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Abstract

Continual learning (CL) aims to incrementally learn multiple tasks that are pre-
sented sequentially. The significance of CL lies not only in the practical importance
but also in studying the learning mechanisms of humans who are excellent contin-
ual learners. While most research on CL has been done on structured data such
as images, there is a lack of research on CL for abstract logical concepts such
as counting, sorting, and arithmetic, which humans learn gradually over time in
the real world. In this work, for the first time, we introduce novel algorithmic
reasoning (AR) methodology for continual tasks of abstract concepts: CLeAR. Our
methodology proposes a one-to-many mapping of input distribution to a shared
mapping space, which allows the alignment of various tasks of different dimensions
and shared semantics. Our tasks of abstract logical concepts, in the form of formal
language, can be classified into Chomsky hierarchies based on their difficulty. In
this study, we conducted extensive experiments consisting of 15 tasks with various
levels of Chomsky hierarchy, ranging from in-hierarchy to inter-hierarchy scenarios.
CLeAR not only achieved near zero forgetting but also improved accuracy during
following tasks, a phenomenon known as backward transfer, while previous CL
methods designed for image classification drastically failed.

1 Introduction
From an early age, humans develop their ability to solve complex logical reasoning problems through
lifelong learning. They gradually learn sequential cognitive skills, from basic counting methods to
more advanced concepts such as addition, subtraction, and logical operations [2]. Although this
sequential learning ability is inherent in humans, deep learning models experience catastrophic
forgetting [30], where their performance on previous tasks rapidly declines, after learning a new task.
Continual learning (CL) [6, 19] is essential not only for practical purposes but also for developing
human-like artificial intelligence that can maintain its performance on previous tasks after learning
new tasks. However, existing CL research has been limited to learning streams of structured data
with fixed input formats, such as images, where each task involves the same classification task only
with different image classes [47, 1, 48]. Current approaches fail to reflect the learning of abstract
logical concepts that humans continuously acquire in the real world.

There are three major challenges in naively leveraging existing CL methodologies to continual
algorithmic reasoning (AR) tasks. Firstly, in AR tasks, input data contain little information, and the
input data and task are decorrelated (Fig. 1b). In traditional image CL, the inherent information in the
image itself enables the model to estimate which task the image belongs to [18]. However, in CL for
abstract concepts, the input data may be completely decorrelated from the task that the model needs

∗luckypanda@snu.ac.kr • The code is available at https://github.com/Pusheen-cat/CLeAR_2023
†Corresponding author (sryoon@snu.ac.kr)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



t

Parity Check Modular Arithmetic

⁕ SUM of sequence

0101: Even

1001010: Odd

00101011: Even

11010100: Even

0010: Odd

3+1 = 4 (Mod5)

1×2-4 = 4 (Mod5)

3×3-1+2 = 0 (Mod5)

2×4×2 = 3 (Mod5)

2×1-3×4+1 = 1 (Mod5)

⋮⋮

(a) Sequential Tasks of Learning Logics

110
11010

0110101⋯

T1. SUM is even(odd)

T2. First & Last digit is same(different)

𝑋~{0,1}𝑙𝑒𝑛𝑔𝑡ℎ

Variant tasksIdentical input distribution 
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Figure 1: Introduction of continual learning on algorithmic reasoning (a) showing two representative
continuous AR tasks and (b) showing an example of two tasks sharing identical input distribution.

to learn. For example, consider a binary input sequence consisting of 0’s and 1’s. In the first task, the
model needs to determine whether the sum of the sequence is odd or even, while in the second task, it
needs to determine the square root of the sequence when treated as a binary number. In this case, the
input data distribution is identical for both tasks, thus it is impossible to correctly predict the task
based on the input data. Therefore, CL for AR of abstract concepts is better suited to task incremental
learning. Moreover, since the input data contains little information, learning data distribution (e.g.
contrastive learning based CL) is inapplicable.

Secondly, the dimensions of the datasets of each task can be dynamic in the AR of abstract concepts.
In current CL, data has mostly fixed shape and dimension (ex. height, weight, and channel H×W×C)
throughout the tasks [47, 1, 48]. However, ways of representing each “abstract logical concept” as
the sequential input-output format are various [11, 26]. For example, when trying to train the model
for modular arithmetic, there are various ways to introduce the concepts of numbers and operators
to the model. Specifically, all used numbers and operators can be one-hot encoded numbers, and
operators can be represented in different dimensions, or numbers can be represented in binary format.
Furthermore, input sequences of different tasks result in different dimensions and lengths. Therefore,
it is impossible to apply the same model directly to each task’s data like the traditional image CL
methodology, and additional operations adjusting the data shape are necessary.

Thirdly, the goal of generalization that the AR task aims to achieve is different. In traditional CL,
the model learns the input data distribution itself, assuming that the train dataset and test dataset are
identical and independently distributed (IID) [45]. However, in AR tasks, the model learns the general
rule that generates labels from input distribution. To identify whether the model has appropriately
learned to generate the correct answers rather than simply memorizing them, the test set is composed
of out-of-distribution (OOD) data [33] that was never seen during training. Therefore, the goal of
AR is not generalization performance for IID as in traditional CL, but generalization for OOD [14].
Due to these characteristics, the performance of replay-based CL methods that use a replay buffer to
represent the input data distribution decreases. The core of the replay buffer is to extract representative
samples or prototypes that can represent the input data distribution [5]. However, unlike a sharp-eared
and long-tailed image that represents a cat class, “5+8=13” cannot be considered as representative of
the concept of arithmetic.

This work. We have developed a CL methodology that can be applied in the aforementioned scenario.
We have applied a novel one-to-many mapping strategy to handle input data of different formats, and
through this mapping, we have proposed ways to prevent forgetting previous tasks when learning
new tasks, and even increased performance on previous tasks during the process of learning new
tasks. We conducted extensive experiments on sequential models such as RNN, LSTM, and Tape
RNN [12, 15, 17, 43, 11], which have memory, and used AR tasks with various levels of Chomsky
hierarchy [11] to conduct extensive experiments on sequential tasks of the same level and different
levels.

• We introduce the scenario of CL on AR for the first time. This scenario is of great importance
as it is similar to how humans learn logical reasoning abilities incrementally in the real
world and has very different characteristics from conventional CL scenarios as described
above.

• We introduce new data mapping methods and CL algorithms that are applicable to the
aforementioned scenario and have demonstrated high performance not only in catastrophic
forgetting but also in knowledge transfer, which is one of the ultimate goals of CL.

2



• We demonstrated the superiority of our method over the existing CL methods in our proposed
CL scenario for AR through extensive experiments on various combinations of AR tasks.
We also showed that existing CL methods perform poorly due to the reasons described
above.

2 Preliminary
Continual learning. CL is one of the long-standing challenges in deep learning [35], aiming to
preserve the performance of previous tasks while effectively learning new tasks (without access to
data from previous tasks) in situations where multiple tasks are learned sequentially. The existing CL
methodologies can be broadly classified into three categories based on the methods used to prevent
catastrophic forgetting [24]. First, regularization-based methods [19, 22, 21] constrain the model’s
important parameters for the previous task from changing when learning a new task. Elastic Weight
Consolidation (EWC) [19] approximates the Fisher information matrix to learn a loss-minimizing
weight space and regularizes the gradient direction to maintain the low loss for previous tasks.
Learning without forgetting (LwF) [22] regularizes the loss through knowledge distillation by using
the output of previous tasks as pseudo-labels during the learning of new tasks. Second, memory-based
methods [5, 27, 4, 37] are further divided into experiment-replay and orthogonal projection methods.
Experiment replay (ER) [5] stores small amounts of data from previous tasks in memory to use their
information when learning new tasks. The performance of this method depends on the representative
sample selected to capture the entire distribution of data. Orthogonal projection methods [27, 4]
stores gradient and update weight in a direction orthogonal to the gradient from the previous task.
Third, parameter isolation-based methods [39, 28, 40] use different parts of the model’s parameters
for each task. The parameters used in previous task learning are masked during the learning of the
next task, and the model can also be extended as new tasks are introduced.

Knowledge Transfer. Recent CL models aim not only to prevent catastrophic forgetting of previous
tasks but also to enhance the overall performance of the entire task by transferring common knowledge
between tasks [24]. This is a property that humans, as excellent continual learners, naturally
possess, allowing them to learn new tasks more easily from previous experiences and gain a deeper
understanding of previously acquired knowledge as they learn new tasks. However, such knowledge
transfer is not easy for deep learning models to obtain. Backward transfer refers to improving the
performance of previously learned tasks by learning the current task, while forward transfer refers
to previously learned tasks helping to learn a new task. Although there have been studies in this
area [39, 25], knowledge backward transfer is still hard to achieve [46].

Algorithmic Reasoning. The core of human logical reasoning ability lies in inductive inference [20,
36]. This is the ability to derive general rules from finite examples and use them to infer the correct
answers from unseen data. From the perspective of deep learning, this is AR [11, 23], where
the model receives a finite number of input-output data and infers the underlying general rule to
generate output for input sequences that have not been seen before. There has been much research
on program induction [34, 23, 32, 31, 11], however, conventional approaches for serial AR have a
critical limitation in that they require prior human knowledge about the task to pre-configure the
model [29, 44, 13]. In general deep learning, the model learns through empirical risk minimization
of statistical learning theory to achieve the theoretical bound of its performance and estimates the
generalization error using test data [45]. An important assumption here is that the train and test
data are independent and identically distributed (IID). However, in AR, where the model needs to
learn general rules, this assumption is violated [11]. Therefore, in AR tasks, we have to measure the
model’s performance not only on the train data distribution but also on out-of-distribution (OOD)
distribution [11].

Formal Language and Chomsky Hierarchy. Computational problems that generate output through
learnable rules can be represented in formal language [41, 8, 38]. Formal language can be classified
into hierarchies based on their complexity, which is known as the Chomsky hierarchy [3, 9]. The
hierarchy ranges from regular language, which requires the lowest complexity of memory, context-
free language, which requires stack-type memory, context-sensitive language, which requires linear
tape memory, and recursively enumerable language, which requires infinite tape memory. Research
has been conducted on whether various deep learning models can learn each level of formal language
in this hierarchy [11, 12, 7]. Results have shown that there is a Chomsky hierarchy bound on the
formal language that each deep learning model can learn, whereas models with external memory can
learn languages of a high Chomsky hierarchy.

3



3 Method
Problem Statement. Our goal is to train a fixed-size model that sequentially learns various abstract
logical tasks, following a standard CL scenario. We assumed that predicting the output sequence
corresponding to the input sequence, as in [11], is closer to real-world scenarios which are learned
through inductive inference than inferring the internal state of automata, as in [26]. There are various
methods of representing the same abstract logical concept into an input sequence that a model can
understand. However, different forms of input can affect the performance of the model. Therefore,
for fairness, we used the data format proposed in the previous paper [11].

In a CL scenario, a sequence of tasks T = {task t}Tt=1 is given one after another. Each task
t is given as a dataset Dt = {(xt,i, yt,i)}

St
i=1 with St sample pairs. Each pair of xt,i, yt,i

comes from
{

One-hot(Lt
in) ∈ {0, 1}(|

∑t
in|, lin≤N)

,One-hot(Lt
out) ∈ {0, 1}(|

∑t
out|, lout)

}
, where

Lt
in ∈

{∑t
in

}lin≤N

and Lt
out ∈

{∑t
out

}lout

is input and output language pair from task t. N is

given as the input sequence length limit.
∑t

in and
∑t

out are corresponding alphabets.

Consider a sequence-to-sequence model fθ(·) parameterized by fixed-sized θ. To match different
sized input xt,i of each task to model input, we require a task-wise mapping function mt(·). Also,
to project the model output vector to match different sized output yt,i, we applied task-wise linear
projection head ht(·) which consists of a single layer perceptron. After learning a k-th task, the
model is parameterized by θ(k), and the projection head becomes ht,k(·).
During training, the model can only access data from the current task. And after training, to evaluate
whether the model actually learned the general output sequence generation rule, the model is tested
on OOD dataset Dtest

t = {(xtest
t,i , ytestt,i )}S

test
t

i=1 which are created in the same method as train dataset

from Lt
in ∈

{∑t
in

}N<lin≤M

and its corresponding output sequence Lt
out ∈

{∑t
out

}lout

. After
learning a k-th task, model performance on task t is measured using an average of per-sequence
accuracy of test data, i.e., ACCtest

k,t .

ACCtest
k,t :=

1

Stest
t

∑
i

Ak
t,i(x,y)

Ak
t,i(x,y) :=

1

|y|
∑
l

I
[
(argmaxj · yjl) = (argmaxj · ht(pθ(k)(mt(x)))jl)

]
Following [11], we set the maximum training input sequence length to be 40 (N = 40) and sampled
input sequence length from the uniform distribution U(1, N). OOD test set input sequence length
was sampled from the uniform distribution U(N + 1,M) where N = 40 and M = 100.

Tasks. We conducted a comprehensive evaluation of CL on AR (CL-AR), involving 15 diverse
logical reasoning tasks. These tasks exhibit various levels of complexity, resulting in different
Chomsky hierarchies. Table 1 shows our AR tasks and the corresponding Chomsky hierarchy. The
detailed information for each task is in Appendix A. We conducted three major CL scenarios. (a)
High-correlation CL-AR scenario continually learns the same kind of task with varying difficulty.
One example is the Modular Arithmetic task with increasing modular value enabling the model to
access larger numbers. Another example is the Cycle Navigation task with increasing cycle length.
This scenario allows us to interpret the model’s behavior upon learning highly correlated reasoning
tasks. (b) In-hierarchy CL-AR scenario continually learns various tasks of the same level of Chomsky
hierarchy. This scenario allows us to analyze the interaction among tasks of different natures but
with similar complexity. (c) Inter-hierarchy CL-AR scenario consists of tasks of different Chomsky
hierarchies. This is by far the most challenging scenario for a neural network that has to manipulate
its memory structure.

Models. Recently, there have been numerous quantitative studies on whether various architectures of
neural networks can learn formal languages. In recent research, it has been shown that regardless
of the increase in the number of training data, models have "hard limitations for scaling laws" and
cannot learn generalization rules based on the complexity of the task and the inductive bias of the
model. Furthermore, to learn high-level tasks, models with external memory are necessary, and the
commonly used transformer model has demonstrated very limited AR performance. Therefore, in
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Task 2

Task 1

Range = Codomain

Mapping space

Domain of valid input

Domain of valid input Valid input 
for both tasks 

Model

{0,1}(𝑫𝒊𝒎 𝟏, 𝑙)

{0,1}(𝑫𝒊𝒎 𝟐, 𝑙)

Figure 2: mt maps this input space to the entire mapping space, which is shared across all tasks. In
order to map the entire space, mapping from the input space to the mapping space become one-to-
many, making an arbitrary point in mapping space to be mapped from a valid input sequence for
every task. Also, this mapping function ensures that the distribution of inputs from the input space
becomes a uniform distribution in the mapping space.

this paper, we used RNN [12] and LSTM [15], as well as stack RNN [17] and tape RNN [43, 11]
which have additional differentiable memory structures added to the standard RNN. The length of the
external memory stack and tape in stack RNN and tape RNN was set to 40, and each element had 8
dimensions [11] and dimensions were doubled with CL of more than 5 tasks.

Evaluation Metrics. We adopt generalization accuracy as the basic evaluation metric. Final model
accuracy (ACC) is the average accuracy of all tasks after learning all tasks as follows:

ACC =
1

T

T∑
t=1

ACCtest
T,t (1)

In order to evaluate not only the catastrophic forgetting but also the model’s knowledge transfer
capability, we introduced a metric that measures backward/forward knowledge transfer [42, 16].
Backward knowledge transfer (BWT) [27] indicates how much learning on the next tasks has
influenced the performance of the previous task. BWT > 0 indicates that there has been a transfer of
beneficial knowledge to the previous task during the CL process. Forward knowledge transfer (FWT)
measures how helpful previously learned knowledge is when learning a new task. FWT is obtained
by calculating the difference between the accuracy achieved in the CL scenario and the accuracy
achieved by training an independent model (as Table 1). BWT and FWT are expressed as follows:

BWT =
1

T − 1

T−1∑
t=1

ACCtest
T,t − ACCtest

t,t , FWT =
1

T − 1

T−1∑
t=1

ACCtest
t,t − ACCtest

t (2)

Algorithm 1 CLeAR-training procedure for a given task t
Input:
Trained up to task t-1: mk, fθ(t−1) and hk,t−1 (1 ≤ k < t)
Dataset of task t: Dt

Train:
Train mt with Dt

fθ = fθ(t−1) and hk = hk,t−1 (1 ≤ k < t)
Freeze fθ(t−1), hk,t−1 (1 ≤ k < t)
Random initialize ht

for xt,i, yt,i ∼ Dt do {Pre-tuning with small samples}
ot,i ← ht · fθ(t−1) ·mt(xt,i)
L = Lnew(ot,i, yt,i)
Compute∇L and update ht

end for
for xt,i, yt,i ∼ Dt do {Main training}

ŷk,i ← argmax ·hk,t−1 ·fθ(t−1) ·mt(xt,i) for k = 1 · · · t−1

ok,i ← hk · fθ ·mt(xt,i) for k = 1 · · · t
L = λ ·

∑t−1
k=1 Lold(ok,i, ŷk,i) + Lnew(ot,i, yk,i)

Compute∇L and update fθ, hk for k = 1 · · · t
end for
Output:
Trained up to task t: mk, fθ and hk (1 ≤ k ≤ t)

CLeAR. We propose a novel CL
algorithm for the CL-AR scenario:
CLeAR. The CLeAR model is divided
into two main parts. The first part is
a mapping function mt that maps se-
quences sampled from the input data
distribution to a shared mapping space.
The second part consists of the main
model fθ(·), which learns labels from
the features in the feature space, and
the task-wise single-layer projection
head ht.

mt maps the input sequence sampled
from the input space of task t to a
feature space (mapping space), pre-
serving length but changing dimen-
sion to fixed size Dmap. The input
sequence consists of binary values, de-
noted as {0, 1}(D

t
in,l), and the range

of the mapping space is expressed as
{0, 1}(Dmap,l). As described in Fig. 2,
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3. Mean 0.5

2. Decorrelation

Mapped Sequence

1  0  0  1  0
1  1  0  1  1

1  0  0  1  1

Input Sequence

1  0  0  1  0
0  1  0  0  1

0  1  0  0
0  0  0  0

Mapped Sequence

0/1

0/1

Input Sequence

Random Noise

1  0  0  1  0
0  1  0  0  1

0  1  0  0
0  0  0  0

1  1  0  1  0
0  0  1  0

Decoder

z

1  0  0  1  0
1  1  0  1  1

1  0  0  1  1

0/1

0/1

0/1

Encoder

0/1

1. Perfect Reconstruction

Figure 3: Mapping function is trained using encoder-decoder architecture and under three constraints.
First, input sequence is perfectly reconstructed. Second, each column of mapped sequence is
decorrelated. Third, each column of mapped sequence has mean of 0.5.

our mapping function mt has the following characteristics. First, an arbitrary sample from the
input distribution is mapped to one or more points in the mapping space (one-to-many). Sec-
ond, for any point in the mapping space, a corresponding sample exists in the input space.
Third, the mapping of input distribution resembles uniform sampling in the mapping space:
mt(inputdistribution) ≈ U({0, 1}(Dmap,l)). Therefore, the mapping function of each task expands
the input distribution to fill the mapping space fully. Thus, an arbitrary sample drawn from the map-
ping space can correspond to a valid input sample for any task. This allows the model to consider a
single sequence in the mapping space as valid input for each previous task. It is similar to how we can
perceive the number 395 in various ways, such as being odd, multiple of 5, or having a sum of digits
equal to 17. These mapping functions can be expressed very simply, requiring minimal computational
resources in the overall model. Additional details about the mapping function, positional mapping,
and specific mapping for each task are explained in Appendix C.

To create such mapping functions, an encoder-decoder structure is considered for tasks where the
distribution of alphabets is preserved across all positions of the input language. As shown in Fig. 3,
the encoder takes the input sequence sampled from the input space and additional random noise to
generate a mapped sequence. Then, the decoder reconstructs the input sequence from the mapped
sequence. In this process, each column of the mapped sequence should have a mean of 0.5 and should
be decorrelated from each other. The encoder serves as the mapping function, and the decoder is
discarded.

The functions fθ(·) and ht(·) are trained using a similar approach to LwF [22]. After completing
the training for the t-1 th task, the training proceeds for the t th task, temporarily saving fθ(t−1) and
hk,t−1 for this task. First, mt is trained. Then, the randomly initialized ht is pre-tuned while the rest
of the model is frozen using a small portion of the dataset. For each sample xt,i, yt,i, the pseudo-label
for the k-th (1 ≤ k < t) task ŷk,i is obtained by argmax · hk,t−1 · fθ(t−1) · mt(xt,i). The loss is
calculated for all t heads. For the outputs of the k-th task heads: hk · fθ · mt(xt,i) (1 ≤ k ≤ t),
the loss is computed with the pseudo-labels ŷk,i for 1 ≤ k < t, and for the t-th task head, the loss
is computed with yt,i. The final loss is the sum of the losses for each head up to t-th. The overall
learning process is shown in Algorithm 1.

4 Experiments
In this section, we first confirmed that applying our mapping function and tuning structure did not
alter the learning ability of each model on tasks from various Chomsky hierarchies, compared to
the previous study [11]. Next, we demonstrate CLeAR’s superior performance on high-correlation,
in-hierarchy, and inter-hierarchy CL-AR tasks through extensive ablations. Furthermore, we analyze
the model’s robustness in terms of noise within the mapping space. A detailed explanation of the
experiment setting and comparison with existing CL algorithms [19, 22, 5] and their failure is shown
in Appendix D.

4.1 Baseline Generalization Accuracy

In Table 1, we presented the generalization accuracy of each model for all tasks in our paper. Corre-
sponding in-distribution accuracy and reported generalization accuracy in the previous paper [11]
paper is shown in Appendix B. It was shown that applying mapping and head did not greatly affect
the model’s performance and did not alter the limits of the Chomsky hierarchy that each model can
learn. The reported performance here was used as a benchmark for calculating Single-task accuracy
and FWT.
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Table 1: Baseline generalization accuracy (%) of overall tasks. Each task was averaged on three
repeats, trained for 50,000 epochs each. The accuracy value was reported with positional mapping
(accuracy without positional mapping is in parentheses). For accuracy over 90%, we considered that
the model successfully learned AR as suggested in [11]. The random accuracy is 50% except for
Modular Arithmetics (R), Cyclic Navigation (R), and Bucket Sort (CS). Tasks that require additional
positional mapping are tagged with †.

Level Task RNN Stack-RNN Tape-RNN LSTM

Regular

Even Pairs 100.0(100.0) 100.0(100.0) 51.4(53.1) 100.0(100.0)
Modular Arithmetic 99.7(98.8) 99.1(99.2) 63.1(82.4) 100.0(100.0)
Parity Check 100.0(100.0) 100.0(100.0) 99.6(99.3) 100.0(100.0)
Cycle Navigation 100.0(98.1) 99.7(100.0) 80.0(97.3) 92.1(87.9)

Context
Free

Compare Occurrence 96.6(97.9) 99.5(98.5) 97.7(97.9) 99.6(99.5)
Stack Manipulation† 57.0 83.9 75.6 82.4
Reverse String 77.7(79.9) 80.1(80.0) 51.3(56.2) 79.3(79.8)
Divide by 2† 71.4 92.0 59.8 70.0

Context
Sensitive

Duplicate String 54.3(53.2) 58.0(60.1) 51.3(51.6) 74.2(76.9)
Interlocked Pairing† 60.6 96.7 53.8 99.7
Odds First 56.5(56.5) 60.8(61.3) 61.4(61.4) 73.2(72.3)
Binary Addition† 48.6 55.4 51.9 71.3
Binary Multiplication† 50.1 52.3 48.9 60.9
Compute Sqrt 57.9(57.4) 64.4(64.1) 56.3(60.3) 66.3(66.7)
Bucket Sort 59.3(55.9) 96.7(97.5) 71.4(78.7) 97.2(98.7)

Table 2: Generalization accuracy (%) on high-correlation CL-AR scenario, averaged on three repeats.
Joint refers to simultaneously training all tasks, with tasks alternating at each step and ultimately
being learned uniformly. Single refers to averaging the accuracy of each individual task. CL Initial
averages the accuracy immediately after learning each task, while CL Final is the final average
accuracy. CL Final values that are greater than 90% or the Joint accuracy were marked in bold, as
well as the positive BWT values.

Task Model Average Accuracy (%)
Joint Single CL Initial CL Final BWT

Modular Arithmetic

RNN 40.32 99.70 61.08 59.68 -1.64
Stack-RNN 54.24 97.98 63.27 62.66 -0.72
Tape-RNN 43.68 84.72 30.84 24.58 -7.31
LSTM 93.07 99.96 96.38 96.25 -0.15

Cycle Navigation

RNN 96.33 99.36 98.57 98.09 -0.56
Stack-RNN 96.97 99.83 98.52 97.88 -0.75
Tape-RNN 56.93 88.65 65.46 67.76 2.67
LSTM 98.72 96.18 99.54 99.37 -0.20

Reverse String

RNN 46.46 64.11 42.64 40.42 -2.60
Stack-RNN 60.00 67.84 68.39 67.69 -0.81
Tape-RNN 24.77 40.53 42.93 39.48 -4.02
LSTM 46.35 65.98 50.73 48.91 -2.12

Bucket Sort

RNN 51.43 56.06 54.25 51.36 -3.36
Stack-RNN 93.49 94.19 95.16 92.44 -3.18
Tape-RNN 73.28 74.54 79.22 77.54 -1.96
LSTM 99.92 98.40 99.55 99.97 0.48

4.2 CLeAR on CL-AR

In this section, we demonstrate that the CLeAR can be applied to various abstract logical tasks,
regardless of the model type and difficulty level. Firstly, we conducted experiments on a scenario
where a single task becomes progressively more challenging (high-correlation scenario). Since the
sequentially presented tasks require similar logical reasoning, there is a significant level of correlation
between these tasks. For example, in the same Cycle Navigation task, the difficulty increases
as the cycle size expands, while in Modular Arithmetic, the difficulty increases as the modular
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Table 3: Generalization accuracy (%) on in-hierarchy CL-AR scenario, averaged on three
repeats. Each task is abbreviated to: Cycle Navigation(CN), Modular Arithmetic(MA),
Parity Check(PC), Even Pairs(EP), Divide by 2(DT), Reverse String(RS), Stack
Manipulation(SM), Compare Occurrence(CO), Binary Addition(BA), Binary
Multiplication(BM), Bucket Sort(BS), Compute Sqrt(CS), Duplicate String(DS),
Interlocked Pairing(IP), Odds First(OF).

Task Model Average Accuracy
Joint Single CL Initial CL Final BWT FWT

Regular
CN-MA-PC-EP

w/o CLeAR

RNN 97.61 99.22 99.85 47.50 -69.80 -
Stack-RNN 96.50 99.79 99.42 47.64 -69.04 -
Tape-RNN 71.05 83.01 98.24 47.44 -67.73 -
LSTM 98.73 96.96 98.02 50.65 -63.15 -

Regular
EP-PC-MA-CN

w/o CLeAR

RNN 97.79 99.22 98.72 53.80 -59.90 -
Stack-RNN 96.50 99.79 99.97 55.11 -59.82 -
Tape-RNN 71.05 83.01 68.24 47.56 -27.58 -
LSTM 98.73 96.96 97.48 53.61 -58.48 -

Regular
CN-MA-PC-EP

RNN 97.61 99.22 96.45 96.17 -0.37 -4.39
Stack-RNN 96.50 99.79 94.89 87.09 -10.40 -10.47
Tape-RNN 71.05 83.01 76.31 76.70 0.53 -8.43
LSTM 98.73 96.96 98.21 96.49 -2.29 0.97

Regular
EP-PC-MA-CN

RNN 97.79 99.22 99.68 99.80 0.16 0.72
Stack-RNN 95.22 99.79 98.19 99.28 1.45 -0.50
Tape-RNN 59.61 83.01 58.16 74.45 21.72 -27.17
LSTM 98.72 96.96 99.99 99.96 -0.05 4.01

Context Free
DT-RS-SM-CO

RNN 65.95 75.66 64.13 61.67 -3.27 -14.13
Stack-RNN 69.64 88.88 79.14 69.95 -12.26 -17.63
Tape-RNN 54.06 71.09 62.26 62.07 -0.25 -9.77
LSTM 82.72 82.86 76.93 79.36 3.24 -4.57

Context Free
CO-SM-RS-DT

RNN 65.95 75.66 64.87 63.89 -1.30 -14.96
Stack-RNN 69.64 88.88 69.74 67.59 -2.86 -26.85
Tape-RNN 54.06 71.09 74.42 67.67 -9.01 0.63
LSTM 82.72 82.86 75.69 74.78 -1.21 -9.14

Context Sensitive
BA-BM-BS-CS-DS-IP-OF

RNN 55.33 55.33 50.77 50.51 -0.34 -5.28
Stack-RNN 52.70 69.19 61.06 60.52 -0.72 -9.53
Tape-RNN 45.97 56.43 46.77 45.97 -1.07 -12.60
LSTM 76.73 77.54 73.48 74.11 0.84 -3.38

value grows. Table 2 shows that CLeAR demonstrated very low forgetting for the most tasks, and
in some cases, backward knowledge transfer occurred. In general CL, Joint is considered a soft
upper bound [10]. We have highlighted CL Final when it exceeds that of Joint, as well as when it
surpasses 90%, indicating successful learning of all tasks. Notably, CLeAR effectively preserve the
best information they have learned even in cases where a task is not fully learned (low CL Initial) or
when learning a specific task is deemed impossible for such a model [11]. Secondly, we conducted
experiments on distinct tasks that belong to the same level of the Chomsky hierarchy (in-hierarchy
scenario). This represents scenarios where the tasks are of different types but have similar difficulty
levels. As evident from the first two rows of Table 3, simple sequential learning without using CLeAR
completely forgets the previous task while learning the next task. In contrast, CLeAR exhibits low
levels of forgetting for tasks across all Chomsky hierarchies and demonstrates multiple instances
of backward/forward knowledge transfer (Table 3). Note that even in cases not highlighted in bold,
CLeAR exhibited very little forgetting or near Joint performance. Lastly, we explored CL for tasks
belonging to different levels of the Chomsky hierarchy (inter-hierarchy scenario). This entails tasks
that differ both in type and difficulty level. Table 4 shows both RNN and LSTM are capable of storing
information on tasks of different levels. During the learning process, which includes relatively long
and completely unrelated tasks, both models successfully remember all the tasks learned from the
very beginning.
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Table 4: For inter-hierarchy CL-AR scenario, average generalization accuracy (%) is obtained for
each group of tasks, averaged on three repeated experiments. The scenario consisted of ten AR tasks
that followed an ascending order in the Chomsky hierarchy: EP-CN-PC-CO-RS-SM-IP-OF-BS-DS
(abbreviations same with Table 3)

Model Chomsky hierarchy Average Accuracy (%)
Joint Single CL Initial CL Final BWT

RNN
Regular 60.50 100.0 93.31 75.04 -27.40
Context Free 59.94 77.10 61.59 60.78 -0.81
Context Sensitive 49.48 57.68 47.13 46.99 -0.19

LSTM
Regular 96.76 97.37 100.0 93.46 -9.06
Context Free 79.70 87.10 80.94 79.11 -1.83
Context Sensitive 83.38 86.08 79.60 77.67 -2.57
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Figure 4: An analysis of the impact of noise in the mapping space on CLeAR and an assessment
of the amount of noise present in each task. In (a), we show that the proposed framework is robust
enough till the noise level of std 0.06 for five continual tasks. In (b), we provide the noise level of
the task’s mapping space distribution for all 15 tasks and show they are all smaller than the notable
noise level.

4.3 Robustness to Distribution Shift

Although we aim to map the input distribution to become uniformly distributed, this is not always
possible. We provide a quantitative analysis of whether the model can maintain high CL performance
without catastrophic forgetting, even in situations where the mapping distribution is not uniform.
We conducted experiments by adding Gaussian noise with specific standard deviation (std) to the
uniform probability distribution on the model’s mapping space. As shown in Fig. 4(a), the model
exhibited robustness even in the presence of significant noise (std up to 0.06 induces forgetting of 5%
or less for the five continual tasks). For our mapping strategy, the std of mapping space distribution
is much smaller than the notable noise level for all 15 tasks as shown in Fig. 4(b). This indicates
that CLeAR performs well for task mappings with distributions that deviate to some extent from a
uniform distribution, demonstrating high robustness.

4.4 Joint training of AR tasks

We discovered from the experimental results in Tables 2, 3 and 4 that continual learning of tasks
for CL-AR often showed higher performance compared to when all tasks were learned simul-
taneously (Joint). This contrasts with the conventional view of continual learning that regards
joint training accuracy as a soft upper bound [10]. Therefore, we analyzed the characteristics of
the model in continual learning and simultaneous learning. First, we visualized the model’s in-
ternal feature space for the simplest two tasks, Parity Check (PC) and Even Pairs (EP), as
described in this paper [11], to illustrate how the model’s learning occurs in each scenario in
Fig. 5. From all the plots, we can observe that after the model learns PC or EP, it internally
learns the corresponding automata for each task. Furthermore, after CL or joint training, it’s ev-
ident that the hidden feature is clustered to solve both tasks simultaneously (Fig. 5 C, D). When
learning EP following PC, the distribution of the hidden features remains similar, and it exhibits
a pattern where each cluster further splits. However, in the case of joint training, the hidden
features occupy a broader space, and unlike CL, the states for PC are clustered into eight pieces.
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Figure 5: The A represents the automata for Parity Check (PC, up) and Even Pairs (EP, down). Each
state (S1-S4) is color-coded to match the features of B, C, and D, with the final states for positive
labels highlighted in yellow. Plots show the distribution of the model’s hidden features using PCA
visualization: after PC training (B), after PC-EP CL (C), and after PC-EP joint training (D). The
upper row corresponds to PC automata states, and the lower row corresponds to EP automata states.
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Figure 6: Clustering on two consecutive digits

The difference between the two learning meth-
ods can be even more clearly observed in the
following experiment. We separated the features
of each model, trained with CL and joint train-
ing, based on the two consecutive digits in Fig. 6.
These consecutive two digits are not necessary
for learning PC or EP but represent easy-to-learn
patterns that the model can easily grasp. In the
case of joint training, this pattern is learned, and
the feature is well separated, while in the case of
CL, this information is not learned. These observations suggest that when learning tasks sequen-
tially through CLeAR, previously learned tasks can act as a regularizer, reducing the acquisition of
unnecessary information for the task.

5 Conclusion
Our study elucidates the distinct features of CL-AR as compared to conventional image-based CL and
highlights the limitations of traditional CL approaches. Additionally, we introduce CLeAR, a novel
methodology for the continual learning of abstract logical concepts. Experiments on 15 tasks with
varying difficulty validate the efficacy of CLeAR. It achieves near-zero forgetting and often improves
accuracy on previous tasks during subsequent training. There are major challenges specific to CL-AR
tasks: the decorrelation between input data and tasks, dynamic dimensions of datasets, and the goal of
generalization for OOD data. CLeAR tackles these challenges by employing a one-to-many mapping
strategy that aligns tasks of different dimensions and shares mapping space. This prevents forgetting
previous tasks and enhances overall performance. Our research contributes to the development of
lifelong learning abilities, resembling human cognitive processes. By overcoming the limitations
of existing CL approaches and focusing on abstract concepts, CLeAR opens new possibilities for
continual learning. The limitation of our approach is that the mapping strategy used in our method
involves discretized mapping, making it challenging to train the accompanying model end-to-end.
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