
A Appendix for Details of Deriving HTGM487

A.1 The lower-bound of the likelihood function488

In this section, we provide the details of the lower-bound in Eq. (3). By introducing the approximated489

posterior q�(v⌧ |Ds
⌧ ), the likelihood in Eq. (1) becomes (the superscript ⇤ is neglected for clarity)490
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where the fourth step uses Jensen’s inequality. This completes the derivation of Eq. (3).491

A.2 The upper-bound of the partition function492

In Sec. 3.2, we apply an upper bound on the partition function in Eq. (2) for solving the challenging493

2. The derivation of the upper bound is as follows.494
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where the last equation is from the multidimensional Gaussian integral. This completes the derivation495

of the upper bound of the partition function.496

A.3 The proof of Theorem 3.1497

Proof. Let Bj denote a ball in Rd. Its center is at Wjv⌧ and its radius is Dhl/3. Because Whv⌧498

and Wlv⌧ (1  h, l  N ) is the pair with the smallest Euclidean distance Dhl, for any pair of balls499

Bj and Bm we have Bj \Bm = ?.500

In other words, there is no overlap between any pair of balls. Therefore, if we compute the integral501

over the joint of all balls, we have502
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Also, because there is no overlap between any pair of balls, for each point µc
k 2 Bm, we have503
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Therefore, we have the following derivation from Eq. (9).504
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Meanwhile, since
SN

m=1 Bm is a sub-area of the entire Rd space, we have505
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According to the multidimensional Gaussian integral, we have506
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Since N

p
2d�1⇡d is its upper bound, based on the squeeze theorem, we have508
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which completes the proof of Theorem 3.1.509

A.4 The training algorithm of HTGM510

The training algorithm of HTGM is summarized in Algorithm 1.511

B Appendix for Further Discussion512

B.1 Discussion about the novel task discussion and meta-learning513

As we discussed in Sec. 2, to the best of our knowledge, our proposed method HTGMis the first514

work that jointly consider the task mixture distribution and novel task detection in meta-testing515

stage. There are some works considering how to identify novel task clusters in meta-training stage516

based on task embedding [47] or task likelihood [11]. However, they have their own respective517

drawbacks when handling novel task detection in meta-testing stage. For task-embedding-based518

method like [47], it does not explicitly model the task distribution. Instead, it considers how to519

model the task membership of the learnt clusters. As a result, they can only identify the outlying520

task clusters rather than individual novel tasks. However, in meta-testing stage, we expect the model521

to identify each individual novel task and raise alerts. The task-likelihood-based method DPMM522

[11] can handle individual novel tasks. However, it is hard for them to simultaneously handle quick523

detection and adaptation. This is because its likelihood was built on the entire model parameters,524

leading to model-dependent and time consuming computation. It is not a big issue for meta-training,525

but will serious limit its application to streaming tasks in meta-testing (e.g., in auto-driving domain)526

where efficiency is critical for timely alarms of novel tasks.527

B.2 Discussion about the relationship between HTGM and HGM model528

To the best of our knowledge, the Hierarchical Gaussian Mixture (HGM) model has appeared in the529

traditional works [8, 30, 3] for hierarchical clustering by applying Gaussian Mixture model agglom-530

eratively or divisively on the input samples. They are unsupervised methods that infer clusters of531

samples, but do not pre-train embedding models (or parameter initializations) that could be fine-tuned532

for the adaptation to new tasks in meta-learning. Therefore, these methods are remarkably different533

from meta-learning methods, and we think it is a non-trivial problem to adapt the concept of HGM to534
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Algorithm 1: Hierarchical Gaussian Mixture based Task Generative Model (HTGM)
Input: encoder f✓ , training dataset Dtr, hyperparameters r, �, �̄
Output: model parameters {✓, !}

1 Pre-train the encoder f✓ via ProtoNet with augmentations.
2 Pre-train the energy function in Eq. (2) by maximizing 1

n

Pn
i=1 log p✓,!(ei|yi) + log p!(yi|v⌧ )

3 for i 1 to MaxEpoch do
/* E-step */

4 V = ?
5 for {Ds

⌧ = {(xs
i , y

s
i )}ns

i=1,D
q
⌧ = {(xq

i , y
q
i )}

nq
i=1} in Dataloader(Dtr

) do
/* load a task episode */

6 {es
i}ns

i=1 = {f✓(xs
i)}ns

i=1 ; // embeddings of the support set
7 µa

z⌧
= Task-Pooling(Class-Pooling({(es

i , y
s
i )}ns

i=1)) ; // the mean of q�(v⌧ |Ds
⌧ )

8 Sample a task embedding v⌧ from q�(v⌧ |Ds
⌧ ) = N (µa

z⌧
, �̄

2I)
9 V = V [ {v⌧}

10 end
11 {z⌧}|V|

⌧=1, {µt
1, ...,µ

t
r,⌃

t
1, ...,⌃

t
r} = GMM(V). ; // fit a GMM to V, where {z⌧}|V|

⌧=1
represents the labeling of the v⌧’s in V

/* M-step */

12 for {Ds
⌧ = {(xs

i , y
s
i )}ns

i=1,D
q
⌧ = {(xq

i , y
q
i )}

nq
i=1} in Dataloader(Dtr

) do
/* load a task episode */

13 {es
i}ns

i=1 = {f✓(xs
i)}ns

i=1 ; // forward pass

14 {eq
i}

nq
i=1 = {f✓(xq

i )}
nq
i=1 ; // forward pass

15 {µc
1, ...,µ

c
N}s = Class-Pooling({(es

i , y
s
i )}ns

i=1)
16 µa

z⌧
= Task-Pooling({µc

1, ...,µ
c
N}s) ; // the mean of q�(v⌧ |Ds

⌧ )
17 Sample a task embedding v⌧ from q�(v⌧ |Ds

⌧ ) = N (µa
z⌧
, �̄

2I)
18 for j = 1, ..., N do
19 µ̄c

j = ↵µc
j + (1� ↵)Wl⇤v⌧ 0 where l

⇤ = argmin1lN D(µc
j ,Wlv⌧ 0)

20 end
21 Calculate `({eq

i}
nq
i=1,V, {µ̄

c
j}Nj=1, {µt

1, ...,µ
t
r,⌃

t
1, ...,⌃

t
r},�,!) ; // calculate the loss

in Eq. (5) using Eq. (3) and Eq. (4)
22 ✓,! = SGD(`,✓,!) ; // update model parameters
23 end
24 end

solve the meta-learning problem. To this end, we need to (1) identify the motivation; and (2) solve535

the new technical challenges. For (1), we found the hierarchical structure of mixture distributions536

naturally appears when we want to model the generative process of tasks from a mixture of distribu-537

tions, where each task contains another mixture distribution of classes (as suggested by Eq. (1)). In538

other words, the motivating point of our method is more on meta-learning than HGM. However, we539

think drawing such a connection between meta-learning and HGM is a novel contribution. For (2),540

our method is different from traditional HGM in (a) its generative process of tasks (Sec. 3.1), which541

is a theoretical extension of the widely used empirical process of generating tasks in meta-learning;542

(b) its Gibbs-style task-conditional distribution (Eq. (2)) for fitting uniformly sampled classes; (c)543

the metric-based end-to-end meta-learning framework (Fig. 1) (note the traditional HGM is not for544

learning embeddings); (d) the non-trivial derivation of the optimization algorithm in Sect. 3.2 and545

Alg. 1; and (e) the novel model adaptation process in Sec. 3.3. Solving the technical challenges in546

the new generative model is another novel contribution of the proposed method.547

B.3 Discussion about the related multi-task learning methods548

The modeling of the clustering/grouping structure of tasks or the mixture of distributions of tasks549

has been studied in multi-tasking learning (MTL). In [46, 9], tasks are assumed to have a clustering550

structure, and the model parameters of the tasks in the same cluster are drawn to each other via551

optimization on their L2 distances. In [13], a subspace based regularization framework was proposed552

for grouping task-specific model parameters, where the tasks in the same group are assumed to lie in553

the same low dimensional subspace for parameter sharing. The method in [16] also uses the subspace554
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based sharing of task parameters, but allows two tasks from different groups to overlap by having555

one or more bases in common. The method in [32] introduces a generative model for task-specific556

model parameters that encourages parameter sharing by modeling the latent mixture distribution of557

the parameters via the Dirichlet process and Beta process.558

The key difference between these methods and our method HTGM lies in the difference between559

MTL and meta-learning. In an MTL method, all tasks are known a priori, i.e., the testing tasks are560

from the set of training tasks, and the model is non-inductive at the task-level (but it is inductive at561

the sample-level). In HTGM, testing tasks can be disjoint from the set of training tasks, thus the562

model is inductive at the task-level. In particular, we aim to allow testing tasks that are not from the563

distribution of the training tasks by enabling the detection of novel tasks, which is an extension of564

the task-level inductive model. The second difference lies in the generative process. The method565

in [32] models the generative process of the task-specific model parameters (e.g., the weights in a566

regressor). In contrast, HTGM models the generative process of each task by generating the classes567

in it, and the samples in the classes hierarchically, i.e., the (x, y)’s (in Eq. (1) and Sec. 3.1). In this568

process, we allow our model to fit uniformly sampled classes given a task (without specifying a prior569

on the distance function on classes) by the proposed Gibbs distribution in Eq. (2). Other remarkable570

differences to the aforementioned MTL methods include the inference network (Fig. 1(b)), which571

allows the inductive inference on task embeddings and class prototypes; the optimization algorithm572

(Sec. 3.2) to our specific loss function in Eq. (3), which is from the likelihood in Eq. (1); and the573

model adaptation algorithm (Sec. 3.3) for performing predictions in a testing task, and detecting574

novel tasks. As such, the MTL methods can not be trivially applied to solve our problem.575

B.4 Further interpretation of the task-conditional distribution576

The task-conditional class distribution p!(yi = k|v⌧ ) in Eq. (2) is defined through an energy function577

E!(µc
k;v⌧ ) = min ({||µc

k �Wjv⌧ ||22}Nj=1) with trainable parameters ! = {W1, ...,WN}, for578

allowing uniformly sampled classes per task. The conditional distribution p(yi|v⌧ ) represents how579

classes distribute for a given task ⌧ . The reason for its definition in Eq. (2) is as follows. If it is a580

Gaussian distribution with v⌧ (i.e., task embedding) as the mean, p(yi = k|v⌧ ) can be interpreted as581

the density at the representation of the k-th class in this Gaussian distribution, i.e., the density at µk,582

which is the mean/surrogate embedding of the k-th class. One problem of this Gaussian p(yi|v⌧ ) is583

that different classes, i.e., different µyi
’s, are not uniformly distributed, contradicting the practice584

that given a dataset (e.g., images), classes are often uniformly sampled for constituting a task in the585

empirical studies. Using a uniformly sampled set of classes to fit the Gaussian distribution p(yi|v⌧ )586

will lead to an ill-posed learning problem, as described in Sec. 3.1. To solve it, we introduced587

! = {W1, ...,WN} in the energy function E!(µc
k;v⌧ ) in Eq. (2). Wj 2 Rd⇥d (1  j  N)588

can be interpreted as projecting v⌧ to the j-th space spanned by the basis (i.e., columns) of Wj .589

There are N different spaces for j = 1, ..., N . Thus, the N projected task means W1v⌧ , ...,WNv⌧590

are in N different spaces. Fitting the energy function E!(µc
k;v⌧ ) to N uniformly sampled classes591

µc
1, ...,µ

c
N , which tend to be far from each other because they are uniformly random, tends to learn592

W1, ...,WN that project v⌧ to N far apart spaces that fit each of the µc
1, ...,µ

c
N by closeness, due to593

the min-pooling operation. This mitigates the aforementioned ill-posed learning problem.594

C Appendix for Implementation Details595

C.1 The setup of the compared models596

Encoder of Metric-based Meta-Learning. For fairness, for all metric-based methods, including597

ProtoNet [39], MetaOptNet [22], ProtoNet-Aug [40], FEATS [49] and NCA [17], following [41, 22],598

we apply ResNet-12 as the encoder. ResNet-12 has 4 residual blocks, each has 3 convolutional layers599

with a kernel size of 3 ⇥ 3. ResNet-12 uses dropblock as a regularizer, and its number of filters600

is (60, 160, 320, 640). For MetaOptNet, following its paper [22], we flattened the output of the601

last convolutional layer to acquire a 16000-dimensional feature as the image embedding. For other602

baselines, following [41], we used a global average-pooling layer on the top of the last residual block603

to acquire a 640-dimensional feature as the image embedding.604

Further Details. Following [39], ProtoNet, ProtoNet-Aug, and NCA use Adam optimizer with605

�1 = 0.9 and �2 = 0.99. We did grid-search for the initial learning rate of the Adam within606
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{1e�2
, 1e�3

, 1e�4}, where 1e�3 was selected, which is the same as the official implementation607

provided by the authors. For FEATS, we chose transformer as the set-to-set function based on the608

results reported by [49]. When pre-training the encoder in FEATS, following its paper [49], we609

applied the same setting as ProtoNet, which is to use Adam optimizer with an initial learning rate610

of 1e�3, �1 = 0.9 and �2 = 0.99. When training its aggregation function, we grid-searched the611

initial learning rate in {1e�4
, 5e�4

, 1e�5} since a larger learning rate leads to invalid results on our612

datasets. The optimal choice is 1e�4. For MetaOptNet, following its paper [22], we used SGD with613

Nesterov momentum of 0.9, an initial learning rate of 0.1 and a scheduler to optimize it, and applied614

the quadratic programming solver OptNet [2] for the SVM solution in it.615

C.2 The details of the setup for novel task detection616

In the experiments on novel task detection in Sec. 4.1, the number of in-distribution tasks (from the617

Original domain) in the test set is 4000 (1000 per task cluster) and the number of novel tasks (from618

the Blur and Pencil domains) in the test set is 8000 (4000 for the Blur and 4000 for the Pencil).619

D Appendix for Experimental Results620

D.1 Analysis of �621

Setting of � Bird Texture Aircraft Fungi
0.1 69.33 46.92 75.20 50.78
0.5 70.00 47.98 75.38 52.38

1.0 (Ours) 70.12 47.76 75.52 52.06
10.0 69.4 47.28 75.32 51.5

Table 4: Analysis of different �

Tabel 4 report the effect of different � on the classification performance (5-way-1-shot classification622

on Multi-Plain dataset). As shown in the table, although the too low or too high setting of this623

hyper-parameter will hurt the performance, in general the model is robust toward the setting of �.624

D.2 Analysis of �̄625

Setting of �̄ Bird Texture Aircraft Fungi
0.05 69.78 48.36 74.36 51.34

0.1(Ours) 70.12 47.76 75.52 52.06
0.2 70.02 47.50 75.30 51.74
0.5 69.02 46.66 74.46 51.00

Table 5: Analysis of different �̄

Tabel 5 summarize how different �̄ influence classification performance (5-way-1-shot classification626

on Multi-Plain dataset). In general, different settings of �̄ will influence the model performance at a627

marginal level, indicating our model’s robustness toward this hyper-parameter.628

D.3 Impact of GMM component number629

Number of components r 2 4 8 16 32
Silhouette score 47.70 57.61 12.76 7.81 6.19
Table 6: Analysis on the number of mixture components

Different choices of the number of mixture components does not significantly influence the model630

classification performance. However, the clustering quality may vary due to the different numbers of631

components. Here, we report the Silhouette score [36, 37] w.r.t. the number in Table 6. From Table 6,632

we can see that selecting a component number close to the ground-truth component number of the633

distribution can benefit the clustering quality.634
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D.4 Classification performance of the ablation variants635

Ablation Variants Bird Texture Aircraft Fungi
HTGM w/o GMM 68.86 48.00 75.74 52.28
HTGM-Gaussian 69.52 47.3 75.38 51.34

HTGM 70.12 47.76 75.52 52.06
Table 7: Ablation study of different variants of our proposed method.

We summarize the classification performance of the two Ablation Variants HTGM w/o GMM and636

HTGM-Gaussian in Table 7. As we can see, our unique designs improve the novel task detection637

performance without significantly decreasing the classification performance.638

D.5 Ablation analysis of optimization-based methods639

Setting Model Bird Texture Aircraft Fungi Average
ANIL-MAML 62.64±0.90 43.86±0.78 70.03±0.85 48.34±0.89 56.22

5-way-1-shot ANIL-HSML 64.33±0.87 43.77±0.79 69.71±0.84 47.75±0.89 56.39
ANIL-ARML 65.98±0.87 43.57±0.78 70.28±0.84 48.48±0.92 57.08
HTGM (ours) 70.12±1.28 47.76±1.49 75.52±1.24 52.06±1.41 61.37
ANIL-MAML 74.38±0.73 55.36±0.74 79.78±0.63 59.57±0.79 67.27

5-way-5-shot ANIL-HSML 78.18±0.71 57.70±0.75 81.32±0.62 59.83±0.81 69.26
ANIL-ARML 78.79±0.71 57.61±0.73 81.86±0.59 60.19±0.81 69.61
HTGM (ours) 82.27±0.74 60.67±0.78 88.48±0.52 65.70±0.79 74.28

Table 8: More results (accuracy±95% confidence) of the optimization-based methods.

We selected the two best performed optimization-based baselines HSML and ARML, and the widely640

used method MAML for this ablation analysis. Table 8 summarizes the performance of MAML,641

HSML and ARML trained in ANIL method [34], i.e., we pre-trained the ResNet-12 by ProtoNet,642

froze the encoder, and fine-tuned the last fully-connected layers using MAML, HSML and ARML643

on Plain-Multi dataset. From Table 8, the performance of ANIL-MAML is better than MAML in644

Table 1, similar to the observation in [34], indicating the effectiveness of ANIL method. However,645

ANIL-HSML and ANIL-ARML perform similarly to ANIL-MAML, losing their superiority of646

modeling the mixture distribution of tasks achieved when implemented without ANIL as in Table 1647

(up to 5.6% average improvement). This is because the cluster layer in HSML and the graph layer in648

ARML both affect the embeddings learned through backpropagation, i.e., they were designed for649

joint training with the encoder. When the encoder is frozen, they cannot work properly. For this650

reason, to be consistent with the existing research [47, 48] that demonstrated the difference between651

HSML/ARML and MAML, we used their original designs in Sec. 4. Meanwhile, we observed652

the proposed HTGM outperforms MAML, HSML, and ARML trained in ANIL method, this is653

because MAML cannot model the mixture distribution of tasks, while HSML and ARML cannot654

work properly when trained in ANIL method.655

D.6 More results on the Mini-ImageNet dataset656

Model 5-way-1-shot 5-way-5-shot
ProtoNet-Aug 59.40±0.93 74.68±0.45
HTGM (ours) 61.80±0.95 74.55±0.45

Table 9: Comparison of the proposed method and ProtoNet-Aug on the Mini-ImageNet dataset.

In the case when the task distribution is not a mixture, our model would degenerate to and perform657

similarly to the general metric-based meta-learning methods, e.g., ProtoNet, which only considers a658

uni-component distribution. To confirm this, we added an experiment that compares our model with659

ProtoNet-Aug on Mini-ImageNet [43], which does not have the same explicit mixture distributions660

as in the Plain-Multi and Art-Multi datasets in Section 4. The results are summarized in Table661

9. From the table, we observe our method performs comparably to ProtoNet, which validates the662

aforementioned guess. Meanwhile, together with the results in Table 1 and Table 2, the proposed663
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method could be considered as a generalization of the metric-based methods to the mixture of task664

distributions.665

19


	Introduction
	Related Work
	Hierarchical Gaussian Mixture based Task Generative Model (HTGM)
	Model Specification and Parameterization
	Model Optimization
	Model Adaptation

	Experiments
	Experimental Results

	Conclusion
	Broader Impact and Limitation
	Appendix for Details of Deriving HTGM
	The lower-bound of the likelihood function
	The upper-bound of the partition function
	The proof of Theorem 3.1
	The training algorithm of HTGM

	Appendix for Further Discussion
	Discussion about the novel task discussion and meta-learning
	Discussion about the relationship between HTGM and HGM model
	Discussion about the related multi-task learning methods
	Further interpretation of the task-conditional distribution

	Appendix for Implementation Details
	The setup of the compared models
	The details of the setup for novel task detection

	Appendix for Experimental Results
	Analysis of 
	Analysis of 
	Impact of GMM component number
	Classification performance of the ablation variants
	Ablation analysis of optimization-based methods
	More results on the Mini-ImageNet dataset


