
A Details on Tasks and Experiments

A.1 Details on tasks

To prevent bias and ensure a fair comparison, all tasks were defined using the previously
suggested format [6] of the input-output sequence generated from corresponding formal lan-
guage sequences. Only for Bucket Sort, we modified the default number of digits of the in-
put sequence from 5 to 4 for simplicity and mapping convenience. An intuitive description
of each task is in C.2. Detailed descriptions of the following tasks: Even Pairs, Modular
Arithmetic, Parity Check, Cycle Navigation, Stack Manipulation, Reverse String,
Duplicate String, Odds First, Binary Addition, Binary Multiplication, Compute
Sqrt, and Bucket Sort can be found in Appendix A of [6] and for these tasks: Compare
Occurrence, Divide by 2, Interlocked Pairing, please refer to the previous version of [6]
(https://arxiv.org/pdf/2207.02098v1.pdf).

A.2 Details on experiments

To process the mapped input sequence, we used four types of sequential models employed in the
aforementioned paper [6]: RNN, LSTM, Stack-RNN, and Tape-RNN. All models were trained in a
non-autoregressive setting. Unlike the scenario of the previous paper, where one task was trained
at a time, the nature of the continual learning setting requires a larger model capacity. Therefore,
in the continual learning scenario for more than five tasks, we increased the hidden dimension of
the model from 256 to 512. For Stack-RNN and Tape-RNN, we doubled the dimension of the
memory elements (Rd) from d = 8 to d = 16. Also, instead of training 1,000,000 steps [6], we
trained each task for 50,000 steps for every CL scenario. We used Adam optimizer [7] with a
learning rate 1.0 × 10−3 and applied gradient clipping with a threshold of 1.0. We used a batch
size of 128 for training. All experiments were conducted using the Jax framework [2, 1]. RNN,
LSTM, Stack-RNN, and Tape-RNN codes are based on [6]. Each scenario was trained using one
NVIDIA GeForce RTX 3090Ti GPU or NVIDIA A40 GPU. The code is available in our git repository
(https://github.com/Pusheen-cat/CLeAR_2023).

B Single Task Train

B.1 Comparison with the previous paper

To assess the optimal performance that the model can ideally achieve, we completed Table 1 based
on the results from the previous paper [6]. Each value in the table was found through extensive
hyperparameter searches and 10 different random seeds and training steps up to 1,000,000. Therefore,
it can be considered as the ceiling of the algorithmic reasoning performance for abstract logical tasks
relying on the inductive bias of the model itself. When compared to Table 1 in the main article, which
includes the mapping strategy and training with much fewer seeds and steps, our experimental results
did not significantly differ and even exceeded the ceiling in some cases. However, Tape-RNN showed
lower overall performance in our results, which is attributed to its sensitivity to initial seeds and
relatively unstable training.

B.2 In-distribution (ID) accuracy

Table 2 shows model accuracy on ID test data, which has input lengths of 1-40. The values in this
table demonstrate higher accuracy compared to the accuracy on OOD test data, which ranges from
41 to 100, shown in the main Table 1. If a model demonstrates high accuracy on an in-distribution
test set but low accuracy on an out-of-distribution test set, it indicates that the model has learned
the input distribution itself rather than the generalization rule. Furthermore, it suggests that the
model has already learned sufficiently from the training dataset, achieving very low training loss.
Therefore, it can be inferred that it is not insufficient training but rather the inherent inductive bias
of the model itself that acts as a hard barrier preventing the learning of the generalization rule in
single-task learning.

1



Table 1: The generalization accuracy of tasks obtained by training on raw input without mapping. For
accuracy over 90%, we marked the number bold. The random accuracy is 50% except for Modular
Arithmetics (R), Cyclic Navigation (R), and Bucket Sort (CS). Tasks that require additional positional
mapping are tagged with †.

Level Task RNN Stack-RNN Tape-RNN LSTM

Regular

Even Pairs 100.0 100.0 100.0 100.0
Modular Arithmetic 100.0 100.0 100.0 100.0
Parity Check 100.0 100.0 100.0 100.0
Cycle Navigation 100.0 100.0 100.0 100.0

Context Free

Compare Occurrence 98.7 99.4 100.0 93.5
Stack Manipulation† 56.0 100.0 100.0 59.1
Reverse String 62.0 100.0 100.0 60.9
Divide by 2† 54.0 81.0 64.0 51.0

Context Sensitive

Duplicate String 50.3 52.8 100.0 57.6
Interlocked Pairing† 52.0 94.0 99.0 99.0
Odds First 51.0 51.9 100.0 55.6
Binary Addition† 50.3 52.7 100.0 55.5
Binary Multiplication† 50.0 52.7 58.5 53.1
Compute Sqrt 54.3 56.5 57.8 57.5
Bucket Sort 27.9 78.1 70.7 99.3

Table 2: Baseline in-distribution accuracy (%) of overall tasks. Each model is trained for 50,000
epochs with one fixed seed. The accuracy value was reported with positional mapping. For accuracy
over 90%, we marked the number bold. The random accuracy is 50% except for Modular Arithmetics
(R), Cyclic Navigation (R), and Bucket Sort (CS). Tasks that require additional positional mapping
are tagged with †.

Level Task RNN Stack-RNN Tape-RNN LSTM

Regular

Even Pairs 100.0 100.0 100.0 100.0
Modular Arithmetic 100.0 99.51 99.99 100.0
Parity Check 100.0 100.0 100.0 100.0
Cycle Navigation 100.0 100.0 100.0 98.80

Context Free

Compare Occurrence 100.0 100.0 99.99 100.0
Stack Manipulation† 93.87 99.95 100.0 99.98
Reverse String 99.94 99.98 100.0 99.93
Divide by 2† 99.46 100.0 99.56 100.0

Context Sensitive

Duplicate String 72.71 89.43 90.75 99.97
Interlocked Pairing† 97.92 100.0 99.42 100.0
Odds First 83.11 92.30 97.70 99.97
Binary Addition† 71.52 81.92 84.13 98.62
Binary Multiplication† 68.72 76.47 79.07 88.74
Compute Sqrt 84.59 89.91 90.27 92.39
Bucket Sort 99.83 100.0 94.40 100.0

C Details in Mapping Strategy

The input sequence of an algorithmic reasoning task consists of alphabets from the corresponding
formal language. Similar to how we can represent all numbers with 10 digits and create infinite
sentences with 26 alphabets, the number of alphabets in a formal language is incomparably small
compared to high-dimensional inputs like images. Furthermore, the mapping space, which also has
discrete values of 0 and 1 for each dimension, has a limited capacity. This allows the mapping to be
represented as a look-up table, thereby saving computation.

2



C.1 Training mapping encoder

Neural Net Based. We constructed a network described in Fig 3 in the main article using a neural
network to learn a mapping that satisfies the three properties in the Figure. The encoder and decoder
are composed of 2-layer MLPs with ReLU activation followed by Sigmoid and the binarize function
q(·). The entire mapping loss Lmapping is composed of first Lreconstruction, which minimizes the
difference between the input sequence and the reconstructed sequence from the Encoder-Decoder,
second Lmean, which ensures that the mapped sequence from the encoder evenly occupies the entire
mapping space by setting the mean of each column to 0.5, and third Ldecorrelation, which sets the
non-diagonal terms of the covariance matrix of mapped sequence to 0.

Binarize function q(x) =

{
x+ stopgrad(1− x), if x ≥ 0.5

x− stopgrad(x), otherwise

Lmapping = λ ·Lreconstruction +Lmean +Ldecorrelation

λ is set between 10-100, and a SGD optimizer with a learning rate of 1.0 × 10−4 was used. The
training was conducted with 1000 random seeds as the training is highly sensitive to initial weights.
The encoder that minimizes the overall loss and achieves zero Lreconstruction was selected. This
method was applied to the Parity Check and Cycle Navigation tasks, where input sequences
maintain a consistent distribution across all positions. As a result, it yielded an equivalent mapping to
rule-based methods.

Rule Based. We utilized a rule-based approach to create mappings for all tasks which consisted
of discrete input and mapping spaces. For tasks where the time steps of the input sequence are
independent, we mapped each task’s alphabet to be evenly distributed on the mapping spaces. When
it was impossible, we made the distribution as close as possible to a uniform distribution, and also
allowed the probability of 1 in a higher index column to be greater than the lower index column. For
tasks where there are dependencies between each time step of the input sequence, we incorporated
different methods for each task to eliminate the dependencies and enabled identical mapping across
the entire space. Specific adaptation of the mappings for each task is discussed in the following
section.

C.2 Task-specific mapping methodology

The mapping strategy is represented as follows. “0 → (1, 0, 0) , (1, 0, 1)” On the left side are
the alphabets of the input sequence, and on the right side of the arrow are the corresponding
3-dimensional samples in the mapping space. If it is a one-to-many mapping, there will be multiple
corresponding samples.

Even Pairs (R) 0110101 · · · → 0 or 1
For consecutive pairs of numbers in the binary input sequence of 0 and 1, if the counts of the
combinations “0” and “1” are equal, the label is assigned as 0. If they are different, the label is
assigned as 1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Modular Arithmetic (R) 052746 · · · → N ∈ {0, 1, 2 · · ·M − 1}
For Modular M, odd-numbered positions represent numbers from 0 to M-1, and even-numbered
positions represent the operators +(M), −(M+1), ×(M+2). If the length of the input is even, the last
operator is ignored. The default value for M is 5.
@Position Odd
0 → (0, 0, 0) , (0, 0, 1)
1 → (0, 1, 0) , (0, 1, 1)
2 → (1, 0, 0) , (1, 0, 1)
3 → (1, 1, 0)
4 → (1, 1, 1)
@Position Even
5 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0)

3



6 → (0, 1, 1) , (1, 0, 0) , (1, 0, 1)
7 → (1, 1, 0) , (1, 1, 1)

Parity Check (R) 0110101 · · · → 0 or 1
If the sum of the entire sequence is even, it is labeled as 0. If it is odd, it is labeled as 1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Cycle Navigation (R) 01020102102 · · · → N ∈ {0, 1, 2 · · ·C − 1}
There are C points evenly spaced on a circle, numbered from 0 to C-1. Starting from 0, the label is
determined by the final position obtained by repeatedly moving one step to the left, staying in place,
or moving one step to the right. Left movement is represented as 0, staying in place is represented as
1, and right movement is represented as 2.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0)
1 → (0, 1, 1) , (1, 0, 0) , (1, 0, 1)
2 → (1, 1, 0) , (1, 1, 1)

Compare Occurrence (CF) 271044120 · · · → N ∈ {0, 1, 2 · · ·D}
For a sequence composed of digits 0, 1, · · · D, the label is determined by the number that contains
the highest frequency among them. Default D=1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Stack Manipulation (CF) 0111 · · · 243224 · · · → 011· · ·
A stack consisting of 0s and 1s is given, along with instructions to manipulate the stack. The output
is the stack that is formed by sequentially applying the manipulation instructions to the given stack.
The instructions consist of pop (2), push 0 (3), and push 1 (4). To determine the moments when the
stack is modified by the instructions, additional positional mapping is required.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
2 → (0, 0, 0) , (0, 0, 1)
3 → (0, 1, 0) , (0, 1, 1) , (1, 0, 0)
4 → (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
Position of first instruction → 1 in positional mapping

Reverse String (CF) 4521 · · · 201 → 102 · · · 1254
For a sequence composed of digits 0, 1, · · · D, the output is the reverse version of a string. Default
D=1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Divide by 2 (CF) 00 · · · 0100 · · · 00 → 00 · · · 0100 · · · 00
The input is represented in the form of 0× (n− 1) 1 0×m. In this case, the model needs to learn
how to divide n by 2 and generate an output in the form of 0×ceil(n/2) 1 0×(floor(n/2) +m). In
this task, the important aspect is the position where 1 exists, so the positional mapping column will
have the same form as the input.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
1 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
Position of 1 → 1 in positional mapping

Duplicate String (CS) 4521 · · · 201 → 4521 · · · 2014521 · · · 201
For a sequence composed of digits 0, 1, · · · D, the output is the duplicated version of a string. Default
D=1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Interlocked Pairing (CS) 0011111 → 0011111 1100000
An input of a binary sequence is given, where there are n(>0) occurrences of A (∈ {0, 1})followed by
m occurrences of 1-A. In this case, the output is a sequence that follows the input sequence, having n

4



occurrences of 1-A and m occurrences of A. The important aspect in this task is the position of the
first occurrence of 1-A in the input sequence, which determines the positional mapping column.
@Position 0
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
@Position from 1 to l (length)
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
1 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
Position of first 1-A → 1 in positional mapping

Odds First (CS) 20125321 → 21520231
For a sequence composed of digits 0, 1, · · · D, the output is re-ordered sequence with digits in odd
index come first, followed by digits in even index. Default D=1.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Binary Addition (CS) 01101011210101101 → 100011000
Two binary sequences, distinguished by a single 2, are considered as binary numbers, and their sum
is outputted as a binary sequence. The position of the 2, which distinguishes the two numbers, is
used as the positional mapping.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
2 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
Position of 2 → 1 in positional mapping

Binary Multiplication (CS) 01101011210101101 → 100100001001111
Two binary sequences, distinguished by a single 2, are considered as binary numbers, and their
multiple is outputted as a binary sequence. The position of the 2, which distinguishes the two
numbers, is used as the positional mapping.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
2 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)
Position of 2 → 1 in positional mapping

Compute Sqrt (CS) 101101011 → 10011
The binary string of 0s and 1s received as input is interpreted as a binary number. The output is the
binary representation of the square root (floor) of that number.
0 → (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)
1 → (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)

Bucket Sort (CS) 2011032022 → 0001122223
An input sequence consisting of digits from 0 to N is received, and a sorted sequence is returned.
Default N=3.
0 → (0, 0, 0) , (0, 0, 1)
1 → (0, 1, 0) , (0, 1, 1)
2 → (1, 0, 0) , (1, 0, 1)
3 → (1, 1, 0) , (1, 1, 1)

D Comparison with Conventional CL Algorithms

In this section, we compare the performance of the conventional CL methodologies on the newly
proposed CL-AR scenario. The latest CL methodologies demonstrate excellent performance in
image data using techniques such as representation learning [4, 12, 11] and data augmentation [4,
3]. However, AR exhibits different characteristics from conventional image data, where applying
techniques like mix-up or label smoothing can decrease accuracy. Additionally, there are challenges
in applying data augmentation which is compatible with images but not with AR tasks. Therefore, we

5



Task A Task B

Dim A
Dim B

Dim A
Dim B

Zero Padding

Task A Task B

Dim A
Dim B

Shared Dim Shared Dim

Task A Task B

Dim A
Dim B

Mapping Mapping

t t t

NN NN

Zero Padding

Padding Padding

A. B. C.

Mapping Space Mapping space

Zero-Padding Embedding Mapping (Ours)

Figure 1: To enable a single model to learn tasks of various dimension sizes sequentially, the following
methods were used to match the dimension of the input sequence. First, (A) zero-padding the inputs
to become the same size. We set the shared input dimensions of sequential tasks to be the size of the
largest dimension among all tasks. Second, (B) we used a neural network to embed inputs into the
same dimension. A one-layer MLP with an activation function was used for each task. Lastly, (C) we
applied a new mapping method proposed in this paper.

conduct comparative experiments on three fundamental and AR-compatible approaches: EWC [8],
LwF [9], and ER [5].

D.1 Input dimension matching

Conventional continual learning algorithms utilize models that accept fixed-size inputs. Therefore, to
incorporate CL-AR tasks with dynamic input sizes, the dimensions of the inputs need to be aligned.
For a more strict comparison, we matched the dimensions of the inputs using three different methods.

Zero-padding. The first method is the simplest, which involves matching the dimensions by zero-
padding. For example, if there are tasks with dimensions of 2 and 9, we added an additional
7-dimensional zero-padding to the 2-dimensional input.

Embedding. The second method involves mapping the input to an intermediate layer of fixed size
using a task-wise embedding network. We used a 1-layer MLP followed by ReLU activation and
utilized an intermediate layer of 10 dimensions, which is much larger than our mapping dimension.
This task-wise embedding is trained end-to-end.

Mapping (Ours). Lastly, we aligned the inputs using our newly proposed mapping methodology.
This incorporates the existing CL methodologies into our novel mapping strategy.

D.2 Experiments on conventional CL algorithms

EWC. Table 3 shows that default EWC (λ = 1) fails to prevent forgetting even in a very simple
AR-CL scenario consisting of only four regular tasks. We thoroughly searched for the optimal
coefficient of EWC’s regularization term and found that even the best-performing λ, such as λ = 1014

and λ = 1016, exhibited very poor performance. The reason for needing such large values of λ to
compensate very small Fisher diagonal matrix is likely due to the nature of AR tasks, where models
have nearly zero loss on ID datasets, resulting in a very flat loss surface and minimal Fisher diagonal
matrix.

LwF. Table 4 shows the performance comparison between the LwF algorithm and our CLeAR
method in a simple scenario of continual learning with four regular tasks. LwF showed very
poor performance and prominent catastrophic forgetting in both the zero-padding method, and
the embedding method, which makes input sequence distributions differ among tasks. However,
our proposed mapping methodology allowed LwF to demonstrate a similar high performance to
CLeAR. This is a reasonable result, considering that parts of our CLeAR algorithm resemble LwF.
Nevertheless, CLeAR outperforms LwF with mapping as the tasks become more challenging, as can
be seen in Table 5. When experiments were conducted on 10 tasks with varying complexities of the

6



Table 3: Comparison of performance with EWC on two CL scenarios (CN-MA-PC-EP and EP-
PC-MA-CN ), averaged on 3 repeats. We reported the best performance of EWC by searching
regularization coefficients λ from 1 to 1021 and reported the best λ. The final CL accuracy was
indicated in blue if its value was lower than our CLeAR method, and in red if it was higher.

Method Model CN-MA-PC-EP EP-PC-MA-CN
CL Initial CL Final BWT CL Initial CL Final BWT

CLeAR(Ours)

RNN 96.45 96.17 -0.37 99.68 99.80 0.16
Stack-RNN 94.89 87.09 -10.40 98.19 99.28 1.45
Tape-RNN 76.31 76.70 0.53 58.16 74.45 21.72
LSTM 98.21 96.49 -2.29 99.99 99.96 -0.05

EWC Default(λ = 1)
A. Zero-padding

RNN 99.99 47.51 —69.97 99.99 54.93 -60.07
Stack-RNN 99.94 47.57 -69.83 99.99 54.90 -60.12
Tape-RNN 91.04 44.85 -61.58 47.54 37.51 -13.37
LSTM 99.58 50.80 -65.04 99.52 54.72 -59.73

EWC Default(λ = 1)
B. Embedding

RNN 99.93 47.46 -69.95 99.93 55.17 -59.69
Stack-RNN 99.86 47.42 -69.93 99.92 54.72 -60.27
Tape-RNN 98.27 45.97 -69.73 67.47 45.68 -29.05
LSTM 99.44 54.32 -60.16 100.0 54.98 -60.03

EWC Default(λ = 1)
C. Mapping (Ours)

RNN 99.64 47.52 -69.49 98.02 53.50 -59.35
Stack-RNN 99.55 47.48 -69.44 97.97 53.12 -59.81
Tape-RNN 87.53 45.15 -56.49 43.82 37.20 -8.82
LSTM 99.14 49.63 -66.01 96.83 51.91 -59.90

EWC (λ = 1014)
A. Zero-padding

RNN 74.80 50.55 -32.34 79.91 58.19 -28.95
Stack-RNN 74.96 60.32 -19.51 79.54 57.78 -29.02
Tape-RNN 70.90 53.10 -23.73 40.59 37.28 -4.41
LSTM 54.41 36.39 -24.02 95.25 54.37 -54.51

EWC (λ = 1014)
B. Embedding

RNN 78.85 58.69 -26.87 80.77 52.38 -37.85
Stack-RNN 68.20 52.42 -21.03 86.29 58.95 -36.46
Tape-RNN 78.79 56.52 -29.69 58.54 48.55 -13.33
LSTM 54.52 44.41 -13.48 85.28 60.31 -33.30

EWC (λ = 1014)
C. Mapping (Ours)

RNN 54.91 35.04 -26.48 80.77 52.38 -37.85
Stack-RNN 54.74 35.04 -26.27 86.29 58.95 -36.46
Tape-RNN 49.32 34.99 -19.10 58.54 48.55 -13.33
LSTM 67.37 44.74 -30.17 85.28 60.31 -33.30

EWC (λ = 1016)
A. Zero-padding

RNN 68.18 48.35 -26.43 72.48 48.96 -31.36
Stack-RNN 74.84 57.08 -23.67 75.88 51.09 -33.05
Tape-RNN 73.62 52.21 -28.55 43.66 39.57 -5.46
LSTM 54.46 34.73 -26.30 69.76 52.50 -23.01

EWC (λ = 1016)
B. Embedding

RNN 73.40 52.63 -27.70 79.78 54.72 -33.42
Stack-RNN 68.10 51.79 -21.74 79.52 54.52 -33.33
Tape-RNN 67.51 45.31 -29.60 67.11 49.55 -23.41
LSTM 54.29 34.73 -26.08 73.37 48.39 -33.30

EWC (λ = 1016)
C. Mapping (Ours)

RNN 54.94 35.04 -26.53 60.28 35.26 -33.35
Stack-RNN 54.75 35.04 -26.29 66.00 41.69 -33.21
Tape-RNN 49.36 35.04 -19.09 40.91 35.31 -7.47
LSTM 60.80 48.33 -16.63 78.93 53.92 -33.34

Chomsky hierarchy, CLeAR exhibited outstanding performance in RNN and also showed higher
performance and better BWT than LwF in LSTM.

ER. Table 6 shows the performance comparison between the ER algorithm and our CLeAR method
on four regular tasks (left column) and dimension changing Modular Arithmetic tasks (right
column). Due to the variety of input dimensions and lengths, it was challenging to train different
tasks within a single batch. Therefore, we conducted training by alternating between the current task
and the previous tasks in a 1:1 ratio. To ensure a fair comparison, we doubled the total number of
training steps so that the total number of training steps for the current task remained the same. We
conducted the experiments with different memory buffer sizes for storing input/output pairs: 300,

7



Table 4: Comparison of performance with LwF. We reported the results of a CL scenario consisting
of the simplest four regular tasks (CN-MA-PC-EP and EP-PC-MA-CN) with 3 repeats. The final CL
accuracy was indicated in blue if its value was lower than our CLeAR method, and in red if it was
higher.

Method Model CN-MA-PC-EP EP-PC-MA-CN
CL Initial CL Final BWT CL Initial CL Final BWT

CLeAR(Ours)

RNN 96.45 96.17 -0.37 99.68 99.80 0.16
Stack-RNN 94.89 87.09 -10.40 98.19 99.28 1.45
Tape-RNN 76.31 76.70 0.53 58.16 74.45 21.72
LSTM 98.21 96.49 -2.29 99.99 99.96 -0.05

LwF
A. Zero-padding

RNN 99.83 59.95 -53.17 99.86 55.07 -59.71
Stack-RNN 99.81 59.97 -53.12 99.21 66.46 -43.66
Tape-RNN 99.20 59.86 -52.45 83.37 61.69 -28.90
LSTM 98.51 58.92 -52.78 99.95 66.63 -44.43

LwF
B. Embedding

RNN 99.84 47.34 -70.00 100.00 55.02 -59.97
Stack-RNN 100.0 47.36 -70.19 99.94 54.68 -60.35
Tape-RNN 98.72 47.47 -68.33 89.42 54.87 -46.07
LSTM 99.39 47.56 -69.10 98.60 53.64 -59.95

LwF
C. Mapping (Ours)

RNN 99.74 93.80 -7.92 99.66 99.00 -0.88
Stack-RNN 97.23 87.70 -12.71 99.79 98.58 -1.62
Tape-RNN 89.78 82.70 -9.44 73.65 96.48 30.44
LSTM 98.74 97.95 -1.05 100.00 99.98 -0.02

1000, and 3000. In a CL with four tasks, a memory buffer size of 3000 guaranteed that each task had
at least 1000 samples during the whole training process, which is a very large number compared to
current memory-based CL algorithms. Despite using such a large memory buffer, the ER showed
lower performance than CLeAR in both scenarios.

E Broader Impact

Introduction of CL-AR. For the first time, our research introduces continual learning for abstract
logical concepts, which mimics the process of humans acquiring higher-order learning abilities. This
moves away from the traditional CL approach centered around images and considers a new direction
that CL should ultimately strive for. Algorithmic reasoning tasks are fundamentally different from
image data in their abstract and logical nature. The discontinuity of input data, the necessity for
generalization regarding out-of-distribution samples, and the inability to use data augmentation or
mix-up techniques present the need for new CL algorithms that differ from existing methodologies.
We hope that future research will further explore methodologies that effectively leverage these unique
characteristics of AR.

Tabular Data & Privacy. Our methodology can be extended to continual learning for tabular data.
One of the challenges in continual learning for table data is that the number of input columns and
target columns changes for each task [10]. Our mapping strategy can be applied to handle these
changing columns. Furthermore, since our mapping transforms the data into a uniform distribution in
the mapping space, it can be utilized as a method to de-identify sensitive data such as tabular medical
data, making it impossible to identify individuals.

8



Table 5: Comparison of performance with LwF in complex inter-hierarchy CL-AR scenario. The
scenario consists of 10 AR tasks (same as main table 4) with diverse Chomsky hierarchies. Average
generalization accuracy (%) is obtained for each group of tasks, repeated with 3 seeds. The final CL
accuracy was indicated in blue if its value was lower than our CLeAR method, and in red if it was
higher.

Method Model Hierarchy Average Accuracy (%)
Single CL Initial CL Final BWT

CleAR (Ours)

RNN
Regular 100.0 93.31 75.04 -27.40

Context Free 77.10 61.59 60.78 -0.81
Context Sensitive 57.68 47.13 46.99 -0.19

LSTM
Regular 97.37 100.0 93.46 -9.06

Context Free 87.10 80.94 79.11 -1.83
Context Sensitive 86.08 79.60 77.67 -2.57

LwF
A. Zero-padding

RNN
Regular - 99.92 39.62 -60.30

Context Free - 76.49 49.49 -27.00
Context Sensitive - 49.01 42.63 -8.51

LSTM
Regular - 100.0 39.82 -60.18

Context Free - 84.95 53.15 -31.80
Context Sensitive - 84.18 52.76 -41.88

LwF
B. Embedding

RNN
Regular - 98.43 40.03 -58.41

Context Free - 71.69 50.36 -21.33
Context Sensitive - 46.27 36.85 -12.56

LSTM
Regular - 98.35 40.10 -58.25

Context Free - 71.48 50.27 -21.21
Context Sensitive - 68.80 38.70 -40.13

LwF
C. Mapping (Ours)

RNN
Regular - 100.0 40.13 -59.87

Context Free - 48.86 48.86 0.00
Context Sensitive - 43.76 43.76 0.00

LSTM
Regular - 100.0 99.80 -0.20

Context Free - 84.37 75.51 -8.85
Context Sensitive - 84.57 81.06 -4.68

9



Table 6: Comparison of performance with ER. We reported the results on two scenarios, each with 3
repeats. First, four regular tasks (CN-MA-PC-EP) and Second, four Modular Arithmetics with
varying modulus from 2 to 5. Both scenario has varying size input dimension. We set the memory
buffer size to 100, 300, and 3000. The final CL accuracy was indicated in blue if its value was lower
than our CLeAR method, and in red if it was higher.

Method Model R: CN-MA-PC-EP R: MA modular 2-3-4-5
CL Initial CL Final BWT CL Initial CL Final BWT

CLeAR(Ours)

RNN 96.45 96.17 -0.37 98.87 95.88 -2.96
Stack-RNN 94.89 87.09 -10.40 99.56 98.59 -0.89
Tape-RNN 76.31 76.70 0.53 87.13 83.60 -0.55
LSTM 98.21 96.49 -2.29 99.98 99.43 -0.19

300 memory buffer
A. Zero-padding

RNN 99.81 49.67 -66.85 99.45 51.65 -63.74
Stack-RNN 99.89 51.26 -64.84 99.18 51.62 -63.42
Tape-RNN 70.98 40.47 -40.68 40.73 32.26 -11.29
LSTM 99.59 55.75 -58.46 99.95 59.21 -54.31

300 memory buffer
B. Embedding

RNN 99.83 47.58 -69.66 95.63 47.85 -63.71
Stack-RNN 99.87 57.23 -56.85 92.46 44.69 -63.69
Tape-RNN 81.51 42.32 -52.26 45.40 32.48 -17.23
LSTM 99.44 52.21 -62.97 99.83 58.95 -54.51

300 memory buffer
C. Mapping (Ours)

RNN 95.53 47.42 -64.14 97.90 50.15 -63.67
Stack-RNN 99.72 47.54 -69.57 99.82 52.15 -63.56
Tape-RNN 80.06 42.14 -50.57 43.57 32.34 -14.98
LSTM 99.46 56.11 -57.79 99.96 52.29 -63.57

1000 memory buffer
A. Zero-padding

RNN 99.94 55.96 -58.63 82.33 34.77 -63.41
Stack-RNN 99.42 57.76 -55.55 99.21 60.72 -51.33
Tape-RNN 74.24 44.77 -39.30 41.50 32.05 -12.59
LSTM 99.58 63.39 -48.26 99.57 65.07 -46.01

1000 memory buffer
B. Embedding

RNN 99.96 78.34 -28.83 93.10 55.51 -50.12
Stack-RNN 99.89 77.26 -30.18 92.02 55.34 -48.91
Tape-RNN 91.66 54.32 -49.80 44.89 32.67 -16.29
LSTM 98.65 63.31 -47.12 99.98 70.17 -39.74

1000 memory buffer
C. Mapping (Ours)

RNN 81.69 51.67 -40.02 98.87 51.35 -63.35
Stack-RNN 86.66 49.69 -49.29 99.81 52.20 -63.49
Tape-RNN 69.44 42.83 -35.48 45.27 32.78 -16.65
LSTM 99.44 56.35 -57.46 99.95 52.25 -63.60

3000 memory buffer
A. Zero-padding

RNN 99.96 77.90 -29.43 94.53 63.18 -41.80
Stack-RNN 99.96 77.93 -29.38 98.07 71.03 -36.06
Tape-RNN 74.90 45.87 -38.70 47.11 32.65 -19.29
LSTM 99.57 75.86 -31.61 99.97 86.01 -18.61

3000 memory buffer
B. Embedding

RNN 99.78 79.90 -26.51 99.77 87.13 -16.84
Stack-RNN 99.98 82.46 -23.36 99.21 88.96 -13.68
Tape-RNN 88.14 59.62 -38.04 43.58 34.51 -12.09
LSTM 99.45 73.66 -34.38 99.99 92.92 -9.43

3000 memory buffer
C. Mapping (Ours)

RNN 80.14 56.59 -31.39 99.41 51.86 -63.40
Stack-RNN 90.93 56.37 -46.08 99.67 52.09 -63.44
Tape-RNN 63.94 42.62 -28.43 57.35 35.55 -29.06
LSTM 98.21 62.47 -47.65 99.86 55.97 -58.52

10



References

[1] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin,
Chris Jones, Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev,
Michael King, Lena Martens, Vladimir Mikulik, Tamara Norman, John Quan, George Papa-
makarios, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener,
Stephen Spencer, Srivatsan Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[3] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural
information processing systems, 33:15920–15930, 2020.

[4] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings
of the IEEE/CVF International conference on computer vision, pages 9516–9525, 2021.

[5] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[6] Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot
Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural
networks and the chomsky hierarchy. In The Eleventh International Conference on Learning
Representations, 2023.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[9] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[10] Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across
tables. arXiv preprint arXiv:2205.09328, 2022.

[11] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 374–382, 2019.

[12] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014–3023, 2021.

11


	Details on Tasks and Experiments
	Details on tasks
	Details on experiments

	Single Task Train
	Comparison with the previous paper
	In-distribution (ID) accuracy

	Details in Mapping Strategy
	Training mapping encoder
	Task-specific mapping methodology

	Comparison with Conventional CL Algorithms
	Input dimension matching
	Experiments on conventional CL algorithms

	Broader Impact

