
Appendix

Brief Introduction. The appendix is structured into four main sections: Algorithm, Experimental
Settings, Supplementary Experiments, and Further Analysis. The main contents are as follows:

• A. Algorithm: Pseudo-codes and algorithm details.

• B. Experimental Settings: More detailed description of the datasets, backbones, metrics formula,
implementation details and baselines.

• C. Supplementary Experiments: Results of cross-dataset evaluation, comparison of different
predicted map, exploration of Warm-Up speed and its influence on the final results, false-positive
rejection capability of Noise Filtering, investigation of hyperparameters for Filter, IPL, and EMA,
effect of data augmentation and quality analysis (visualization).

• D. Further Analysis: Theoretical elaboration on the challenges faced by existing contrastive
learning methods, and explanation of why contrastive learning alone cannot achieve precise
localization.

A Algorithm

To make it more clear, Dual Mean-Teacher is specifically depicted in Algorithm 1.

Algorithm 1 Dual Mean-Teacher algorithm.

1: Input: Du = {(ai, vi)}, Dl = {(vi, ai),Gi} {labeled data and unlabeled data.}
2: while not reach the maximum iteration do
3: for (ai, vi) in Du do
4: while not reach the convergency of Warm-Up do
5: LWarm-Up = E(ai,vi)∼Dl

H(Gi,Pt
i ) {Supervised learning on labeled data.}

6: end while
7: Get the pseudo-labelsMt,A

i ,Mt,B
i from dual teachers

8: if IoU(Mt,A
i ,Mt,B

i ) ≥ τ then
9: IPL(ai, vi) =Mt,A

i · Mt,B
i {Compute Intersection of Pseudo-Labels (IPL).}

10: Ĝi = IPL(ai, vi) {Update the pseudo-label Ĝi of unlabeled data.}
11: Add (ai, vi) to new dataset D′

u
12: end if
13: end for
14: Dmix = Dl ∪ D′

u {Mix the filtered unlabeled data and labeled data.}
15: Lfull =

(
LA

sup + LB
sup

)
+ λu

(
LA

unsup + LB
unsup

)
. {Students learning.}

16: θtm ← βθtm−1 + (1− β)θsm {Students update teachers via EMA.}
17: end while
18: Return: Dual teachers and students model parameters.

NOTING TIPS:

Train. Warm-Up Stage is essentially a supervised learning. The performance gains of subsequent
Unbiased-Learning Stage over Warm-Up Stage is actually the performance gains of our semi-
supervised framework over vanilla supervised training on the same labelled dataset Dl, which proves
the validity of the proposed Dual Mean-Teacher, as shown in the main results in Table 1 and Table 2.

Inference. For the localization result of ith audio-visual pair, we merge the outputs of the dual
teachers to create a predicted map as below. Comparison of different predicted maps are described
in C.2.

Pi =
1

2
(Pt,A

i + Pt,B
i ). (1)
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B Experimental Settings

B.1 Datasets

We have conducted our training and evaluation of the Progressing Teacher on two large-scale audio-
visual datasets: Flickr-SoundNet and VGG-Sound, which consist of millions of unconstrained videos
and 5, 000 and 5, 158 annotated samples, respectively. Each audio-visual pair is comprised of a single
image frame from each video clip and an audio segment centered around it. The annotations are
provided in the form of bounding boxes. The relevant information is presented in the Table 1.

Table 1: Datasets overview.
All Labeled Data Test Set Labeled Split

small medium large huge total small medium large huge total train val test total

Flickr-SoundNet 3 254 687 4056 5000 0 9 83 158 250 4250 500 250 5000

VGG-SoundSource 134 1796 1726 1502 5158 8 86 83 73 250 4250 500 250 5000

Furthermore, for the purpose of assessing the generalizability of our model, we have extended DMT
to music domain (distribution), including: MUSIC-solo, MUSIC-duet, and MUSIC-Synthetic. The
MUSIC dataset [1] comprises 685 untrimmed videos, encompassing 536 solo performances and
149 duet renditions, spanning across 11 distinct categories of musical instruments. The MUSIC-
Synthetic [2, 3] is a multifaceted assemblage wherein four disparate solo audio-visual pairs of
divergent classifications are randomly mixed, retaining solely two out of the four audio segments.
This deliberate curation aligns aptly with the evaluation of discerningly sounding object localization.

B.2 Backbones: VGGish and SoundNet

For audio backbones, we employ pre-trained VGGish and SoundNet. VGGish is pre-trained on
AudioSet as audio feature extractors. The raw 3s audio signal is resampled at 16kHz and further
transformed into 96 × 64 log-mel spectrograms as the audio input. The output is 128D vector.
SoundNet takes the raw waveform of the 3s audio clip as input and produces a 1401D vector as
output, which concatenates the 1000D object-level feature and the 401D scene-level feature, which
are both obtained from different conv8 layer. Our main focus is to train the nonlinear audio feature
transformation function, g(·), which is instantiated with two fully connected networks and a ReLU
layer, to transform the network output feature into a 512D representation.

B.3 Metrics: CIoU, MSE, F1 Score, Precision

We consider a set of audio-visual pairs as D = {(vi, ai),Gi}, where Gi is the ground-truth. We
set Pi(δ) = {(x, y)|Pi(x, y) > δ} is the foreground region of predicted map, and Gi(x, y) =
{(x, y)|Gi(x, y) > 0} is the foreground region of ground truth.

CIoU. The IoU of predicted map and ground truth can be calculated by:

IoU i(δ) =

∑
x,y∈Pi(δ)

Gi(x, y)∑
x,y∈Pi(δ)

Gi(x, y) +
∑

x,y∈{Pi(δ)−Gi} 1
. (2)

In previous works, CIoU quantifies the proportion of samples with IoU value exceeding a predeter-
mined threshold, typically set at 0.5.

MSE. MSE measures the difference between two maps on a pixel-wise basis, making it more suit-
able for evaluating dense prediction tasks than IoU. Other two metrics for small objects localization.

MSEi =
1

HW

W∑
x=1

H∑
y=1

(Pi(x, y)− Gi(x, y))2 . (3)
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Max-F1 and AP. To compute true positives, false positives and false negatives, we closely follow
SLAVC [4]. Then we can compute the precision and recall:

Precision =
|T P|

|T P|+ |FP|
, Recall =

|T P|
|T P|+ |FN |

. (4)

Then we compute F1 for all values of δ and report the Max-F1 score:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
, max-F1 = max(F1). (5)

Average Precision (AP) is the area under the precision-recall curve above. For a detailed calculation
of max-F1 and AP, please refer to the SLAVC [4].

B.4 Implementation details

In addition to the experimental settings mentioned in the main text, we used a batch size of 128.
Warm-Up stage is trained for 6 epochs to achieve convergence, while the Unbiased-Learning stage is
trained for 20 epochs. The learning rate for the image is set to 1e-4, and the weight for the contrastive
loss λu is set to 1. An Exponential Moving Average (EMA) decay of 0.999 is applied. The Adam
optimizer is used for training, and the training is conducted on two GPUs. Our supplementary
experiments were conducted on the Flickr-10k or Flickr-144k dataset, which contains 4k annotations.
The trained models were evaluated on the Flickr-SoundNet testset.

B.5 Baselines

• Attention 10k [5, 6] (CVPR2018): introduce a dual-stream network and leverage an attention
mechanism to capture the salient regions in semi-supervised or self-supervised environments.

• DMC [7] (CVPR2019) : establish audio-visual clustering to associate sound centers with their
corresponding visual sources.

• CoarsetoFine [8] (ECCV2020) : leveraged a two-stage framework to capture cross-modal feature
alignment between sound and vision.

• LVS [9] (CVPR2021) : propose to mine hard negatives within an image-audio pair.

Table 2: Cross dataset performance. We train our model using the VGG-Sound 10k and 144k datasets
and evaluate its performance on the Flickr-SoundNet dataset.

Trainset Methods Flickr testset

CIoU AUC

VGG-Sound 10k

attention10k 52.20 50.20
LVS 61.80 53.60

EZVSL 65.46 54.57
SLAVC 74.00 57.74
SSPL 76.30 59.10

SSL-TIE 77.04 60.36
Ours(|Dl| = 256) 85.04 (80.08) 65.06 (60.14)
Ours(|Dl| = 2k) 87.36 (81.60) 67.38 (61.26)
Ours(|Dl| = 4k) 88.20 (82.88) 67.56 (62.06)

VGG-Sound 144k

attention10k 66.00 55.80
LVS 71.90 58.20

EZVSL 79.51 61.17
SLAVC 80.00 61.68
SSPL 76.70 60.50

SSL-TIE 79.50 61.20
Ours(|Dl| = 256) 87.04 (80.08) 64.72 (60.14)
Ours(|Dl| = 2k) 88.32 (81.60) 67.78 (61.26)
Ours(|Dl| = 4k) 89.84 (82.88) 68.64 (62.06)
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• EZVSL [10] (ECCV2022) : introduce a multi-instance contrastive learning framework that utilizes
Global Max Pooling (GMP) to focus only on the most aligned regions when matching audio and
visual inputs.

• SLAVC [4] (NeurIPS2022) : adopts momentum encoders and dropout to address overfitting and
silence issues in single-source sound localization.

• SSPL [11] (CVPR2022) : propose a negative-free method to extend a self-supervised learning
framework to the audio-visual data domain for sound localization

• SSL-TIE [12] (ACM-MM2022): introduce a self-supervised framework with a Siamese network
with contrastive learning and geometrical consistency.

C Comprehensive Experimental Results

C.1 Cross-dataset Evaluation

To further validate the generalization ability of DMT, we conducted cross-dataset validation experi-
ments. The results in Table 2 show that DMT still stays ahead, confirming the high generalization
ability of our model.

C.2 Different Predicted Map

Table 3: Results of different
inference strategies.

CIoU AUC

Student A 86.20 66.16
Student B 86.80 66.84

Fused Students 88.60 68.56

Teacher A 87.20 67.57
Teacher B 87.60 67.98

Fused Teachers 90.40 69.36

In this section, we compare the accuracy of different predicted maps
for sound localization. We evaluate individual predicted maps and a
fused map as the final localization map, as defined by Eq. 1. Training
is performed on the Flickr144k dataset using dual teacher results,
as shown in Table 3. We find that fused predicted map from dual
teachers with different backbones achieves better localization per-
formance than from individual maps, which can be attributed to the
fact that considering both localization results helps mitigate biases
inherent in a single model.

Additionally, we assess the performance of teachers and students by
comparing their fused predicted maps obtained during the same training session. The results, as
shown in Table 3, indicate that teachers outperform students, which aligns with our expectations
and further validates the effectiveness of our model.

C.3 Effect of Warm-Up Stage
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Figure 1: Warm-Up.

This section focuses on the analysis of convergence speed and the
influence of the Warm-Up performance on the final results.

Convergence Speed Initially, we investigate the convergence speed
of the Warm-Up stage with varying amounts of labeled data, as depicted
in Figure 1. Notably, all supervised models exhibit rapid convergence
within a specific number of epochs. Furthermore, as the quantity of
data increased, the convergence speed decreases while simultaneously
achieving higher levels of performance.

Table 4: Effect of Warm-
Up Performance.

Warm-Up Final

CIoU AUC CIoU AUC

0 0 84.32 64.52
51.20 48.62 87.28 67.18
71.60 56.08 89.04 68.26
86.20 65.56 90.40 69.36

Effect of Warm-Up Performance. Subsequently, we investigate how
the Warm-Up performance affects final results by experimenting with
models that achieved different levels of convergence using the same
amount of data. Training is performed on the Flickr144k dataset using
dual teacher results, as presented in Table 4. The results indicate
that better performance of Warm-Up stage leads to better final model
performance, which can be attributed to higher-quality pseudo-labels
and improved noise filtering, reducing confirmation bias. Conversely,
the model exhibits the poorest performance in the absence of Warm-Up
stage.
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Figure 2: False-Positive Rejection Capability of Noise Filtering.
Overall, supervised audio-visual source localization demonstrates ease of convergence without
requiring excessive training resources. Moreover, our proposed semi-supervised model consistently
outperforms the supervised model by approximately 3% in terms of absolute performance, validating
its effectiveness.

C.4 False-Positive Rejection Capability of Noise Filtering

After analyzing the filtered-out samples, we observed that the two independent teachers exhibit
disagreement in localizing non-sounding objects. In such cases, the IoU falls significantly below
the threshold, enabling the Dual Teachers to identify and reject non-sounding samples, which can
be considered as false positives, as illustrated in Figure 2. Additionally, different filter thresholds
represents different levels of filtering strictness, as detailed in Section C.6.

Furthermore, we analyzed the visual results of some noisy samples, as depicted in Figure 5. One
can observe that frames without distinguishable sound objects or sounds that cannot be accurately
represented by a bounding box (e.g., wind sounds) can be easily identified through the inconsistency
between the predictions of the two teachers.

C.5 Hyper-parameters for Filter, IPL, and EMA
Effect of Pseudo-Labeling Threshold. The threshold δ is used to convert the predicted map into
a binary map, as described in Eq.(6). In this section, we analyze the impact of different thresholds
on pseudo-labels and the model. Training is conducted on the Flickr10k dataset. Figure 3 shows
the results. A small delta value (e.g. δ = 0.5) creates a large foreground area, introducing excessive
noise and causing performance degradation as training progresses. On the other hand, A large value
of δ (e.g. δ = 0.9) indicates a small foreground area, causing the intersection between Dual Teachers
to be minimal and resulting in samples being falsely rejected as noise, thus disturbing the model.
Therefore, we choose δ = 0.6 as the optimal threshold for our final selection.
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Figure 3: Results of various δ.

Effect of Filtering Threshold. In Section 4.2, we employ a confidence threshold, denoted as τ , to
filter out noisy samples, which are more likely to be false-positive instances. We evaluate the effect
of different threshold values τ . As shown in Figure 4, As the threshold value τ increases from 0 to
0.9, the number of accepted samples decreases. However, setting a very high threshold (e.g., τ = 0.9)
leads to unsatisfactory results due to the limited number of accepted samples, reducing the available
information from unlabeled data. Conversely, using a low threshold (e.g., τ = 0.6) introduces a
confirmation bias from noisy samples, hindering favorable outcomes. Upon analysis, we discover that
the performance shows little variation between threshold values of τ = 0.7 and τ = 0.8, indicating
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a balance between unlabeled information and bias within the 0.7-0.8 range. As a result, we opt for
τ = 0.7 as the preferred threshold for our final selection.
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Figure 4: Results of various τ .

Table 5: Results on various
EMA β.

β CIoU AUC

Flickr
10k

0.9 86.48 65.16
0.99 88.64 66.94
0.999 88.80 67.81

Flickr
144k

0.9 87.84 85.82
0.99 89.92 68.86
0.999 90.40 69.36

Effect of EMA Rates We also examine the model performance
with various exponential moving average (EMA) decay values, de-
noted as β, ranging from 0.9 to 0.999, and present the results of the
teachers in Table 5. We observe that a smaller EMA decay leads to
a faster update rate, lower CIoU, and higher variance. Conversely,
a larger EMA decay value results in slower learning for the teachers.
Therefore, we select an appropriate EMA decay value of β = 0.999
to strike a balance between the update rate and the stability of the
learning process.

C.6 Effect of Data Augmentation

We evaluate the effect of RandAug [13] on a supervised model on
4k labeled data, as shown in Table 6. Without data augmentation, the model exhibits significant
over-fitting. With RandAug, this issue is mitigated, which indicates that RandAug serves not only as
a means of consistency regularization but also as a method to enhance the model’s generalization
performance.

Table 6: Results of data augmentation (i.e., RandAug.).
Trainset Testset

CIoU AUC CIoU AUC

w/o RandAugment 88.20 67.82 84.80 60.44
w/ RandAugment 87.68 67.54 86.20 65.56

C.7 IPL on Different Object Size

We assess the adaptability of IPL to various object sizes, and compare with existing methods, two
teachers with DMT. Table 7 results highlight prior methods’ diminishing performance with smaller
objects, while DMT consistently excels across all size subsets. This enhancement is attributed to
Filtering and IPL synergy. Under the filtering mechanism, only highly similar pseudo-labels can
contribute to model training. This keeps the intersection of pseudo-labels consistently aligned with
object sizes. If pseudo-labels decrease significantly, IoU declines, excluding noisy samples from
training. Moreover, in the second-stage training, we use labeled data to prevent size bias and ensure
unbiased treatment of objects of all sizes.

Table 7: Performance across various sizes of sounding objects.

Size SLAVC teacher1 teacher2 DMT
MSE ↓ IoU ↑ MSE ↓ IoU ↑ MSE ↓ IoU ↑ MSE ↓ IoU ↑

small 0.705 2.10 0.213 2.58 0.183 2.26 0.205 2.65
medium 0.235 22.00 0.156 12.47 0.176 12.28 0.164 33.50

large 0.427 48.11 0.202 55.32 0.221 54.68 0.212 55.50
huge 0.358 61.64 0.212 66.84 0.217 66.26 0.215 67.70
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C.8 How to avoid model collapse?

There are diversity and individuality between two teachers, as in Q2, which helps to prevent two
teachers convergence to one model. The noisy filter module of DMT selects ‘stable samples’ via
consensus and assigns high-quality pseudo-labels with IPL, such spirit has been validated by prior
work that ‘stable samples’ could help avoid model collapse. Two teachers are first trained in Warm-Up
stage for better initialization. Moreover, in stage-2, we also include supervised training on labeled
data and contrastive learning on unlabeled data, the two objectives would ensure the model possesses
robust localization capabilities over the course of stage-2. The results in Table 8 validate each
component to avoid model collapse.

Table 8: Model collapse results. A, B denotes augmentation and backbone.
method DMT same A same B w/o annotation in stage-2 same A & B w/o annotation
CIoU 90.4 87.2 85.4 81.6 7.2

C.9 Quality Analysis

We present the visual localization results of DMT in Figure 5. It effectively locates objects of
different sizes, distinguishes them from the background by clear boundaries, and demonstrates some
multi-object localization capability. Notably, DMT learns semantic information and can precisely
localize specific sound-producing regions instead of the entire object. For example, in the third row
of the Figure 5 on the right, it accurately locates the mouth of a person rather than the entire person.

Ground Truth LVS EZVSL SLAVC Ours Ground Truth LVS EZVSL SLAVC Ours

Figure 5: Visualizations of various methods.

D Further Analysis: Limitations in Existing AVSL and DMT

Based on the formula of contrastive loss, we can observe that the core idea of existing contrastive
learning methods is to match the visual frames and corresponding audio clips within the same video
as a whole. The audio-visual pairs from the same video are considered positive pairs, while the
frames and audio clips from different videos are considered negative pairs. The contrastive loss aims
to maximize the similarity between positive samples and minimize the similarity between negative
samples. The differences among existing self-supervised methods lie in the selection of the similarity
function s(·) and the positive-negative sample pairs.

Lunsup = −E(ai,vi)∼Du

[
log

exp(s(g(ai), f(vi))/τt)∑n
j=1 exp (s (g(ai), f(vj)) /τt)

+ log
exp(s(f(vi), g(ai))/τt)∑n

j=1 exp (s (f(vi), g(aj)) /τt)

]
.
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D.1 Global and Local Information

In the given formula, different methods employ different match functions s(·) to compute the distance
or similarity between positive samples. For instance, Attention10k [5, 6] uses the Euclidean distance,
LVS [9] utilizes the Frobenius inner product, and EZVSL [10] applies Global Max Pooling:

Attention10k: s(·) = ∥fatt(vi)− g(ai)∥2 ,

LVS: s(·) =
1

|m̂ip|
⟨m̂ip, sim (f(vi), g(ai))⟩ ,

EZVSL: s(·) = max sim (f(vi), g(ai)) ,

SLAVC: s(·) =
∑
x,y

ρ

(
1

τ
sim

(
gloc (ai) , f

loc (vi)
))
· ρ

(
1

τ
sim (gavc (ai) , f

avc (vi))

)
.

All of these functions capture the overall matching degree between audio and global visual repre-
sentations. However, after the computation of s(·), the model loses the positional information of
the two-dimensional visual representation. This positional information is crucial for fine-grained
localization tasks.

D.2 Position-Aware Contrastive Loss

We refer to the methods that incorporate position information as ‘position-aware’. In the above
formulas, we can observe that the distances or similarities between samples are calculated in a
position-aware manner. For example, in the Attention10k [5, 6] method, the attention mechanism
fatt takes into account the positional information. Similarly, in LVS [9], the foreground mask m̂ip

distinguishes the background as hard negatives, incorporating the positional context. EZVSL [10] uses
the maximum value to capture the positional information, while SLAVC [4] incorporates localization
information. Taking LVS [9] as an example, it specifically treats the background of the image as hard
negatives, effectively leveraging the positional cues for discrimination and learning.

Pi =
1

|m̂ip|
⟨m̂ip, sim(g(ai), f(vi))⟩ ,

Ni =
1

|1− m̂in|
⟨1− m̂in, sim(g(ai), f(vi))⟩+

1

hw

∑
j ̸=i

⟨1, sim(g(ai), f(vj))⟩ ,

Lunsup = −1

k

k∑
i=1

[
log

exp (Pi)

exp (Pi) + exp (Ni)

]
.

where, m̂ip is the mask of foreground, which strongly relies on the initialization of the model.
According to the formula, both the positive (Pi) and negative (Ni) samples in the training process are
influenced by the initial values of the foreground mask m̂ip. This implies that the model’s localization
results are heavily dependent on the initialization.

D.3 Initialization

The different matching mechanisms, represented by the function s(·), rely on the initialization of
the entire visual model, specifically the pre-trained ResNet-18 [14, 15], where the average of the
pixel-wise features is taken as the initial result at epoch 0. This initialization result serves as the
basis for the computation of position-aware components, such as the attention mechanism or Global
Max Pooling (GMP). Subsequently, during the model’s training, these initial localization results
are reinforced and refined. However, if the initial localization results are inaccurate (which is often
the case), subsequent training may have difficulty detecting and correcting these inaccuracies. As a
result, the errors may accumulate over time without being effectively addressed, leading to degraded
performance.

D.4 False Positives, False Negetives and Multi-Source

From the contrastive learning formula, it is apparent that contrastive learning assumes the presence
of sound-producing objects in the visual input and enforces alignment between highly confident
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visual regions and their corresponding audio features. However, pure contrastive learning, without
the incorporation of additional modules, cannot directly reject non-sounding samples. Recently, some
works have recognized this limitation and started to investigate the presence of sound-producing
objects in images and tackle the task of multi-source sound localization. Examples of such works
include DSOL [2], IER [16], and AVGN [17].

Furthermore, due to the absence of class labels during the selection of positive and negative samples,
visual-audio pairs belonging to the same sound-producing object class but originating from different
videos are still treated as negative samples, resulting in a false negatives issue. Several methods have
emerged to address this problem, as highlighted in [18, 19].

In addition, the commonly used matching mechanism, Global Max Pooling, is suitable only for
single-source localization since it focuses solely on the region with the highest confidence, neglecting
other potential sound-producing objects.

These three aforementioned challenges cannot be effectively resolved solely through simple models
or algorithms without positional annotations. Therefore, they have become prominent research areas
that are currently receiving considerable attention.

D.5 Limitations of DMT

DMT does not involve class information, so it struggles to localize among fine-grained objects due
to poor discriminative ability. By incorporating category signals, models could better implement
fine localization. Besides, DMT could not handle multi-object localization well. We will devise
specialized components to address this issue.
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