
Contents of Appendix

A Meek Rules 15

B Preliminaries and Other Useful Results 15

C Another Example of Algorithm 1 15

D Remaining Proofs for Meek Separator 16

D.1 Proof for Lemma 11 . 16

D.2 Proof for Lemma 12 . 17

D.3 Proof for Lemma 13 . 17

D.4 Proof for Lemma 10 . 17

D.5 Proof for Lemma 14 . 18

D.6 Proof for Theorem 5 . 19

E Remaining Proofs for Subset Search 20

E.1 Lower Bound for Subset Search (Lemma 6) . 20

E.2 Upper Bound for Subset Search (Theorem 7) . 20

F Remaining Proofs for Causal Mean Matching 21

F.1 Proof for Lemma 8 . 22

F.2 Proof for Theorem 9 . 22

G Details of Numerical Experiments 23

G.1 Subset Search . 23

G.2 Causal Mean Matching . 24

14

A Meek Rules

Meek rules refer to a collection of four edge orientation rules that are proven to be sound and complete
when applied to a set of arcs that possesses a consistent extension to a directed acyclic graph (DAG)
[Mee95]. With the presence of edge orientation information, it is possible to iteratively apply Meek
rules until reaching a fixed point, thereby maximizing the number of oriented arcs.
Definition 15 (Consistent extension). For a given graph G, a set of arcs is considered to have a
consistent DAG extension ⇡ if there exists a permutation of the vertices satisfying the following
conditions: (i) for every edge {u, v} in G, it is oriented as u! v whenever ⇡(u) < ⇡(v), (ii) there
are no directed cycles, and (iii) all the given arcs are included in the extension.
Definition 16 (The four Meek rules [Mee95], see Figure 6 for an illustration).

R1 Edge {a, b} 2 E \A is oriented as a! b if 9 c 2 V such that c! a and c 6⇠ b.

R2 Edge {a, b} 2 E \A is oriented as a! b if 9 c 2 V such that a! c! b.

R3 Edge {a, b} 2 E \ A is oriented as a ! b if 9 c, d 2 V such that d ⇠ a ⇠ c, d ! b c, and
c 6⇠ d.

R4 Edge {a, b} 2 E \ A is oriented as a ! b if 9 c, d 2 V such that d ⇠ a ⇠ c, d ! c ! b, and
b 6⇠ d.

a b

c

a b

c
R1

a b

c

a b

c
R2

d

a c

b d

a c

b

R3

a

d c

b a

d c

b

R4

Figure 6: An illustration of the four Meek rules

An algorithm [WBL21, Algorithm 2] has been developed to compute the closure under Meek rules
efficiently. The algorithm runs in O(d · |E|) time, where d represents the degeneracy of the graph
skeleton14.

B Preliminaries and Other Useful Results

Here we state some useful notation and results. For an arc u ! v in G, we define R�1
1 (G, u !

v) ✓ V and R�1
k (G, u ! v) ✓ 2V to refer to interventions orienting an arc u ! v. Equivalently,

R�1
1 (G, u ! v) = {w 2 V : u ! v 2 R(G, w)} and R�1

k (G, u ! v) = {I ✓ V : |I|  k, u !
v 2 R(G, I)}.
Proposition 17 (Theorem 7 in [CS23]). Consider a DAG G = (V,E) and intervention sets I,J ✓
2V . The following statements are true: 1) skel(GI) is exactly the chain components of EI(G). 2)

GI
does not have new v-structures. 3) For any two vertices u and v in the same chain component

of EI(G), we have PaG,I(u) = PaG,I(v). 4) If u ! v 2 R(G, I), then u and v belong to different

chain components of EI(G). 5) Any acyclic completion of E(GI) can be combined with R(G, I) to

obtain a valid DAG that has the same essential graph and I-essential graph as E(G) and EI(G),
respectively. 6) R(GI ,J) = R(G,J) \ R(G, I). 7) R(G, I [J) = R(GI ,J) [̇ R(G, I). 8)

R(G, I [J) = R(GI ,J) [̇ R(GJ , I) [̇
�
R(G, I) \R(G,J)

�
.

Lemma 18 (Theorem 10 in [CS23]). Let G = (V,E) be a DAG without v-structures and u! v in G
be unoriented in E(G). Then, R�1

1 (G, u! v) = Des[w] \ Anc[v] for some w 2 Anc[u].

C Another Example of Algorithm 1

We provide another example of Algorithm 1 in an incomplete graph, highlighting that Meek separator
by solely focusing on the 1/2-clique separator.

14A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most d. Note
that the degeneracy of a graph is typically smaller than the maximum degree of the graph.

15

1

2

4

35 6

(a) Ground-truth DAG.

1

2

4

3

1

2

4

3

K0

u0=1 K1={2,3,4}

5 6

5 6

(b) Iteration 0: K0 = {1, 2, 3, 4}.

1

2

4

3

1

2

4

3

K0

u0=1 K1={2,3,4}

5 6

5 6

(c) Iteration 1: u0 = 1, K1 = {2, 3, 4}.

1

2

4

3

u2=4, K2={2,3}

1

2

4

3

I=u3=2

5 6

5 6

(d) Iteration 2: u1 = 4, K2 = {2, 3}.

1

2

4

3

u2=4, K2={2,3}

1

2

4

3

I=u3=2

5 6

5 6

(e) Iteration 3: u2 = 2.

Figure 7: An example of Algorithm 1 finding the Meek separator in an incomplete graph. The sets
Ki are highlighted; oriented edges in Eui(G) by intervening on ui are in grey; connected components
in CC(Eui(G)) are in black. (a) ground-truth DAG G. (b) suppose we take K0 = K = V (G) as the
1/2-clique separator. (c) suppose we pick u0 = 1 from K0, then K1 = K0 \ Qu0 = {2, 3, 4}. (d)

suppose we pick u1 = 4 from K1, then K2 = K1 \ Pu1 = {2, 3}. (e) suppose we pick u2 = 2 from
K2, then Algorithm 1 terminates (line 7) returning meek separator I = {2} and J = {1, 4} that
helps find it.

D Remaining Proofs for Meek Separator

Here we provide all the remaining proofs for the Meek separator algorithm.

D.1 Proof for Lemma 11

Lemma 11 (Connected components). Let G be a moral DAG and v 2 V (G) be an arbitrary vertex.

Any connected component H 2 CC(Ev(G)) satisfies one of the following conditions: V (H) =
v or V (H) ✓ Bv or V (H) ✓ Av .

Proof. Performing an intervention on node v results in orienting all its adjacent edges. Consequently,
one of the connected components in CC(Ev(G)) is {v}, and it is adequate to focus on the remaining
connected components.

Suppose, for the sake of contradiction, that there exists a connected component H 2 CC(Ev(G))
such that H contains two vertices a and b, such that, a 2 Av and b 2 Bv . Since a and b belong to the
same connected component, we consider the path within H that connects these vertices. Notably, this
path includes two adjacent vertices c and d, where c 2 Av and d 2 Bv, and the edge (c, d) remains
unoriented.

However, according to Lemma 18, intervening on any vertex within the set Des[w]\ Anc[d] for some
fixed w 2 Anc[c] will orient edge (c, d). As w 2 Anc[c], we have Des[c] ✓ Des[w] and therefore
Des[c] \ Anc[d] ✓ Des[w] \ Anc[d]. Consequently as v 2 Des[c] \ Anc[d], we get that intervening
on v orients the edge (c, d).

Hence, it is impossible for vertices a 2 Av and b 2 Bv to belong to the same connected component.
Consequently, we can conclude the proof.

16

D.2 Proof for Lemma 12

Lemma 12 (Size of connected components). Let G be a graph and K be an ↵-separator of G.

Suppose H is a connected subgraph of G and V (H) \K = ?, then |V (H)|  ↵ · |V (G)|.

Proof. Since H is a connected subgraph of G and V (H) \ V (K) = ?, removing K from G does
not result in the deletion of any edges or vertices from the subgraph H. Consequently, the vertices
in H will remain connected even after the removal of K, and they will all belong to the same
connected component in the graph G\K. Considering that K is an ↵-separator, this further implies
that |V (H)|  ↵ · |V (G)|. Thus, we can conclude the proof.

D.3 Proof for Lemma 13

Lemma 13 (Properties of connected components). Consider a moral DAG G and let K be an ↵-clique

separator. Let v1, v2, . . . , vk be the vertices of this clique in a valid permutation. We observe that

|Bvi+1 |  |Bvi |, which in turn implies |Avi+1 | � |Avi |. Additionally, we have |Av1 |  ↵ · |V (G)|.

Proof. Since vi precedes vi+1 in the true ordering defined by the underlying ground truth DAG G,
it follows that vi+1 2 Des(vi). Consequently, we can deduce that Des(vi+1) ✓ Des(vi), which
implies |Bvi+1 |  |Bvi |. Additionally, note that |Av|+ |Bv|+ 1 = |V (G)|. Therefore, it holds that
|Avi+1 | � |Avi |.
Furthermore, as v1 is the source node of the clique, removing K ensures that all vertices in Av1 are
still in the remaining graph. They also induce a connected subgraph. Otherwise suppose a 2 Av1 and
b 2 Av1 are not connected. Then the parent c of v1 on a path from a to v1 and the parent d of v1 on a
path from b to v1 are not connected. This creates a v-structure c! v1 d, contradicting G being
moral. Thus Av1 is a connected subgraph with no intersection with K. As K is a ↵-clique separator,
we have by Lemma 12 that |Av1 |  ↵ · |V (G)|. We conclude the proof.

D.4 Proof for Lemma 10

Lemma 10 (Meek separator). Let G be a moral DAG and K be a 1/2-clique separator of G. There

exists a vertex u 2 K satisfying the constraints |Au|  |V (G)|/2 and |Av| > |V (G)|/2 for all v 2
Des(u) \K. Furthermore, such a vertex u satisfies one of the two conditions: 1). either u is a sink

vertex
15

of G[K], or 2). there exists a vertex x such that, x 2 Des(u) \K and
�
(V (G)\Des[x]) \

Des(u)
�
\K = ? (i.e., x and u are consecutive vertices in the valid permutation of clique K). In

both the cases respectively, either {{u}} or {{u}, {x}} is a 1/2-Meek separator.

Proof. Consider the vertices v1, . . . , vk of the clique K in the true ordering defined by the underlying
ground truth G. Since K is a 1/2-clique separator, according to Lemma 13, we deduce that |Av1 | 
|V (G)|/2. Let u denote the last vertex, in terms of the true ordering, within the clique K that satisfies
Au  |V (G)|/2. It is important to note that u fulfills the constraints specified in the lemma.

Therefore there exists a vertex u that fulfills these constraints. Now we show that any vertex that
fulfills these constraints will satisfy one of two conditions, and that either {{u}} or {{u}, {x}} is a
1/2-Meek separator.

Suppose u is a sink vertex of K. Let H 2 CC(Eu(G)) and note that according to Lemma 11,
V (H) = {u} or V (H) ✓ Des(u) or V (H) ✓ V (G)\Des[u]. Since |Au|  |V (G)|/2, any H such
that V (H) ✓ V (G)\Des[u] satisfies |V (H)|  |V (G)|/2. Now, suppose V (H) ✓ Des(u). In this
case, we observe that V (H) \K = ? and H is a connected subgraph of G. By utilizing Lemma 12,
we immediately have |V (H)|  |V (G)|/2. Therefore, {{u}} will be a 1/2-Meek separator.

Suppose u is not a sink vertex. Consider the vertex x that follows u within the clique K in the
ordering defined by the DAG G. Note that x 2 Des(u)\K and (Des(u)\(V (G)\Des[x]))\K = ?.
Furthermore from the definition of u, we also have that |Ax| > |V (G)|/2, which further implies
|Bx|  |V (G)|/2. As intervening on more vertices only creates finer-grained connected components,
we have that for any J ✓ V (G), w 2 V (G), and H0 2 CC(EJ[{w}(G)), there exists an H00 2
CC(EJ (G)) such that H0 is a subgraph of H00.

15u is a sink vertex if and only if it has no children.

17

Let I = {x, u}, consider any H 2 CC(EI(G)) and note that there exist connected components
M 2 CC(Eu(G)) and L 2 CC(Ex(G)) such that H is a subgraph of both M and L. We apply
Lemma 11 to deduce that V (M) = u or V (M) ✓ Des(u) or V (M) ✓ V (G)\Des[u] and V (L) = x
or V (L) ✓ Des(x) or V (L) ✓ V (G)\Des[x].
If V (M) = u or V (M) ✓ V (G)\Des[u] or V (L) = x or V (L) ✓ Des(x), then V (H) = u or
V (H) = x or V (H) ✓ Au or V (H) ✓ Bx. As |Au|, |Bx|  |V (G)|/2, in all of these cases, we
have that |V (H)|  |V (G)|/2. Now consider the remaining cases where V (M) ✓ Des(u) and
V (L) ✓ V (G)\Des[x]. As H is a subgraph of both M and L, we have that H is a subgraph of C,
where C satisfies V (C) = Des(u) \ (V (G)\Des[x]). As (Des(u) \ (V (G)\Des[x])) \K = ?, we
have that V (C) \K = ?. Furthermore, as H is a subgraph of C we also have that V (H) \K = ?.
As H is a connected subgraph of G and V (H) \ K = ?, by utilizing Lemma 12, we have that
|V (H)|  |V (G)|/2. Therefore in all cases, we have that |V (H)|  |V (G)|/2, and thus {{u}, {x}}
is a 1/2-Meek separator, which concludes the proof.

D.5 Proof for Lemma 14

Here we present a proof for Lemma 14, which describes the structure of the solution returned by our
Meek separator algorithm. In order to prove this lemma, we first establish the following result.
Lemma 19. Let G be a connected moral DAG and v 2 V (G) be an arbitrary vertex. For any

connected component H 2 CC(Ev(G)), there exists a directed path from v to H in Ev(G) if and only

if H satisfies V (H) ✓ Des(v). Furthermore, we can certify if H is a subset of G\Des[v] or Des(v)
in polynomial time.

Proof. Suppose there exists a directed path from v to a connected component H, then note that all
the vertices in this directed path are descendants of v and there exists a vertex u 2 V (H) such that,
u 2 Des(v). Furthermore, by Lemma 11, we know that all the connected components H should
satisfy: V (H) = {v} or V (H) = Des(v) or V (H) = V (G)\Des(v). Using the fact that there exists
a vertex u 2 V (H) which belongs to Des(v). Therefore, Des(v) \ V (H) is not empty and we
conclude that V (H) ✓ Des(v).

In the subsequent part of the proof, we examine the converse direction. Assume there exists a
connected component H such that V (H) ✓ Des(v), and we aim to demonstrate the existence of
a directed path from v to H in the interventional essential graph Ev(G). Since H ✓ Des(v), we
consider the shortest directed path from v to H in G. Let w be the endpoint of this path P within H.

Suppose that all edges in P are oriented. In this case, we have already found a directed path from v
to H in Ev(G), and our objective is achieved. Hence, we focus on the scenario where some edges in
P are unoriented. Let P : v = v0 ! v1 ! · · ·! v` ! w denote the vertices along the path P , and
let vj ⇠ vj+1 represent the first unoriented edge encountered.

Since all edges incident to v are oriented, we have vj 6= v. Now, consider the situation where vj�1

and vj+1 are not adjacent. In such a case, the Meek rule R1 would orient the edge vj ! vj+1.
However, since vj ! vj+1 remains unoriented, it implies that the edge vj�1 ! vj+1 must exist.
However, this contradicts the fact that P is the shortest directed path. Therefore, it must be the case
that P is either entirely oriented or entirely unoriented. As some edges in P are oriented, we conclude
that path P is completely oriented, thereby establishing the presence of a directed path from v to H
in the interventional essential graph Ev(G).
In the remaining part of the proof, we discuss the time complexity of finding these directed paths.
To certify whether V (H) ✓ Des(v) or V (H) ✓ V (G)\Des[v], all we need to do is check whether a
directed path exists between v and any u 2 V (H). If the direction of the path is from v to H, then
V (H) ✓ Des(v) or else V (H) ✓ V (G)\Des[v]. To check whether a directed path exists between two
vertices can be done in polynomial time and therefore we can certify if V (H) ✓ Des(v) or V (H) ✓
V (G)\Des[v]. We conclude the proof.

Lemma 14 (Output of MeekSeparator). The algorithm MeekSeparator performs at most

O(log |K|) interventions in expectation and finds a vertex u 2 K that is either a 1/2-Meek separator

or satisfies the following conditions: |Au|  |V (G)|/2 and |Av| > |V (G)|/2 for all v 2 Des(u) \K.

Proof. Consider a clique K and a true ordering ⇡ defined on the vertices V (G) of the underlying
ground truth DAG G. Let v1, v2, . . . , vk represent the vertices in the clique K, labeled according to

18

the true ordering ⇡. In other words, vi precedes vj in ⇡ whenever i < j. Since K is a 1/2-Clique
separator, according to Lemma 10, we have |Av1 |  |V (G)|/2. Additionally, based on Lemma 13,
we know that |Avj |  |Avj+1 | for all j 2 [1, k � 1]. Let vj⇤ be the last vertex within the clique K in
the true ordering ⇡ such that |Avj⇤ |  |V (G)|/2.

In our proof, we demonstrate that our algorithm can either discover a 1/2-Meek separator or identify
the vertex vj⇤ within O(log |K|) interventions, on average. If, at any stage of the algorithm, ui

is a 1/2-Meek separator, our task is complete. Consequently, for the remainder of the proof, we
concentrate on the alternative scenario and establish that our algorithm locates vj⇤ . In this case, we
observe that either vj⇤ corresponds to the sink node of K or we uncover the subsequent vertex, vj⇤+1,
in the ordering. Notably, according to Lemma 10, either case implies that I = {u} or I = {u, x}
constitutes a 1/2-Meek separator.

During each iteration i of our algorithm, we intervene on a uniformly random chosen vertex ui from
the remaining clique Ki. Let Hi represent the largest connected component in the interventional
essential graph Eui(G). The algorithm terminates when the size of the clique becomes empty. Notably,
when we intervene on a vertex ui, by Lemma 19, the existence of a directed path from ui to Hi

implies that Hi corresponds to a connected component in the descendant subgraph of ui. Since
|V (Hi)| > |V (G)|/2, it follows that |Des(ui)| > |V (G)|/2, which further implies |Aui |  |V (G)|/2.
We assign u = ui and observe that |Des(u)| = |Des(ui)| > |V (G)|/2, implying |Au|  |V (G)|/2.
In this scenario, we recursively proceed with the set Qui \Ki, which comprises the nodes that appear
after the vertex ui in the true ordering ⇡. It is worth noting that these vertices y 2 Qui \Ki satisfy
|Ay| � |Aui | since y 2 Des(ui) (Lemma 10).

In the other case, when no path exists from ui to Hi, by Lemma 19, we deduce that V (Hi) ✓ Aui ,
thereby leading to |Aui | > V (G)/2. Consequently, we assign x = ui and therefore |Ax| > V (G)/2.
In this situation, we recursively proceed with the set Pui \Ki, which represents the vertices appearing
before the vertex ui in the true ordering ⇡.

In both cases, it is important to note that Ki always consists of a contiguous set of vertices (defined
by the true ordering) within the clique K. Let si+1 and ti+1 denote the source and sink vertices,
respectively, in the remaining clique Ki+1. In the first case, where Ki+1 = Qui \Ki, the vertex
u = ui satisfies Des(u) \ (V (G)\Des(si+1)) \K = ?. In the latter case, where Ki+1 = Pui \Ki,
the vertex x = ui satisfies Des(ti+1) \ (V (G)\Des(x)) \K = ?. In simpler terms, this means that
vertex u (immediate parent) precedes the remaining clique Ki+1 in the true ordering ⇡, while vertex
x (immediate child) succeeds it within the clique K.

Our algorithm terminates when the remaining clique becomes empty, implying that either u is
a sink vertex or u and x are consecutive vertices within the clique. In other words, Des(u) \
(V (G)\Des(x)) \K = ?. Therefore, the solution returned by our algorithm satisfies the conditions
of the lemma. The only remaining task is to bound the number of interventions required by our
algorithm.

To bound the number of interventions or iterations, we need to analyze the decrease in the size of
the clique Ki at each iteration. Recall that Ki consists of a contiguous set of vertices from the
original clique K, and in each iteration, we randomly select a vertex ui. As discussed earlier, our
algorithm either outputs a 1/2-Meek separator at some intermediate step or performs a randomized
binary search to locate the vertices vj⇤ and vj⇤+1 (if it exists), satisfying |Avj⇤ |  |V (G)|/2 and
|Avj⇤+1

| > |V (G)|/2.

Since the parents and children of a vertex v within the clique K are known after intervening on it,
the algorithm essentially performs a binary search to find the vertices vj⇤ and vj⇤+1. The standard
analysis of randomized binary search provides an expected upper bound of O(log |K|) iterations.

Combining these insights, we can conclude the proof by establishing that the expected number of
iterations is bounded by O(log |K|).

D.6 Proof for Theorem 5

Theorem 5 (Meek separator). Given an essential graph E(G) of an unknown DAG G, there exists

a randomized procedure MeekSeparator (given in Algorithm 1) that runs in polynomial time and

19

adaptively intervenes on a set of atomic interventions I such that we can find a 1/2-Meek separator

of size at most 2 and E [|I|]  O(log!(G)),16
where !(G) denotes the size of the largest clique in G.

Proof. The proof of the theorem for a moral DAG follows immediately by combining Lemma 14 and
Lemma 10.

In the remainder, we extend our result to encompass general directed acyclic graphs. While an
informal argument for general DAGs has been provided at the beginning of Section 4, we now delve
into further details to substantiate that argument. Let us recall the definition of GI = G[E \R(G, I)]
and focus on the graph G?. This subgraph is derived by removing both the v-structure edges and
the oriented edges resulting from the application of Meek rules. According to Proposition 17, we
establish that G? does not introduce any new v-structures and, therefore, is a moral DAG.

To proceed, let H 2 CC(E?(G)) be the largest connect component within E?(G) and designate I as
a 1/2-Meek separator of H. Note that R(H, I) ✓ R(G?, I) and as highlighted in Proposition 17,
we also determine that R(G?, I) = R(G, I)\R(G,?). Consequently, the connected components
within both the intervention essential graphs EI(G) and EI(G?) are identical. Since I is a 1/2-Meek
separator for G?, it also functions as a half 1/2-Meek separator for G.

E Remaining Proofs for Subset Search

Here we present all the proofs for the subset search problem. The proof for the lower bound and the
upper bound results are presented in Appendix E.1 and Appendix E.2 respectively.

E.1 Lower Bound for Subset Search (Lemma 6)

Here we prove our lower bound result for the subset verification problem.
Lemma 6 (Lower bound). Let G = (V,E) be a DAG and T ✓ E be a subset of target edges, then,

⌫1(G, T) � maxI✓V
P

H2CC(EI(G))
(E(H) \ T 6= ?) .

Proof. Consider an intervention set I and let CC(EI(G)) be the set of all connected components
in the intervention essential graph EI(G). As interventions within each connected components are
independent[HB14], we have that,

⌫1(G, T) �
X

H2CC(EI(G))

⌫1(H, T \ E(H)) .

For each H 2 CC(EI(G)), where T \E(H) is non-empty, it is trivial that ⌫1(H, T \E(H)) � 1 as
we need at least one intervention to orient all the edges in T \ E(H). Therefore the lower bound
follows, which concludes the proof.

E.2 Upper Bound for Subset Search (Theorem 7)

Here we present comprehensive proof for the upper bound result. Although a proof sketch of this
result has already been presented in Section 5, we now provide additional details to solidify our
argument.
Theorem 7 (Upper bound). Let G = (V,E) be a DAG with |V | = n and T ✓ E be a subset

of target edges. Algorithm 2 that takes essential graph E(G) and T as input, runs in polynomial

time and adaptively intervenes on a set of atomic interventions I ✓ V that satisfies, E [|I|] 
O
�
log n · log!(G)

�
· ⌫1(G, T) and T ✓ R(G, I) . Furthermore, in the special case of T = E, the

solution returned by it satisfies, E [|I|]  O(log n) · ⌫1(G) and E ✓ R(G, I) .

Proof. As discussed in Section 5, the correctness of the Algorithm 2 follows because of the termi-
nation condition of the algorithm. Note that, upon termination, all the connected components that
encompass the target edges T have a size of 1. This observation leads to the immediate implication
that all the edges belonging to T are oriented.

16The expectation in the result is over the randomness of the algorithm.

20

In the remaining part of the proof, we analyze the cost of the algorithm and divide the analysis into
two parts: the number of outer loops and the cost per loop.

The bound on the number of outer loops is straightforward. Since the size of connected components
containing the target edges decreases at least by a factor of 1/2 in each iteration, and after O(log n)
iterations all connected components either consist of a single vertex or do not have any incident target
edges T , therefore our algorithm terminates in O(log n) iterations.

To bound the cost per loop, note that, we invoke the Meek separator only on the connected components
H that have at least one target edge. For each such component H, Lemma 6 establishes that any
algorithm must perform at least one intervention on this component. Our Meek separator algorithm
performs at most O(log!(H)) 2 O(log!(G)) interventions for each component H. Hence, in any
iteration, we perform at most O(log!(G))⌫1(G, T) interventions. It is important to mention that
when T = E, we use the lower bound from [SMG+20] which states that any algorithm would require
at least ⌦(!(H)) interventions to orient all edges within the connected component H, whereas we
only perform O(log!(H)) interventions in that iteration. Consequently, in the special case of T = E,
the cost per iteration is at most O(⌫1(G, E)).

Combining these analyses, we conclude that our algorithm orients all the edges in T by performing
at most O(log n log!(G))⌫1(G, T) interventions. In the special case of T = E, our total number of
interventions is at most O(log n) · ⌫1(G). This completes the proof.

F Remaining Proofs for Causal Mean Matching

Similar to the subset search, we use the Meek separator as a subroutine to provide an approximation
algorithm. A crucial step of our algorithm is a source finding algorithm, which given an essential
graph E(G) and a subset of nodes U ✓ V (G), returns a source node of U by performing at most
O(log n · log!(G)) number of interventions. Such a source-finding algorithm immediately helps
us solve the causal state-matching problem. In the remainder of the section we provide the source
finding algorithm and use it solve the causal state matching problem. To understand our source
finding algorithm, we need the following lemma.

Lemma 20. Let G = (V,E) be a DAG, I ✓ V be an intervention set and let S,H 2 EI(G⇤). Suppose

there exists a directed path from S to H, then no directed path exists from H to S. Furthermore,

if s, t 2 V be such that t 2 Des(s) and they are not in the same connected component, then there

exists a directed path that is oriented from the connected component containing s to the connected

component containing t.

Proof. We are given that there exists a directed path from S to H. As there exists a directed path
from S to H, there exist a vertex s 2 V (S) and t 2 V (H) such that t 2 Des(s).

Suppose for a contradiction assume that there exists a directed path from H to S. Let u and v be
the endpoint of this directed path in H and S respectively. By Proposition 17, we know that all the
recovered parents for the vertices within the same connected component are the same; therefore we
have that, Pau,I(G) = Pat,I(G) and Pas,I(G) = Pav,I(G). Let t0 be the parent of t on the directed
path that connects the vertices s and t. Note that t0 2 Des[s] and t0 could be s or some other vertex.
As s and t belong to different connected components t0 ! t is oriented. As Pau,I(G) = Pat,I(G), we
have that t0 2 Pau,I(G), therefore u 2 Des(t0) which further implies u 2 Des(s). As v 2 Des(u) and
as they are in different connected components, a similar argument as above implies that s 2 Des(u),
which is a contradiction. Therefore H to S directed path does not exist. The analysis conducted
above verifies the first claim of the lemma. In the subsequent portion, we focus on establishing the
second part.

Consider vertices s and t such that t 2 Des(s). If both s and t belong to the same connected compo-
nent in the interventional essential graph EI(G), the lemma statement holds trivially. Henceforth, we
assume that s and t belong to distinct connected components, denoted as S and T respectively.

Since t 2 Des(s), there exists a directed path from vertex s to vertex t in the ground truth DAG
G. Let us denote Q as the shortest directed path from s to t in G. To form path P , we remove the
edges within the connected components S and T from Q and retain only the edges that connect S
and T . Consequently, P represents this modified portion of path Q. Furthermore, let v and w be the

21

respective endpoints of path P in S and T . As S and T are two different connected components, we
have that some of the edges in P are oriented.

Suppose that all edges in P are oriented. In this case, we have already found a directed path from S
to T in EI(G), and our objective is achieved. Hence, we focus on the scenario where some edges in
P are unoriented. Let P : v = v0 ! v1 ! · · ·! v` ! w denote the vertices along the path P , and
let vj ⇠ vj+1 represent the first unoriented edge encountered.

Since v1 does not belong to the connected component S, we have that v ! v1 is oriented and we
have vj 6= v. Now, consider the situation where vj�1 and vj+1 are not adjacent. In such a case, the
Meek rule R1 would orient the edge vj ! vj+1. However, since vj ! vj+1 remains unoriented,
it implies that the edge vj�1 ! vj+1 must exist. However, this contradicts the fact that P is the
shortest directed path. Therefore, it must be the case that P is either entirely oriented or entirely
unoriented. As some edges in P are oriented, we conclude that path P is completely oriented, thereby
establishing the presence of a directed path from S to T in the interventional essential graph EI(G),
which concludes the proof.

F.1 Proof for Lemma 8

We now provide the analysis of the source-finding algorithm. The guarantees of this algorithm are
summarized in the lemma that follows.
Lemma 8 (Source finding). Let G = (V,E) be a DAG and U ✓ V be a subset of vertices. Algorithm 3

that takes essential graph E(G) and U as input, runs in polynomial time and adaptively intervenes on

a set of atomic interventions I ⇢ V , identifies a source vertex of the induced subgraph G[U] with

E [|I|]  O
�
log n · log!(G)

�
.

Proof. As Ji is a 1/2-Meek separtors, we immediately have that |V (Hi+1)|  |V (Hi)|/2. Therefore
our algorithm terminates in at most O(log n) iterations. By Theorem 5, note that, in each iteration,
we make at most O(log!(Hi)) 2 O(log!(G⇤)) number of iterations. Therefore, the total number of
interventions are at most O(log n · log!(G⇤)). It remains to show that we find the source node of U .

As in each iteration we recurse on connected component Hi 2 Ci that has no incoming edge from
any other component H 2 Ci. From Lemma 20, we know that Hi contains one of the source nodes
of U . Therefore our algorithm always recurses on a connected component containing a source node
until the algorithm finds it.

Algorithm 4 CausalMeanMatch(E(G), P, µ⇤)

1: Input: Essential graph E(G) of a DAG G, observational distribution of V , and desired mean µ⇤.
2: Output: Atomic intervention set I.
3: Initialize I⇤ = ? and I = {?}.
4: while EPI⇤ (V) 6= µ⇤

5: Let T = {i|i 2 [p],EPI⇤ (Vi) 6= µ⇤

i }.
6: Let G be the subgraph of EI(G) induced by T .
7: Let UT be the identified source nodes in T .
8: while UT = ?
9: Let C be a chain component of G with no incoming edges.

10: Perform interventions by FindSource(E(G), S) and append interventions to I.
11: Update G and UT as the outer loop.
12: Set ai = µ⇤

i � EPI⇤ (Vi) for i in UT .
13: Include the atomic interventions with perturbation targets UT and shift values {ai}i2UT

respectively in I⇤ and perform I⇤.
14: return I⇤

F.2 Proof for Theorem 9

Given such a source-finding algorithm, we can use it to solve the mean matching problem. We
summarize this result below.

22

Theorem 9 (Causal mean matching). Let G be a DAG and I⇤
be the unique solution to the causal

mean matching problem with desired mean µ⇤
. Algorithm 4 that takes E(G) and µ⇤

as input,

runs in polynomial time and adaptively intervenes on set I ✓ V , identifies I⇤
with E[|I|] 

O
�
log n · log!(G)

�
· |I⇤| .

Proof. Note the outer loop in Algorithm 4 takes at most |I⇤| round. In each of this round, the
inner loop is ended with at most O(log n log!(G⇤)) interventions in expectation, as proven by
Lemma 8. Therefore, in expectation, the number of interventions performed is upper bounded by
O(log n log!(G⇤))|I⇤|.

G Details of Numerical Experiments

We implemented our methods using the NetworkX package [HSSC08] and the CausalDAG package
https://github.com/uhlerlab/causaldag. All code is written in Python and run on CPU. The
source code of our implementation can be found at https://github.com/uhlerlab/meek_sep.

G.1 Subset Search

Problem Generation: We consider the r-hop model in [CS23]. In this model, an Erdös-Rényi graph
[ER60] with edge density 0.001 on n nodes is first generated. Then a random tree on these n nodes
is generated. The final DAG is obtained by (1) combining the edge sets using a fixed topological
order, where u ! v if it is in the combined edge sets and u has a smaller vertex label than v, and
(2) removing v-structures by connecting u! w where u! v w and u has a smaller vertex label
than w. Then the subset of edges is selected to be the edges within r-neighborhood of a randomly
picked vertex.

Multiple Runs: For each dot presented in the results, we run each method on 20 different instances
using the generation method described above. The average and standard deviation across instances
are reported in the results.

Figure 8 shows similar results as Figure 5a on the 3-hop model, where we vary the number of hops
r 2 {1, 2, 4, 5} on DAGs with different sizes. Figure 9 shows the trend of varying number of hops
on DAGs with different sizes. We observe our method MeekSep and MeekSep-1 to consistently
outperform existing baselines.

(a) r = 1 (b) r = 2

(c) r = 4 (d) r = 5

Figure 8: Meek separator for subset search on r-hop model. Each dot is averaged across 20 DAGs,
where the error bar shows 0.5 standard deviation.

23

https://github.com/uhlerlab/causaldag
https://github.com/uhlerlab/meek_sep

(a) n = 50 (b) n = 75

(c) n = 100 (d) n = 150

Figure 9: Meek separator for subset search on r-hop model. Each dot is averaged across 20 DAGs,
where the error bar shows 0.5 standard deviation.

G.2 Causal Mean Matching

Problem Generation: We consider three random graph models: Erdös-Rényi graphs,
Barabási–Albert graphs [AB02], and random tree graphs. The edge density in Erdös-Rényi graphs
is 0.2 where the number of edges to attach from a new node to existing nodes in Barabási–Albert
graphs is set to 2. The intervention targets of I⇤ is a random subset of n vertex in the DAG.

Multiple Runs: For each dot presented in the result, we run each method on 10 different instances
using the generation method described above. The average and standard deviation across instances
are reported in the results.

Figure 5b shows the result on Erdös-Rényi graphs, where we vary the number of targets in I⇤ on
DAGs with 50 nodes. Figure 10a and Figure 10b show similar results on random tree graphs and
Barabási–Albert graphs. In Figure 10c, we consider Erdös-Rényi graphs where |I⇤| is set to 25.
This result shows the trend of varying number of nodes. We observe that our method is empirically
competitive with the state-of-the-art method CliqueTree across all cases.

(a) Random tree graphs (b) Barabási–Albert graphs (c) |I⇤| = 25

Figure 10: Meek separator for causal matching. Each dot is averaged across 10 DAGs, where the
error bar shows 0.2 standard deviation

24

	Introduction
	Preliminaries and Related Work
	Basic Graph Definitions
	Graphical Concepts in Causal Models
	Interventions and Verifying Sets

	Results
	Algorithm for Meek Separator
	Existence of Size-2 Meek Separator
	Binary Search Algorithm

	Algorithm for Subset Search
	Algorithm for Causal Mean Matching
	Experiments
	Discussion
	Meek Rules
	Preliminaries and Other Useful Results
	Another Example of Algorithm 1
	Remaining Proofs for Meek Separator
	Proof for lem:tt
	Proof for lem:connectedsize
	Proof for lem:exisgoodsoln
	Proof for lem:meeksep
	Proof for lem:msepoutput
	Proof for thm:meekseparator

	Remaining Proofs for Subset Search
	Lower Bound for Subset Search (lem:lb)
	Upper Bound for Subset Search (thm:lb)

	Remaining Proofs for Causal Mean Matching
	Proof for lem:src
	Proof for thm:meanmatching

	Details of Numerical Experiments
	Subset Search
	Causal Mean Matching

