD) > 2.

Maximizing margin beyond a certain point harms ro-
bust generalization. Traditionally, the maximizing margin
is considered as an ultimate goal in the adversarial train-
ing framework [42, 61]. Indeed, average cross-entropy loss
[42] and margin-related losses [61] are frequently used in ad-
versarial training methods. However, in both Table 1 and
Table 3, average_ce(PGD) exhibit a high negative corre-
lation with the robust generalization gap across all varia-
tions of training parameters. Similarly, πk and the total τ of
prob_margin(PGD) are extremely high (0.79). This suggests
that lower cross-entropy on PGD examples (and higher
margin in the probability space) leads to worse robust gen-
eralization. Indeed, Fig. 2 shows a clear negative correlation
between average_ce(PGD) and the robust generalization gap.
Notably, high test robustness is observed within the range of
average_ce(PGD) ∈ [0.5, 1.0], indicating that minimizing
average_ce(PGD) beyond a certain point may harm the gen-
eralization performance as Ishida et al. [25] observed in the
standard training frameworks.

Given this observation, we argue that the margin maximization in adversarial training methods
should be carefully revisited. Recent studies have highlighted that maximizing the margin might not
necessarily be the optimal objective in adversarial training due to intricate gradient flow dynamics
[59] and the non-cognitive concept of using predicted probabilities [1]. Additionally, in recent
work [32], despite the similar robustness of TRADES and AT, their margin distributions on benign
and adversarial examples are extremely different. This implies that the margin cannot be the sole
determinant of adversarial robustness. Considering these findings and other recent studies [41, 60],
the margin maximization should be accompanied by a consideration of other factors such as weight
regularization or gradient information.

The cross entropy and margin on benign examples, denoted as average_ce and prob_margin, also
show some degree of correlation with the generalization gap. This correlation becomes particu-
larly significant when using early stopping, where their correlations reach up to 0.65. Note that
inverse_margin behaves differently because it uses the 10th-percentile of margins over the training
dataset rather than the expectation.

Boundary thickness works well for models trained by AT. Yang et al. [67] introduced the concept
of boundary thickness, which is an extended version of margin based on adversarial examples. They
argue that a thin decision boundary leads to both poor adversarial robustness and the gap. Therefore,
boundary_thickness should be negatively correlated with the robust generalization gap. However,
as shown in Table 3, it does not correlate well with the robust generalization gap. The main difference
between our experiments and those in [67] is that we also considered TRADES and MART, whereas
Yang et al. [67] sorely compared models trained with AT. Thus, in Fig. 3, we plot the inner τ in πk
for each training method. It is evident that the boundary thickness demonstrates a strong correlation
with the robust generalization gap when the training method is fixed to AT. This suggests that
boundary_thickness is more effective for comparing models trained with AT. Furthermore, in
Appendix A.2, we also discover that boundary_thickness becomes more highly correlated with
the robust generalization gap when the models are conditioned on average_ce(PGD). Thus, when
using boundary_thickness as the sole determinant of robust generalization, we should carefully
revisit the choice of training methods and the robust accuracy of models on train datasets.
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Figure 3: Box plot of the inner τ in πk Eq. (6), where Θk is training method. The text corresponds to
the method for each outlier, e.g., boundary_thickness performs well when AT is used.

Table 4: (Smoothness-based and Flatness-based measures) Numerical results of πk and its corre-
sponding standard deviation.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
kl_divergence (16) -0.45±0.01 -0.35±0.29 -0.15±0.19 -0.46±0.10 -0.46±0.08 -0.43±0.12 -0.45±0.02 -0.37±0.29

local_lip (17) -0.24±0.06 -0.15±0.19 -0.01±0.17 -0.24±0.10 -0.25±0.07 -0.20±0.05 -0.23±0.02 -0.21±0.30
pacbayes_flat (18) 0.04±0.09 0.04±0.14 -0.06±0.14 0.06±0.07 0.04±0.08 0.10±0.12 0.08±0.10 0.07±0.16

estimated_sharpness (19) -0.07±0.02 -0.11±0.24 -0.22±0.18 -0.06±0.17 -0.08±0.10 -0.02±0.13 -0.04±0.07 -0.04±0.16
estimated_inv_sharpness (20) 0.04±0.02 -0.04±0.32 -0.19±0.14 0.05±0.12 0.04±0.06 0.10±0.13 0.07±0.10 0.03±0.12

average_flat (21) -0.36±0.01 -0.24±0.21 -0.10±0.15 -0.38±0.07 -0.37±0.06 -0.32±0.13 -0.35±0.00 -0.33±0.25
pacbayes_flat(PGD) (18) 0.59±0.04 0.45±0.16 0.30±0.21 0.60±0.00 0.59±0.02 0.62±0.02 0.63±0.03 0.50±0.07

estimated_sharpness(PGD) (19) -0.22±0.01 -0.07±0.12 -0.06±0.14 -0.22±0.10 -0.23±0.07 -0.17±0.07 -0.19±0.06 -0.21±0.32
estimated_inv_sharpness(PGD) (20) -0.24±0.02 -0.12±0.14 -0.10±0.17 -0.26±0.10 -0.26±0.06 -0.20±0.08 -0.23±0.06 -0.23±0.35

Smoothness does not guarantee low robust generalization gap. In the pursuit of achieving
adversarial robustness, the smoothness between benign and adversarial examples is often considered
as an indicative measure. For instance, TRADES [71] minimizes the kl_divergence between
benign and adversarial logits. However, kl_divergence shows a negative correlation for both
Table 1 and Table 4. This implies that, similar to average_ce(PGD), kl_divergence cannot serve
as an indicator for robust generalization.

While Xu et al. [65] demonstrated that imposing local Lipschitzness (local_lip) leads to better
generalization in linear classification, recent research [66] argued an opposing perspective, suggesting
that within neural networks, local Lipschitzness might hurt robust generalization. However, this
conclusion was built on fewer than 20 models and evaluated solely on test examples. In our large
experiment, we cannot observe that local Lipschitzness itself negatively affects robust generalization.
Rather, it is more efficient in predicting robust accuracy (detailed in Appendix A.1). These findings
are consistent with [45, 39], which highlighted the importance of model architecture or weight norms
when evaluating models with local Lipshitzness.

Flatness-based measures are not correlated well with the robust generalization gap. Flatness-
based measures have recently regarded as powerful indicators of generalization performance in both
standard and adversarial training frameworks [18, 64]. This includes the maximum perturbation size
in the weight space that do not dramatically changes the accuracy (pacbayes_flat) [43, 27], the loss
increment by adversarial weight perturbation (estimated_sharpness) [18], and its scale-invariant
version (estimated_inv_sharpness) [36]. However, our analysis reveals that flatness-based
measures tend to exhibit poor correlations with the robust generalization gap. In both Table 1
and Table 4, the majority of flatness-based measures exhibit near-zero correlations or even negative
values. Only pacbayes_flat(PGD) demonstrates a strong correlation with robust generalization
because it effectively distinguishes between robust and non-robust models (refer to Appendix A.2).

Recently, Stutz et al. [56] demonstrated the importance of early stopping in the analysis
of flatness. Similarly, we observe that, when early stopping is employed, the correlation
of estimated_sharpness approaches zero. However, without early-stopping, we discover
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Table 5: (Gradient-based measures) Numerical results of πk and its corresponding standard deviation.
Model

Architecture
Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
x_grad_norm (22) -0.42±0.03 -0.45±0.28 -0.31±0.23 -0.43±0.09 -0.42±0.02 -0.40±0.02 -0.41±0.05 -0.38±0.07
w_grad_norm (23) 0.07±0.04 -0.02±0.33 -0.17±0.18 0.08±0.13 0.07±0.08 0.11±0.13 0.09±0.09 0.05±0.08

x_grad_norm(PGD) (22) -0.34±0.02 -0.24±0.21 -0.09±0.15 -0.36±0.05 -0.34±0.09 -0.32±0.12 -0.34±0.02 -0.25±0.25
w_grad_norm(PGD) (23) -0.32±0.03 -0.16±0.17 -0.15±0.18 -0.32±0.11 -0.33±0.09 -0.28±0.08 -0.31±0.04 -0.28±0.31

Table 6: Numerical results of πk for each measure when Θk is given by average_ce(PGD) values
with a bin size of 0.1, along with its corresponding standard deviation.

Measures πk
num_params (7) -0.23±0.17
path_norm (8) 0.25±0.14

log_prod_of_spec (9) 0.10±0.13
log_prod_of_fro (10) 0.11±0.10
euclid_init_norm (11) -0.11±0.14

average_ce (12) 0.03±0.19
inverse_margin (13) -0.09±0.19
prob_margin (14) -0.02±0.16

boundary_thickness (15) 0.06±0.19
kl_divergence (16) -0.09±0.14

local_lip (17) -0.11±0.16
pacbayes_flat (18) -0.25±0.21

Measures πk
estimated_sharpness (19) -0.12±0.19

estimated_inv_sharpness (20) -0.13±0.17
average_flat (21) -0.12±0.17
x_grad_norm (22) -0.35±0.16
w_grad_norm (23) -0.06±0.17

inverse_margin(PGD) (13) 0.05±0.19
prob_margin(PGD) (14) 0.13±0.16

pacbayes_flat(PGD) (18) -0.19±0.20
estimated_sharpness(PGD) (19) 0.05±0.19

estimated_inv_sharpness(PGD) (20) 0.01±0.19
x_grad_norm(PGD) (22) -0.12±0.14
w_grad_norm(PGD) (23) 0.13±0.16
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Figure 4: Scatter plot for the
robust generalization gap and
estimated_sharpness. Con-
ditioned on average_ce(PGD)≤
1.5 without early-stopping.

that estimated_sharpness exhibits a significant negative
correlation for models have low average_ce(PGD) ≤ 1.5.
As shown in Fig. 4, models with low estimated_sharpness
show high robust generalization gaps. This finding aligns with
the concurrent work of [5], which demonstrates that flatter
solutions generalize worse on out-of-distribution data. The
additional results can be found in Appendix A.6.

In the case of average_flat [56], which is calculated with
random weight perturbations and their worst-case losses, it
demonstrates some degree of correlation. However, it is more
efficient in predicting robust accuracy rather than the gap (refer
to Appendix A.1). This result suggests that, as the concurrent
work [5] observed in the standard training framework, flatness
measures may not serve as reliable indicators of correlation in
the adversarial training framework even they can be effectively
used to achieving better performance.

The norm of gradient of inputs robustly captures the gap even for models with similar cross-
entropy losses. Although some prior works [53, 24] have argued that regularizing the input gradient
norm might improve adversarial robustness, we observe that this cannot be argued as lower input
gradient norm is better. Table 5 summarizes πk of the gradient norm of input (x_grad_norm) and
the gradient norm of weight (w_grad_norm). Among these, x_grad_norm show a strong correlation
with the robust generalization gap. The negative correlation of x_grad_norm indicates that models
with a larger input gradient norm are more likely to show lower robust generalization gap.

Furthermore, even when comparing models having similar average_ce(PGD), x_grad_norm is
the most robust indicator of the robust generalization gap. Previous works in the standard training
framework [27, 17] have argued that the cross-entropy loss is strongly correlated with the robust
generalization gap, and thus, they used early stopping based on certain cross-entropy thresholds
during training to remove the influence of varying cross-entropy loss. However, within the adversarial
training framework, employing the same early stopping based on loss becomes challenging as
TRADES and MART minimize different loss functions from AT. Therefore, we categorize the trained
models into groups based on average_ce(PGD) values using a bin size of 0.1. This grouping reduces
πk of average_ce(PGD) to −0.12. The results are summarized in Table 6. Compared to all other
measures, x_grad_norm exhibits the highest rank correlation with the robust generalization gap
even when conditioned on average_ce(PGD). We believe this finding highlights the importance
of the norm of input gradients as a valuable regularizer for improving model robustness and its
generalization in practical settings.
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Figure 5: Experiment on RobustBench [12]. For each dataset, we plot the total τ of each measure
and highlight the robust measures with |τ | ≥ 0.25 for all datasets with yellow background.

Table 7: Numerical results of πk for norm-based measures when Θk is the model structure along with
its corresponding standard deviation. The total τ is the same as in Fig. 5. For ImageNet, πk is not
applicable due to the limited number of pre-trained models in RobustBench [12].

CIFAR-10 πk Total τ
path_norm (8) 0.24±0.26 0.02

log_prod_of_fro (10) 0.12±0.40 0.10

CIFAR-100 πk Total τ
path_norm (8) 0.55±0.05 0.09

log_prod_of_fro (10) 0.30±0.30 0.17

5 Broader Impact with Benchmarks
RobustBench [12] provides a set of pre-trained models that achieve high robust accuracy across
various datasets, including CIFAR-10, CIFAR-100, and ImageNet. Leveraging this benchmark,
we extend our observations to diverse models including transformer-based architectures [3, 13]
or trained on diffusion-generated datasets [51, 62]. As shown in Figure 5, we identify that some
of our findings in Section 4 also can be applied to these models. Margin-based measures such
as average_ce, prob_margin, average_ce(PGD), and prob_margin(PGD) consistently exhibit
strong correlations with the robust generalization gap. Additionally, we observe that x_grad_norm
consistently shows reliable performance in predicting the robust generalization gap, even when
applied to models in the RobustBench across various datasets.

Though a deeper analysis is limited by the absence of training setting details, such as the use of early
stopping, we additionally conduct an analysis with the model architecture by analyzing the pre-trained
models. Table 7 summarizes πk for models with the same architecture. As we demonstrated in
Section 4, norm-based measures exhibit a higher correlation when comparing models with identical
architectures. Notably, for CIFAR-100, we find that path_norm shows a strong correlation with the
robust generalization gap. Regarding the low correlation and high standard deviation of norm-based
measures, we hypothesize that other training settings, such as the choice of activation functions
(e.g., Swish and SiLU instead of ReLU) and training datasets, may affect the values of norm-based
measures. Further exploration of these aspects is left to future work, as additional research and
experiments can provide a more comprehensive understanding of these relationships.

6 Limitations and Future Work
While our study unveils the correlation between various measures and the robust generalization gap
over 1,300 models, due to our computational constraints, we focused on ResNet models, CIFAR-10,
and PGD with the L∞ norm. Thus, further investigations on a broader range of hyper-parameters and
the use of stronger attacks may uncover new relationships beyond our analysis. We hope that future
work would address these limitations.

7 Conclusion
Through large-scale experiments, we verified the underlying relationships between various measures
and the robust generalization gap on CIFAR-10 under the L∞ norm. Our findings offer valuable
insights into robust generalization and emphasize the need for caution when making statements such
as, ‘model A is superior to model B because model A exhibits a better measure value than model B,’
a frequently employed phrase in recent literature. We hope that our discoveries regarding diverse
measures can contribute to further advancement in the field of adversarial robustness.
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A Additional Experiments

A.1 Estimating Test Robust Accuracy

Instead of estimating the robust generalization gap, one might expect the analysis on the relationship
between test robust accuracy and the measures. In this regard, we investigate the correlation between
the measures and the test robust accuracy 1− E(w; ϵ,D) on the test dataset D instead of the robust
generalization gap g(w).

Table 8: Numerical results of ψk between each measure and test robust accuracy, along with its
corresponding standard deviation.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) 0.14±0.44 - - - - - - - 0.02
path_norm (8) 0.22±0.57 0.36±0.41 0.33±0.94 0.08±0.72 0.22±0.50 0.20±0.70 0.17±0.73 -0.43±0.51 0.02

log_prod_of_spec (9) -0.22±0.43 0.06±0.42 0.05±1.00 0.04±0.73 0.03±0.49 0.07±0.73 0.07±0.73 -0.16±0.68 -0.15
log_prod_of_fro (10) 0.12±0.41 0.36±0.39 0.64±0.77 0.30±0.70 0.44±0.41 0.39±0.66 0.40±0.65 0.08±0.66 0.07
euclid_init_norm (11) 0.16±0.45 0.28±0.31 -0.14±0.99 -0.01±0.73 -0.14±0.48 -0.13±0.69 -0.10±0.68 -0.23±0.62 0.10

average_ce (12) -0.09±0.62 0.03±0.53 0.08±1.00 0.17±0.73 -0.13±0.57 -0.01±0.77 0.01±0.76 0.55±0.47 0.14
inverse_margin (13) 0.24±0.56 0.44±0.36 0.48±0.88 0.44±0.60 0.18±0.50 0.28±0.69 0.24±0.68 0.71±0.37 0.44
prob_margin (14) 0.05±0.62 -0.03±0.54 -0.09±1.00 -0.16±0.74 0.11±0.57 -0.01±0.77 -0.03±0.75 -0.56±0.46 -0.14

boundary_thickness (15) 0.07±0.60 0.24±0.49 0.26±0.97 0.29±0.71 0.06±0.53 0.17±0.75 0.21±0.73 0.62±0.43 0.32
kl_divergence (16) -0.55±0.49 -0.57±0.36 -0.94±0.35 -0.65±0.48 -0.46±0.40 -0.37±0.60 -0.45±0.61 -0.63±0.47 -0.45

local_lip (17) -0.46±0.49 -0.44±0.44 -0.70±0.72 -0.58±0.56 -0.32±0.44 -0.28±0.65 -0.33±0.69 -0.64±0.49 -0.40
pacbayes_flat (18) 0.31±0.52 0.21±0.44 0.31±0.95 0.17±0.77 0.25±0.51 0.28±0.68 0.26±0.67 -0.17±0.67 0.15

estimated_sharpness (19) 0.09±0.60 0.25±0.39 0.36±0.93 0.16±0.75 0.21±0.50 0.30±0.68 0.32±0.67 0.20±0.66 0.18
estimated_inv_sharpness (20) 0.24±0.56 0.39±0.33 0.56±0.83 0.29±0.74 0.29±0.50 0.38±0.65 0.41±0.64 0.51±0.58 0.33

average_flat (21) -0.44±0.50 -0.60±0.41 -0.82±0.57 -0.64±0.51 -0.40±0.42 -0.30±0.62 -0.35±0.63 -0.66±0.46 -0.42
x_grad_norm (22) -0.40±0.48 -0.34±0.39 -0.74±0.68 -0.49±0.59 -0.37±0.41 -0.26±0.65 -0.30±0.65 -0.09±0.76 -0.17
w_grad_norm (23) 0.20±0.52 0.42±0.35 0.66±0.75 0.33±0.75 0.29±0.50 0.42±0.66 0.42±0.65 0.60±0.54 0.37

average_ce(PGD) (12) -0.70±0.41 -0.67±0.19 -0.89±0.46 -0.60±0.48 -0.61±0.35 -0.51±0.58 -0.50±0.60 -0.57±0.51 -0.58
inverse_margin(PGD) (13) 0.58±0.47 0.64±0.30 0.86±0.50 0.69±0.45 0.51±0.43 0.49±0.62 0.59±0.56 0.78±0.33 0.61
prob_margin(PGD) (14) 0.74±0.43 0.73±0.18 0.92±0.38 0.66±0.43 0.60±0.39 0.54±0.58 0.52±0.60 0.58±0.50 0.60

pacbayes_flat(PGD) (18) 0.62±0.44 0.59±0.24 0.81±0.58 0.60±0.56 0.52±0.45 0.60±0.48 0.72±0.38 0.11±0.77 0.61
estimated_sharpness(PGD) (19) -0.17±0.65 -0.28±0.54 -0.25±0.97 -0.22±0.75 -0.06±0.57 -0.01±0.74 -0.01±0.72 -0.49±0.48 -0.22

estimated_inv_sharpness(PGD) (20) -0.20±0.65 -0.22±0.56 -0.22±0.98 -0.19±0.75 -0.05±0.56 0.01±0.74 0.04±0.71 -0.48±0.48 -0.21
x_grad_norm(PGD) (22) -0.37±0.51 -0.45±0.35 -0.77±0.64 -0.55±0.59 -0.32±0.44 -0.21±0.64 -0.29±0.66 -0.63±0.45 -0.38
w_grad_norm(PGD) (23) -0.30±0.61 -0.28±0.50 -0.28±0.96 -0.26±0.73 -0.09±0.57 -0.05±0.72 -0.05±0.73 -0.47±0.50 -0.28

Table 9: Numerical results of πk between each measure and test robust accuracy, along with its
corresponding standard deviation.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) - 0.04±0.04 0.05±0.12 0.03±0.01 0.02±0.03 0.02±0.00 0.03±0.02 0.02±0.02 0.02
path_norm (8) 0.01±0.12 -0.20±0.19 -0.33±0.14 0.04±0.00 0.02±0.03 0.04±0.01 0.02±0.05 0.27±0.18 0.02

log_prod_of_spec (9) -0.06±0.12 -0.08±0.10 -0.00±0.09 -0.15±0.06 -0.14±0.05 -0.15±0.01 -0.15±0.03 -0.16±0.04 -0.15
log_prod_of_fro (10) 0.22±0.08 0.06±0.05 -0.00±0.14 0.07±0.01 0.07±0.01 0.07±0.02 0.06±0.01 0.12±0.05 0.07
euclid_init_norm (11) 0.08±0.02 -0.10±0.16 -0.12±0.18 0.11±0.00 0.11±0.04 0.11±0.04 0.12±0.01 0.16±0.14 0.10

average_ce (12) 0.16±0.06 0.26±0.21 0.32±0.21 0.13±0.02 0.16±0.02 0.15±0.02 0.15±0.03 -0.08±0.40 0.14
inverse_margin (13) 0.45±0.08 0.47±0.13 0.43±0.14 0.44±0.02 0.44±0.08 0.44±0.04 0.44±0.03 0.34±0.02 0.44
prob_margin (14) -0.16±0.05 -0.27±0.21 -0.32±0.22 -0.13±0.02 -0.15±0.02 -0.15±0.01 -0.15±0.03 0.08±0.41 -0.14

boundary_thickness (15) 0.33±0.02 0.36±0.22 0.41±0.22 0.30±0.04 0.33±0.02 0.32±0.02 0.32±0.03 0.19±0.38 0.32
kl_divergence (16) -0.44±0.01 -0.47±0.15 -0.29±0.36 -0.45±0.01 -0.45±0.03 -0.48±0.04 -0.46±0.08 -0.40±0.20 -0.45

local_lip (17) -0.39±0.03 -0.45±0.15 -0.40±0.27 -0.38±0.06 -0.40±0.03 -0.43±0.01 -0.40±0.03 -0.31±0.31 -0.40
pacbayes_flat (18) 0.16±0.04 0.07±0.30 -0.08±0.37 0.16±0.06 0.14±0.06 0.14±0.08 0.14±0.10 0.26±0.16 0.15

estimated_sharpness (19) 0.19±0.05 0.18±0.11 0.05±0.28 0.19±0.10 0.17±0.04 0.17±0.00 0.16±0.03 0.20±0.11 0.18
estimated_inv_sharpness (20) 0.35±0.06 0.35±0.20 0.20±0.15 0.35±0.05 0.33±0.03 0.33±0.00 0.32±0.01 0.28±0.07 0.33

average_flat (21) -0.42±0.02 -0.42±0.17 -0.31±0.38 -0.40±0.07 -0.42±0.02 -0.45±0.02 -0.43±0.05 -0.36±0.24 -0.42
x_grad_norm (22) -0.17±0.02 -0.13±0.11 0.04±0.22 -0.17±0.01 -0.17±0.06 -0.20±0.16 -0.19±0.18 -0.20±0.05 -0.17
w_grad_norm (23) 0.41±0.08 0.39±0.22 0.24±0.08 0.38±0.06 0.38±0.05 0.36±0.02 0.37±0.01 0.29±0.01 0.37

average_ce(PGD) (12) -0.56±0.06 -0.52±0.18 -0.41±0.43 -0.59±0.05 -0.57±0.01 -0.59±0.09 -0.58±0.08 -0.61±0.07 -0.58
inverse_margin(PGD) (13) 0.61±0.01 0.64±0.04 0.52±0.16 0.61±0.04 0.61±0.01 0.63±0.01 0.60±0.02 0.56±0.15 0.61
prob_margin(PGD) (14) 0.58±0.06 0.54±0.20 0.45±0.44 0.61±0.05 0.59±0.02 0.61±0.09 0.60±0.09 0.64±0.05 0.60

pacbayes_flat(PGD) (18) 0.60±0.02 0.29±0.57 0.08±0.54 0.61±0.04 0.61±0.03 0.61±0.05 0.58±0.07 0.62±0.10 0.61
estimated_sharpness(PGD) (19) -0.20±0.01 -0.21±0.23 -0.22±0.40 -0.20±0.08 -0.22±0.04 -0.24±0.02 -0.25±0.01 -0.15±0.32 -0.22

estimated_inv_sharpness(PGD) (20) -0.18±0.04 -0.23±0.24 -0.24±0.41 -0.19±0.06 -0.21±0.05 -0.23±0.04 -0.24±0.00 -0.13±0.34 -0.21
x_grad_norm(PGD) (22) -0.39±0.00 -0.41±0.13 -0.29±0.34 -0.37±0.04 -0.39±0.03 -0.41±0.01 -0.39±0.05 -0.27±0.16 -0.38
w_grad_norm(PGD) (23) -0.25±0.03 -0.28±0.24 -0.30±0.40 -0.27±0.07 -0.28±0.02 -0.31±0.01 -0.30±0.03 -0.21±0.28 -0.28

Tables 8 and 9 present the values ofψk and πk for each measure. Fig. 6 illustrates the difference in total
τ when the robust generalization gap and the test robust accuracy are used as the target variable for
correlation analysis. Certain measures exhibit stronger rank correlations with the test robust accuracy
than the robust generalization gap. w_grad_norm, inverse_margin, and inverse_margin(PGD)
exhibit the total τ values exceeding 0.4 with respect to the test robust accuracy, whereas they show
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Figure 6: Comparison of the total τ when the robust generalization g(w) (yellow) and the test robust
accuracy 1− E(w; ϵ,D) (blue) are used as the target variables for correlation analysis.

near-zero total τ values for the robust generalization gap. Similarly, local_lip and average_flat
show stronger correlations. Although we observe some different behavior of measures, we find that
estimating the test robust accuracy can be more challenging. When we perform a linear regression
analysis, predicting the test robust accuracy yields poor R2 values. To ease comparison, we refer the
readers detailed analysis to Table 15 in Appendix A.3.

A.2 Focusing on Adversarially Robust models
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Figure 7: Scatter plot of
pacbayes_flat(PGD). Adversar-
ially robust models (bright colors)
and non-robust models (darker
colors) show distinct range of values
for pacbayes_flat(PGD).

In the main paper, we use all models regardless of their
robust accuracy, to ensure the generality of our analyses.
However, as we discussed in Table 4, adversarially robust
and non-robust models may exhibit different behaviors with
some measures. For instance, as shown in Fig. 7, non-robust
models have extremely low values of pacbayes_flat(PGD)
less 5. In constrast, robust models show higher values of
pacbayes_flat(PGD) over 5. Thus, investigating only ro-
bust models might potentially reveal hidden behaviors of mea-
sures in predicting the robust generalization gap.

In Tables 10 and 11, we summarize ψk and πk with condi-
tioned on average_ce(PGD) ≤ 1.5. To ease the comparison
between the previous results, we also illustrate the total τ
of those in Fig. 8. First, overall πk and ψk of path_norm
increases, and the total τ increases 0.35 to 0.63. As shown
in Fig. 9a, the log of path_norm shows almost linear rela-
tionships between the robust generalization gap. Similarly,
overall πk and ψk of prob_margin, and the total τ decreased
-0.23 to -0.62. Similar to prob_margin, the margin-based measures, i.e., inverse_margin and
average_ce, show more negative correlations. Thus, similar to probability margins on adversarial
examples, maximizing the margins on benign examples may harm to the robust generalization with
high probability. Lastly, boundary_thickness shows strong correlation to the robust generaliza-
tion gap for average_ce(PGD) ≤ 1.5. As shown in Fig. 9c, high boundary_thickness shows
low robust generalization gap. Thus, we can conclude that average_ce(PGD) is also an effective
condition for boundary_thickness as well as the training method.

Notably, some flatness-based measures have a weaker correlation, average_flat (-0.36 to -0.15),
estimated_sharpness(PGD) (-0.22 to -0.02), and estimated_inv_sharpness(PGD) (-0.25 to-
0.03). Their overall values of ψk and πk in Tables 10 and 11 are also close to 0, which supports
our claim that flatness measures cannot serve as reliable indicators of correlation in the adversarial
training framework.
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Table 10: Numerical results of ψk for each measure, along with its corresponding standard deviation.
Conditioned on average_ce(PGD) ≤ 1.5.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) 0.23±0.64 - - - - - - - 0.04
path_norm (8) 0.43±0.54 0.45±0.50 0.54±0.84 0.77±0.46 0.32±0.52 0.71±0.49 0.71±0.51 0.88±0.30 0.63

log_prod_of_spec (9) -0.14±0.56 0.25±0.57 0.21±0.98 0.44±0.73 0.34±0.50 0.16±0.79 0.29±0.78 0.55±0.62 -0.09
log_prod_of_fro (10) -0.14±0.58 0.56±0.54 0.55±0.84 0.66±0.59 0.68±0.39 0.36±0.73 0.45±0.73 0.84±0.38 0.16
euclid_init_norm (11) 0.23±0.62 -0.02±0.56 -0.04±1.00 0.39±0.72 -0.16±0.55 0.54±0.60 0.53±0.62 -0.40±0.73 0.13

average_ce (12) -0.50±0.53 -0.49±0.46 -0.28±0.96 -0.76±0.39 -0.74±0.34 -0.68±0.49 -0.74±0.41 -0.71±0.53 -0.62
inverse_margin (13) -0.12±0.70 -0.28±0.61 0.23±0.97 -0.33±0.77 -0.28±0.65 -0.35±0.75 -0.33±0.77 -0.45±0.67 -0.48
prob_margin (14) 0.50±0.53 0.45±0.46 0.29±0.96 0.76±0.38 0.74±0.34 0.70±0.48 0.75±0.41 0.71±0.53 0.63

boundary_thickness (15) -0.38±0.57 -0.25±0.50 -0.08±1.00 -0.59±0.55 -0.62±0.41 -0.57±0.58 -0.65±0.50 -0.58±0.62 -0.50
kl_divergence (16) -0.36±0.60 -0.03±0.55 -0.52±0.85 -0.05±0.80 -0.39±0.57 -0.70±0.46 -0.36±0.73 -0.53±0.68 -0.31

local_lip (17) -0.16±0.66 0.15±0.52 -0.37±0.93 0.24±0.76 -0.06±0.59 -0.46±0.68 0.11±0.79 0.11±0.79 0.04
pacbayes_flat (18) 0.32±0.65 0.10±0.54 0.30±0.95 0.10±0.83 0.15±0.54 -0.35±0.71 -0.31±0.75 0.47±0.72 0.00

estimated_sharpness (19) -0.02±0.67 -0.12±0.55 0.26±0.97 0.16±0.82 -0.02±0.61 -0.41±0.68 -0.29±0.78 0.13±0.81 -0.26
estimated_inv_sharpness (20) -0.06±0.66 -0.14±0.56 0.32±0.95 0.19±0.82 0.02±0.63 -0.41±0.68 -0.28±0.77 0.03±0.81 -0.29

average_flat (21) -0.12±0.56 0.12±0.60 -0.48±0.88 0.14±0.79 -0.09±0.48 -0.63±0.52 -0.27±0.76 -0.22±0.74 -0.15
x_grad_norm (22) -0.39±0.63 -0.22±0.59 -0.52±0.85 -0.52±0.68 -0.65±0.44 -0.80±0.36 -0.75±0.47 -0.70±0.59 -0.63
w_grad_norm (23) -0.13±0.65 -0.14±0.56 0.41±0.91 0.03±0.84 -0.14±0.60 -0.45±0.65 -0.34±0.74 -0.03±0.79 -0.34

average_ce(PGD) (12) -0.64±0.55 -0.74±0.41 -0.70±0.71 -0.87±0.28 -0.86±0.26 -0.80±0.37 -0.84±0.34 -0.81±0.45 -0.76
inverse_margin(PGD) (13) 0.57±0.48 -0.13±0.61 0.55±0.84 0.13±0.82 0.39±0.63 0.28±0.81 0.26±0.81 0.10±0.80 -0.01
prob_margin(PGD) (14) 0.61±0.58 0.57±0.42 0.66±0.75 0.88±0.27 0.85±0.27 0.79±0.37 0.84±0.34 0.79±0.50 0.76

pacbayes_flat(PGD) (18) 0.45±0.62 0.29±0.55 0.63±0.78 0.33±0.78 0.45±0.48 0.16±0.79 0.00±0.83 0.65±0.59 0.26
estimated_sharpness(PGD) (19) 0.10±0.66 0.03±0.56 0.12±0.99 0.40±0.71 0.17±0.61 -0.21±0.76 -0.18±0.79 0.29±0.76 0.02

estimated_inv_sharpness(PGD) (20) -0.03±0.66 -0.01±0.57 0.16±0.99 0.39±0.73 0.17±0.59 -0.31±0.74 -0.20±0.79 0.20±0.78 -0.03
x_grad_norm(PGD) (22) -0.08±0.64 0.09±0.61 -0.48±0.88 0.11±0.79 -0.31±0.55 -0.61±0.53 -0.40±0.72 -0.32±0.75 -0.19
w_grad_norm(PGD) (23) -0.09±0.67 -0.13±0.57 0.06±1.00 0.25±0.78 0.07±0.60 -0.27±0.76 -0.17±0.80 0.08±0.79 -0.12

Table 11: Numerical results of πk for each measure, along with its corresponding standard deviation.
Conditioned on average_ce(PGD) ≤ 1.5. Total τ is same as in Table 10.

Model
Architecture

Training
Methods Steps Optimizer Batch-size Aug Extra-data Early

Stopping
Total
τ

num_params (7) - 0.03±0.04 -0.01±0.09 0.03±0.01 0.05±0.03 0.05±0.07 0.04±0.02 0.04±0.00 0.04
path_norm (8) 0.64±0.03 0.65±0.03 0.62±0.02 0.64±0.05 0.68±0.00 0.65±0.03 0.63±0.01 0.52±0.01 0.63

log_prod_of_spec (9) 0.19±0.25 -0.09±0.01 -0.06±0.00 -0.08±0.02 -0.07±0.02 -0.09±0.02 -0.09±0.00 -0.08±0.06 -0.09
log_prod_of_fro (10) 0.47±0.04 0.16±0.05 0.17±0.06 0.16±0.01 0.15±0.04 0.19±0.02 0.17±0.01 0.11±0.01 0.16
euclid_init_norm (11) 0.21±0.07 0.15±0.07 0.10±0.11 0.11±0.01 0.16±0.03 0.11±0.03 0.11±0.02 0.17±0.06 0.13

average_ce (12) -0.63±0.04 -0.70±0.05 -0.65±0.03 -0.61±0.05 -0.62±0.03 -0.66±0.06 -0.62±0.05 -0.56±0.15 -0.62
inverse_margin (13) -0.48±0.09 -0.44±0.22 -0.47±0.12 -0.45±0.10 -0.46±0.12 -0.47±0.12 -0.47±0.06 -0.42±0.28 -0.48
prob_margin (14) 0.63±0.03 0.71±0.04 0.65±0.03 0.61±0.04 0.62±0.03 0.66±0.06 0.63±0.05 0.57±0.16 0.63

boundary_thickness (15) -0.51±0.03 -0.61±0.03 -0.57±0.01 -0.49±0.07 -0.50±0.04 -0.53±0.07 -0.49±0.09 -0.45±0.21 -0.50
kl_divergence (16) -0.31±0.07 -0.40±0.14 -0.13±0.18 -0.33±0.03 -0.31±0.11 -0.25±0.18 -0.30±0.08 -0.27±0.13 -0.31

local_lip (17) 0.03±0.12 0.01±0.23 0.17±0.08 0.01±0.04 0.03±0.08 0.13±0.03 0.04±0.03 0.02±0.03 0.04
pacbayes_flat (18) -0.03±0.19 -0.01±0.06 -0.05±0.07 0.02±0.01 -0.00±0.08 0.11±0.07 0.07±0.06 -0.16±0.18 0.00

estimated_sharpness (19) -0.26±0.02 -0.24±0.13 -0.37±0.01 -0.25±0.05 -0.26±0.10 -0.15±0.16 -0.22±0.12 -0.32±0.27 -0.26
estimated_inv_sharpness (20) -0.28±0.02 -0.28±0.14 -0.42±0.01 -0.29±0.04 -0.29±0.06 -0.18±0.15 -0.26±0.11 -0.32±0.27 -0.29

average_flat (21) -0.17±0.05 -0.22±0.13 0.02±0.18 -0.20±0.09 -0.16±0.05 -0.04±0.19 -0.14±0.04 -0.17±0.01 -0.15
x_grad_norm (22) -0.64±0.04 -0.69±0.13 -0.55±0.08 -0.65±0.04 -0.62±0.08 -0.58±0.12 -0.62±0.04 -0.57±0.14 -0.63
w_grad_norm (23) -0.34±0.03 -0.34±0.11 -0.48±0.01 -0.33±0.05 -0.33±0.08 -0.26±0.12 -0.31±0.09 -0.35±0.27 -0.34

average_ce(PGD) (12) -0.77±0.03 -0.77±0.01 -0.73±0.03 -0.76±0.02 -0.77±0.01 -0.80±0.02 -0.77±0.00 -0.72±0.07 -0.76
inverse_margin(PGD) (13) -0.02±0.03 0.13±0.11 -0.14±0.07 0.03±0.11 -0.02±0.05 -0.01±0.15 0.02±0.22 -0.02±0.31 -0.01
prob_margin(PGD) (14) 0.77±0.03 0.77±0.01 0.73±0.03 0.76±0.01 0.77±0.02 0.80±0.01 0.77±0.00 0.72±0.08 0.76

pacbayes_flat(PGD) (18) 0.26±0.08 0.25±0.07 0.25±0.15 0.29±0.03 0.26±0.07 0.34±0.03 0.36±0.04 0.08±0.20 0.26
estimated_sharpness(PGD) (19) 0.01±0.04 0.03±0.09 0.06±0.19 -0.01±0.01 0.01±0.13 0.14±0.10 0.07±0.11 -0.09±0.17 0.02

estimated_inv_sharpness(PGD) (20) -0.02±0.05 -0.02±0.08 0.00±0.20 -0.06±0.04 -0.04±0.08 0.10±0.10 0.02±0.10 -0.14±0.20 -0.03
x_grad_norm(PGD) (22) -0.20±0.04 -0.24±0.06 0.04±0.28 -0.25±0.10 -0.19±0.13 -0.12±0.18 -0.18±0.02 -0.17±0.08 -0.19
w_grad_norm(PGD) (23) -0.12±0.04 -0.08±0.08 -0.06±0.21 -0.13±0.01 -0.11±0.11 -0.01±0.10 -0.08±0.08 -0.19±0.18 -0.12

18



num_params

path_norm

log_prod_of_sp
ec

log_prod_of_fro

euclid
_init_n

orm

average_ce

x_grad_norm

w_grad_norm

inverse_margin

prob_margin

boundary_thickness

kl_divergence
local_lip

     
     

   pacbayes_fla
t

estim
ated_sharpness

estim
ated_inv_sharpness

average_fla
t

average_ce(PGD)

inverse_margin(PGD)

prob_margin(PGD)

     
     

pacbayes_fla
t(PGD)

estim
ated_sharpness(P

GD)

estim
ated_inv_sharpness(P

GD)

x_grad_norm(PGD)

w_grad_norm(PGD)

Measures

1.0

0.5

0.0

0.5

1.0

Ra
nk

 C
or

re
la

tio
n 

(
) No condition

CE(PGD) 1.5

Figure 8: Comparison of total τ between no condition and average_ce(PGD) ≤ 1.5. Follow-
ing measures show strong correlation on the condition: path_norm, average_ce, x_grad_norm,
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Figure 9: Scatter plot of the measures showing the most increased the total τ when conditioned on
average_ce(PGD) ≤ 1.5.
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Table 12: Regression analysis in Fig. 10 for the target variable, the robust generalization gap g(w).
We summarize their R2 for each measure.

Measures R2

num_params (7) 0.87
path_norm (8) 0.87

log_prod_of_spec (9) 0.88
log_prod_of_fro (10) 0.88
euclid_init_norm (11) 0.87

average_ce (12) 0.86
inverse_margin (13) 0.86
prob_margin (14) 0.87

boundary_thickness (15) 0.86
kl_divergence (16) 0.87

local_lip (17) 0.87
pacbayes_flat (18) 0.90

Measures R2

estimated_sharpness (19) 0.88
estimated_inv_sharpness (20) 0.89

average_flat (21) 0.87
x_grad_norm (22) 0.91
w_grad_norm (23) 0.88

inverse_margin(PGD) (13) 0.86
prob_margin(PGD) (14) 0.91

pacbayes_flat(PGD) (18) 0.89
estimated_sharpness(PGD) (19) 0.87

estimated_inv_sharpness(PGD) (20) 0.86
x_grad_norm(PGD) (22) 0.88
w_grad_norm(PGD) (23) 0.87
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Figure 10: Cumulative distribution of absolute errors for the robust generalization gap estimation is
shown. A simple linear regression model is constructed to estimate the robust generalization gap,
using average_ce(PGD) as the baseline measure, and each measure considered as an additional
independent variable. The mean (solid line), Q1 (dotted line), and Q3 (dashed line) are plotted. A
lower absolute error indicates that the measure is more effective in estimating the robust generalization
gap.

A.3 Robust Measures with Regression Analysis

In the seminar work of [17], the concept of an affine oracle was proposed, which utilizes linear
regression to assess the performance of measures. Motivated by this experiment, we conduct a simple
linear regression analysis. Specifically, for each measure, we calculate the optimal coefficients and
bias to predict the robust generalization gap g(w). Considering that average_ce(PGD) consistently
exhibits the highest correlation across all settings, we use it as a baseline for the regression, i.e.,
β1×average_ce(PGD)+β0. We then consider each measure as an independent variable, resulting
in a new form of measure β1×average_ce(PGD)+β2×measure+β0. To ensure high predictability,
we perform this regression analysis with robust models with average_ce(PGD) ≤ 1.5.

In Table 12, we calculate the coefficient of determination (R2) for the regression analysis to evaluate
the extent to which each measure explained the generalization gap. Consistent with the findings in
the main paper, x_grad_norm and prob_margin(PGD) exhibit the highest R2 values.

Additionally, to examine the distributional information of each measure, we plot the cumulative
distribution of absolute errors for each model with the mean (solid line) and the interval denoted by
the first quartile (Q1, dotted line) and the third quartile (Q3, dashed line). The results are illustrated
in Figure 10. We observe that only a few measures, such as x_grad_norm and prob_margin(PGD),
provided meaningful information about the generalization gap, while the effects of other measures are
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Table 13: Total τ of generated measures from the regression analysis. Both new measures show
improved performance in predicting the robust generalization gap.

Generated Measures Total τ
−514.11×x_grad_norm−23.87×average_ce(PGD)+57.32 0.81 (+0.18)

81.17×prob_margin(PGD)+13.52×average_ce(PGD)−20.60 0.78 (+0.02)

Table 14: Total τ of generated predictors from the regression analysis with forward selection.
#Measures Selected Measures 5-fold τ (Avg.±Std.)

1 average_ce(PGD) 0.7229±0.1301
2 x_grad_norm, average_ce(PGD) 0.7683±0.1040
3 x_grad_norm, average_ce(PGD), pacbayes_mag_flat(PGD) 0.8145±0.0728
4 x_grad_norm, average_ce(PGD), x_grad_norm(PGD), pacbayes_mag_flat(PGD) 0.8219±0.0730

All - 0.8165±0.0868

Table 15: Regression analysis for the target variable, the test robust accuracy 1 − E(w; ϵ,D). We
summarize their R2 for each measure.

Measures R2

num_params (7) 0.10
path_norm (8) 0.07

log_prod_of_spec (9) 0.14
log_prod_of_fro (10) 0.14
euclid_init_norm (11) 0.12

average_ce (12) 0.12
inverse_margin (13) 0.05
prob_margin (14) 0.20

boundary_thickness (15) 0.20
kl_divergence (16) 0.13

local_lip (17) 0.16
pacbayes_flat (18) 0.40

Measures R2

estimated_sharpness (19) 0.33
estimated_inv_sharpness (20) 0.41

average_flat (21) 0.12
x_grad_norm (22) 0.09
w_grad_norm (23) 0.38

inverse_margin(PGD) (13) 0.04
prob_margin(PGD) (14) 0.24

pacbayes_flat(PGD) (18) 0.48
estimated_sharpness(PGD) (19) 0.04

estimated_inv_sharpness(PGD) (20) 0.05
x_grad_norm(PGD) (22) 0.16
w_grad_norm(PGD) (23) 0.05

negligible. Specifically, x_grad_norm and prob_margin(PGD) achieve the lowest mean absolute
error across all trained models.

In Table 13, we evaluate the effectiveness of predictors generated from the regression analysis. The
predictor using x_grad_norm achieves an exceptionally strong correlation of 0.81, an increase of
0.18 compared to the previous value in Table 10. The predictor using prob_margin(PGD) also
exhibits improved performance. These results suggest the potential to effectively predict the robust
generalization gap by combining existing measures.

To push further, we conduct a 5-fold evaluation strategy with a linear regression model to predict the
robust generalization gap. Specifically, we use the forward selection to identify the most effective set
of measures. In Table 14, we present the results of our 5-fold evaluation, reporting the average τ along
with its standard deviation. average_ce(PGD) is selected as a prominent predictor, followed by
the selection of x_grad_norm. Furthermore, our exploration identifies pacbayes_mag_flat(PGD)
and x_grad_norm(PGD) as additional effective measures, resulting in higher average τ compared to
using the entire feature set.

In Table 15, we conduct a linear regression analysis to predict the test robust accuracy, rather than the
robust generalization gap. Compared to Table 12, overall values of R2 for each measure are lower.
This implies that directly predicting the test robust accuracy might be more difficult than the robust
generalization gap.
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A.4 Robust Generalization Gap with AutoAttack [11]
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Figure 11: Scatter plot of the ro-
bust generalization gap calculated by
PGD and AutoAttack. The color of
each dot implies the test robust accu-
racy on CIFAR-10.

In the main paper, we estimate the robust generalization gap
using PGD10. While we acknowledge the potential benefits
of stronger attacks, such as AutoAttack [11], we mainly use
PGD10 due to the following reasons. Firstly, the computa-
tional cost of AutoAttack is substantial. Our experimental
design involves training models across diverse adversarial
settings and requires adversarial examples for both training
and test datasets to estimate the robust generalization gap.
AutoAttack takes 10 min per batch for WRN-34-10 on our
resources. Since we have 1300 models, we need at least 1
year to obtain all adversarial examples even with 6 GPUs.
Secondly, the prevalent usage of PGD among various meth-
ods. AT, TRADES, and MART use PGD as a baseline during
training and further adopt early-stopping by using PGD on
training or validation sets. Lastly, some measures, namely
boundary_thickness and local_lip, rely on PGD adver-
sarial examples for their calculation. As these robustness mea-
sures are often computed using PGD, the choice to use PGD for evaluation contributes to consistency
across our experiments.

However, we here highlight the potential benefits of utilizing AutoAttack in future work. In Fig. 11,
we calculate the gap g(w) using AutoAttack for 30 models on CIFAR-10 in RobustBench [12].
While the gaps calculated using PGD10 and AutoAttack exhibit an almost linear relationship, there
are a few exceptions (2 out of 30): ‘Ding2020MMA’ [14] and ‘Sitawarin2020Improving’ [55]. We
leave this question open for further exploration.

A.5 Importance of Model Architecture in Norm-based Measures
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Figure 12: Distributions of norm-based measures for model architectures. For each model architecture,
the range of measure extremely varies.

In Fig. 12, we plot log_prod_of_spec and log_prod_of_fro for each model architecture. We can
observe that the range of each measure extremely varies with respect to the used model architecture.
When the model architecture is fixed, they show some correlation with the robust generalization gap
as described in the main paper.

A.6 Early Stopping and Estimated Sharpness

In the main paper, we discussed that estimated_sharpness exhibits a significant negative correla-
tion when early stopping is not used. Fig. 13 shows the importance of early-stopping for estimated
sharpness measures. Compared to Figures 4 and 13b, when early stopping is employed, the correlation
approaches zero as shown in Figures 13a and 13c. This results supports the observation of prior study
[56] that the importance of early stopping in the analysis of flatness.

22



0 10 20 30 40
Robust Generalization Gap (%)

0.2

0.4

0.6

es
tim

at
ed

_s
ha

rp
ne

ss

40

45

50

55

60

Te
st

 R
ob

us
tn

es
s (

%
)

(a) estimated_sharpness
w/ early-stopping

0 20 40 60
Robust Generalization Gap (%)

0.00

0.05

0.10

0.15

0.20

es
tim

at
ed

_in
va

ria
nt

_s
ha

rp
ne

ss

10

20

30

40

50

60

Te
st

 R
ob

us
tn

es
s (

%
)

(b) estimated_inv_sharpness
w/o early-stopping

0 20 40
Robust Generalization Gap (%)

0.05

0.10

0.15

0.20

es
tim

at
ed

_in
va

ria
nt

_s
ha

rp
ne

ss

40

45

50

55

60

Te
st

 R
ob

us
tn

es
s (

%
)

(c) estimated_inv_sharpness
w/ early-stopping

Figure 13: Scatter plot of the estimated sharpness measures for the use of early-stopping. The same
condition, average_ce(PGD)< 2, used as Fig. 4.

B Measures

In this section, we introduce the concept of each category of measures in the main paper, then explain
the details of each measure and their mathematical definitions. Here, we denote Wi as the weight
tensor of i-th layer, following [17]. Given the number of layers d, the whole trainable parameters are
denoted as w = vec(W1,W2, · · · ,Wd).

Weight-norm. Based on some theoretical frameworks such as PAC-Bayes [43, 47, 38], weight
norm-based measures are expected to be correlated with generalization performance. Among
them, the product of Frobenius norm [46] (log_prod_of_fro), the product of spectral norm
[7] (log_prod_of_spec), and path norm (path_norm) have been considered as important mea-
sures [27, 17]. Furthermore, the distance to the converged weight from the initial weight
(euclid_init_norm) is also used to estimate the generalization gap [27]. Liu et al. [40] also
argues that this distance can be used to judge the difficulty of optimization in adversarial training.
▷ num_params.

d∑
i=1

kici−1(ci + 1), (7)

where ci is the number of channels and ki is the kernel size at layer i. In the experiments, we
calculated num_params by adding the number of parameters of all convolutional and linear layers.
num_params is a fixed value when a model architecture is given.
▷ path_norm. ∑

i

fw2(1)[i], (8)

where w2 is the element-wise square operation and f(·)[i] is the i-th logit output of the network.
By setting all input variables as 1, this measure captures geometric properties of optimization under
scale-invariant characteristics.
▷ log_prod_of_spec.

log

(
d∏

i=1

∥Wi∥22

)
, (9)

where ∥ · ∥2 is a matrix L2-norm, i.e., the largest singular value of each layer.
▷ log_prod_of_spec.

log

(
d∏

i=1

∥Wi∥2F

)
, (10)

where ∥ · ∥F is a Frobenius norm, i.e., the square root of the sum of the squares of the weight matrix.
▷ euclid_init_norm.

1

d

d∑
i=1

∥wi −w0
i ∥2, (11)

where wi = vec(Wi) and the initial weight of i-th layer w0
i .
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Margin. Margins are also actively researched measures to estimate the generalization gap [26].
For instance, the 10-th percentile of the margin values in the output space on the training set
(inverse_margin) is often used to measure the generalization bound for neural networks [50, 27].
In terms of adversarial robustness, most of attack methods and defense methods utilize the probability
margins (prob_margin). Yang et al. [67] further proposed a new measure, called boundary thickness
(boundary_thickness), that is a generalized version of margin and argued that it is highly correlated
to the robust generalization gap.

▷ average_ce.
Ex,y [Lce(f(x,w), y)] , (12)

where Lce is the cross-entropy loss.

▷ inverse_margin.
1/γ2, (13)

where γ is 10th-percentile of {σ(f(x,w))y −maxi ̸=y σ(f(x,w))i} for all x, y, with the sigmoid
function σ(·).
▷ prob_margin.

Ex,y

[
σ(f(x,w))y −max

i ̸=y
σ(f(x,w))i

]
. (14)

▷ boundary_thickness.

Ex

[
∥x− x∗∥2

∫ 1

0

1{a < g(x,x∗, λ) < b}dλ
∣∣∣ argmax

i
σ(f(x,w))i ̸= argmax

i
σ(f(x∗,w))i

]
,

(15)
where 1{·} is an indicator function, g(x,x∗, λ) = σ(f(λx + (1 − λ)x∗,w))ŷ − σ(f(λx + (1 −
λ)x∗,w))ŷ∗ , ŷ = argmaxi σ(f(x,w))i, ŷ∗ = argmaxi σ(f(x

∗,w))i and a, b are the hyper-
parameters that controls the sensitivity of the boundary thickness. Following [67], we find x∗ by
using PGD10 with L2-norm, ϵ = 1, α = 0.2, then a = 0, b = 0.75, and batch size 128. A higher
value of boundary_thickness implies a larger margin in the output space.

Smoothness. Based on prior works [6, 10, 28], a line of work has focused on the smoothness for
achieving adversarial robustness in adversarial training. Most simply, the KL divergence between
benign and adversarial logits (kl_divergence) of TRADES [71] can be regarded as a smoothness
regularization due to its logit pairing. Yang et al. [66] investigated the theoretical benefit of local
Lipschitzness (local_lip) and demonstrated that its value estimated on the test dataset correlates
with the robust generalization gap.

▷ kl_divergence.

Ex

[
max

∥x−x∗∥≤ϵ
KL(f(x,w), f(x∗,w))

]
, (16)

where KL is KL-divergence and the maximization is conducted by PGD10 with the step-size 2/255. A
lower value of kl_divergence implies that a model outputs similar outputs for both benign example
and adversarial example.

▷ local_lip.

Ex

[
max

∥x−x∗∥≤ϵ

∥f(x,w)− f(x∗,w)∥1
∥x− x∗∥∞

]
, (17)

where the maximization is conducted by PGD10 with the step-size 2/255. This is the empirical
version of the local Lipschitzness, resulting a lower value of local_lip implies a smoother model.

Flatness. Flatness is a recently focused measure in the generalization domain [43, 30]. Recent works
argue that flatter minima yield better generalization performance than sharper minima. The common
strategy to achieve flatness is to minimize the estimated sharpness [18, 73], which is the difference
between the current loss and the maximum loss for a given neighborhood (estimated_sharpness).
Kwon et al. [36] investigated the scale-invariant sharpness (estimated_inv_sharpness). Note
that other diverse concept of estimated sharpness is actively researched in recent works [33, 5, 34].
Adversarial weight perturbation (AWP) [64] also has dramatically improved adversarial robustness
by minimizing the loss of perturbed weight. Recently, Stutz et al. [56] has demonstrated that their
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proposed measure, average flatness (average_flat), is effective for estimating robust generalization
gap.

▷ pacbayes_flat. Based on PAC-Bayesian framework [43], Jiang et al. [27] proposed a simplified
version of PAC-Bayesian bounds as follows:

1/σ′ (18)

where σ′ is the largest value such that Eu[E(w + u; {x, y}) − E(w; {x, y})] < 0.1. Here, uj ∼
N (0, σ′) and E(w; {x, y}) denotes the error on the given set {x, y}. Thus, a higher value of
pacbayes_flat implies flatter optimum in terms of error landscape.

▷ estimated_sharpness.

Ex,y

[
max

∥v∥2≤ρ
Lce(f(x,w + v), y)− Lce(f(x,w), y)

]
. (19)

Following [73], we calculate the estimated sharpness with a single-step ascent with ρ = 0.1. A higher
value of estimated_sharpness implies a sharper optimum in terms of loss landscape.

▷ estimated_inv_sharpness.

Ex,y

[
max

∥T−1
w v∥2≤ρ

Lce(f(x,w + v), y)− Lce(f(x,w), y)

]
, (20)

where Tw is ∥w∥, i.e., element-wise adaptive sharpness, and Lce is the cross-entropy loss. Similar to
the estimated sharpness, we calculate the estimated invariant sharpness with a single-step ascent with
ρ = 0.1 [36]. A higher value of estimated_inv_sharpness implies a sharper optimum in terms
of loss landscape.

▷ average_flat.

Ex,y

[
Ev∈Bρ(w)

[
max

∥x−x∗∥≤ϵ
Lce(f(x

∗,w + v), y)

]
− max

∥x−x∗∥≤ϵ
Lce(f(x

∗,w), y)

]
, (21)

where Bρ(w) = {w+v
∣∣∥vi∥2 ≤ ρ∥wi∥2∀ layers i}. We use PGD10 with ϵ = 8/255 for both inner

maximizations. Following [56], we take 10 random weight perturbations with ρ = 0.5. A higher
value of average_flat implies a sharper optimum in terms of adversarial loss landscape.

Gradient-norm. Gradient-norm with respect to input or weight is also a consistently researched
area in terms of generalization. Recently, Zhao et al. [72] also demonstrated that regularizing the
gradient norm of weights (w_grad_norm) can achieve sufficient improvement on several tasks.
Additionally, there are a few works that emphasize the importance of regularizing the gradient norm
of weights [53, 44]. The gradient norm of inputs (x_grad_norm) also can have underlying correlation
between the robust generalization performance. Prior works utilized the input gradient for analyzing
adversarially trained models [4] and generating adversarial examples [35, 16].

▷ x_grad_norm.
Ex,y [∥∇xLce(f(x,w), y)∥2] . (22)

▷ w_grad_norm.
Ex,y [∥∇wLce(f(x,w), y)∥2] . (23)

Comment on batch normalization fusion Here, we provide comments on some further discussed
things when estimating the above measures. In previous studies [27, 17], it has been observed
that considering batch normalization (batch-norm) layers can have an impact on common general-
ization measures, such as sharpness [15]. To address this issue, the batch-norm layers and other
moving statistics were fused with the preceding convolution layers before calculating the values of
generalization measures. Thus, when estimating {num_params, path_norm, log_prod_of_spec,
log_prod_of_fro, pacbayes_flat}, we apply batch-norm fusion to all ResNet blocks. However,
for certain blocks, such as pre-activation ResNets, where the batch-norm layer is placed at the begin-
ning, the fusion cannot be directly applied. To ensure consistency, we add an identity convolutional
layer in front of all batch-norm layers that do not have the preceding convolution layer. While
there are various batch-norm fusion (or batch-norm folding) techniques, including those related to
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generalization [27, 17, 5], quantization [69, 37, 49], and memory optimization domains [8, 19, 2],
there is no precise solution to address this problem in the context of various model structures (ResNets,
PreActResNets, ViT, etc.) and activation functions (SiLU, LeakyReLU, etc.), which we leave as a
topic for future work.

C Training Details

In Section 3, 1,344 models were trained using the CIFAR-10 dataset with ϵ = 8/255. We here
provide the detailed training settings. We followed the common settings used in [42, 71, 48, 21].

Given the higher Rademacher complexity [68] and larger sample complexity [54] of adversarial
training, data augmentation [21] and the utilization of extra data [9] can significantly improve
the adversarial robustness. Therefore, we also considered the impact of augmentation technique,
including RandomCrop with padding 4 and RandomHorizontalFlip, as well as the use of additional
data collected by Carmon et al. [9].

Regarding model architectures, we employed three different models: ResNet18 [23], WRN28-10
[70], and WRN34-10 [70]. These models have been widely adopted and serve as benchmarks for
evaluating the stability and performance of adversarial training methods. It is worth noting that
the majority of models trained on CIFAR-10 in RobustBench [12] consist of WRN28-10 (15) and
WRN34-10 (14) among the 63 available models.

For training methods, we considered four different approaches: Standard, AT [42], TRADES [71],
and MART [61]. Notably, AT, TRADES, and MART have been shown to outperform other variations
by incorporating various training tricks [48] and integrating recent techniques [9, 64]. For all methods,
we generated adversarial examples using projected gradient descent (PGD) [42]. During training, a
single-step approximation of the inner maximization in Eq. (1) can lead to faster adversarial training,
but may suffer from catastrophic overfitting [63, 31]. On the other hand, a large number of steps
leads to stable robustness, but requires heavy computational costs. Therefore, we considered both 1
and 10 steps for each adversarial training method.

In terms of optimization, we used SGD with momentum 0.9 and weight decay of 5× 10−4, and a
step-wise learning rate decay was performed at epochs 100 and 150 with a decay rate of 0.1. In all the
experiments, we trained the models for 200 epochs. As highlighted by Pang et al. [48], the batch size
used during adversarial training has been found to affect its performance. Thus, we varied the batch
size among {32, 64, 128, 256}. Additionally, we also considered adversarial weight perturbation
(AWP) [64], which can improve the robust generalization performance of models. AWP belongs to
the class of sharpness-aware minimization methods [18, 36]. This can be formalized as follows:

min
w

max
∥xadv−x∥≤ϵ,v∈Bρ(w)

L(f(xadv,w + v), y), (24)

where Bρ(w) = {w + v
∣∣∥vi∥2 ≤ ρ∥wi∥2 ∀i-th layer}. As described by Wu et al. [64], xadv is

calculated based on the non-perturbed model f(w), and a single step of maximization with respect to
v is sufficient to improve robustness. We used the best-performing value of ρ = 5× 10−3 from [64].
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